View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Helsingin yliopiston digitaalinen arkisto

Observables of QCD Diffraction

Mikael MieskolaineA® and Risto Orava??

1Department of Physics, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, F1-00014, Finland
2CERN, CH-1211 Geneva 23, Switzerland

ACorresponding author: mikael.mieskolainen@cern.ch
blristo.orava@cern.ch

Abstract. A new combinatorial vector space measurement model isdatred for soft QCD diraction. The model independent
mathematical construction resolves experimental comitins; the theoretical framework of the approach inclutiesGood-
Walker view of difraction, Regge phenomenology together with AGK cuttingswnd random fluctuations.

INTRODUCTION

Soft diffraction bases theoretically on (soft) Pomeron exchangeyalsuum singularity of Regge theory. In QCD,
this is described as a non-local (long-wavelength) gluaoior singlet ladder based object. However, a complete
theoretical description of the multi-Pomeron exchangekiateractions, the exact nature of Reggeon exchanges and
random fluctuations in hadronization process are stillilagkAll these processes can generate large rapidity gaps
(LRGSs) of several units. An alternative approach is to ttegh energy hadronic firaction as a coherent process,
where the relativistic wave function, and its componentdargo unitary scatterings and absorptions. This well kmow
Good-Walker picture [1] is usually implemented by using tichlannel eikonal models to account for the complicated
proton structure and its coherent fluctuations [2], albeén integrated way.

Experimentally, soft dfraction is traditionally equated with registering largeidity gap events. In practice,

a number of approximations are required for defining and @ the rapidity gaps as pseudorapidity intervals
void of particles. There are several limitations in definihg rapidity gaps as experimental observables. First of all
electrically neutral particles often remain unaccountagddven if their presence can be partially inferred usirg th
measured secondaries. Low magrdctive systems require very forward instrumentation Whin general, covers
only part of the small angle scattering at the LHC. Theoadiiand experimentally, the low mass resonance region of
single and double diraction, and high mass asymptotic are poorly understoodnfiity events with widely varying
definitions of rapidity gaps and relatively larg§e / p, thresholds cannot give a complete view on the subject of QCD
diffraction.

In the following, binary vector spaces over the number figld= {0, 1} are defined for the chosen observables,
then a probabilistic extraction offiliactive cross sections and, finally, new combinatorial aaphes are introduced
for probing issues like the famous AGK cutting rules [3]. lhthis, the experimental limitations together with the
above theoretical motivations are used as a guidance.
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DEFINING THE OBSERVABLES

Now instead of merely counting rapidity gaps, the partimlssrsectionsﬂ’d = 01+02+03+...+ 0, are con-
sidered, where eaahy corresponds to one particular final state "topology clas&ra finited interval discretized
pseudorapidity axis, integrated over the transverptane. These span=1,...,2% — 1 = n non-zero binary vectors
in ]Fg where each vector component Bernoulli random variable {0, 1}, 1 < i < d, encodes whether at least one

final state in the given rapidity (detector) slice is obsdrn&implified, these components correspond to pseudorapid-
ity intervals of ™", M3 which represent geometric projection boundaries. Expenitally, these intervals may
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overlap or remain distinct from each others. In the lichit> o the problem turns into track counting, anddat 1,
any sensitivity to dierent process cross sections is lost. Depending on the dgénition, the number of distinct
"topology classes” is not necessarity the number of binary combinations. The correspondingrabistinal state
vector spac@g is illustrated in Figure 1.

FIGURE 1. Binary vector space asahypercube graph or lattice. Each vertex represents orterv'mFg, hered = 6. These
vertices and weights associated with them are interprétedtly as diferent final state configurations, corresponding to theadarti
Cross sectionsy.

Events with varying rapidity gap combinations are contdiiethis space. In practice, due to finite statistics
and finite discretization, there is both Poissonian andrelig@ation uncertainty influence the exact gap sizes. It is
possible to use also afférent number field, such as the real valued vector spéess in [4], where it was shown that
large rapidity gaps are obtained as a particular limit ofrthativariate space. In principle, this allows event-byeet/
utilization of p, or multiplicity degrees of freedom. Real valued distribas can be constructed also "after” the binary
subspace projection, as a hybrid approach. The main benafging the binary vector spaces, is to allow concise
algebraic representations of the measurement itself,afattorize the model parameter extractions in addition.

Visible or fiducial partial cross sectioni"'s) are defined in terms of)( p,) acceptance andi&iency functions
of charged and (or) neutral particles for ea¢h discretized pseudorapidity interval. Crucial expental issue is the
separation of giciency corrections on visible part versus the pure extetpoi to outside of the fiducial acceptance
region. This is dficult in the forward domain, due to limited granularity of tbalorimetry, tracking and intense
fluxes of secondaries from the interactions in the beam pigesarrounding material. Loy, -thresholds and highy
coverage are of utmost importance. Matrix unfolding praceds necessary in order to turn the visible detector level
partial cross sections to the particle level cross sectibns{a(k"'s)} — {ok}. Detector in€ficiencies tend to create
artificial rapidity gaps and this is to be taken into accourthie unfolding process.

When defining the measurement in terms of the invariant mbgsediftractive systenMyx (or ¢ = 1 - p;/p;
as¢ ~ MZ/9), no direct geometrical fiducial definition exists. Unleke pseudorapidities and true rapidities are
assumed to be approximately equak y, and the average kinematical relations are used for rgpidips in single
diffraction: (Ay)sp =~ —In(Mf(/s) and in double diraction: (Ay)pp =~ —In(M)Z(M%/(m%s)),(yo) ~ %In(Mi/M%).

In practise, Monte Carlo chain definitions offdactive mass acceptances are used, based on varying heedicmi
model assumptions of theftiactive systems. This includes, for example, non-triviadfistatep, behaviour of soft
processes, which is not understood from the first principle invariant masses of the SD or DD systems are not
directly measured at the LHC, even if the leading proton ituainal momentum is known, thereby allowing the use
of 4-momentum conservation. Figure 2 shows the phase spao&te and double diraction at the LHC. High mass
double difraction is seen to be kinematically constrained to be ftigihvocess, while single firaction is not.

EXTRACTING DIFFRACTIVE CROSS SECTIONS

The following extraction of diractive cross sections is basedmobabilistic inversion, density estimation or multi-
dimensional fitting procedure. Concerning the earlier wmykhe authors, with real valued multivariate approaches,
see [4, 5]. The term extraction is used here, because theuneeasnt of inclusive diractive cross sections is always
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FIGURE 2. On left: The high mass "coherence conditigh% 0.05 ~ xg > 0.95 ~ (Ay) > 3 is only semi ad-hoc. On right: The
phase space domain for2 2 t-channel with variable invariant masses for 2 outgoing.l€gsis for SD andQ, for DD with
Myx = My. The general case of DDMx # My) is betweer2; andQ,.

model dependent at the LHC. The chosen framework aims atmpake model dependence explicit and as trans-
parent as possible. Each scattering process €assuch as single or doubleftfiaction, is described in terms of a
d-dimensional probability density or likelihood functiggx | 6;, 1) with x € ]F“zj These densities are from MC sim-
ulations or possibly from simple parametrizations. Thathisy give us likelihood of observing a binary vector final
statex originating from the clasg. In addition to likelihood functions, a priori probabiligfistributionsp(6;, | @)
are constructed for physics model parameggrand detector simulation nuisance paramefgenghich can both be
vectors. Variabler denotes a generic hyperparameter, a parameter of the paratistribution. Many of these steps
are often implicitly included in traditional large rapidigap event analyses; here these are explicitly accounted fo
In a fully Bayesian treatment, the posteriori probabilitgtdbutions p(6;, 11X, @) o« p(x|6;, A)p(6;, 1| a) are
obtained for each process class by first posing prior digiohs for each process and their parameters, and then
proceeding with Monte Carlo sampling of the parameter sp@is can be a computationally heavy process de-
pending on the number of free parameters, distribution ehamd correlations. Point estimates and credibility in-
tervals are then obtained directly. For the process crostsoss or fractions, a frequentist fitting via Maximum
Marginal Likelihood is especially straightforward wheretherative Expectation-Maximization (EM) algorithm [6]
is used. This approach maximizes the denominator or "e¢ielein the Bayes formula with respect to the fractions:
arg max,, 1‘[{11 Z'jcz‘l p(xi | C;)fj, over a sample ol events. After iterating, integrated process fractionsoétained

asﬂ- = (p(Cj[x))x with 3; fA,- = 1. These can be scaled to physical cross sections with a vaviiekr scan.
Multidimensional fitting allows also estimation of paraerstsuch as theffective Pomeron intercepts(0) =

1+ Ap. The intercept is an interesting model parameter, not oatabse it controls asymptotic energy behaviour of

cross sections, but also due to its controlling role of thféedential mass distribution in the triple-PomerdtPP)

high mass limit and at — 0 asdaso/de( oc 1/(M>2<)1+AP. To emphasize, the purity or background corrections are

automatically taken into account here, because all magbagtic processes are simultaneously fitted. Since noagtxpli

large rapidity gaps are requiredfiiactive cross sections can be extracted at the actual high linait.

ALGEBRAIC REPRESENTATIONS

All the differentr-subspaces, & r < d, contained in our binary vector space of final states arepmutated in
the Grassmannian manifo@®i (r, d, F), in the object describing all possibledimensional subspaceslifi. This is a
very rich object of algebraic geometry with variety of applions from coding theory to mathematical physics. The

manifold is defined a&r(r,d) = {r x d matrices with rank}\row operations, with din®r(r,d) = r(d — r). Using

the Grasmannian subspaces allows to probe the Regge (viat&rization of type(% ~ g;"zsé’t giﬂf’fgt/d‘gta by
X Y X Y

comparing specific partial cross sectienswith a simple algorithm. This is experimentally feasiblaltoat the LHC,




given the lacking dferential measurement capabilitiesl\tbi andt. By comparing the dierent subspace combination
rates, information about multi-Regge type of factorizai®gained.
In practise, an algebraic representation of the binary dateeeded. The most direct representation amounts
to just counting the relative rates of Bifferent (or 2 — 1 non-zero) final states, and then normalizing them to a
probability vectop. However, the components ofdinary moments m, and the components aéntral moments d,
are also easily defined using the Kronecker (tensor) predscf7]
) ®
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wherek = 1 + 2 1 k21 (little endian binary expansion), & k < 29 andk; € F; are used. The central moments
describe the correlat|ons (#2 d - 1) between any 2 or more subspaces (rapidity intervjsjre the corresponding
Bernoulli random variables.

The probability distributions of rapidity gapsy for simplified Pomeron and Reggeon exchanges and random
fluctuations are expected to be approximately [8]

1

Pp(Ay) = cp expAy(ap — 1)), ap ~ 1.08 (soft)... 1.3 (hard) (4)
Pr(4Y) = crexpQy(2ar —ap - 1)), ar~1/2 ®)
Pr(AY) = - exp(-Ay/LF), (6)

which give the short range correlation length for a Reggeith ¢ = —1/(2ar — ap — 1) ~ 1, the long range cor-
relation length for a Pomeron witfp = 1/(ap — 1) ~ 10 and for the fluctuations at Tevatréa ~ 0.7 — 0.75 [8].
These examples motivate the present combinatorial catigtnuwhich goes beyond the multidimensional fitting and
extraction of cross sections presented earlier, and is mompatible with discussion about multigaps, gap destruc-
tion and rescattering and shiohg rangey-correlations. The algebraic representation chosen kemgotivated by
simple arguments that fliiactive dissociation should represent the statisticglatision(F2) — (F)? in the absorption
probabilities of the diractive eigenstates such as in [2], by the Good-Walker view.

The approach intrinsically includes the combinatorial AGies [3], that is, the density of particles over rapidity
intervals with cut Pomerons. Basis for an experimentalrélgm could be obtained, for example, by histogramming
the multiplicity or charge information ovar different combinations. As an example of the AGK cutting rulbs:; t
total cross section for exchange;oPomeronsa-LOt, partial cross sectionff) of a final state with a number ofcut
Pomerons and their ratio as given in [9]

(V)

tot = (-1

= T @ ), ™

Substituting for examplg = 2 andv = 0, 1, 2, the usual alternating AGK factors of14 and 2, are obtained. In order
to sum ovep one needs an explicit model, such as eikonal probabilitiethe number of Pomerons being exchanged.

COMBINATORIAL INVERSION

The novel approach presented here also meets an interestimtgjnatorial challenge, which is the statistical invensi

of "pileup” final states. These can be simultanenous prataten interactions at the LHC, but in principle any Poisson
process which superimposes independent interactions asuin the classic Miettinen-Pumplin model of wee partons
[10]. The "direct model” equation is a convolution betweeansBon and multinomial distributions as

%= 16# {Zn ﬂp}, ®




wherey; is the pileupdiluted or enhanced probability of observing-th binary final state, = 1,...,2¢—1 = nandu is
the Poisson mean. The multinomial term in brackets and iteegafx; € N are evaluated over all valid combinations
generating the-th final statec; ]Fg at Poisson ordek from the set ofn-tuplesQix. Those which are allowed by
partially ordered set (poset) combinatorics

Qi ={(X1, ..., Xjp .-, Xn) | \/XjCj =g andz Xj =k}, (9)
j j

where the Booleaty operator takes care of "summing” the binary vectorsf multiplicity x; and thus evaluating
the pileup compositions.
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FIGURE 3. Inversion performance in solving under Kolmogorov-Smirnov error (KS) as a function of PoisgoDashed lines
without inversion.N = 1, (black), 10, (blue), 16 (red) events. Performance is fundamentally limited i) statistics and
saturation at higlu.

The basic idea is that the probabilitigsare measured, and it {sto be solved by inverting Equation 8. An
alternating sign solution similar to AGK rules can be obgagirusing the so-called principle of inclusion-exclusion
(PIE) which is the Mobius inversion for subsets in the comalbdrial incidence algebra context [11], also utilized for
example in mathematical physics in [12]. Exact details efphesent combinatorial inversion will be discussed and
presented elsewhere. Finally, a performance demonstrattitne inversion algorithm is shown in Figure 3.
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