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Abstract 

Nano-sized metal oxides are currently the most manufactured nanomaterials (NMs), and are 

increasingly used in consumer products. Recent exposure data reveal a genuine potential for adverse 

health outcomes for a vast array of NMs, however the underlying mechanisms are not fully 

understood. To elucidate size-related molecular effects, differentiated THP-1 cells were exposed to 

nano-sized materials (n-TiO2, n-ZnO, n-Ag), or their bulk-sized (b-ZnO, b-TiO2) or ionic (i-Ag) 

counterparts, and genome-wide gene expression changes were studied at low-toxic concentrations 

(<15% cytotoxicity). TiO2 materials were non-toxic in MTT assay, inducing only minor 

transcriptional changes. ZnO and Ag elicited dose-dependent cytotoxicity, wherein ionic and 

particulate effects were synergistic with respect to n-ZnO-induced cytotoxicity. In gene expression 

analyses, 6h and 24h samples formed two separate hierarchical clusters. N-ZnO and n-Ag shared only 

3.1 % and 24.6 % differentially expressed genes (DEGs) when compared to corresponding control. 

All particles, except TiO2, activated various metallothioneins. At 6h, n-Zn, b-Zn and n-Ag induced 

various immunity related genes associating to pattern recognition (including toll-like receptor), 

macrophage maturation, inflammatory response (TNF, IL-1beta), chemotaxis (CXCL8) and 

leucocyte migration (CXCL2-3, CXCL14). After 24h exposure, especially n-Ag induced the 

expression of genes related to virus recognition and type I interferon responses. These results strongly 

suggest that in addition to ionic effects mediated by metallothioneins, n-Zn and n-Ag induce 

expression of genes involved in several innate and adaptive immunity associated pathways, which 

are known to play crucial role in immuno-regulation. This raises the concern of safe use of metal 

oxide and metal nanoparticle products, and their biological effects. 

 

Keywords: ZnO, Ag, nanomaterials, immune system, transcriptomics  
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Introduction 

Nanotechnology continuously offers new, engineered nanomaterials (NMs) with outstanding 

properties to various industrial sectors and medicine but increasingly also to consumer products such 

as clothing, cosmetics and food. Metal oxides and metal-based nanoparticles are one of the largest 

group of used nanoparticles (one dimension less than 100 nm), of which silver (Ag) NMs alone are 

manufactured approximately 320 tons in each year (Nowack et al., 2011). When the size of metal 

particles decreases, their reactive surface area increases, and therefore, NMs are thought to cause 

more severe adverse effects in organisms than micrometer size materials. There is ongoing debate 

about the role of released ions from metal oxides and metal nanoparticles, that have been found to be 

the main cause of their toxicity (Ma et al., 2013, Sharma et al., 2014, Utembe et al., 2015). Even 

though ions do not easily pass the cell membranes by themselves, toxic intracellular concentrations 

are attained via a “Trojan horse” mechanism, wherein, metal ions are released from NMs that cross 

the cell membrane (Hsiao et al., 2015). However, ion releasing potential with enhanced solubility and 

dissolution cannot alone account for the toxic effects observed, since numerous studies have shown 

additional effects depending on the characteristics of NMs both in vivo and in vitro (Kruszewski et 

al., 2011). Even though metal oxides are amongst the most commercialized nanomaterials, studies 

concerning other than ion-dependent effects at the cellular and molecular levels are rather limited and 

the mechanisms behind metal oxide toxicity are far from being understood. 

Some metal oxides are not reported to be harmful in biological systems, whereas others are 

reported to increase cytotoxicity by enhancing oxidative stress, apoptosis, cytokine production, DNA 

damage and cell cycle arrest (AshaRani et al., 2009, Tuli et al., 2015). Even the same material may 

have various effects in different environments due to particle properties (size, shape, charge) and 

prevailing interactions. Titanium dioxide (TiO2) particles are often considered stable, insoluble and 

of low toxicity particles, but in certain in vivo set-ups, they have been reported to cause pulmonary 

toxicity and lung inflammation (Shi et al., 2013). Zinc oxide (ZnO), on the contrary, is considered to 
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have cytotoxic, inflammatory and genotoxic effects mostly through its dissolution and generation of 

reactive oxygen species (ROS) (Roy et al., 2015). In a few studies, ZnO NMs are shown to increase 

the expression of inflammatory markers (e.g. ICAM-1, IL-8 and MCP-1) (Gojova et al., 2007), and 

also to enhance the production of cytokines (IFN-, TNF and IL-12) (Hanley et al., 2009). Silver (Ag) 

NMs are the most widely studied metal nanoparticles, and they are known to interact with intracellular 

components leading to oxidative stress, consequently high ROS and inflammation that eventually 

leads to necrotic or apoptotic cell death (Zhang et al., 2016).  

As NMs have size comparable to biological structures, they are able to enter the cells 

passively, or actively via cellular uptake (endocytosis), and have interactions with intracellular 

compartments that can lead to variable biological responses (Gliga et al., 2014). Previous studies 

have also linked toxicity of certain NMs to inflammation, an important immune response that aims 

to eliminate invading foreign matter, but may become harmful when overly expressed (Tuli et al., 

2015). This leads to the production of cytokines, chemokines and activation of the immune system in 

vivo. However, these crucial steps that occurs during the first hours are not well characterized even 

in vitro. The published results are often hard to compare because of the variation in the particle size 

or modifications, differences in cell types or used conditions, and versatile analyses. Even when 

studies describe several particles in the same settings usually utilize molar particle concentrations that 

often transcribe to the lethal-dose effects for certain particles. 

To shed more light on these issues, we selected three well-characterized commercially 

available NMs and titrated their concentrations so that they induced a maximum cell cytotoxicity of 

15%. We used titanium dioxide (n-TiO2), zinc oxide (n-ZnO), and polyvinylpyrrolidone-coated silver 

(n-Ag) and compared the results to their bulk or ionic counterparts (b-TiO2, b-ZnO and i-Ag) to 

identify possible size- or ion-specific effects. We exposed monocyte-derived THP-1 macrophages 

with these particles, and performed global gene expression analyses to evaluate their cellular 

mechanisms and responses at two different time points, 6h and 24h, after the NM exposure. Our 
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results provide concise understanding of the cellular functions and a number of candidate genes, 

signalling pathways and molecular mechanisms, how intracellular NMs interact with different 

component in the cytosol, mitochondrion and in the nucleus. Overall, the understanding of these 

particle-specific mechanisms offer tools for NM carrier design and also contributes to better risk 

assessment of NMs.  
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Methods 

Particles and their characterization 

Nano-sized rutile/anatase (90/10%) titanium dioxide (n-TiO2) and zinc oxide (n-ZnO) were 

purchased from Nanostructured & Amorphous Materials, Inc. (Houston, USA). Nano-sized PVP-

coated silver in water (n-Ag) was purchased from NanoComposix, (San Diego, USA), titanium 

dioxide (n-TiO2) from Sigma-Aldrich (Schnelldoff, Germany), zinc oxide (n-ZnO) from Camden-

Grey Essential Oils, Inc. (Doral, USA), and silver nitrate (AgNO3) from Sigma-Aldrich (USA). 

Properties of n-TiO2, b-TiO2, n-ZnO, b-ZnO and n-Ag provided by the vendors are shown in Table 

1.  

The samples of the freshly made particle suspensions in both water and in complete media 

(cRPMI, see Supplementary Material, methods) were taken on a holey carbon copper grid (SPI 

Supplies, Inc.). The primary and agglomerate size of the particles was studied with microscopy (SEM, 

Zeiss Sigma HD-VP) operated at 2 kV acceleration voltage and the transmission electron microscopy 

(TEM, Jeol JEM-2100F) operated at 200 kV acceleration voltage. The diameter of the agglomerates 

was obtained by (hand) fitting method with a spline and by enclosing the projected area, which was 

used to calculate the area-equivalent diameter of a circle/sphere. Additional methods for the particle 

characterization are in the Supplementary Material.  

 

Particle dispersions 

The n-TiO2, b-TiO2, n-ZnO and b-ZnO particles were weighed into autoclaved glass tubes. Stock 

dispersions (1 mg/ml) were prepared in cRPMI, followed by 20 min of continuous sonication in 

Elmasonic S15H bath sonicator (frequency 37 kHz, effective power 35W with maximum peak 

performance 280W, Tovatech LLC South Orange, NJ, USA) at 30°C. Final dispersions were prepared 

from serial dilution of the stock in cRPMI followed by another 20 min sonication at 30°C just before 

the cell experiment.  
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The n-Ag was a 1 mg/ml stock dispersion in water, and stored at 4°C in dark. Before use, the 

stock was shaken vigorously by hand for 30s to ensure homogeneity. Final dispersions were prepared 

by dilution in complete media. Silver ion solution (i-Ag), AgNO3, was first dissolved in Milli-Q water 

to form a 0.3% stock solution. The stock solution was then filtered through a 0.2 μm-pore-sized 

membrane filter (Pall Corporation, USA). Final solutions were prepared by serial dilutions in culture 

medium. Used concentrations were 0.05%, 0.005%, 0.0005% and 0.00005%. These concentrations 

were selected to cover the high-end of dissolution in water reported by the vendor and potentially 

higher dissolution in media. 

All dispersions were vortexed for 10s after sonication, 5s during serial dilutions and before 

dosing the cells. Concentrations ranging from 0.1 to 100 ug/ml were used depending on the type of 

experiments.  

 

Statistical Analyses of mRNA Levels 

Triplicate measurements were made for each treatment. The data was analysed by GraphPad Prism 

(version 6) by one-way analysis of variance (ANOVA) using the Tukey test or Mann-Whitney t-test. 

Significance was indicated by *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Values were 

expressed as mean ± standard deviation (SD).  

 

Microarray-based Expression Profiling  

Three samples per group with RNA integrity number (RIN) 8 or higher were used for microarray 

hybridization. Two-Color Microarray-Based Gene Expression Analysis protocol (version 6.5), was 

used for all the samples, starting with 200 ng of total RNA. Oligo-dT (T7) primed cDNA (Quick Amp 

Labeling Kit, Two-color, Agilent) was amplified and labelled using fluorescently labelled dNTP-

nucleotides (Cy3 and Cy5) and T7 RNA Polymerase, and yielded products were purified by Qiagen’s 

RNeasy mini spin columns (Qiagen, GmbH, Hilden, Germany). RNA Spike-In Kit was used to 
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monitor the success of the labelling. 300 ng of labelled samples from two different groups were 

always combined per array, and fragmented cRNA was hybridized to microarray slides (Agilent 

technologies, Sure Print G3 Human GE v3 8x60K Kit, USA) for 17h at 65°C. After the washings, 

the slides were scanned with Agilent DNA microarray Scanner (Agilent Technologies, DNA 

Microarray Scanner with Surescan High-Resolution Technology, model G2505C, USA) and sample 

and  background intensities were obtained using Agilent Feature Extraction Software (V11.0.1.1).  

The median signal intensities of each sample were imported into Chipster's R-based graphical 

interface (Kallio et al., 2011). After quantile normalization, the dye-dependent batch effect was 

removed by ComBat (Johnson et al., 2007). The linear model Limma (Ritchie et al., 2015) was used 

to fit to the data, and empirical Bayes t-test coupled with Benjamini Hochberg FDR adjustment was 

used to compare the groups of different NM samples. Genes were defined as being differentially 

expressed after satisfying a minimum fold change of ±1.5 and a maximum, Benjamini−Hochberg 

adjusted P value of 0.01. The microarray data produced in this study is available on request from the 

authors. 

 

Heat maps, Venn Diagrams and pathway analyses.  

Microarray-based gene expression profiling, followed by differential expression analysis in specific 

contrast sets, was carried out as described in the Supplementary Materials, Methods section. 

Hierarchical clustering of differentially expressed genes (DEGs) was done within the Perseus data 

analysis platform (Tyanova et al., 2016). DEGs from the 6h and 24h exposures were independently 

Z-score normalized. The Euclidean method and the k-means algorithm were respectively used to 

determine the distance between two dataset points and to define the distance between two clusters. A 

hierarchical cluster of the top 50 DEGs (based on adj. p-values) are depicted in the form of heatmaps 

for each time point. Upregulated genes (red) are those genes that have a positive standard deviation 

from the genes mean expression across all exposures, and vice versa for downregulated genes (green). 
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Venn diagrams to evaluate the distribution of DEGs between specified contrast sets were created 

using Venny (Oliveros, 2007-2015).  
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Results 

Particle characterization, agglomeration and dosimetry modeling 

Dispersed particles were studied by dynamic light scattering (DLS). The hydrodynamic particle sizes 

in cRPMI were relatively large compared to the physical diameter reported by the suppliers, and 

additionally, the particle size of nano-ZnO and bulk ZnO could not be reliably measured, since the 

suspensions contained very large particles (above 1 µm) (see Supplementary Material, Methods and 

Table S1). The suspensions were not very stable, as the zeta potential values of the suspensions were 

all around -10 mV which is relatively close to the zeta potential value of the pure cRPMI. Therefore, 

the analysis of ZnO and TiO2 particles was carried out in ion-exchanged water, and although large 

agglomerates were again observed, the zeta-potential values of TiO2 suspensions were measurable.  

Scanning (SEM) and transmission electron microscopy (TEM) were used to study the particle 

shape (Supplementary Material, Figure S1) and geometric mean diameter of the primary particles, 

which corresponded to the sizes given by the vendor (Table 2), with the exeption of n-Ag, which was 

impossible to measure due to the extensive formation of salt crystals on the EM grid. The obtained 

sizes of primary particles, and agglomerate size distributions were used for the dosimetry modelling 

to evaluate the actual dose of particles to the cell at the well bottom  (DeLoid et al., 2017). N/b-TiO2 

(100 g/ml) and n/b-ZnO (10 g/ml) yielded quite comparable bottom concentrations (2.2 and 0.8 

mg/ml for nanosized, and 5.7 and 7.0 mg/ml for bulk-sized particles, respectively) in 3-5 h, whereas 

n-Ag (1g/ml) reached its bottom concentration (1 g/ml) a little slower (at 7 h) (Supplementary 

Material, Figure S2). It was also modelled that only 1.1% of n-Ag was deposited during the incubation 

time, whereas the corresponding deposition was 69.7% for b-ZnO (Supplementary Material, Figure 

S2). 

 

Viability and cytotoxicity of differentiated THP-1 cells 
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Differentiated THP-1 cells were incubated with various concentrations of NMs (0.1, 1, 10, 30 and 

100 g/ml) for 24h, and their viability was assessed by MTT assay (Figure 1(A)). Treatment of cells 

with n/b-TiO2 particles did not change their viability, while n/b-ZnO, n-Ag and i-Ag induced dose-

dependent cytotoxicity starting from 10 or 30 µg/ml (Figure 1(A)). The largest effect was seen with 

AgNO3, which caused 100% cell death already at the concentration of 30 g/ml. N/b-ZnO and n-Ag 

induced similar cytotoxicity at 30 and 100 µg/ml concentrations. Significant difference in viability 

within the elemental group was only observed between b-ZnO and n-ZnO at 100 g/ml concentration, 

with n-ZnO being more cytotoxic than b-ZnO. Based on the MTT assay, microarray analysis was 

carried out on exposures corresponding to the maximum nanomaterial concentration at which >85% 

cell viability was conserved: 1 g/ml for AgNO3, 10 g/ml for ZnO particles and for n-Ag, and 100 

g/ml for TiO2 particles.  

To further investigate the possible contribution of released ions within the incubation, another 

MTT experiment was performed. The particles were incubated with cell medium alone for 24h, and 

yielded supernatants were used to expose fresh, differentiated THP-1 cells for 24h (Figure 1(B)). The 

supernatant of n-ZnO suspension significantly decreased cell viability but the effect was smaller than 

with cells and particles together, showing that extracellular ion release is important for the 

cytotoxicity of n-ZnO but not for the b-ZnO nor n-Ag, whose supernatants were not able to induce 

cytotoxicity alone (Figure 1(C)).   

 

Cytokine expression by RT-PCR 

To study the effects of NMs on pro-inflammatory cytokine expression, we measured the relative gene 

expressions of certain key cytokines including IL-1β and TNF at 6h and 24h after the exposure. No 

cytokine expression was detected from n-TiO2- or b-TiO2-exposed cells at either time points. For all 

other particles, low expression of IL-1β and TNF cytokines was already detected at 6h. Both n-ZnO 

and b-ZnO caused time-dependent induction of both cytokines at cytotoxic concentrations, with n-
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ZnO triggering significantly more efficient IL-1β and TNF gene expression when compared to b-

ZnO, especially at 24h. The cells treated with n-Ag also induced the expression of IL-1β and TNF, 

and AgNO3 but did not induce highly in cytokine expressions at any tested concentrations 

(Supplementary Material, Figure S3). 

 

Transcriptomics  

The NM exposures were characterized in detail with genome-wide gene-expression microarray to 

compare samples treated with different particles for 6h or for 24h to the corresponding non-treated 

control samples (Supplementary Material, Table S2-S3. All 6h samples, and also all 24h samples 

were clustered together forming two main groups (Figure 2(A)). In the principal component analysis 

(PCA) all samples in one group clustered together, and 6h and 24h samples were highly separated 

along the PCA2 (Figure 2(B)). At both time points, the control samples were in close proximity of 

the n-TiO2 and b-TiO2 samples (Figure 2(B)).  

To identify the DEGs, each particle was first compared to the corresponding, untreated control 

sample (lists of DEGs in Supplementary Material, Tables S1-S2). The DEGs of a NM were then 

compared with corresponding control particle at the same time point. No significant DEGs were 

observed in response to TiO2 exposures, and therefore they are excluded from further analyses. Ag 

particles shared only 3.1% and 4.1% of DEGs at 6h and 24h time points, respectively, whereas Zn 

particles shared 20.8% and 24.6% at 6h and 24h time points, respectively (Figure 2(C)). At 6h, i-Ag 

did not have any specific DEGs, and also n-Zn had zero and five DEGs at 6h and 24h time points, 

respectively (Figure 2(C)).  

 

Clustering and pathway analyses 

When the NMs treated for 6h were annotated and clustered, three main groups were identified, b-Zn 

and n-Ag formed a cluster with highly upregulated genes, n-Zn clustered in the middle and all the 



 
 

14 

other particles formed the third, mostly down-regulated gene cluster within the 50 most significantly 

DEGs (Figure 3(A)).  

Venn analysis separated the DEGs from all four 6h exposures into six main groups: bZn (443 

genes), bZn+nAg (183 genes), nAg (118) genes, bZn+nZn (43 genes) and nZn+bZn+nAg (11 genes). 

Enriched pathways represented by these genes are depicted in Figure 3(B). The group specific for b-

Zn had mainly genes, which were involved in lymphocyte activation, differentiation and migration. 

The 183 common genes for b-Zn and n-Ag were involved in protein folding, and processing of 

unfolded or incorrectly folded proteins. The 112 genes, which were common for b-/n-Zn and n-Ag 

were found to mostly represent inflammatory responses, leucocyte migration, defence and in cellular 

responses to bacterial molecules (e.g. lipopolysaccharide). Also, 11 genes, which were common to 

all Zn and Ag particles showed high correlation to ionic responses to zinc and other metal ions. No 

enriched pathways were significantly represented by the 118 genes that were unique to nAg and the 

43 genes corresponding to bZn+nZn. (Figure 3(B)) 

When similar analysis was performed for the cell samples treated with the NMs for 24h, again 

three main clusters were formed in the heatmap of the 50 most significantly DEGs (Figure 4(A)). At 

this time point, n-Ag was separated from the others, b-Zn and n-Zn formed their own cluster in the 

middle and all the other samples were included in the third cluster (Figure 4(A)). 

At the 24h time point, the DEGs were again analysed in the pathway analysis tool, and there 

were again four groups of DEGs, which were statistically significant based on their adjusted p-values. 

Ionic Ag (AgNO3), which clustered with control and TiO2 samples in the heatmap, had 62 specific 

genes, which are mainly involved in lymphocyte activation and differentiation (Figure 4(B)). Also b-

Zn had individual, significant group of 78 DEGs functioning on progesterone metabolism and 

chemotaxis. The 671 n-Ag-specific DEGs, had high importance in viral responses, interferon 

production and innate immunity. The fourth group, which was shared with b-Zn particles and with n-
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Ag (77 genes) showed high representation of ion-response pathways to zinc and cadmium, and also 

to the regulation of IL-1 secretion. (Figure 4(B)) 

We then studied each of the particles at both time points, and associated their DEGs with 

corresponding biological pathways. The n-Zn and i-Ag showed almost only genes associated to ionic 

responses, chemotaxis and inflammation, and also b-Zn and n-Ag shared the responses to ions at both 

6h and 24h time points (Supplementary Material, Figure S4(A), S5(A)). Additionally, b-Zn exposure 

induced pathways on leukocyte activation, cell adhesion and regulation of metabolic processes at 6h, 

and genes on progesterone metabolism and chemotaxis were specific for 24h time point 

(Supplementary Material, Figure S4(B)). Similarly, n-Ag showed activating pathways that regulate 

cell metabolism, fever and cytokine expressions after 6h of exposure, whereas 18 h later, the n-Ag 

was mainly activating interferon and some homeostatic responses (Supplementary Material, Figure 

S5(B)). 

We next studied in more detail the previously identified four, statistically significant DEG 

groups both at 6h and at 24h (identified in Figures 3 and 4) by opening up the genes included in each 

pathway. At both time points, all of the groups (except n-Zn and i-Ag at 24h) were heavily associated 

with metal ion responses and even nine of the gene products were different isoforms of mammalian 

metallothionein 1 (isoforms A, B, E, F, G, H, L, M, X) (Figure 5(A-B)). At 6h, the groups exposed 

to b-Zn, n-Zn and to n-Ag showed differentially enhanced expression of inflammatory and 

chemotactic proteins including IL-1, TNFAIP3, NF-BIA, CCL1/3/30, CCR7 and CXCL2/3/14 

(Figure 5(C)). After 24h of particle exposures, n-Ag induced responses to extracellular stimulus, 

virus, TNF pathway and cell surface markers including DEGs for ICAM1, CD86 and CXCR1 (also 

known as IL-8R) (Figure 5(D)). 

Although b-Zn was used as a bulk-size control particle in this study, it had specific DEGs at 

both time points. After 6h of exposure with b-Zn, lymphocyte activation was enhanced by various 

cell adhesion molecules including integrins ITGAV, ITG4 and ITG6, vinculin (VCL) and CD58 
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(called also LFA-3), of which some play a role in blood coagulation process (Supplementary Material, 

Figure S6(A)). At 24h, b-Zn induced the expression of enzyme genes playing role in aldo/keto 

metabolism, including progesterone modifications (AKR1C3, AKR1C1), and genes for cholesterol 

metabolism including STAR (steroidogenic acute regulatory protein), and chemotaxis including 

CXCL12 and CCL19. (Supplementary Material, Figure S6(B)) 

 After 6h of exposure, b-Zn and n-Ag shared the expression of genes involved in the unfolding 

of proteins and regulating metabolic processes, which included DUSP1/2/5 (dual specificity protein 

phosphatases),  heat shock proteins (HSP), and growth arrest and DNA damage (GADD) associated 

genes (Supplementary Material, Figure S6(C)). The i-Ag also induced specific pattern of genes 

regulating lymphocytes and inflammatory responses at 24h after exposure (Supplementary Material, 

Figure S6(D)). They included PTPN22 (protein tyrosine phosphatase, non-receptor type), MERTK 

(proto-oncogene tyrosine kinase MER), NOD2 which is called also CARD15 (nucleotide-binding 

oligomerization domain-containing protein 2), BLNK (B-cell linker), and acute-phase reactants 

ORM1 and ORM2 (alpha-1-acid glycoprotein 1/2) (Supplementary Material, Figure S6(D)). 

 

Validation 

The microarray results were validated by RT-PCR, and the expression levels of MT1F, CXCL8 and 

CCL20 corresponded well to that which was observed with microarray analysis (Figure 6). 
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Discussion 

NMs have great potential and interest in several fields from material development to future medical 

therapies, but their involvement and mechanisms in biological systems needs to be understood before 

their safe use. To avoid examination of cell death induced differences in transcriptomic profiles, we 

selected concentrations causing maximum of 15% of cytotoxicity to study the responses of NMs at 

6h and 24h after the exposure. These particle concentrations varied between 1-100 g/ml but showed 

quite similar effective concentrations (0.8-2.2 mg/ml, except 11.6 g/ml for n-Ag) during the 

exposure near the cell surface at the bottom of the well based on the dosimetry modelling 

(Supplemental Material, Figure S2).  We found that both nano- and bulk-sized TiO2 (n-TiO2, b-TiO2) 

particles were very inert, whereas Zn (n-ZnO, b-ZnO) and Ag (n-Ag, i-Ag) materials had particle-

specific but also shared effects in the cell metabolism and gene expressions.  

 It is widely accepted that metal particles release ions, but distinguishing the functional effects 

of the ions from that of the particle itself has been more difficult. Particles form several intermolecular 

interactions with surrounding buffer by van der Waals and electrostatic forces, and by hydrogen 

bonds (He and Alexandridis, 2015). Various proteins in biological fluids (e.g. cytosol) make these 

interactions even more complicated, and sometimes these interactions lead to protein aggregation and 

unfolding (Deng et al., 2011). Even fetal bovine serum in cell culture media can form a protein corona 

around the NMs changing their cytotoxicity, reactivity, diffusion properties and cellular uptake. 

Lopes et al. (Lopes et al., 2016) showed that ZnO and Ag NMs had different toxicity patterns as their 

ionic counterparts (ZnCl2 and AgNO3), and that a mixture of NM and ions showed a synergistic effect 

by relying on the interaction between nanoparticles and ions. This is an important point while doing 

long term exposures, because particle dissolution relates their fate and toxicity. In our studies, we 

were able to show that ions released from n-ZnO had cytotoxic effects in the cell, which were 

cumulative with the particulate effects of ZnO NM (Figure 1(B)). Although we did not observe the 

same for Ag or TiO2 NMs, we cannot exclude this possibility at different concentrations and 
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circumstances. Additionally, based on the transcriptomic analyses the responses to ions were 

triggered  at 6h for n-ZnO and at both 6h and 24h for b-ZnO and n-Ag (Supplementary Material, 

Figures S3 and S4), suggests that n-ZnO mediates a fast ion release as opposed to a sustained release 

of ions by both b-ZnO and n-Ag. The lower number of ion-associated genes triggered by i-Ag reflects 

the previously known limited intracellular accessibility to free ions. 

 Both n-ZnO and b-ZnO exposures cause various responses to cells, which is not surprising, 

as approximately 3000 proteins are thought to bind to zinc in vivo corresponding even up to 10% of 

the human proteome (Kimura and Kambe, 2016). Zn ions are important cofactors in structural 

metalloproteins, where they are stored in intracellular vesicles, and homeoproteins called 

metallothioneins (MT) keep their cytosolic concentration very low (pM-nM) by binding up to 20 

monovalent or 7 divalent heavy metal ions per one MT molecule (Kimura and Kambe, 2016). Studies 

with nine differently modified ZnO NMs also showed metallothioneins being the only common group 

of differentially expressed genes (DEGs), which were responsible for the major ZnO-derived effects 

in three different cell lines (Tuomela et al., 2013). Also in our microarray studies, metallothioneins 

(MTs) were induced after n-/b-Zn exposures, and additionally their expression was highly 

upregulated after treating the cells with n-Ag and i-Ag (Figures 2-4). It is published that MTs take 

part in metal ion detoxification and protection against free radicals during oxidative stress (Krizkova 

et al., 2016). At least, cadmium and copper ions can compete with Zn ions for the binding to the metal 

responsive element (MRE) on the MTF-1 (metal regulatory-transcription factor-1), which induces 

the expression of MTs (Krizkova et al., 2016). Therefore, it might be that MTs play a more general 

role in the regulation of free intracellular ions instead of Zn ions alone.  

Humans are exposed to NMs mainly through inhalation, ingestion and contact with skin or 

mucous membranes. In the first line of defense, tissue macrophages engulf foreign particles, and 

dendritic cells (DC) are the professional antigen presenters to activate adaptive immunity. To simulate 

the natural interactions in this study, we differentiated THP-1 cells to mature macrophage phenotype 
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showing enhanced adherence and phagocytosis (Qin, 2012). Both macrophages and DCs have various 

pattern recognition receptors (PRRs) to sense extracellular pathogens by pathogen-associated 

molecular pattern (PAMP), and intracellular pathogens or stress by damage/danger-associated 

molecular pattern (DAMP) such as toll-like receptors (TLRs), RIG-I-like receptors (RLR) and NOD-

like receptors (NLRs). Based on our results, it seems that NMs are able to activate similar cellular 

pathways as viruses. They both induce PAMP-dependent pathways (TLR, RLR), cytokines (IFNs, 

TNF), and inflammasome, which is mainly responsible for the regulation and production of the 

proinflammatory IL-1cytokine. 

TLR7, which was upregulated in our study by n-Ag at 24h, usually recognizes single-stranded 

RNA of viruses, and regulates antiviral immunity. Downstream of TLRs, the IFN-regulatory factors 

(IRFs) IRF3 and IRF7 are activated, which lead to the expression of IFN and IFIT (interferon-

induced protein with tetratricopeptide repeats) genes (Ablasser and Hornung, 2011). Secretion of 

IFNβ by the infected cells results in type I IFN signaling that induces hundreds of IFN-stimulated 

genes (ISGs) (Diamond and Farzan, 2013). In our study, especially n-Ag induced IFN-related gene 

expressions including IFIT1-3 and IFIT5 genes, IFI44 (IFN-induced-protein 44) and MX2, which is 

a IFN-induced GTP-binding protein. After cellular stress or type I IFN responses, IFIT proteins exist 

in great abundance within a larger IFIT1-3 complex to inhibit viral replication, and to regulate the 

cell apoptosis (Leavy, 2011, Pichlmair et al., 2011). Interferon-associated genes are not usually 

connected to NM-induced responses but McDermott et al (McDermott et al., 2011) who used 

computational analyses to fetch out a common “core response module” of DEGs for macrophage 

activation after exposure to TLR agonists, Salmonella and silica nanoparticles, had IFIT1-2 and IFI44 

in their target list. NMs associated with an antigens, leads to the recognition and activation of TLRs, 

which might be beneficial in medicine (vaccines), but if the interactions persist in the living system, 

the consequences might progress into harmful chronic responses. 
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Inflammasomes have a crucial role during viral infection, but is it proposed that various 

crystals and particles may also activate inflammasomes via lysosomal dysfunction and damage-

mediated mechanism (Cassel et al., 2008, Hornung et al., 2008, Palomaki et al., 2011, Weber and 

Schilling, 2014). To become fully active, NLRP3 needs to be primed first via toll-like receptors 

(TLRs) or induced via NF-B pathway, which is then activated by stimuli from various PAMPs and 

DAMPs (Jo et al., 2016). These events trigger the activation of inflammatory caspases and the 

maturation of IL-1 and IL-18 into active cytokines, leading to the initiation and enhancement of 

inflammation (Jo et al., 2016). In this study, our results suggest that inflammasomes are activated, 

since proinflammatory IL-1 and TNF, as well as NF-B1A gene expressions were already enhanced 

after 6h exposure to b-Zn, n-Zn and n-Ag (Figure 5 and Supplementary Material, Figure S3). 

Additionally, n-Ag induced the expression of cathepsins C, G, K, Z and V, which are serine/cysteine 

proteases digesting engulfed material in the lysosomes (Supplementary Material, Tables S2-S3). 

Yang et al (Yang et al., 2012) have found that exposure of Ag NMs in primary human monocytes 

may cause leakage of cathepsins from lysosomes and efflux of intracellular K+, which together induce 

superoxide leading to inflammasome formation.  

The recognition and uptake of a foreign antigen, leads to the activation of innate immunity 

responses and recruitment of immune cells to the site of inflammation. In our study, at 6h after the  

NM exposures, b-Zn, n-Zn and n-Ag all induced the expression of several chemokines recruiting 

neutrophils (CXCL8, CCL20, CCL3, CXCL2), monocytes (CCL3, CCL1, CXCL3, CXCL14), DCs 

(CCL1, CXCL14), lymphocytes (CCL20, CCL1) and natural killer cells (CCL1, CXCL14) to the site 

of inflammation (Figure 5). After engulfment of foreign antigens, mature macrophages (and DCs) 

enhance their antigen presentation, express several co-stimulatory molecules and travel to local 

lymph nodes with the help of CCR7, whose expression was also induced in our study. Naturally, 

these and further interactions with T- and B-cells occur in living organism, but this study with the 
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THP-1 macrophages and their responses, provide insights in the initial recognition and cellular 

responses to NMs. 
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Conclusion 

 
Different interactions and cellular uptake of nanomaterials that have different physical properties, but 

are otherwise chemically similar, complicates the traditional concept of dose when it comes to 

nanosafety assessment. Utilizing such a set-up wherein, we investigated transcriptomic changes 

associated with exposure to the maximum sub-lethal dose enables characterization of the early 

immune signaling and material-specific adaptive responses to adverse NM exposures. In this study, 

n-TiO2 and b-TiO2 did not cause any significant changes in the cellular responses or even in the 

transcriptome of the differentiated THP-1 cells. Exposure to n-ZnO and b-ZnO, and also to n-Ag and 

i-Ag enhanced the expression of metallothioneins which are responsible for the ionic homeostasis in 

the cells. In addition to these direct ionic effects, n-ZnO and n-Ag induced the expression of several 

innate and adaptive immunity pathways and responses in the global microarray analysis. These NMs 

seem to activate mostly intracellular PRRs including NLRs and TLRs, which lead to the activation 

of inflammasome, production of proinflammatory IL-1 and strong interferon response usually 

initiated by viruses. Although differentiated THP-1 cells were cultured alone, they were able to 

secrete several chemokines, which in a living organism would recruit neutrophils, monocytes, 

lymphocytes and NK cells to help to resolve the NM-originated danger. The in-depth understanding 

of these cellular and molecular mechanisms of NMs would help the development of safe 

nanomaterials for nanotechnology-based consumer products without harmful or even dangerous side 

effects. Altogether, our results strongly suggest that in addition to well described ionic effects 

mediated by metallothioneins, these metallic NMs are able to induce several innate and adaptive 

immunity associated pathways that are known to play crucial role in the immune functions. 
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SUPPLEMENTARY METHODS  

 

Cell Culture 

All cell lines were purchased from American Type Culture Collection (ATCC, Rockville, MD, USA). 

RPMI 1640, fetal bovine serum (FBS), GlutaMAX™ supplement, 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), and penicillin-streptomycin (PEST) were purchased from 

Gibco, Life Technologies (Grand Island, NY, USA). Mercaptoethanol (2-ME) was obtained from 

Sigma-Aldrich (Schnelldoff, Germany). Cells were centrifuged with Eppendorf Centrifuge 5417R, 

5415D (Hamburg, Germany) and Beckman Centrifuge GS-15R (Beckman Coulter, IN). Cell 

morphology examination and cell calculations were done using Olympus CKX41 light microscope 

(Hamburg, Germany). 

THP-1 cells are human leukemia monocytic cells that grow in suspension. It can be 

differentiated into adherent macrophage-like cells by phorbol-12-myristate-13-acetate (PMA). Cells 

were grown in RPMI supplemented with 10% FBS, 1% GlutaMAX, 1% HEPES, 0.05 mM 2-ME, 

and 1% PEST at 37°C with a humidified atmosphere of 5% CO2. Suspension cell cultures (35 ml) 

was maintained in T75 flasks with cell density between 0.2 to 1.5 x 106 cells/mL. Before treatment 

with NMs, cells were grown in medium with 50 nM PMA for 48h to trigger macrophage 

differentiation. This differentiation medium (with PMA) was refreshed once after the first 24h. Cells 

passages used were between 9 and 20.  

 

Dynamic Light Scattering (DLS) and viscosimetry 

The hydrodynamic particle size and zeta potential of the freshly made suspensions were measured 

using electrophoretic mobility analysis (ZetaSizer ZS DLS, Malvern Instruments) (Table S1). The 

measurements were carried out in triplicates and the average value was calculated based on the 

measurements. The calibration of the equipment was done using spherical latex particles suspended 
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in ion-exchanged water. The zeta potential was calibrated with calibration liquid purchased from the 

Malvern Instruments. 

The viscosity of the suspensions was determined by continuous reading of percent full scale 

[%], viscosity [cps, centipoise] and shear stress [SS, dynes/cm2] with the Brookfield Digital 

Viscometer, Model DV-II, with the spindle CP-40 attached to the viscometer. All readings were 

below 10% of the full-scale ranges. 

 

Dosimetry modelling 

The particle and agglomerate properties (sizes) and their distribution were studied by EM, DLS and 

viscometer, and their actual dosages were modelled by the method described by DeLoid et al. 2017 

(Figure S1).  

 

MTT assay for Cell Viability and Metabolic Activity 

Cell viability after 24h exposure was probed by the MTT assay. 3-[4,5-dimethylthiazol-2yl]-2,5-

diphenyltetrazolium bromide or MTT (Sigma) is reduced into purple formazan crystals in 

metabolically active cells. THP-1 cells were seeded in 96-well plate at a density of 1 x 105 cells/well 

in 200 μl. After 48h PMA-induced macrophage differentiation, the cells were treated with 0.1 – 100 

μg/ml of each nanoparticle. Cell-free controls were included. DMSO (50%) was used as positive 

control. Three replicates were used for each concentration. After 22h of exposure, 100 μl of the 

supernatant was collected for the LDH assay and then 10 μl of stock MTT solution (5 mg/mL in PBS) 

was added to each well followed by 2h incubation. Afterwards, the plate was centrifuged at 300 x g 

for 1 minute and then, the supernatant was carefully pipetted away so that the treatment wells and 

corresponding cell-free control wells would retain similar amount of particles. Finally, 100 μl of 

DMSO was added to dissolve the purple formazan crystals formed intracellularly and the plate was 

shaken for 30 minutes to allow full solubilisation. The absorbance was measured at 595 nm on a plate 
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reader (Thermo Fisher Multiskan GO) with reference wavelength set as 655 nm to remove most of 

the physical interference. The absorbance of cell-free controls (particle and MTT) was subtracted to 

correct for the acellular particle interference: (i) cell-free catalysis of dye reduction by particles and 

(ii) physical interference with absorbance reading (Park et al., 2009, Kong et al., 2011, Keene et al., 

2014) The results are expressed as % cell viability calculated as: 

% 𝑐𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
(𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 – 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

(𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 – 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
 × 100%   

To study the role of extracellularly released ions, additional MTT experiments were done as 

previously described (Gliga et al., 2014). Shortly, n-ZnO, b-ZnO and n-Ag dispersions (30 and 100 

µg/ml) were either incubated alone in the complete medium, or with differentiated THP-1 

macrophages on 96-well plate for 24h at 37°C and 5% of CO2. After 24h, the total effect of particles 

was studied by measuring the viability of the treated cells by the MTT assay. The cell-free 

suspensions were transferred to 1.5 ml micro-centrifuge tubes, which were centrifuged to sediment 

the NM particles at 20,800 x g (or 14,000 rpm) at 4°C. After the first 10 min centrifugation, 

supernatants were transferred to a new 1.5 ml tube and centrifuged again for 50 min. Afterwards, the 

supernatants were used to treat another set of differentiated THP-1 macrophages. After 24h, the effect 

of centrifuged supernatants (extracellularly released ions) on cell viability was measured by the MTT 

assay.  

Cytokine Expressions 

The cells were seeded in 6-well plate at a density of 1.8 – 2 x 106 cells/well in 2 ml. After 48 hours 

of PMA-induced macrophage differentiation, the cells were exposed to 1 – 100 μg/ml of each particle 

and compared to untreated cells later. Cells treated with 10, or 100 ng/ml bacterial lipopolysaccharide 

(LPS) from Escherichia coli serotype O111:B4 (Sigma-Aldrich, US) were used as positive controls. 

Triplicates were used for each concentration. After 6h and 24h of exposure, the cells were rinsed with 

PBS twice to remove dead cells and particles. Then, the washed cells were lysed by resuspensing 

cells into 350 μl of RL buffer for RNA purification.    
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Total RNA purification (including miRNA) was carried out using the Norgen’s total RNA 

purification plus kit according to the manufacturer’s instructions (Norgen Biotek Corp., Thorold, ON, 

Canada). Briefly, the cells were lysed in buffer RL (Norgen kit), and cell lysates were purified with 

the gDNA removal column followed by the RNA purification column. The concentration of RNA 

was measured with NanoDrop (NanoDrop Techniques INC, Wilminton, Delaware, USA), and 

complementary-DNA (cDNA) was synthesized from 500 ng of RNA by PCR. IL-1β, TNF and IL-6 

response units were studied with real-time PCR (TaqMan, Applied Biosystems, Foster City, USA) 

and normalized to 18S housekeeping gene. PrimeScript™ RT Master Mix (TaKaRa), Premix Ex 

Taq™ (Probe qPCR) (TaKaRa), and primers and probes for TaqMan (Applied Biosystems) were 

used. 

PCR for cDNA synthesis was carried out at 37°C for 15 minutes (reverse transcription), 

followed by 85°C for 5 seconds (heat inactivation of reverse transcriptase). Real-time PCR (ABI 

StepOnePlus) was carried out with 3 stages: polymerase activation at 95°C for 20 seconds, followed 

by 40 cycles of melting at 95°C for 1 seconds and annealing/extension at 60°C for 20 seconds.  

 

RT-PCR Validation 

THP-1 cells were exposed to n/b-TiO2 (100 µg/ml), n/b-ZnO and n-Ag (10 µg/ml), and i-Ag (1 µg/ml) 

for 6h and 24h, and total RNA was extracted as explained above. The expression levels of MT1F, 

CXCL8 and CCL20 were validated by SYBR Green RT-PCR and normalized to RPL37a 

housekeeping gene. Results were expressed as the mean of triplicates ± SD. Statistical significance 

was calculated by one-way ANOVA using GraphPad Prism (version 6) (**P<0.01, ***P<0.001, 

****P<0.0001). 
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SUPPLEMENTARY FIGURES 

(A) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(B) 

 

 

Supplementary Figure S1. Transmission electron microscopy (TEM) pictures of the particles. 
(A) The shape and distribution of nanosized TiO2 and ZnO particles, and their distribution are shown 

on the left-hand side figures, whereas the primary bulk-sized TiO2 and ZnO are accordingly shown 

on the right. (B) Size distributions of the n/b-TiO2 and n/b-ZnO agglomerates. 
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Supplementary Figure S2. Fate and Transport modelling results. (A) Well-bottom concentration 

of different nanoparticles over time of simulation (24h). (B) Fraction of nanoparticles deposited over 

time of simulation. fD, fraction deposited. *The average agglomerate size of n-Ag obtained from DLS 

(100%) was used as an input information for dosimetry modelling due to the technical difficulties in 

TEM characterization.  
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Supplementary Figure S3. The expression of proinflammatory cytokines IL-1β and TNF in 

differentiated THP-1 cells at 6h and 24h after exposure of NMs. Expression levels were 

determined by RT-PCR (TaqMan) and normalized to 18S housekeeping gene. Results are shown as 

relative expression as mean ± SD from two independent experiments. Statistical significance 

indicated by *P<0.05, **P<0.01 versus control cells determined by Mann-Whitney t-test. 
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Supplementary Figure S4. Venn diagram of DEGs and related GO Biological pathways of n-

ZnO and b-ZnO. Venn diagram demonstrates differentially up- and down-regulated genes (post hoc 

adj. P < 0.05, linear FC > |1.5|) when (A) n-ZnO and  (B) b-ZnO particle inductions are compared at 

6h and at 24h time points. The genes specific for n-ZnO and b-ZnO at both time points, and the 113 

genes which were common for b-Zn at both time points, were related to released ions, whereas the 

65 genes specific for b-ZnO alone at 24h were related to hormone metabolism and collagens. Only 

the pathways, which had adjusted p-value less than 0.01 in the Enrichr pathway analysis program, 

are shown in this figure. 
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Supplementary Figure S5. Venn diagram of DEGs and related GO Biological pathways of n-

Ag and i-Ag. Venn diagram demonstrates differentially up- and down-regulated genes (post hoc adj. 

P < 0.05, linear FC > |1.5|) when (A) n-Ag and (B) i-Ag particles are compared to themselves at 6h 

and at 24h time points. All i-Ag DEGs and common DEGs for n-Ag at both time points were related 

to ionic effects. At 6h, n-Ag caused inflammatory responses, regulated cytokine production, induced 
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fever and biosynthetic pathways, and at 24h n-Ag was involved in the viral responses and homeostatic 

responses. 

 

 

Supplementary Figure S6. Involvement of DEGs on GO pathways. Clustergram of the top ten 

GO pathways with up to 20 most significant input genes revealed specific gene clusters for (A) b-
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ZnO including blood coagulation and leukocyte activation at 6h, and (B) hormonal processes and 

cytotoxicity at 24h. At 6h (C) b-ZnO and n-Ag shared the responses to unfolded proteins, and i-Ag 

formed clusters for leukocyte activation and inflammation at 24h.  

 

SUPPLEMENTARY TABLES 

 

 

Supplementary Table S1.  

 

Supplementary Table S2 

Lists of the differentially expressed genes from the microarray experiment at 6h time point. To the 

excel file. 

 

Supplementary Table S3 

Lists of the differentially expressed genes from the microarray experiment at 6h time point. To the 

excel file. 

 

  

solvent n-TiO2* b-TiO2 n-ZnO** b-ZnO*** n-PVP-Ag Method

Particle	primary	size	[nm]

In	cRPMI

Hydrodynamic	size	[nm] 21.01 642±18.04 544.5±8.809 377.8±5.326 679.6±27.27 86.43±0.769 DLS

Polydispersity	index 0.365 0.270±0.22 0.201±0.016 0.529±0.101 0.456±0.085 0.329±0.029 DLS

Zeta	potential	value	[mV] -7.96±0.610 -10.9±0.586 -11.0±0.551 -11.5±0.702 -11.5±1.01 -10.6±1.19 DLS

Conductivity	[mS/cm] 15.0±1.28 14.7±0.513 14.6±0.551 14.2±0.503 14.1±0.451 15.1±1.10 viscometer

Basic	viscometer	reading	in	percent	[%] 5.4 6 5.1 6.5 4.3 5.9 viscometer

Calculated	viscosity	[CPS] 1.41 1.54 1.31 1.67 1.33 1.55 viscometer

Calculated	shear	stress	(SS)	[dynes/cm2] 1.43 1.4 1.18 1.5 1.28 1.38 viscometer

In	H2O

Hydrodynamic	size	[nm] ND 941±57.14 364.5±7.382 1267±195.3 1492±75.62 ND DLS

Polydispersity	index ND 0.423±0.038 0.211±0.022 0.769±0.113 0.623±0.148 ND DLS

Zeta	potential	value	[mV] ND -27.8±0.300 -30.1±0.493 11.7±0.208 21.2±1.07 ND DLS

Conductivity	[mS/cm] ND 0.0107±0.00907 0.00434±1.16e-4 0.0188±0.0043 0.00630±2.60e-4 ND viscometer

Basic	viscometer	reading	in	percent	[%] 0.41 4.8 4.8 4.3 4.8 ND viscometer

Calculated	viscosity	[CPS] 1.05 1.23 1.23 1.1 1.2 ND viscometer

Calculated	shear	stress	(SS)	[dynes/cm2] 0.94 1.1 1.1 0.96 1.08 ND viscometer

*n-TiO 2 	in	H 2 O	very	large	particles	==>	refer	to	quality	report

**n-ZnO	the	size	is	not	correct,	multimodal	size	distribution	==>	refer	to	quality	report

***b-ZnO	there	are	also	some	very	large	particles	with	hydrodynamic	size	of	several		microns	in	both	cRPMI	and	H 2 O,	==>	refer	to	quality	report
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Tables 

 

Table 1. Particle characteristics provided by manufacturers. 

n-TiO2 b-TiO2 n-ZnO b-ZnO n-Ag i-Ag

Type nano bulk nano bulk nano
nitric	acid	

silver(I)	salt

Size 30-40	nm <44	µm	 20	nm 240-350	nm 20	+/-	3	nm -

Form Particle Particle Particle Particle Dispersion	in	H2O -

Phase	 90:10	* 95:5	* - - - -

SSA 30	(23)	m2/g	** 8	m2/g 50	m2/g 4.5	–	6	m2/g 27.4	m2/g -

Purity 99	% 99	% 99.50	% Not	provided 99.99	% >99%

Coating	 - - - -
Polyvinylpyrrol-	

idone	(PVP)
-

Dissolution Not	provided Not	provided Not	 Not	provided 1	ppb	-	2	ppm/H2O -

*Ratio	of	anatase:rutile.

**Specific	surface	area	(SSA)	of	TiO2	was	30	m
2/g	according	to	the	vendor	but	later	confirmed	23	m2/g.		  

 

 

 

Table 2. Sizes of particle and their agglomerates studied by transmission electron microscopy. 

 

  

Primary	particle	[nm] Agglomerate	[nm]

Size	range	[nm] GMD	+/-	SD	[nm] Counts Size	range	[nm] GMD	+/-	SD	[nm] Counts

n-TiO2 17.9	-	151.1 39.7	±	16.6 157 59.7	-	903.0 273.7	±	230.0 34

b-TiO2 51.7	-	274.6 135.6	±	48.7 244 187.6	-	1927.4 621.0	±	382.6 40

n-ZnO 5.0	-	32.3 15.6	±	5.1 157 25.7	-	661.4 126.1	±	154.8 49

b-ZnO 48.9	-	549.4 203.6	±	119.4 98 140.2	-	2256.6 751.0	±	544.6 28

GMD,	Geometric	mean	diameter;	SD,	standard	deviation
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Figure captions 

 

Figure 1. Cytotoxicity of the particles on differentiated THP-1 cells by MTT assay. (A) Percentage 

of viable cells after 24h exposure of different materials determined by MTT assay showed that all the 

other particles, except both TiO2 reduced cell viability. (B) Schematic view of the set-up where 

particles were given to cells for 24h, or they were first incubated at 37°C for 24h, centrifuged and 

after that the yielded supernatant were given to cells for 24h. (C) Percentage of viable cells after 24h 

exposure to n-ZnO, b-ZnO, n-PVP-Ag and to the corresponding, centrifuged supernatants (released 

ionic fractions) determined by MTT assay. Values were the mean ± SD of 3 replicas. Significance 

indicated by *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 determined by two-way ANOVA. Cell 

exposure protocol for assessing cytotoxicity of extracellular ion release adopted from (Gliga et al., 

2014).  

 

Figure 2. Hierarchical clustering, principal component analysis (PCA) and Venn diagrams of 

different particles at 6h and at 24h time points. (A) Log2 gene expression intensities of different 

particles at both time points were hierarchically clustered using the Perseus software tool. (B) 

Principal component analysis (PCA) shows the clustering of different particles at different time 

points. (C) Venn diagrams demonstrate differentially up- and down-regulated genes (post hoc adj. P 

<0.05, linear FC>|1.5|) when a nano-sized particle is compared to it bulk-sized or ionic control 

particle in differentiated THP-1 cells at 6h or 24h time point. The number of genes that are specific 

to n-Ag (437 and 818 genes) and to b-Zn (687 and 167 genes) are notably higher than the common 

genes or genes specific for i-Ag and n-Zn at 6h and 24h, respectively. C, non-treated control cells. 

 

Figure 3. Analysis of DEGs at 6h. (A) At the 6h time point, the b-Zn and n-Ag groups formed a 

cluster, and all the other samples clustered together. The Z-score standardized gene expression 
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intensities of the top 50 DEGs are shown in a heatplot, red indicating upregulation of gene expression 

and green indicating downregulation of gene expression. (B) Venn diagram of ZnO and Ag particles 

show four statistically significant (adjusted p value < 0.01) group of genes, which play role in 

leucocyte activation and migration (443 genes), ionic responses (11 genes), innate immunity 

responses (112 genes) and in protein folding (183 genes). 

 

Figure 4. Analysis of DEGs at 24h. (A) At the 24h time point, n-Ag samples formed an own cluster, 

b-Zn and n-Zn formed a middle cluster, and all the other samples formed the third clustered. The top 

50 DEGs are shown in heatplot, red indicating upregulation of gene expression and green indicating 

downregulation of gene expression. (B) Venn diagram of ZnO and Ag particles show four statistically 

significant (adjusted p-value < 0.01) group of genes, which play role in lymphocyte activation (62 

genes), hormone metabolic processes (78 genes), ionic responses (77 genes) and in virus response 

(671 genes). 

 

Figure 5. Involvement of DEGs on GO pathways. Clustergram of the top ten GO pathways with up 

to 20 most significant input genes revealed a cluster metallothioneins both at 6h and 24h (A-B), and 

separate clusters for chemotaxis (C) and virus responses. 

 

Figure 6. Validation by RT-PCR. The expression profiles of MT1F, CXCL8 and CCL20 genes were 

confirmed by RT-PCR analyses. 
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NFKBIA (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha)
CCL3 (chemokine (C-C motif) ligand 3)
HSPA1A (heat shock 70kDa protein 1A)
HSPA1B (heat shock 70kDa protein 1B)
CCL18 (chemokine (C-C motif) ligand 18 (pulmonary and activation-regulated))
CCL3L3 (chemokine (C-C motif) ligand 3-like 3)
HSPA6 (heat shock 70kDa protein 6 (HSP70B))
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Figure 5

b-Zn, n-Zn and n-Ag 6at h (112 genes)

1. Regulation of I-kB/NF-kB signalling
2. Cell chemotaxis
3. Response to molecule of bacterial origin
4. positivie regulation to defense response
5. Chemotaxis
6. Taxis
7. Inflammatory response
8. Regulation of leucosyte migration
9. Cellular response to LPS
10. Response to LPS

b-Zn, n-Zn, i-Ag and n-Ag at 6h (11 genes)

1. Cellular response to zinc ion
2. Response to zinc ion
3. Response to transition metal nanoparticle
4. Negative regulation of growth
5. Cellular response to inorganic substances
6. Cellular response to metal ion
7. Cellular response to cadmium ion
8. Response to metal ion
9. Response to inorganic substances
10. Response to cadmium ion

1. Cellular response to zinc ion
2. Response to zinc ion
3. Response to cadmium ion
4. Cellular response to cadmium ion
5. Response to transition metal nanoparticle
6. Cellular response to metal ion
7. Cellular response to inorganic substances
8. Response to metal ion
9. Response to inorganic substances
10. Myeloid leukocyte activation

b-Zn and n-Ag at 24h (77 genes)
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n-Ag at 24h (671 genes)

1. Response to virus
2. Cellular response to lipid
3. Response to lipopolysaccharide
4. Response to extracellular stimulus 
5. Response to other organism
6. Cellular response to lipopolysaccharide
7. Defense response to virus 
8. Cellular response to bacterial molecule 
9. Response to molecule of bacterial origin
10. Response to type I interferon
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Figure 6
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