
ar
X

iv
:1

61
2.

00
98

0v
2 

 [h
ep

-p
h]

  1
3 

D
ec

 2
01

6

Observables of QCD Diffraction
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Abstract. A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent
mathematical construction resolves experimental complications; the theoretical framework of the approach includesthe Good-
Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.

INTRODUCTION

Soft diffraction bases theoretically on (soft) Pomeron exchange, the vacuum singularity of Regge theory. In QCD,
this is described as a non-local (long-wavelength) gluoniccolor singlet ladder based object. However, a complete
theoretical description of the multi-Pomeron exchanges and interactions, the exact nature of Reggeon exchanges and
random fluctuations in hadronization process are still lacking. All these processes can generate large rapidity gaps
(LRGs) of several units. An alternative approach is to treathigh energy hadronic diffraction as a coherent process,
where the relativistic wave function, and its components, undergo unitary scatterings and absorptions. This well known
Good-Walker picture [1] is usually implemented by using multichannel eikonal models to account for the complicated
proton structure and its coherent fluctuations [2], albeit in an integrated way.

Experimentally, soft diffraction is traditionally equated with registering large rapidity gap events. In practice,
a number of approximations are required for defining and measuring the rapidity gaps as pseudorapidity intervals
void of particles. There are several limitations in definingthe rapidity gaps as experimental observables. First of all,
electrically neutral particles often remain unaccounted for, even if their presence can be partially inferred using the
measured secondaries. Low mass diffractive systems require very forward instrumentation which, in general, covers
only part of the small angle scattering at the LHC. Theoretically and experimentally, the low mass resonance region of
single and double diffraction, and high mass asymptotic are poorly understood. Counting events with widely varying
definitions of rapidity gaps and relatively largeE⊥/p⊥ thresholds cannot give a complete view on the subject of QCD
diffraction.

In the following, binary vector spaces over the number fieldF2 = {0, 1} are defined for the chosen observables,
then a probabilistic extraction of diffractive cross sections and, finally, new combinatorial approaches are introduced
for probing issues like the famous AGK cutting rules [3]. In all this, the experimental limitations together with the
above theoretical motivations are used as a guidance.

DEFINING THE OBSERVABLES

Now instead of merely counting rapidity gaps, the partial cross sectionsσpp
inel ≡ σ1 + σ2 + σ3 + . . . + σn are con-

sidered, where eachσk corresponds to one particular final state ”topology class” over a finited interval discretized
pseudorapidity axis, integrated over the transverseϕ-plane. These spank = 1, . . . , 2d − 1 = n non-zero binary vectors
in Fd

2, where each vector component Bernoulli random variableXi ∈ {0, 1}, 1 ≤ i ≤ d, encodes whether at least one
final state in the given rapidity (detector) slice is observed. Simplified, these components correspond to pseudorapid-
ity intervals of [ηmin

i , ηmax
i ] which represent geometric projection boundaries. Experimentally, these intervals may
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overlap or remain distinct from each others. In the limitd → ∞ the problem turns into track counting, and atd = 1,
any sensitivity to different process cross sections is lost. Depending on the exactdefinition, the number of distinct
”topology classes” is not necessarilyn, the number of binary combinations. The corresponding abstract final state
vector spaceFd

2 is illustrated in Figure 1.

FIGURE 1. Binary vector space as ad-hypercube graph or lattice. Each vertex represents one vector in Fd
2, hered = 6. These

vertices and weights associated with them are interpreted directly as different final state configurations, corresponding to the partial
cross sectionsσk.

Events with varying rapidity gap combinations are contained in this space. In practice, due to finite statistics
and finite discretization, there is both Poissonian and discretization uncertainty influence the exact gap sizes. It is
possible to use also a different number field, such as the real valued vector spaceR

d as in [4], where it was shown that
large rapidity gaps are obtained as a particular limit of themultivariate space. In principle, this allows event-by-event
utilization of p⊥ or multiplicity degrees of freedom. Real valued distributions can be constructed also ”after” the binary
subspace projection, as a hybrid approach. The main benefit in using the binary vector spaces, is to allow concise
algebraic representations of the measurement itself, and to factorize the model parameter extractions in addition.

Visible or fiducial partial cross sectionsσ(vis)
k are defined in terms of (η, p⊥) acceptance and efficiency functions

of charged and (or) neutral particles for eachi-th discretized pseudorapidity interval. Crucial experimental issue is the
separation of efficiency corrections on visible part versus the pure extrapolation to outside of the fiducial acceptance
region. This is difficult in the forward domain, due to limited granularity of thecalorimetry, tracking and intense
fluxes of secondaries from the interactions in the beam pipe and surrounding material. Lowp⊥-thresholds and high-|η|
coverage are of utmost importance. Matrix unfolding procedure is necessary in order to turn the visible detector level
partial cross sections to the particle level cross sectionsU : {σ(vis)

k } 7→ {σk}. Detector inefficiencies tend to create
artificial rapidity gaps and this is to be taken into account in the unfolding process.

When defining the measurement in terms of the invariant mass of the diffractive systemMX (or ξ = 1 − p′z/pz

as ξ ≃ M2
X/s), no direct geometrical fiducial definition exists. Unless the pseudorapidities and true rapidities are

assumed to be approximately equal,η ≃ y, and the average kinematical relations are used for rapidity gaps in single
diffraction:〈∆y〉S D ≃ − ln

(

M2
X/s

)

and in double diffraction:〈∆y〉DD ≃ − ln
(

M2
X M2

Y/(m
2
ps)

)

, 〈y0〉 ≃ 1
2 ln

(

M2
X/M

2
Y

)

.
In practise, Monte Carlo chain definitions of diffractive mass acceptances are used, based on varying hadronization
model assumptions of the diffractive systems. This includes, for example, non-trivial final statep⊥ behaviour of soft
processes, which is not understood from the first principles. The invariant masses of the SD or DD systems are not
directly measured at the LHC, even if the leading proton longitudinal momentum is known, thereby allowing the use
of 4-momentum conservation. Figure 2 shows the phase space of single and double diffraction at the LHC. High mass
double diffraction is seen to be kinematically constrained to be high-|t| process, while single diffraction is not.

EXTRACTING DIFFRACTIVE CROSS SECTIONS

The following extraction of diffractive cross sections is based onprobabilistic inversion, density estimation or multi-
dimensional fitting procedure. Concerning the earlier workby the authors, with real valued multivariate approaches,
see [4, 5]. The term extraction is used here, because the measurement of inclusive diffractive cross sections is always
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FIGURE 2. On left: The high mass ”coherence condition”ξ < 0.05 ∼ xF > 0.95 ∼ 〈∆y〉 > 3 is only semi ad-hoc. On right: The
phase space domain for 2→ 2 t-channel with variable invariant masses for 2 outgoing legs. Ω1 is for SD andΩ2 for DD with
MX = MY . The general case of DD (MX , MY ) is betweenΩ1 andΩ2.

model dependent at the LHC. The chosen framework aims at making the model dependence explicit and as trans-
parent as possible. Each scattering process classC j, such as single or double diffraction, is described in terms of a
d-dimensional probability density or likelihood functionp(x | θ j, λ) with x ∈ Fd

2. These densities are from MC sim-
ulations or possibly from simple parametrizations. That is, they give us likelihood of observing a binary vector final
statex originating from the classj. In addition to likelihood functions, a priori probabilitydistributionsp(θ j, λ |α)
are constructed for physics model parametersθ j and detector simulation nuisance parametersλ, which can both be
vectors. Variableα denotes a generic hyperparameter, a parameter of the parameter distribution. Many of these steps
are often implicitly included in traditional large rapidity gap event analyses; here these are explicitly accounted for.

In a fully Bayesian treatment, the posteriori probability distributionsp(θ j, λ | x, α) ∝ p(x | θ j, λ)p(θ j, λ |α) are
obtained for each process class by first posing prior distributions for each process and their parameters, and then
proceeding with Monte Carlo sampling of the parameter space. This can be a computationally heavy process de-
pending on the number of free parameters, distribution shapes and correlations. Point estimates and credibility in-
tervals are then obtained directly. For the process cross sections or fractions, a frequentist fitting via Maximum
Marginal Likelihood is especially straightforward when the iterative Expectation-Maximization (EM) algorithm [6]
is used. This approach maximizes the denominator or ”evidence” in the Bayes formula with respect to the fractions:
arg max{ f j}

∏N
i=1

∑|C|
j=1 p(xi |C j) f j, over a sample ofN events. After iterating, integrated process fractions areobtained

as f̂ j ≡ 〈p(C j|x)〉x with
∑

j f̂ j = 1. These can be scaled to physical cross sections with a van der Meer scan.
Multidimensional fitting allows also estimation of parameters such as the effective Pomeron interceptαP(0) =

1+ ∆P. The intercept is an interesting model parameter, not only because it controls asymptotic energy behaviour of
cross sections, but also due to its controlling role of the differential mass distribution in the triple-Pomeron (PPP)
high mass limit and att → 0 asdσS D/dM2

X ∝ 1/(M2
X)1+∆P . To emphasize, the purity or background corrections are

automatically taken into account here, because all major inelastic processes are simultaneously fitted. Since no explicit
large rapidity gaps are required, diffractive cross sections can be extracted at the actual high mass limit.

ALGEBRAIC REPRESENTATIONS

All the differentr-subspaces, 0≤ r ≤ d, contained in our binary vector space of final states are encapsulated in
the Grassmannian manifoldGr(r, d, F), in the object describing all possibler-dimensional subspaces inFd. This is a
very rich object of algebraic geometry with variety of applications from coding theory to mathematical physics. The
manifold is defined asGr(r, d) = {r × d matrices with rankr}\row operations, with dimGr(r, d) = r(d − r). Using
the Grasmannian subspaces allows to probe the Regge (vertex) factorization of type d3σDD

dM2
XdM2

Y dt
∼ d2σS D

dM2
X dt

d2σS D

dM2
Y dt
/

dσEL
dt by

comparing specific partial cross sectionsσk with a simple algorithm. This is experimentally feasible todo at the LHC,



given the lacking differential measurement capabilities ofM2
X andt. By comparing the different subspace combination

rates, information about multi-Regge type of factorization is gained.
In practise, an algebraic representation of the binary datais needed. The most direct representation amounts

to just counting the relative rates of 2d different (or 2d − 1 non-zero) final states, and then normalizing them to a
probability vectorp. However, the components ofordinary moments mk and the components ofcentral moments δk,
are also easily defined using the Kronecker (tensor) products as [7]

p =
〈(

1 −1
0 1

)⊗ d (

1
Xd

)

⊗
(

1
Xd−1

)

⊗ · · · ⊗
(

1
X1

)〉

, (1)

mk =
〈

∏d
i=1 Xki

i

〉

=

〈(

1
Xd

)

⊗
(

1
Xd−1

)

⊗ · · · ⊗
(

1
X1

)〉

k

, (2)

δk =
〈

∏d
i=1(Xi − 〈Xi〉)ki

〉

=

〈(

1
Xd − 〈Xd〉

)

⊗
(

1
Xd−1 − 〈Xd−1〉

)

⊗ · · · ⊗
(

1
X1 − 〈X1〉

)〉

k

, (3)

wherek = 1 +
∑d

i=1 ki2i−1 (little endian binary expansion), 1≤ k ≤ 2d andki ∈ F2 are used. The central moments
describe the correlations (# 2d − d − 1) between any 2 or more subspaces (rapidity intervals).Xi are the corresponding
Bernoulli random variables.

The probability distributions of rapidity gaps∆y for simplified Pomeron and Reggeon exchanges and random
fluctuations are expected to be approximately [8]

PP(∆y) = cP exp(∆y(αP − 1)), αP ∼ 1.08 (soft). . .1.3 (hard) (4)

PR(∆y) = cR exp(∆y(2αR − αP − 1)), αR ∼ 1/2 (5)

PF(∆y) = 1
ℓF

exp(−∆y/ℓF), (6)

which give the short range correlation length for a Reggeon with ℓR = −1/(2αR − αP − 1) ∼ 1, the long range cor-
relation length for a Pomeron withℓP = 1/(αP − 1) ∼ 10 and for the fluctuations at TevatronℓF ∼ 0.7 − 0.75 [8].
These examples motivate the present combinatorial construction which goes beyond the multidimensional fitting and
extraction of cross sections presented earlier, and is now compatible with discussion about multigaps, gap destruc-
tion and rescattering and short/long rangey-correlations. The algebraic representation chosen here is motivated by
simple arguments that diffractive dissociation should represent the statistical dispersion〈F2〉 − 〈F〉2 in the absorption
probabilities of the diffractive eigenstates such as in [2], by the Good-Walker view.

The approach intrinsically includes the combinatorial AGKrules [3], that is, the density of particles over rapidity
intervals with cut Pomerons. Basis for an experimental algorithm could be obtained, for example, by histogramming
the multiplicity or charge information overn different combinations. As an example of the AGK cutting rules: the
total cross section for exchange ofµ Pomerons,σtot

µ , partial cross sectionσ(ν)
µ of a final state with a number ofν cut

Pomerons and their ratio as given in [9]

σ
(ν)
µ

σtot
µ

= (−1)µ−ν
µ!

ν!(µ − ν)!
(2µ−1 − δ0ν). (7)

Substituting for exampleµ = 2 andv = 0, 1, 2, the usual alternating AGK factors of 1,−4 and 2, are obtained. In order
to sum overµ one needs an explicit model, such as eikonal probabilities for the number of Pomerons being exchanged.

COMBINATORIAL INVERSION

The novel approach presented here also meets an interestingcombinatorial challenge, which is the statistical inversion
of ”pileup” final states. These can be simultanenous proton-proton interactions at the LHC, but in principle any Poisson
process which superimposes independent interactions, such as in the classic Miettinen-Pumplin model of wee partons
[10]. The ”direct model” equation is a convolution between Poisson and multinomial distributions as

yi =
e−µ

1− e−µ

∞
∑

k=1

µk

k!



















∑

Ωik

k!
∏n

j=1 x j!

n
∏

j=1

p
x j

j



















, (8)



whereyi is the pileupdiluted or enhanced probability of observingi-th binary final state,i = 1, . . . , 2d −1 = n andµ is
the Poisson mean. The multinomial term in brackets and its values ofx j ∈ N are evaluated over all valid combinations
generating thei-th final stateci ∈ Fd

2 at Poisson orderk from the set ofn-tuplesΩik. Those which are allowed by
partially ordered set (poset) combinatorics

Ωik = {(x1, . . . , x j, . . . , xn) |
∨

j

x jc j = ci and
∑

j

x j = k}, (9)

where the Boolean
∨

operator takes care of ”summing” the binary vectorsc j of multiplicity x j and thus evaluating
the pileup compositions.
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FIGURE 3. Inversion performance in solvingp under Kolmogorov-Smirnov error (KS) as a function of Poisson µ. Dashed lines
without inversion.N = 102, (black), 104, (blue), 106 (red) events. Performance is fundamentally limited by

√
N statistics and

saturation at highµ.

The basic idea is that the probabilitiesy are measured, and it isp to be solved by inverting Equation 8. An
alternating sign solution similar to AGK rules can be obtained using the so-called principle of inclusion-exclusion
(PIE) which is the Möbius inversion for subsets in the combinatorial incidence algebra context [11], also utilized for
example in mathematical physics in [12]. Exact details of the present combinatorial inversion will be discussed and
presented elsewhere. Finally, a performance demonstration of the inversion algorithm is shown in Figure 3.
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