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Type 2 diabetes and cardiovascular disease (CVD) are complex diseases with a high disease 
burden worldwide. Although much effort has been done to reduce the occurrence of both 
diseases, their prevalence is rising.  
Worldwide, it is estimated that 425 million adults live with diabetes1. In the United States 
of America, the lifetime risk to develop type 2 diabetes is approximately one in three2. The 
total health expenditure is 185 billion euros in Europe and 440 billion US dollars in North 
America, emphasizing the large burden on health cost.  
Lifetime risk estimates for death from CVD are approximately one in three, with major 
differences according to the common risk factors for CVD3. Although incidence rates of CVD 
have reduced in developed countries in recent decades4, CVD still remains the number one 
cause of death worldwide5. These data suggest that further understanding of the 
pathogenesis of diabetes and CVD is needed to reduce their burden on health. 
 
Lifetime risk  
Lifetime risks reflect the cumulative risk of developing a disease during an individual’s 
remaining lifespan. Thus, the lifetime risk of diabetes at the age of 45 reflects the risk for an 
individual aged 45 to develop diabetes throughout the rest of his or her life. As patients and 
health care providers prefer absolute long-term risks over relative risks in disease risk 
communication6, lifetime risks are an informative risk estimate to guide disease risk 
assessment and disease prevention. With the use of a modified version of survival analysis 
taking into account left- and right censoring, lifetime risks may be calculated using data from 
population-based cohort studies without lifelong follow-up7. It should be noted that when 
calculating lifetime risks, it is important to account for the competing risk of death from 
another cause to avoid overestimation of the lifetime risk of disease8. 
 
Chronic inflammation and C-reactive protein 
Inflammation is the complex immune response of the body to a noxious stimulus. Cardinal 
signs of inflammation were first recorded by the Roman encyclopaedist Aulus Cornelius 
Celsus (25 BC-AD 50) in “De Medicina” as calor (warmth), dolor (pain), tumor (swelling), and 
rubor (redness). Where the ancient Romans referred to the more “acute” and “local” 
inflammatory response of the human body to a noxious stimulus, nowadays much interest 
has grown in the study of “chronic” and “systemic” inflammation. Chronic systemic 
inflammation is a common and highly complex response of the innate immune system 
involving a diversity of cytokines, interleukins, and other molecules that involves multiple 
organs. C-Reactive Protein (CRP), a sensitive acute phase reactant, has widely been used as 
an index for chronic systemic inflammation. It was first discovered in 1930 by William Tillet 
and Thomas Francis from the Rockefeller University9.  
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Chronic inflammation and complex disorders 
In recent decades, clinicians and researchers have been interested in causes and 
consequences of inflammation. Development of high-sensitivity CRP assays has enabled 
quantification of CRP in the low to very-low range of the pentameric protein and has 
revealed an association between low range CRP and complex diseases10. By doing so, the 
role of chronic inflammation in the pathogenesis of multiple complex disease including 
diabetes and CVD has been recognized11,12, together with the development of interventions 
to treat chronic inflammation and illness13,14,15,16. Prospective observational research has 
established an association of circulating CRP levels with type 2 diabetes17 and CVD18. 
Although the published data support a role of inflammation in the development of complex 
disorders, the causal role of the CRP protein itself has been disputed. Several well-
conducted studies, randomized by the genetic variant for higher CRP (referred to as 
Mendelian randomization), have concluded that a causal role of CRP in diabetes and CVD is 
unlikely19-22. CRP thus seems to be an innocent bystander and this has led to the question 
which inflammatory processes and proteins upstream of CRP are causal to the disease.  
 
Genetic determinants of inflammation 
The identification of genetic loci associated with inflammation may help in the search for 
molecular pathways underlying chronic systemic inflammation. Over the last decade, 
genome-wide association studies (GWAS) became a common approach to study genetic 
determinants of complex traits and diseases. GWAS investigate on a hypothesis-free basis 
the association between DNA sequence variants and phenotypes of interest, and have been 
successful in the identification of thousands of genetic loci for a wide range of phenotypes 
and diseases23. With an heritability of up to 50%24, serum CRP levels has been one of the 
traits that researchers have searched for its genetic determinants. In candidate gene 
studies, researchers first identified polymorphisms in the CRP gene that related to serum 
CRP levels25. Later, genome-wide association analyses revealed genes outside the CRP gene 
that influence CRP levels26. In 2012, the largest GWAS on serum CRP levels identified 18 
genetic loci explaining up to 5% of its heritability27. Thus, most of the heritability and 
molecular pathways underlying CRP levels remain to be determined. Further extending the 
sample size has been successful in GWAS to increase power and detect further genes for 
phenotypes of interest28. Also, the improvement of reference panels for the imputation of 
genetic variants, such as the 1000Genomes project29 and the Haplotype Reference 
Consortium (HRC)30, has the potential to study less frequent genetic variants, as well as 
insertions and deletions (INDELs). Considering these advantages, extending the sample size 
and the application of novel imputation panels may help to identify further genetic loci for 
serum CRP levels.  
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Genetic pleiotropy 
DNA sequence variants may be associated with more than one phenotype, a phenomenon 
termed genetic pleiotropy31. The use of large GWAS meta-analyses has been successful in 
the identification of Single Nucleotide Polymorphisms (SNPs) that are associated with more 
than one phenotype. In general, genetic pleiotropy can be subdivided in two different types: 
vertical (also referred to as mediated) and horizontal (also referred to as biological) 
pleiotropy. Vertical pleiotropy refers to the scenario in which a gene causes phenotype A, 
and phenotype A causes phenotype B (Figure 1a). In horizontal pleiotropy, a gene is 
independently associated with phenotype A and phenotype B (Figure 1b). A better 
understanding of the shared genetic architecture of inflammation and associated 
phenotypes may contribute to a better understanding of how CRP levels link to those 
phenotypes, and may point to upstream mediators that are causal to clinical outcomes.  
 
Figure 1. Vertical (a) and horizontal (b) genetic pleiotropy. 

 
Epigenetics and inflammation 
Complementary to the study of DNA sequence variants to identify determinants of 
phenotypes, recent studies have highlighted the importance of epigenetics in complex 
traits32,33. Epigenetics have the potential to change the function of the genome, without 
altering a person’s DNA sequence. DNA methylation is one of the most important and 
common epigenetic mechanism34. DNA methylation refers to the addition of a methyl-
group to the DNA, which almost exclusively occurs at a cytosine nucleotide that is located 
next to a guanine (CpG sites). DNA methylation may change gene expression and genome 
stability, and is affected by both genetic and environmental factors34. Recently, techniques 
have been developed to quantify DNA methylation at thousands of CpG sites across the 
genome35. Whole blood is a readily available tissue in humans, and whole blood DNA is 
almost exclusively composed of white blood cell DNA. Hence, whole blood DNA methylation 
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is highly suitable for studying DNA methylation in association with inflammation and related 
complex diseases. The selection of CpG sites to study with a phenotype of interest may be 
based on findings from prior research. Additionally, in the hypothesis-free epigenome-wide 
association studies (EWAS), DNA methylation at thousands of CpG sites are associated with 
phenotypes of interest. 
 
Outline of this thesis 
In part 1 of this thesis, the aim is to estimate the lifetime risk of diabetes for different 
subgroups of individuals. In chapter 2, the lifetime risk of prediabetes, diabetes, and insulin 
use is calculated in a community-dwelling European population stratified for body mass 
index. In chapter 3, I studied the lifetime risk of diabetes based on genetic background, and 
investigated whether adherence to a normal weight attenuates high genetic lifetime risk. In 
part 2, I aimed to identify novel inflammatory markers for diabetes and coronary heart 
disease (CHD). This to improve disease prediction and/or identify potential novel targets for 
future therapeutic interventions. In chapter 4, the aim is to identity novel inflammatory 
markers for diabetes, and in chapter 5 I seek to find novel markers for CHD. In part 3 the 
aim is to provide a better understanding of the genes and molecular pathways that regulate 
chronic inflammation and relate inflammation to cardiometabolic phenotypes. Therefore I 
sought to identify genetic determinants of CRP levels and studied the genetic overlap 
between CRP and related complex diseases. In chapter 6 I performed a GWAS of CRP levels, 
and estimated the causal inference of CRP levels on several clinical outcomes. Chapter 7 
comments on the observation that genetically elevated CRP is associated with risk of 
schizophrenia. In chapter 8, shared genetic variants are studied between CRP and 
cardiometabolic diseases. In chapter 9, by applying a novel bivariate GWAS method, I aimed 
to identify novel genetic variants for CRP and lipid levels. In chapter 10, the causal effect of 
vitamin D on inflammation and vice versa was tested. In part 4, the role of DNA methylation 
in chronic inflammation and complex diseases was studied. In chapter 11, an EWAS was 
performed on serum CRP levels, and the link between inflammation related methylation 
sites and complex disease was investigated. Furthermore, in chapter 12 I performed an 
EWAS on tumor necrosis factor α (TNFα) levels, and tested the association between TNFα-
associated methylation sites with incident CHD. Chapter 13 is devoted to the association 
between tobacco smoking and DNA methylation of diabetes susceptibility genes. In chapter 
14, the association between tobacco smoking and DNA methylation at genes identified for 
coronary artery disease is studied. Finally, in part 5 (chapter 15), I summarize the main 
findings and discuss advantages and disadvantages of the methods used, and the 
implications for future research. 
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Background: Data on lifetime risk of the full spectrum of impaired glucose metabolism 
including prediabetes and the risk to eventually progress to diabetes or start insulin therapy 
are scarce. 
 
Methods: We used data from 10050 participants from the prospective population-based 
Rotterdam Study. Events were diagnosed by use of general practitioners records, hospital 
discharge letters, pharmacy dispensing data and serum fasting glucose measurements at 
the study center visits. Normoglycemia, prediabetes and diabetes were defined according 
to the WHO criteria for fasting glucose (normoglycemia: ≤6.0 mmol/L; prediabetes: 
>6.0mmol/L and <7.0mmol/L; diabetes ≥7.0 mmol/L or use of glucose lowering therapy). 
Lifetime risks were calculated using a modified version of survival analysis adjusted for the 
competing risk of death. In addition, we estimated the lifetime risk of progression from 
prediabetes to overt diabetes and from diabetes free of insulin therapy to insulin use. 
Further, we calculated years lived with healthy glucose metabolism.  
 
Results: During a follow-up of up to 14.7 years, 1148 participants developed prediabetes, 
828 diabetes and 237 started insulin therapy. At the age of 45, the remaining lifetime risk 
(95%CI) was 48.7% (46.2%-51.3%) for prediabetes, 31.3% (29.3%-33.3%) for diabetes and 
9.1% (7.8%-10.3%) for insulin use. The lifetime risk to progress from prediabetes at the age 
of 45 to diabetes was 74.0% (67.6%-80.5%), and 49.1% (38.2%-60.0%) of the individuals 
with overt diabetes at the age of 45 started insulin therapy. The lifetime risks attenuated 
with advancing age but increased with increasing body mass index and waist circumference. 
On average, individuals with severe obesity lived 10 fewer years without glucose 
impairment compared to normal-weight individuals. 
 
Conclusion: Our results highlight the public health burden posed by glycemic disturbances 
and demand further investigation into earlier and more effective prevention strategies.
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Introduction 
 
People with elevated blood glucose levels below the threshold of diabetes, a state referred 
to as prediabetes, have an excess risk of diabetes1,2,3. Today, more than 382 million people 
live with diabetes worldwide and due to the increasing prevalence of prediabetes and the 
rapid conversion of prediabetes to type 2 diabetes, the number is predicted to exceed half 
a billion by 20354. Moreover, many diabetes patients are unable to achieve glycemic control 
goals through diet or oral medications only and ultimately require insulin treatment5,6,7. 
Estimates on the progression from prediabetes to diabetes and ultimately insulin therapy 
are scarce and have been limited to merely annual incidences and absolute risks within a 
restricted time period2. 
Lifetime risks provide estimation of the cumulative risk of developing a disease during an 
individual’s remaining lifespan and comprise thus a clear message to patients, clinicians and 
policy makers8,9,10. A few reports have simulated the lifetime risk of type 2 diabetes in the 
US and Australia10,11,12. However, estimates using accurate and careful documentation of 
elevated blood glucose levels, diabetes diagnosis and diabetes drug use are lacking. 
Prospective population-based cohort studies with long-term follow-up and detailed data on 
the full spectrum of impaired glucose metabolism including prediabetes, diabetes and the 
eventual need for insulin therapy, permit estimation of the burden of elevated blood 
glucose levels in the context of overall survival. 
Hence, we used mortality rates and incidences of the disease during every year of life taking 
into account the competing risk of death to assess the lifetime risks of prediabetes, diabetes 
and insulin use in a large prospective population-based cohort study of individuals aged 45 
years and older. Additionally, we estimated the lifetime risk of individuals with prediabetes 
to eventually develop diabetes and for diabetes patients to ultimately use insulin. 
 
Methods 
 
Study design and population 
This study is embedded within the framework of the Rotterdam Study, a prospective cohort 
study among the community-dwelling population aged 45 years and older in the city of 
Rotterdam, the Netherlands. The study design of the Rotterdam Study has been described 
in detail previously13. Briefly, in 1990 all inhabitants of a well-defined district of Rotterdam 
were invited, of whom 7983 agreed to participate (78.1%). The study was extended in 2000 
with a second cohort of individuals who had reached the age of 55 or moved into the study 
area after 1990 (n=3011). In 2006, a third cohort was enrolled including inhabitants aged 45 
years and older (n=3932), bringing the total study size to 14926 individuals. There were no 
eligibility criteria to enter the Rotterdam study cohorts except the minimum age and 
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residential area based on ZIP codes. We used the third center visit (1997–1999, n=4216) of 
the first cohort and the first visit of the second and third cohorts as baseline (2000–2001 
and 2006–2008, respectively) for the current analysis. To ascertain the absence of 
prediabetes or diabetes by means of serum glucose measurement and use of blood glucose 
lowering medication, we excluded 1369 individuals without a valid baseline glucose 
measurement. Next, for the calculation of the lifetime risk of prediabetes, we only included 
individuals that were normoglycemic at study baseline (n=7462). To calculate the lifetime 
risk of diabetes, we only included individuals that were free of diabetes at study baseline 
(n=8844). Further, to calculate the lifetime risk of insulin use, we only included individuals 
that were free of insulin use at study baseline (n=9887). Selection of the individuals for the 
analyses can be found in Figure 1. The individuals with prediabetes (n=1382) were used to 
study progression from prediabetes to diabetes and individuals with diabetes without 
insulin treatment (n=1043) were used to study the progression from diabetes to insulin use. 
The Rotterdam Study has been approved by the medical ethics committee according to the 
Population Screening Act: Rotterdam Study, executed by the Ministry of Health, Welfare 
and Sports of the Netherlands. All participants in the present analysis provided written 
informed consent to participate and to obtain information from their treating physicians.  
 
Ascertainment of prediabetes and type 2 diabetes 
The participants were followed from the date of baseline center visit onwards. At baseline 
and during follow-up, cases of prediabetes and type 2 diabetes were ascertained through 
active follow-up using general practitioners’ records (including laboratory glucose 
measurements), hospital discharge letters and serum glucose measurements from 
Rotterdam Study visits which take place approximately every four years14. Diabetes, 
prediabetes and normoglycemia were defined according to the recent WHO guidelines15. 
Normoglycemia was defined as a fasting blood glucose level ≤6.0 mmol/L; prediabetes was 
defined as a fasting blood glucose >6.0 mmol/L and <7.0 mmol/L or a non-fasting blood 
glucose >7.7 mmol/L and <11.1 mmol/L (when fasting samples were unavailable); type 2 
diabetes was defined as a fasting blood glucose 7.0 mmol/L, a non-fasting blood glucose 
11.1 mmol/L (when fasting samples were unavailable), or the use of blood glucose 
lowering medication. Information regarding the use of blood glucose lowering medication 
was derived from both structured home interviews and linkage to pharmacy dispensing 
records14. At baseline, more than 95% of the Rotterdam Study population was covered by 
the pharmacies in the study area. All potential events of prediabetes and type 2 diabetes 
were independently adjudicated by two study physicians. In case of disagreement, 
consensus was sought with an endocrinologist. Follow-up data was complete until January 
1st 2012. 
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Figure 1. Participants Selection.  

 
Participants without insulin treatment were used for the lifetime risk of insulin dependency, participants without 
diabetes for the lifetime risk of diabetes and participants with normal glucose levels for the lifetime risk of 
prediabetes. Progression from prediabetes to diabetes was assessed in the individuals with prediabetes and the 
progression from diabetes to insulin dependency in the individuals with diabetes without use of insulin treatment. 
 
Statistical analysis 
Baseline characteristics were compared between normoglycemic individuals, individuals 
with prediabetes and individuals with type 2 diabetes using linear regression models, 
Kruskal-Wallis tests for continuous data, and 2 tests for categorical data.  
Remaining lifetime risks at different ages were calculated for prediabetes, diabetes and 
insulin use. We used a modified version of survival analysis to take the competing event of 
death into account for the calculation of the absolute lifetime risk (see appendix page 3 for 
statistical details). Lifetime risk estimates were calculated at index ages 45, 55, 65, 75, and 
85 years for men and women combined and separately. The lifetime risk estimates reflect 
the remaining risk at the index age to the age of last observation (107 years in our study). 
In addition, to compare lifetime risks at the index ages with absolute risks in a shorter time 
period, we also calculated 10-year risks for prediabetes, diabetes and insulin use at all index 
ages.  
Next, we calculated the lifetime risk of diabetes only in individuals with prediabetes in order 
to obtain an estimate of the lifetime risk to progress from prediabetes to diabetes. Similarly, 
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we calculated the lifetime risk of insulin use in individuals with diabetes free of insulin 
therapy to study what percentage of individuals with diabetes will eventually start insulin 
therapy. 
In order to analyze the effect of anthropometric measures on the lifetime risk of 
prediabetes, diabetes and insulin use, we computed lifetime risks at the age of 45 stratified 
by BMI and waist circumference. The individuals were stratified into four categories of BMI 
(<25 kg/m2, 25-30 kg/m2, 30-35 kg/m2, and >35 kg/m2) and three categories of waist 
circumference based on the WHO classification scheme (for men: <94 cm, 94-101 cm and 
≥102 cm; for women: <80 cm, 80-87 cm and ≥88 cm)16. 
To study the delay in onset of prediabetes, diabetes and insulin use we examined the 
difference in mean disease-free survival among BMI and waist circumference strata. As 
censoring precludes estimation of the mean survival time, we used Irwin’s restricted mean 
survival to calculate the mean disease-free survival and overall mean survival17. Irwin’s 
restricted mean survival is the mean of the survival time up to a point in time and 
mathematically is the area under the survival curve up to the selected point in time. As data 
from individuals aged older than 100 was limited, we set the restriction time point to 100 
years of age.  
All data were analyzed using the IBM SPSS Statistics version 21.0.0.1 (IBM Corp, Somers, NY, 
USA) and R version 2.1 with the ‘etm’ and ‘survival’ libraries18,19. 
 
Results 
 
Baseline population characteristics 
The mean (SD) age of the population was 65.2 (9.8) and women made up the majority of 
the study population (56.5%). Of the 10050 participants at baseline, 7462 (74.2%) had 
normoglycemia, 1382 (13.8%) had prediabetes, and 1206 (12.0%) had diabetes (Table 1). 
Prevalences of prediabetes and type 2 diabetes increased with advancing age in both men 
and women and were higher in men compared to women (appendix page 7). Individuals 
with prediabetes and diabetes had higher BMI and unfavorable lipid profile compared to 
normal glycemic individuals. Furthermore, people with diabetes had a higher prevalence of 
stroke, coronary heart disease and were more often smokers compared to normoglycemic 
individuals. 
 
Lifetime risk of prediabetes, diabetes and insulin use 
During 56230 person-years of follow-up in normoglycemic individuals, 1148 individuals 
developed prediabetes and 1343 died (incidence rate per 1000 person-years (IR): 20.4 
(95%CI 19.3 to 21.6); mortality rate per 1000 person-years (MR): 23.9, 95%CI 22.7 to 25.2). 
We observed 828 cases of diabetes during 69639 person-years of follow-up in non-diabetic  
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individuals and 1709 deaths (IR: 11.9, 95%CI 11.1 to 12.7; MR: 24.5, 95%CI 23.4 to 25.7). 
Among non-insulin users, 237 incident cases of insulin use were observed during 80832 
person-years of follow-up (IR: 3.4, 95%CI 3.0 to 3.9) and 2183 individuals died (MR: 27.0, 
95%CI 25.9 to 28.1). The remaining lifetime risk for a 45-year old individual to develop 
prediabetes was 48.7% (95%CI 46.2 to 51.3), whereas the lifetime risks of diabetes and 
insulin use were 31.3% (95%CI 29.3 to 33.3) and 9.1% (95%CI 7.8 to 10.3), respectively 
(Table 2). The cumulative incidences function subsequent to 45 years of age, are depicted 
in Figure 1. Lifetime risks of prediabetes, diabetes and insulin use subsequent to increasing 
ages attenuated. Compared to the lifetime risks, the 10-year risks of prediabetes, diabetes 
and insulin use were lower at all index ages. The remaining lifetime risks did not differ by 
gender irrespective of age (appendix page 8-9). With adjustment for the competing risk of 
death, the lifetime risks were lower as compared to the unadjusted risk derived from 
Kaplan-Meier estimates (appendix page 4).  
 
Progression to diabetes and insulin use 
In 1382 individuals with prediabetes we observed 425 incident cases of diabetes, whilst 257 
died without diabetes (IR: 43.0, 95%CI 39.2 to 47.2; MR: 26.0, 95%CI 23.0 to 29.3). The 
lifetime risk for individuals that experience prediabetes at 45 years of age to progress to 
diabetes was 74.0% (95%CI 67.6 to 80.5). Further, among 1043 individuals with diabetes, 
we observed 183 incident cases of insulin use, whilst 302 died without ever using insulin 
treatment (IR: 24.0, 95%CI 20.8 to 27.7; MR: 39.7, 95%CI 35.5 to 44.3). The lifetime risk for 
individuals with diabetes at the age of 45 to start insulin therapy was 49.1% (95%CI 38.2 to 
60.0). 
 
Stratification by BMI and waist circumference 
Stratification by BMI revealed that people with normal weight at the age of 45 have a 
significantly lower prediabetes lifetime risk compared to overweight and obese individuals 
(Table 3). Stratification by waist circumference revealed similar effects on the lifetime risks 
of prediabetes. In accordance with the lifetime risks for prediabetes, lifetime risks for 
diabetes and insulin use were higher with increasing BMI and waist circumference. The 
cumulative incidences by BMI strata as a function of age, for 45 year olds, are depicted in 
Figure 2. When we stratified individuals within the BMI strata by waist circumference 
categories, we observed an increasing risk of diabetes with increasing waist, except in the 
lowest BMI category (appendix page 10).  
The lifetime risk to progress from prediabetes to diabetes was also substantially lower for 
individuals with a normal weight compared to overweight and obese individuals. However, 
the risk to start insulin therapy in individuals with diabetes did not differ substantially 
between strata of BMI (Table 4). 
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Diabetes-free survival 
Remaining life years free of prediabetes, diabetes and insulin use from the age of 45 by sex, 
BMI and waist circumference strata are depicted in appendix page 5-6. Overall, years lived 
with normal glucose metabolism diminished with increasing levels of obesity. Also, 
individuals with higher BMI experienced more years lived with diabetes. For example, the 
average age of onset of prediabetes in men with normal weight was more than 10 years 
later compared to men with a BMI >35 kg/m2. On average, insulin therapy is only used in a 
short time period at the end of life. 
 
Discussion 
 
The lifetime risk of prediabetes for an individual aged 45 is one in two, and one in three 
individuals aged 45 will develop diabetes. The vast majority of individuals that have 
prediabetes at age 45 will eventually progress to diabetes and one in two diabetes patients 
aged 45 will start insulin therapy. Furthermore, obesity substantially affects the risk to 
progress from prediabetes to diabetes and compresses the years lived with normal glucose 
metabolism.  
Individuals with prediabetes have an increased risk of diabetes, cardiovascular disease, 
cancer and mortality20,21,22. Despite the high prevalence of prediabetes, estimates of what 
proportion of the population will eventually present with prediabetes have not been 
previously published. Evidence regarding the preventive effects of both lifestyle and 
pharmacological interventions on the progression of prediabetes to diabetes 
increases23,24,25. Lifetime risk estimates may indicate the proportion of individuals for whom 
early intervention would be applicable. We observed that half of our population will sooner 
or later present with prediabetes and may qualify for potential interventions during their 
lifespan. 
In contrast to diabetes, prediabetes is a more fluctuating health state. The lifetime risk 
estimates of prediabetes in the current study should be interpreted as ever experiencing a 
serum glucose in the prediabetes range. However, individuals diagnosed with prediabetes 
could return to normoglycaemia. In the Diabetes Prevention Program (DPP), 19% of the 
placebo group returned to normoglycemia within 10 year26. In the pioglitazone for diabetes 
prevention study, 28% returned to normoglycemia in the placebo arm during a median 
follow-up of 2.4 years. These estimates are based on a limited time period and longer 
follow-up may result in different estimates. Our lifetime estimates show that 3 in 4 
individuals with a glucose level in the prediabetes range at the age of 45 progress to 
diabetes. These estimates provide a better long-term perspective of individuals who ever 
meet prediabetes criteria, irrespective whether an individual remains prediabetes or 
returns to normoglycemia in the following years. This is in agreement with the American 



Chapter 2

32

Chapter 2 

32 
 

Diabetes Association expert panel suggesting that 70% of the individuals with prediabetes 
progress to diabetes2. The higher prevalence of obesity in the US raises the concern of even 
higher progression rates compared to the estimates from our European population. 
A previous report simulated the lifetime risk of diabetes in a US population based on 
questionnaire data for the adjudication of diabetes which does not comprise undiagnosed 
diabetes11. As the prevalence of undiagnosed diabetes is more than 25%27, the risk 
estimates in the US study are likely to be underestimated. Furthermore, an Australian study 
estimated the lifetime risk of diabetes using two cross-sectional examinations (diabetes 
defined based on fasting plasma glucose (≥7.0 mmol/L) and 2hr plasma glucose (≥11.1 
mmol/L)) with a short time interval (5 years) in a population with a large number of 
dropouts (39%) and without active follow12. Instead, we used active follow-up data and 
fasting glucose measurements as an objective and comprehensive assessment of diabetes 
diagnosis enabling us to provide accurate estimates of the entire spectrum of impaired 
glucose metabolism. 
We observed a substantial impact of obesity on the remaining lifetime risk of prediabetes, 
diabetes and insulin use, which is in line with a previous report28. Also, obesity increased 
the risk to progress from prediabetes to diabetes. This is in agreement with the observation 
in the placebo group of the DPP in which obese individuals had a higher risk to progress to 
diabetes (9 vs 14 cases/100 person-years)23. Furthermore, obesity compressed the survival 
with normal glucose metabolism and influenced the time lived within each glycemic state 
underscoring the importance of weight management. 
We estimate that one in two patients with diabetes eventually start insulin treatment. 
Together, the lifetime risk of diabetes and insulin use show the burden of pharmacological 
treatment of diabetes in our Western population. Despite the consensus statements from 
the ADA and the European Association for the Study of Diabetes in 200629 and 200930, 
physicians consider a variety of non-standardized factors to initiate glucose lowering 
treatment31. Therefore, our lifetime risks of insulin use may not reflect country and 
population-specific prescription behaviors. Furthermore, recent developments in diabetes 
care include the initiation of insulin therapy for beta-cell preservation, which has not been 
common practice in the calendar time period of our study. The lifetime risk of 9.1% in non-
insulin users at the age of 45 may therefore be an underestimation of the risk of insulin use 
in current diabetes clinical care.  
The strength of our study is the comprehensive assessment of incident diabetes diagnosis 
through use of blood glucose lowering treatment using medical records from hospitals and 
general practitioners, standardized blood glucose measurements at the repeated study 
center visits, and electronic linkage with the pharmacy dispensing records in the study area. 
Also, we used data from a prospective population-based cohort study with long-term 
follow-up and adjusted the lifetime risks for the competing risk of death to avoid 
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overestimation. We need to address some limitations. First, we calculated remaining 
lifetime risks at the age of 45 because we did not have data for individuals younger than 45. 
Nevertheless, the cumulative incidence of type 2 diabetes before the age of 45 is low10,11. 
Also, for estimating the lifetime risk in BMI and waist circumference strata, we used 
anthropometric data at older ages than 45 as not all individuals entered the study at age 
45. This could have led to the misclassification of individuals across the different categories 
as BMI and waist circumference could have changed with age. Third, we used data from an 
completely unselected sample of the general Dutch population with high participation rates 
(72.0%)13. However, all studies requiring active participation are to some extent subject to 
the “healthy volunteer effect” and this generally leads to slight underestimations of 
absolute risk estimates at short term follow-up. However, this underestimation attenuates 
at long-term follow-up32. Last, the vast majority of the Rotterdam Study participants are 
white (97%) and we therefore present lifetime risks for individuals from European ancestry.  
Half of the general population will sooner or later develop prediabetes defined as fasting 
glucose >6.0 mmol/L. Up to three in four of those with prediabetes aged 45 will progress to 
diabetes and one in two diabetics aged 45 eventually starts insulin therapy. These lifetime 
risks demonstrate the burden of impaired glucose metabolism on our society and demand 
earlier and more effective prevention strategies. 



Chapter 2

34

Chapter 2 

34 
 

References 
1. Gerstein HC, Santaguida P, Raina P, et al. Annual incidence and relative risk of 
diabetes in people with various categories of dysglycemia: a systematic overview and meta-
analysis of prospective studies. Diabetes Res Clin Pract 2007; 78(3): 305-12. 
2. Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk 
state for diabetes development. Lancet 2012; 379(9833): 2279-90. 
3. Yeboah J, Bertoni AG, Herrington DM, Post WS, Burke GL. Impaired fasting glucose 
and the risk of incident diabetes mellitus and cardiovascular events in an adult population: 
MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2011; 58(2): 140-6. 
4. International Diabetes Federation. IDF Diabetes Atlas, 6th edn. Brussels, Belgium: 
International Diabetes Federation 2013. 
5. American Diabetes Association. 7. Approaches to Glycemic Treatment. Diabetes 
Care 2015; 38(Supplement 1): S41-S8. 
6. Wallia A, Molitch ME. Insulin therapy for type 2 diabetes mellitus. JAMA 2014; 
311(22): 2315-25. 
7. Turner RC, Cull CA, Frighi V, Holman RR, Group UKPDS. Glycemic control with diet, 
sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive 
requirement for multiple therapies (UKPDS 49). JAMA 1999; 281(21): 2005-12. 
8. Lloyd-Jones DM, Larson MG, Beiser A, Levy D. Lifetime risk of developing coronary 
heart disease. Lancet 1999; 353(9147): 89-92. 
9. Feuer EJ, Wun L-M, Boring CC, Flanders WD, Timmel MJ, Tong T. The lifetime risk 
of developing breast cancer. J Natl Cancer Inst 1993; 85(11): 892-7. 
10. Narayan KMV, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk 
for diabetes mellitus in the United States. JAMA 2003; 290(14): 1884-90. 
11. Gregg EW, Zhuo X, Cheng YJ, Albright AL, Narayan KM, Thompson TJ. Trends in 
lifetime risk and years of life lost due to diabetes in the USA, 1985-2011: a modelling study. 
Lancet Diabetes Endocrinol 2014; 2(11): 867-74. 
12. Magliano DJ, Shaw JE, Shortreed SM, et al. Lifetime risk and projected population 
prevalence of diabetes. Diabetologia 2008; 51(12): 2179-86. 
13. Hofman A, Murad SD, van Duijn CM, et al. The Rotterdam Study: 2014 objectives 
and design update. Eur J Epidemiol 2013; 28(11): 889-926. 
14. Leening MJG, Kavousi M, Heeringa J, et al. Methods of data collection and 
definitions of cardiac outcomes in the Rotterdam Study. Eur J Epidemiol 2012; 27(3): 173-
85. 
15. World Health Organization. Definition and diagnosis of diabetes mellitus and 
intermediate hyperglycemia: report of a WHO/IDF consultation. Geneva: World Health 
Organization 2006: 1-50. 
16. World Health Organization Expert Consultation. Waist circumference and waist-
hip ratio. 2011. 
17. Irwin JO. The standard error of an estimate of expectation of life, with special 
reference to expectation of tumourless life in experiments with mice. J Hyg 1949; 47(2): 
188-9. 
18. Allignol A, Schumacher M, Beyersmann J. Empirical transition matrix of multistate 
models: the etm package. J Stat Software 2011; 38(4): 1-15. 



35

Lifetime risk diabetes

2

Lifetime risk diabetes 

35 
 

19. Therneau TM. Modeling survival data: extending the Cox model: Springer; 2000. 
20. Levitan EB, Song Y, Ford ES, Liu S. Is nondiabetic hyperglycemia a risk factor for 
cardiovascular disease?: A meta-analysis of prospective studies. Arch Intern Med 2004; 
164(19): 2147-55. 
21. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose 
concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective 
studies. Lancet 2010; 375(9733): 2215-22. 
22. Seshasai SRK, Kaptoge S, Thompson A, et al. Diabetes mellitus, fasting glucose, and 
risk of cause-specific death. N Engl J Med 2011; 364(9): 829. 
23. Diabetes Prevention Program Research Group. Reduction in the incidence of type 
2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346(6): 393. 
24. Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus 
by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 
344(18): 1343-50. 
25. Dream Trial Investigators. Effect of rosiglitazone on the frequency of diabetes in 
patients with impaired glucose tolerance or impaired fasting glucose: a randomised 
controlled trial. Lancet 2006; 368(9541): 1096-105. 
26. Diabetes Prevention Program Research Group. 10-year follow-up of diabetes 
incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 
2009; 374(9702): 1677-86. 
27. Centers for Disease Control and Prevention. National diabetes statistics report: 
estimates of diabetes and its burden in the United States, 2014. Atlanta, GA: US Department 
of Health and Human Services 2014. 
28. Narayan KM, Boyle JP, Thompson TJ, Gregg EW, Williamson DF. Effect of BMI on 
lifetime risk for diabetes in the U.S. Diabetes Care 2007; 30(6): 1562-6. 
29. Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycemia in type 2 
diabetes: A consensus algorithm for the initiation and adjustment of therapy: a consensus 
statement from the American Diabetes Association and the European Association for the 
Study of Diabetes. Diabetes Care 2006; 29(8): 1963-72. 
30. Nathan DM, Buse JB, Davidson MB, et al. Medical management of hyperglycemia 
in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a 
consensus statement of the American Diabetes Association and the European Association 
for the Study of Diabetes. Diabetes Care 2009; 32(1): 193-203. 
31. Grant RW, Wexler DJ, Watson AJ, et al. How doctors choose medications to treat 
type 2 diabetes: a national survey of specialists and academic generalists. Diabetes Care 
2007; 30(6): 1448-53. 
32. Leening MJG, Heeringa J, Deckers JW, et al. Healthy volunteer effect and 
cardiovascular risk. Epidemiology 2014; 25(3): 470-1. 
  



Chapter 2

36

Chapter 2 

36 
 

Supplementary material 
 
Statistical analysis lifetime risk  
We used data from individuals at each age during follow-up that they attained free of the 
disease (i.e. prediabetes, diabetes or insulin therapy)1,2. Individuals who reached to age j 
free of the disease at some point during follow-up constituted the population at risk for any 
age j (risk set, Rj). If an individual developed the disease, died or was censored at age j, he 
or she was removed from the risk set for age j+1 and older. If an individual entered the study 
at age j+1, he or she was added to the risk set for age j+1.3 For the lifetime risk at 45, for 
instance, hazards (hj), age-specific incidences (fj), cumulative incidences (Fj), and survival 
probabilities (Sj) were calculated according to the standard Kaplan-Meier methods for each 
age j (assuming F44 = 0 and S44 = 1): 
 
hj = ej / Rj (ej = # of events at age j) 
f j = hj × Sj – 1  
Fj = ji = 45fi 
Sj = 1 – Fj 
 
It should be noted that Fj is the cumulative incidence of the disease (prediabetes, diabetes 
or insulin therapy) which applies to individuals who survive through age j-1. This cumulative 
incidence does not take into account the competing risk of death from another cause. This 
means that individuals that decease count as withdrawals and are assumed to have the 
same risk of the disease compared to the individuals that are alive at censoring. However, 
individuals who die before age j have a zero future risk of the disease. This competing risk 
of death will result in overestimation of the lifetime risk4. Therefore, we used a separate 
survival function (Uj) with death included as an event alongside prediabetes, diabetes or 
insulin therapy to adjust for the competing risk of death. The adjusted incidence and true 
lifetime risk was calculated as follows: 
 
fj* = hj × Uj – 1 
Fj* = ji = 45fi* 
Sj* = 1– Fj* 
 
We used similar methods to calculate lifetime risks at the starting age 55, 65, 75 and 85. We 
set the FT-1 and UT-1 to 0 for every index age T and used the original hazard (hj) to calculate 
Uj for j T. The analysis methods for prediabetes, diabetes and insulin dependency were 
similar. Furthermore, we calculated the lifetime risks stratified by body mass index and 
waist circumference. Finally, we calculated the lifetime risk of diabetes conditional on the 
presence of prediabetes to study the progression from prediabetes to overt diabetes. 
Similarly, we studied the lifetime risk of insulin therapy conditional on the presence of 
diabetes (without insulin therapy) to study the progression from insulin-free diabetes to 
diabetes with insulin therapy. 
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Figure S2. Survival free of prediabetes, diabetes and insulin use after the age of 45 by body 
mass index strata. 

 
The blue bars represent the prediabetes-free survival in men and women with normal glucose levels at the age of 
45. The red bars represents the diabetes-free survival in men and women without diabetes at the age of 45. Finally, 
the green bars represent the insulin-free survival in men and women that do not use insulin at the age of 45. All 
analyses are stratified by body mass index and adjusted for the competing risk of death. 
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Figure S3. Survival free of prediabetes, diabetes and insulin use after the age of 45 by 
waist circumference strata. 

 
The blue bars represent the prediabetes-free survival in men and women with normal glucose levels at the age of 
45. The red bars represents the diabetes-free survival in men and women without diabetes at the age of 45. Finally, 
the green bars represent the insulin-free survival in men and women that do not use insulin at the age of 45. All 
analyses are stratified by waist circumference and adjusted for the competing risk of death. 
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Table S1: Prevalence of Prediabetes and Diabetes at Baseline by Sex and Age (n=10050). 

CI denotes confidence interval. 
  

 Men (n = 4368) Women (n = 5682) 
Age (years) Total N (cases) Prevalence (95%CI) Total N (cases) Prevalence (95%CI) 
     
Prediabetes     
     
45-55 622 (58) 0.09 (0.07-0.12) 795 (43) 0.05 (0.04-0.07) 
55-65 1824 (318) 0.17 (0.16-0.19) 2311 (279) 0.12 (0.11-0.13) 
65-75 1243 (198) 0.16 (0.14-0.18) 1453 (191) 0.13 (0.11-0.15) 
75-85  596 (105) 0.18 (0.15-0.21) 928 (146) 0.16 (0.13-0.18) 
>85 83 (11) 0.13 (0.07-0.23) 195 (33) 0.17 (0.12-0.23) 
     
Diabetes     
     
45-55 622 (43) 0.07 (0.05-0.10) 795 (40) 0.05 (0.04-0.07) 
55-65 1824 (254) 0.14 (0.13-0.16) 2311 (206) 0.09 (0.08-0.10) 
65-75 1243 (195) 0.16 (0.14-0.18) 1453 (169) 0.12 (0.10-0.13) 
75-85  596 (118) 0.20 (0.17-0.23) 928 (135) 0.15 (0.12-0.17) 
>85 83 (17) 0.20 (0.13-0.31) 195 (29) 0.15 (0.11-0.21) 
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Inflammatory Markers, Diabetes, and Coronary 
Heart Disease





Chapter 4

Novel inflammatory markers for incident 
prediabetes and type 2 diabetes: the Rotterdam 

Study
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Background: The immune response involved in each phase of type 2 diabetes (T2D) 
development might be different. We aimed to identify novel inflammatory markers that 
predict progression from normoglycemia to prediabetes, incident T2D and insulin therapy.  
 
Methods: We used plasma levels of 26 inflammatory markers in 971 subjects from the 
Rotterdam Study. Among them 17 are novel and 9 previously studied. Cox regression 
models were built to perform survival analysis. 
Main Outcome Measures: During a follow-up of up to 14.7 years (between April 1, 1997, 
and Jan 1, 2012) 139 cases of prediabetes, 110 cases of T2D and 26 cases of insulin initiation 
were identified. 
 
Results: In age and sex adjusted Cox models, IL13 (HR = 0.78), EN-RAGE (1.30), CFH (1.24), 
IL18 (1.22) and CRP (1.32) were associated with incident prediabetes. IL13 (0.62), IL17 
(0.75), EN-RAGE (1.25), complement 3 (1.44), IL18 (1.35), TNFRII (1.27), IL1ra (1.24) and CRP 
(1.64) were associated with incident T2D. In multivariate models, IL13 (0.77), EN-RAGE 
(1.23) and CRP (1.26) remained associated with prediabetes. IL13 (0.67), IL17 (0.76) and CRP 
(1.32) remained associated with T2D. IL13 (0.55) was the only marker associated with 
initiation of insulin therapy in diabetics. 
 
Conclusion: Various inflammatory markers are associated with progression from 
normoglycemia to prediabetes (IL13, EN-RAGE, CRP), T2D (IL13, IL17, CRP) or insulin therapy 
start (IL13). Among them, EN-RAGE is a novel inflammatory marker for prediabetes, IL17 for 
incident T2D and IL13 for prediabetes, incident T2D and insulin therapy start.
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Introduction 
 
There is increasing evidence that inflammation plays a role in the development of type 2 
diabetes mellitus (DM)1,2,3. In this context, the identification of novel inflammatory markers 
associated with the risk of type 2 DM will shed light on the pathophysiology of the disease 
and might also help clinicians to target individuals at highest risk4,5. So far, a limited number 
of inflammatory markers have been investigated. Previous studies reported inflammatory 
markers including C-reactive protein (CRP), interleukin 6 (IL6) and adiponectin to associate 
with the risk of type 2 DM6,7,8,9,10,11. These studies merely investigated inflammatory markers 
that predict the conversion from normoglycemia to type 2 DM. 
Healthy individuals are thought to experience a prediabetes phase before developing type 
2 DM. Prediabetes is the presence of blood glucose levels higher than normal, but not yet 
high enough to be classified as diabetes12. Moreover, type 2 DM could further deteriorate 
to a stage, where glucose control is only possible by insulin therapy12,13. Progression from 
normoglycemia to prediabetes is thought to be driven by insulin resistance, while 
progression to type 2 DM and need for insulin therapy is further affected by beta cell 
dysfunction14,15,16. Therefore, the immune response involved in each of these phases might 
be different17. 
We hypothesized that inflammatory markers are phase-specific for conversion from 
normoglycemia to prediabetes, diabetes and need for insulin therapy. We agnostically 
studied the association of a set of inflammatory markers with progression from 
normoglycemia to prediabetes, type 2 DM and finally to insulin therapy. 
 
Materials and Methods 
 
Study population 
The Rotterdam Study is a prospective population-based cohort study in Ommoord, a district 
of Rotterdam, the Netherlands. The design of the Rotterdam Study has been described in 
more detail elsewhere18. Briefly, in 1989 all residents within the well-defined study area 
aged 55 years or older were invited to participate of whom 78% (7983 out of 10275) agreed. 
There were no other eligibility criteria to enter the Rotterdam Study except minimum age 
and residency are based on ZIP code. The first examination took place from 1990 to 1993, 
after which follow-up examinations were conducted every 3-5 years. This study was based 
on data collected during the third visit(1997-1999). We used data from 971 individuals with 
available data on inflammatory markers, drawn as a random control sample in a case-cohort 
study of markers for dementia. The Rotterdam Study has been approved by the medical 
ethics committee according to the Population Screening Act: Rotterdam Study, executed by 
the Ministry of Health, Welfare and Sports of Netherlands. All participants in the present 
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analysis provided written informed consent to participate and to obtain information from 
their treating physicians. 
 
Measurement of inflammatory markers 
Fasting blood samples were collected at the research centre. Plasma was isolated and  
immediately put on ice and stored at -80°C. Citrate plasma (200Ul) was sent in July 2008 to 
Rules-Based Medicine, Austin, Texas (www.myriadrbm.com). The samples were thawed at 
room temperature, vortexed, spun at 4000 RPM for 5 minutes for clarification and volume 
was removed for MAP analysis into a master microtiter plate. Using automated pipetting, 
an aliquot of each sample was introduced into one of the capture microsphere multiplexes 
of the Multi Analyte Profile. The mixture of sample and capture microspheres were 
thoroughly mixed and incubated at room temperature for 1 hour. Multiplexed cocktails of 
biotinylated, reporter antibodies for each multiplex were then added robotically and after 
thorough mixing, were incubated for an additional hour at room temperature. Multiplexes 
were developed using an excess of streptavidin-phycoerythrin solution which was 
thoroughly mixed into each multiplex and incubated for 1 hour at room temperature. The 
volume of each multiplexed reaction was reduced by vacuum filtration and the volume 
increased by dilution into matrix buffer for analysis. Analysis was performed in a Luminex 
100 instrument and the resulting data stream was interpreted using proprietary data 
analysis software developed at Rules-Based Medicine (https://myriadrbm.com/scientific-
media/quality-control-systems-white-paper/). For each multiplex, both calibrators and 
controls were included on each microtiter plate. 8-point calibrators were run in the first and 
last column of each plate and 3-level controls were included in duplicate. Testing results 
were determined first for the high, medium and low controls for each multiplex to ensure 
proper assay performance. Unknown values for each of the analytes localized in a specific 
multiplex were determined using 4 and 5 parameter, weighted and non-weighted curve 
fitting algorithms included in the data analysis package. 
Fifty inflammatory markers were quantified using multiplex immunoassay on a custom 
designed human multi-analyte profile. The intra-assay variability was less than 4% and the 
inter assay variability was less than 13%. Markers with more than 60% completeness of 
measurements were selected for analysis (26 from 50)19. 
 
Type 2 diabetes mellitus diagnosis 
The participants were followed from the date of baseline center visit onwards. At baseline 
and during follow-up, cases of prediabetes and type 2 DM were ascertained through active 
follow-up using general practitioners’ records, hospital discharge letters and glucose 
measurements from Rotterdam Study visits which take place approximately every 4 years20. 
Diabetes, prediabetes and normoglycemia were defined according to the current WHO 
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guidelines. Normoglycemia was defined as a fasting blood glucose level < 6.0 mmol/L; 
prediabetes was defined as a fasting blood glucose between 6.0 mmol/L and 7.0 mmol/L or 
a non-fasting blood glucose between 7.7 mmol/L and 11.1 mmol/L (when fasting samples 
were unavailable); type 2 diabetes was defined as a fasting blood glucose  7.0 mmol/L, a 
non-fasting blood glucose  11.1 mmol/L (when fasting samples were unavailable), or the 
use of blood glucose lowering medication20. Information regarding the use of blood glucose 
lowering medication was derived from both structured home interviews and linkage to 
pharmacy dispensing records. At baseline, more than 95% of the Rotterdam Study 
population was covered by the pharmacies in the study area. All potential events of 
prediabetes and type 2 diabetes were independently adjudicated by two study physicians. 
In case of disagreement, consensus was sought with an endocrinologist. Follow-up data was 
complete until January 1st 2012, calculated as a separate variable for every outcome, taking 
in account the hierarchy of events as follows: prediabetes, type 2 diabetes, insulin therapy 
start20.  
 
Covariates 
Height and weight were measured with the participants standing without shoes and heavy 
outer garments. Body mass index (BMI) was calculated as weight divided by height squared 
(kg/m2). Waist circumference was measured at the level midway between the lower rib 
margin and the iliac crest with participants in standing position without heavy outer 
garments and with emptied pockets, breathing out gently. Blood pressure was measured at 
the right brachial artery with a random-zero sphygmomanometer with the participant in 
sitting position, and the mean of 2 consecutive measurements was used. Information on 
medication use, medical history and smoking behaviour was collected via computerized 
questionnaires during home visits. Smoking was classified as current versus non-current 
smokers. Participants were asked whether they were currently smoking cigarettes, cigars, 
or pipes. History of cardiovascular disease was defined as a history of coronary heart 
diseases (myocardial infarction, revascularization, coronary artery bypass graft surgery or 
percutaneous coronary intervention) and was verified from the medical records of the 
general practitioner. Alcohol intake was assessed in grams of ethanol per day. Insulin, 
glucose, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), triglycerides 
(TG) were measured on the COBAS 8000 Modular Analyzer (Roche Diagnostics GmbH). The 
corresponding interassay coefficients of variations are the following: insulin <8%, glucose 
<1.4%, lipids <2.1%. HOMA-IR (the homeostatic model assessment to quantify insulin 
resistance) was calculated dividing the product of fasting glucose (in mmol/L) and fasting 
insulin (in mU/L) by 22.5. HOMA-B (the homeostatic model assessment of β-cell function) 
was calculated dividing the product of fasting insulin (in mU/L) and 20 by the difference of 
glucose (in mmol/L) with 3.521. 
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Statistical analyses 
We used linear regression to investigate the association between each inflammatory 
marker and fasting glucose and fasting insulin in 851 subjects free of diabetes at baseline 
(excluding 120 prevalent diabetes cases from 971 subjects with available data) as presented 
at Figure 1.1, Figure 1.2, table S1, table S2. Also the associations between markers with 
HOMA-IR and HOMA-B were investigated using linear regression (table S3). Markers with a 
right-skewed distribution were transformed to the natural logarithmic scale (including 
fasting glucose and insulin). For a better comparison between the inflammatory markers, 
all markers were standardized by dividing the measured value by the standard deviation. 
We defined marker values as an outlier when the value was >4 standard deviations higher 
or lower than the mean of the normal variable (not natural log transformed). Participants 
were excluded from the analyses when the marker value for this person was an outlier. A 
multiple imputation procedure was used for missing covariates (n=5 imputations). The 
analyses with incident prediabetes, incident type 2 DM and need for insulin therapy were 
performed using Cox proportional hazard models to calculate hazard ratios (HRs) and 95% 
confidence intervals (CI). The first model with incident prediabetes and diabetes was 
adjusted for age and sex (table 2). Significant markers were further investigated in 
multivariable models (table 3). In the second model, we additionally adjusted for body mass 
index, waist circumference, total cholesterol, HDL-cholesterol, medication for 
hypertension, smoking, prevalent cardiovascular disease and lipid lowering medication. In 
the third model we additionally adjusted for C-reaction protein (CRP) levels (except for CRP 
marker). We sought to investigate the associations between the inflammatory markers and 
the need for insulin therapy in 115 prevalent diabetes cases with no prevalent use of insulin 
at baseline (from 120 prevalent cases in total). The inflammatory markers were not 
correlated to each other, representing 26 independent variables. As a sensitivity analysis, 
to identify the most robust findings in every analysis, we applied a Bonferroni corrected p-
value of 1.9×10-3 (0.05/26 markers).The analyses were performed using IBM SPSS Statistics 
for Windows (IBM SPSS Statistics for Windows, Armonk, New York: IBM Corp) and R V.3.0.1 
(R Foundation for Statistical Computing, Vienna, Austria).  
 
Results 
 
Table 1 summarizes the baseline characteristics of 971 participants, including 120 prevalent 
diabetes cases. The mean (SD) age at baseline was 73.0 (7.5) years and 44.8% of our 
population sample were males. The mean BMI (SD) was 26.7 (3.9) kg/m2 and 12.6% of the 
study population used statin. Baseline levels of inflammation markers are presented in table 
S4. 
 



73

Inflammatory markers and diabetes

4

 

 
 

Table 1. Baseline characteristics of study participants. 
Characteristic P-value 
Total population number  971 
Age, years 73.0±7.5 
Men, n (%) 435.0 (44.8) 
Waist Circumference, m 0.9±0.1 
Body mass index, kg/m2 26.7±3.9 
Systolic blood pressure, mmHg 144.0±21.7 
Diastolic blood pressure, mmHg 75.0±11.0 
Hypertension medication with indication, n(%) 744.0 (76.6) 
Total cholesterol, mmol/L 5.8±1.0 
HDL cholesterol, mmol/L 1.4±0.4 
Fasting glucose, mmol/L 5.6 (3.54) 
Fasting insulin, uIU/L 9.4 (19.87) 
Current smokers, n (%) 137.0 (14.1) 
Former smokers, n (%) 483.0 (49.7) 
Prevalent CVD, n (%) 201.0 (20.7) 
Alcohol intake in drinkers (76%), g/day 5.71 (42.73) 
Lipid lowering medication, n (%) 122.0 (12.6) 
Abbreviations: HDL, high density lipoproteins; CVD, cardiovascular disease. 
*Plus-minus values are means ± standard deviation or median (inter-quartile range). 
 
Cross-sectional analysis 
Figure 1.1 and 1.2 present the multivariable adjusted associations between the 
inflammatory markers and fasting glucose, fasting insulin in 851 subjects free of diabetes at 
baseline. Three markers, EN-RAGE, IL13 and sRAGE were significantly associated with 
fasting glucose. CD40, EN-RAGE, FAS, HCC4, IL13, IL18, TRAILR3, CFH, complement 3, IL18 
and IL1ra were significantly associated with fasting insulin.  
 
Prospective analyses 
During a median follow-up of 9.5 years in 698 subjects free of prediabetes at baseline, 139 
cases of prediabetes were identified (21 prediabetes cases per 1000 person-years). table 
S1.1 presents baseline characteristics among prediabetes cases and non-cases. In age and 
sex adjusted model, EN-RAGE, IL13, CFH, IL18 and CRP were associated with incident 
prediabetes (table 2). In multivariate models, IL13 (HR=0.77), EN- RAGE (HR=1.23) and CRP 
(HR=1.26) remained associated with incident prediabetes (table 3). 
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Table 2. Age and sex-adjusted associations between markers and incident prediabetes 
and incident overt diabetes mellitus. 
Marker Incident prediabetes Incident diabetes 
 HR(95%CI) P-value  HR(95%CI) P-value 
CD40, ng/mL 0.93 (0.72-1.19) 0.5 1.18 (0.91-1.52) 0.2 
CD40Ligand*, ng/mL 0.95 (0.79-1.16) 0.6 1.06 (0.85-1.32) 0.6 
EN-RAGE*, ng/mL 1.30 (1.08-1.56) 5.0×10-3 1.25 (1.01-1.54) 4.0×10-2 

Eotaxin*, pg/mL 0.95 (0.79-1.15) 0.6 0.98 (0.80-1.21) 0.8 
FAS*, ng/mL 1.09 (0.88-1.35) 0.4 1.09 (0.87-1.38) 0.4 
HCC4, ng/mL 1.11 (0.90-1.35) 0.3 1.24 (0.99-1.53) 5.4×10-2 

IL13*, pg/mL 0.78 (0.64-0.94) 8.0×10-3 0.62 (0.50-0.76) 5.0×10-6 

IL16, pg/mL 1.07 (0.88-1.29) 0.4 1.17 (0.94-1.45) 0.1 
IL17*, pg/mL 0.97 (0.81-1.16) 0.7 0.75 (0.62-0.91) 3.0×10-3 

IL8*, pg/mL 1.05 (0.87-1.27) 0.5 1.19 (0.97-1.47) 0.1 
MDC, pg/mL 0.94 (0.75-1.17) 0.5 1.19 (0.94-1.50) 0.1 
MIP1 alpha*, pg/mL 1.09 (0.90-1.32) 0.3 1.08 (0.87-1.34) 0.5 
MIP1 beta*, pg/mL 1.05 (0.87-1.26) 0.6 1.00 (0.81-1.25) 0.9 
PARC, ng/mL 1.08 (0.88-1.32) 0.4 0.94 (0.75-1.19) 0.6 
sRAGE*, ng/mL 0.95 (0.79-1.14) 0.6 0.91 (0.75-1.11) 0.3 
TRAILR3*, ng/mL 1.18 (0.98-1.41) 8.1×10-2 1.19 (0.97-1.47) 9.1×10-2 

CFH*, ug/mL 1.24 (1.02-1.49) 2.8×10-2 1.05 (0.87-1.28) 0.6 
C3*, mg/mL 1.13 (0.94-1.36) 0.1 1.44 (1.17-1.77) 1.0×10-3 

IL18*, pg/mL 1.22 (1.02-1.47) 3.2×10-2 1.35 (1.10-1.65) 4.0×10-3 

MCP1*, pg/mL 0.93 (0.76-1.14) 0.4 0.99 (0.79-1.25) 0.9 
MIF*, ng/mL 0.97 (0.82-1.14) 0.6 1.11 (0.92-1.35) 0.2 
RANTES*, ng/mL 0.89 (0.75-1.05) 0.1 1.05 (0.87-1.27) 0.6 
Resistin*, ng/mL 1.02 (0.85-1.24) 0.8 0.96 (0.78-1.18) 0.7 
TNFRII*, ng/mL 0.97 (0.79-1.18) 0.7 1.27 (1.03-1.58) 2.9×10-2 

Il1ra*, pg/mL 1.04 (0.87-1.25) 0.6 1.24 (1.02-1.51) 3.4×10-2 

CRP*, ug/mL 1.32 (1.10-1.58) 3.0×10-3 1.64 (1.33-2.02) 4.0×10-6 

*Naturally log-transformed. CD40 denotes cluster of differentiation 40, CD40 ligand cluster of differentiation 40 
ligand, EN-RAGE Extracellular Newly identified Receptor for Advanced Glycation End-products binding protein, FAS 
Fas Cell Surface Death Receptor, HCC4 Human CC chemokine-4, IL13 interleukin 13, IL16 interleukin 16, IL17 
interleukin 17, IL8 interleukin 8, MDC Monocyte Derived Chemokine, MIP1alpha Macrophage Inflammatory 
Protein 1 alpha, MIP1beta Macrophage Inflammatory Protein 1 beta, PARC Pulmonary and Activation-Regulated 
Chemokine, sRage Soluble Receptor of Advanced Glycation End-products, TRAILR3 Tumor Necrosis Factor-related 
Apoptosis-inducing Ligand Receptor 3, CFH Complement Factor H, C3 complement 3, IL18 interleukin 18, MCP1 
Monocyte Chemotactic Protein 1, RANTES Regulated Upon Activation, Normally T-Expressed, And Presumably 
Secreted, TNFR-II Tumor Necrosis Factor Receptor 2, IL1ra, Interleukin 1 Receptor Antagonist, CRP C-Reactive 
Protein.   
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Table 3. Multivariable-adjusted associations between markers and incident prediabetes, 
incident type 2 diabetes mellitus. 

 Incident prediabetes Incident type 2 diabetes 
Marker HR(95%CI) P-value HR(95%CI) P-value 
Interleukin 13 
Model 1 

 
0.78 (0.64-0.94) 

 
8.0×10-3 

 
0.62 (0.50-0.76) 

 
5.0×10-6 

Model 2 0.78 (0.63-0.98) 2.9×10-2 0.68 (0.53-0.88) 4.0×10-3 

Model 3 0.77 (0.62-0.96) 2.2×10-2 0.67 (0.52-0.86) 2.0×10-3 

Interleukin 17 
Model 1 

 
0.97 (0.81-1.16) 

 
0.7 

 
0.75 (0.62-0.91) 

 
3.0×10-3 

Model 2 0.97 (0.82-1.16) 0.7 0.75 (0.62-0.91) 4.0×10-3 

Model 3 0.98 (0.82-1.17) 0.8 0.76 (0.63-0.93) 7.0×10-3 

EN-RAGE 
Model 1 

 
1.30 (1.08-1.56) 

 
5.0×10-3 

 
1.25 (1.01-1.54) 

 
4.0×10-2 

Model 2 1.28 (1.06-1.56) 1.2×10-2 1.13 (0.89-1.41) 0.3 
Model 3 1.23 (1.01-1.51) 4.1×10-2 1.05 (0.83-1.32) 0.6 
Complement 3 
Model 1 

 
1.13 (0.94-1.36) 

 
0.1 

 
1.44 (1.17-1.77) 

 
1.0×10-3 

Model 2 1.05 (0.86-1.27) 0.6 1.19 (0.96-1.49) 0.1 
Model 3 0.99 (0.82-1.21) 0.9 1.10 (0.87-1.39) 0.4 
Complement factor H    
Model 1 1.24 (1.02-1.49) 2.8×10-2 1.05 (0.87-1.28) 0.6 
Model 2 1.19 (0.99-1.45) 6.5×10-2 0.98 (0.81-1.18) 0.8 
Model 3 1.18 (0.97-1.42) 9.7×10-2 0.98 (0.81-1.18) 0.8 
Interleukin 18 
Model 1 

 
1.22 (1.02-1.47) 

 
3.2×10-2 

 
1.35 (1.10-1.65) 

 
4.0×10-3 

Model 2 1.17 (0.97-1.41) 0.1 1.22 (0.98-1.50) 6.7×10-2 

Model 3 1.13 (0.94-1.36) 0.1 1.18 (0.96-1.46) 0.1 
TNF-Receptor II 
Model 1 

 
0.97 (0.79-1.18) 

 
0.7 

 
1.27 (1.03-1.58) 

 
2.9×10-2 

Model 2 0.89 (0.73-1.09) 0.2 1.08 (0.86-1.37) 0.5 
Model 3 0.81 (0.66-1.01) 6.1×10-2 0.99 (0.78-1.28) 0.9 
Interleukin 1ra 
Model 1 

 
1.04 (0.87-1.25) 

 
0.6 

 
1.24 (1.02-1.51) 

 
3.4×10-2 

Model 2 0.97 (0.80-1.17) 0.7 1.03 (0.83-1.27) 0.8 
Model 3 0.94 (0.78-1.14) 0.5 0.98 (0.79-1.22) 0.8 
C-reactive protein 
Model 1 

 
1.32 (1.10-1.58) 

 
3.0×10-3 

 
1.64 (1.33-2.02) 

 

4.0×10-6 

Model 2 1.26 (1.04-1.53) 1.8×10-2 1.32 (1.05-1.67) 1.7×10-2 

Model 3 NA NA NA NA 
Model 1 is adjusted for age and sex. Model 2 is additionally adjusted for BMI, waist circumference (WC), Total 
Cholesterol, HDL, medication for hypertension, smoking, prevalent CVD, and lipid lowering medication. Model 3 is 
additionally adjusted for CRP. The p-values are bold when they are less than or equal to the significance level cut-
off of 0.05. 
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During a median follow-up of 12.1 years in 851 subjects free of diabetes at baseline, 110 
cases of incident type 2 diabetes were identified (11 diabetes cases per 1000 person-years). 
table S1.2 presents baseline characteristics among diabetes cases and non-cases. In age and 
sex adjusted model, EN-RAGE, IL13, IL17, complement 3, IL18, TNFRII, IL1ra and CRP were 
associated with incident type 2 diabetes (table 2). In multivariate models, IL13 (HR=0.67), 
IL17 (HR=0.76) and CRP (HR=1.32) remained associated with incident type 2 diabetes (table 
3).  
During a median follow-up of 7.5 years in 115 prevalent diabetics free of insulin at baseline, 
26 started insulin therapy (30 insulin starters per 1000 person-years). Table S3 presents 
baseline characteristics among insulin starters and non-starters. The only marker associated 
with need for insulin therapy was IL13. In age and sex adjusted model, the risk for insulin 
therapy start was 45% lower per standard deviation increase in the natural log-transformed 
IL13 (HR=0.55, 95% CI: 0.34, 0.90), (Table S4). The association between 1L13 and initiation 
of insulin therapy remained significant after further adjustment for BMI, waist 
circumference, total cholesterol, HDL, medication for hypertension, smoking, prevalent 
CVD, lipid lowering medication (HR=0.49, 95% CI: 0.28, 0.91). 
 
Discussion 
 
Although a sizable number of studies have documented the association of inflammatory 
markers with type 2 DM, most of them investigated the risk to become diabetic, but not the 
risk of prediabetes and insulin therapy start8. In this study we investigated a wide range of 
inflammatory markers for phase-specific prediction of progression to type 2 DM and 
identified EN-RAGE, IL13 and IL17 as novel inflammatory markers. Higher EN-RAGE levels 
were associated with an increased risk of incident prediabetes, whereas higher IL13 levels 
were associated with a decreased risk of prediabetes, incident type 2 DM and need for 
insulin therapy. Higher IL17 levels were associated with a decreased risk of incident type 2 
DM. In addition, this study reconfirm the previously found associations between high CRP 
levels and the increased risk for type 2 diabetes6,7,8. 
EN-RAGE, also known as S100A12 or Calgranulin C, is a calcium-binding pro inflammatory 
protein mainly secreted by granulocytes. The best known target protein of EN-RAGE are 
RAGE (Receptor for Advanced Glycation Endproducts)22 and TLR4 (Toll-like receptor 4)23. 
Ligation of EN-RAGE with RAGE or TLR4, which are both gatekeepers of the innate immune 
system, activates inflammatory cascades, including the NF-κB pathway and JNK (c-Jun NH 2 

–terminal kinase)24. NF-κB and JNK are both signaling pathways involved in the pathogenesis 
of insulin resistance and type 2 DM25. EN-RAGE is positively associated with chronic 
inflammatory disorders such as inflammatory bowel disease, chronic kidney disease,  
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Figure 1 Associations of inflammatory markers with fasting glucose (upper panel) or 
fasting insulin (lower panel). 

 

 

CD40, cluster of differentiation 40; CD40 ligand, cluster of differentiation 40 ligand ; EN-RAGE, Extracellular Newly 
identified Receptor for Advanced Glycation End-products binding protein; FAS, Fas Cell Surface Death Receptor; 
HCC4, Human CC chemokine-4; IL13, interleukin 13; IL16, interleukin 16; IL17, interleukin 17; IL8, interleukin 8; 
MDC, Monocyte Derived Chemokine; MIP1alpha, Macrophage Inflammatory Protein 1 alpha; MIP1beta, 
Macrophage Inflammatory Protein 1 beta; PARC, Pulmonary and Activation-Regulated Chemokine; sRage, Soluble 
Receptor of Advanced Glycation End-products; TRAILR3, Tumor Necrosis Factor-related Apoptosis-inducing Ligand 
Receptor 3; CFH, Complement Factor H; IL18, interleukin 18; MCP1, Monocyte Chemotactic Protein 1; RANTES, 
Regulated Upon Activation, Normally T-Expressed, And Presumably Secreted; TNFR-II, Tumor Necrosis Factor 
Receptor 2; IL1ra, Interleukin 1 Receptor Antagonist; CRP, C-Reactive Protein. *Significant associations between 
the marker and fasting glucose or insulin. Adjusted for age, sex, BMI, waist circumference, total Cholesterol, HDL-
cholesterol, medication for hypertension, smoking, prevalent CVD, lipid lowering medication. 
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subclinical atherosclerosis and coronary artery disease. A cross-sectional study in Italian 
population found that prediabetic patients exhibited lower RAGE plasma levels as well as 
increased levels of proinflammatory S100A12 in both prediabetic and diabetic patients26. In 
addition, we have previously reported the positive association between EN-RAGE and 
incident CHD in the Rotterdam Study19. Kosaki et al observed increased plasma EN-RAGE 
levels in patients with type 2 DM27. EN-RAGE was significantly associated with both HOMA-
IR and HOMA-B, suggesting proinflammatory EN-RAGE leads to incident type 2 DM via 
inflammation –induced insulin resistance as well as via B-cell dysfunction (table S3). 
Interleukin 13 (IL13) is a cytokine mainly produced by the T-helper (Th)-2 subset of 
lymphocytes, but also from non-T-cell populations such as mast cells, basophils, dendritic 
cells, keratinocytes and eosinophils.28,29,30 IL13 is a regulator of inflammation and immune 
responses31. IL13 has a common receptor unit (α-chain) with interleukin 4 (IL4), which 
explains the similarities between IL13 and IL432. Previous research has reported a preventive 
effect of IL4 on the onset of diabetes in non-obese diabetic mice (NOD mice)33. 
Furthermore, Zaccone et al found that IL13 prevents autoimmune diabetes in NOD mice, 
providing evidence that IL13 down-regulates the immune-inflammatory diabetogenic 
pathways34, which is in agreement with our findings. Wong et al suggested the stimulation 
of IL13 receptors on T-cells, as a new pathway for tolerance induction in NOD mice35. In 
addition, IL13 is a B cell stimulating factor, which further supports our observation36. Stanya 
et al conclude that IL13 mitigates proinflammatory response in mice and regulates glucose 
homeostasis via the IL-13rα1–STAT3 signaling pathway in the liver, and that this pathway 
might provide a target for glycemic control in type 2 DM37. 
We also investigated the associations of IL13 with HOMA-IR and HOMA-B. IL13 was 
associated with both of them, suggesting a protective role against insulin resistance and B-
cell dysfunction (table S3).  
There are six members in the interleukin 17 (IL17) cytokine family, including IL17A, IL17B, 
IL17C, IL17D, IL17E (also known as IL25) and IL17F. Among all the members, the biological 
function and regulation of IL17A and IL17F are best understood. IL17A was produced mainly 
in T cells, whereas IL-17F was produced in T cells, innate immune cells, and epithelial cells. 
Functionally, both IL17A and IL17F mediate pro-inflammatory responses38,39. IL17 family 
cytokines have been linked to many autoimmune diseases, including multiple sclerosis, 
rheumatoid arthritis, inflammatory bowel disease and psoriasis40. The role of IL17 on the 
risk for type 2 DM remains unclear. Roohi A et al41. reported no association between serum 
IL17 levels and type 1 and 2 diabetes. Another study found that therapeutic improvement 
of glucoregulation in newly diagnosed type 2 DM patients is associated with a reduction of 
IL-17 levels42. Our study suggest a protective IL17 cytokine against the risk for type 2 DM 
(HR = 0.76), which is controversial and novel to the already known pro-inflammatory role of 
IL17 family cytokines. However, a cross-sectional case-control study has reported inverse 
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associations of serum levels of IL17 with type 2 DM as well as with retinopathy, which is in 
line with our findings43. 
This study has certain strengths and limitations. To our knowledge, this is the first 
prospective population-based cohort study to investigate the association between a large 
set of novel inflammatory markers and the progression of type 2 DM with long-term follow-
up. Furthermore, we performed sensitivity analysis, adjusting the type I error for multiple 
testing in order to highlight the most robust associations in every analyses. However, given 
the novelty of the markers, we reported significant findings at the level of 0.05 to avoid 
missing possibly important findings44. Beyond the identification of new novel inflammatory 
markers for type 2 diabetes, our findings relate them specifically to different stages of the 
disease. We are also aware of some limitations of the study. First, we had to exclude 
inflammatory markers with very low serum concentrations. However, the selected markers 
have >60% completeness of measurements, indicating acceptable quality of quantification. 
Second, our population is 55 years and older, thus generalization of the results to a younger 
age should be done with caution. Also, the Rotterdam Study mainly includes individuals 
from European Ancestry (98%). The effect estimates might differ between ethnicities.  
A better prevention of type 2 DM requires the targeting of subjects at high risk in very early 
phases, such as prediabetes12. In this context, it is worth to investigate novel inflammatory 
markers that might be detectors of different stages of type 2 DM development17. 
In conclusion, our results show various inflammatory markers are associated with the 
progression from normoglycemia to type 2 DM and need for insulin therapy in a phase-
specific manner. Among them, EN-RAGE is a novel inflammatory marker for prediabetes, 
IL17 for incident type 2 DM and IL13 for prediabetes, incident type 2 DM and insulin therapy 
start. This study only indicates new associations, emphasizing the need for further studies 
to establish the role of EN-RAGE, IL13 and IL17 in the development of type 2 diabetes.
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Supplementary material 
 
Table S1. Baseline characteristics among non prediabetes cases and incident prediabetes 
cases. 
Characteristic Non-prediabetes 

cases 
Incident 
prediabetes 
cases 

P-value 

Total population number  559 139  
Age, years 73±7.6 71±6.1 < 0.001 
Men, n (%) 238 (43) 60 (43.2) 0.9 
Waist Circumference, m 0.9±0.1 0.9±0.1 0.3 
Body mass index, kg/m2 25.9±3.6 27.0±3.8 0.003 
Systolic blood pressure, mmHg 143±21.7 142±20.1 0.4 
Diastolic blood pressure, mmHg 74.6±10.9 74.9±10.9 0.7 
Hypertension medication with 
indication, n(%) 

107 (19.3) 30 (21.6) 0.052 

Total cholesterol, mmol/L 5.8±1.0 5.8±0.9 0.9 
HDL cholesterol, mmol/L 1.5±0.4 1.4±0.4 0.016 
Fasting glucose, mmol/L 5.3 (4.7–5.9) 5.6 (4.9–6.0) < 0.001 
Fasting insulin, uIU/L 8.2 (3.7–18.4) 9.6 (3.7–22.4) 0.002 
Current smokers, n (%) 85 (15.4) 19 (13.7) 0.6 
Former smokers, n (%) 255 (46.1) 77 (55.4) 0.1 
Prevalent CVD, n (%) 94 (17) 15 (10.8) 0.07 
Alcohol intake in drinkers (76%), g/day 2.9 (0.0–40.2) 2.9 (0.0–40.0) 0.6 
Lipid lowering medication, n (%) 57 (10.3) 26 (18.7) 0.007 
Abbreviations: HDL, high density lipoproteins; CVD, cardiovascular disease. 

Plus-minus values are means ± standard deviation or median (inter-quartile range). 
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Table S2. Baseline characteristics among non- diabetes cases/ diabetes cases. 
Characteristic Non- diabetes 

cases 
Incident diabetes 
cases 

P-value 

Total population number  741 110  
Age, years 73±7.5 70±5.9 < 0.001 
Men, n (%) 330 (44.9) 46 (41.8) 0.5 
Waist Circumference, m 0.9±0.1 0.9±0.1 < 0.001 
Body mass index, kg/m2 26.2±3.7 28.4±4.2 < 0.001 
Systolic blood pressure, mmHg 143.4±21.7 144.9±19.6 0.4 
Diastolic blood pressure, mmHg 75.0±11.2 75.7±11.2 0.5 
Hypertension medication with 
indication, n(%) 

154 (21) 36 (32.7) 0.02 

Total cholesterol, mmol/L 5.8±1.0 5.9±0.9 0.4 
HDL cholesterol, mmol/L 1.4±0.4 1.3±0.4 < 0.001 
Fasting glucose, mmol/L 5.4 (4.7–6.3) 6.1 (5.1–6.8) < 0.001 
Fasting insulin, uIU/L 8.5 (3.7–19.3) 12.9 (5.3–27.3) < 0.001 
Current smokers, n (%) 107 (14.6) 18 (16.4) 0.6 
Former smokers, n (%) 355 (48.3) 57 (51.8) 0.6 
Prevalent CVD, n (%) 124 (16.9) 9 (8.2) 0.02 
Alcohol intake in drinkers (76%), g/day 2.9 (0.0–41.9) 2.9 (0.0–40.1) 0.5 
Lipid lowering medication, n (%) 81 (11) 14 (12.7) 0.8 
Abbreviations: HDL, high density lipoproteins; CVD, cardiovascular disease. 
Plus-minus values are means ± standard deviation or median (inter-quartile range). 
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Table S3. Baseline characteristics among non-insulin starters and insulin starters. 
Characteristic Non-insulin 

starters 
Insulin starters P-value 

Total population number  89 26  
Age, years 74.9±8.3 73.6±6.5 0.001 
Men, n (%) 45 (50.6) 12 (46.2) 0.3 
Waist Circumference, m 0.9±0.1 0.9±0.1 0.6 
Body mass index, kg/m2 28.3±4.4 28.7±4.7 0.09 
Systolic blood pressure, mmHg 145.8±21.0 149.7±28.5 0.7 
Diastolic blood pressure, mmHg 75.3±10.1 75.4±9.5 0.7 
Hypertension medication with 
indication, n(%) 

39 (43.8) 8 (30.8) 0.5 

Total cholesterol, mmol/L 5.7±0.9 5.8±0.8 0.5 
HDL cholesterol, mmol/L 1.2±0.4 1.1±0.2 0.2 
Fasting glucose, mmol/L 7.5 (5.4–12.5) 8.8 (6.6–17.2) 0.02 
Fasting insulin, uIU/L 12.2 (4.6–41.1) 12.7 (5.9–52.9) 0.7 
Current smokers, n (%) 11 (12.4) 0 (0) 0.03 
Former smokers, n (%) 49 (55.1) 17 (65.4) 0.1 
Prevalent CVD, n (%) 22 (24.7) 8 (30.8) 0.005 
Alcohol intake in drinkers (76%), g/day 1.4 (0.0–21.1) 1.4 (0.0–18.1) 0.4 
Lipid lowering medication, n (%) 15 (16.9) 8 (30.8) 0.6 
Abbreviations: HDL, high density lipoproteins; CVD, cardiovascular disease. 
Plus-minus values are means ± standard deviation or median (inter-quartile range). 
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Table S4. Baseline characteristics of the inflammatory markers. 
Marker P-Value 
Total population free of diabetes 851 
CD40, ng/mL 0.73±0.27 
CD40 ligand*, ng/mL 0.03 (0.01-0.06) 
EN-RAGE*, ng/mL 10.70 (4.82-24.45) 
Eotaxin*, pg/mL 161.00 (65.40-330.65) 
FAS*, ng/mL 4.65 (2.94-8.18) 
HCC4, ng/mL 4.87±1.95 
IL13*, pg/mL 76.20 (48.70 - -123.00) 
IL16, pg/mL 381.98±103.89 
IL17*, pg/mL 12.90 (6.22-23.30) 
IL8*, pg/mL 9.24 (4.25-20.92) 
MDC, pg/mL 365.61±124.01 
MIP1 alpha*, pg/mL 46.20 (27.22-73.46) 
MIP1 beta*, pg/mL 122.00 (66.06-323.20) 
PARC, ng/mL 29.93±11.12 
sRAGE *, ng/mL 2.67 (1.27-5.66) 
TRAILR3 *, ng/mL 6.55 (3.48-12.48) 
CFH*, ug/mL 2520 (890.95-3700) 
Complement 3*, mg/mL 0.82 (0.62-1.06) 
IL18*, pg/mL 187 (100-381.40) 
MCP1*, pg/mL 184 (113-309) 
MIF*, ng/mL 0.06 (0.01-0.15) 
RANTES*, ng/mL 0.51 (0.18-1.79) 
Resistin*, ng/mL 0.42 (0.17-0.99) 
TNFRII*, ng/mL 3.51 (2.25-6.21) 
Il1ra*, pg/mL 66.80 (25.99-191) 
CRP*, ug/mL 1.37 (0.23-8.90) 
Plus-minus values are means ± standard deviation or median (inter-quartile range). *Naturally log-transformed 
markers. CD40, cluster of differentiation 40; CD40 ligand, cluster of differentiation 40 ligand ; EN-RAGE, 
Extracellular Newly identified Receptor for Advanced Glycation End-products binding protein; FAS, Fas Cell Surface 
Death Receptor; HCC4, Human CC chemokine-4; IL13, interleukin 13; IL16, interleukin 16; IL17, interleukin 17; IL8, 
interleukin 8; MDC, Monocyte Derived Chemokine; MIP1alpha, Macrophage Inflammatory Protein 1 alpha; 
MIP1beta, Macrophage Inflammatory Protein 1 beta; PARC, Pulmonary and Activation-Regulated Chemokine; 
sRage, Soluble Receptor of Advanced Glycation End-products; TRAILR3, Tumor Necrosis Factor-related Apoptosis-
inducing Ligand Receptor 3; CFH, Complement Factor H; IL18, interleukin 18; MCP1, Monocyte Chemotactic Protein 
1; RANTES, Regulated Upon Activation, Normally T-Expressed, And Presumably Secreted; TNFR-II, Tumor Necrosis 
Factor Receptor 2; IL1ra, Interleukin 1 Receptor Antagonist; CRP, C-Reactive Protein. 
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Table S5. Multivariable adjusted associations between markers of inflammation and 
fasting glucose. 
Marker N Beta (95%CI) P-value  
CD40, ng/mL 848 0.006 (-0.003, 0.014) 0.1 
CD40 ligand*, ng/mL 780 -0.0004 (-0.008, 0.007) 0.9 
EN-RAGE*, ng/mL 843 0.009 (0.002, 0.015) 1.2×10-2 

Eotaxin*, pg/mL 841 -0.001 (-0.008, 0.006) 0.6 
FAS*, ng/mL 837 -0.001 (-0.008, 0.007) 0.8 
HCC4, ng/mL 850 0.004 (-0.003, 0.012) 0.2 
IL13*, pg/mL 814 -0.008 (-0.016, 0.000) 4.7×10-2 

IL16, pg/mL 849 -0.003 (-0.010, 0.004) 0.3 
IL17*, pg/mL 805 0.001 (-0.005, 0.008) 0.7 
IL8*, pg/mL 824 0.004 (-0.003, 0.011) 0.2 
MDC, pg/mL 846 -0.004 (-0.012, 0.004) 0.3 
MIP1 alpha*, pg/mL 846 -0.002 (-0.009, 0.005) 0.5 
MIP1 beta*, pg/mL 844 -0.002 (-0.009, 0.005) 0.5 
PARC, ng/mL 845 -0.0001 (-0.008, 0.008) 0.9 
sRAGE*, ng/mL 847 -0.009 (-0.015, -0.002) 1.4×10-2 

TRAILR3*, ng/mL 844 0.0004 (-0.006, 0.007) 0.8 
CFH*, ug/mL 840 0.001 (-0.005, 0.008) 0.6 
Complement 3*, mg/mL 851 0.005 (-0.002, 0.012) 0.1 
IL18*, pg/mL 844 -0.0001 (-0.007, 0.007) 0.9 
MCP1*, pg/mL 846 -0.007 (-0.014, 0.001) 7.5×10-2 

MIF*, ng/mL 831 -0.002 (-0.008, 0.005) 0.5 
RANTES*, ng/mL 849 -0.002 (-0.008, 0.005) 0.6 
Resistin*, ng/mL 844 -0.006 (-0.013, 1x10-4) 5.6×10-2 

TNFRII*, ng/mL 846 -0.005 (-0.013, 0.002) 0.1 
Il1ra*, pg/mL 821 0.005 (-0.002, 0.012) 0.2 
CRP*, ug/mL 837 0.002 (-0.005, 0.010) 0.4 
* Naturally log-transformed. CD40, cluster of differentiation 40; CD40 ligand, cluster of differentiation 40 ligand ; 
EN-RAGE, Extracellular Newly identified Receptor for Advanced Glycation End-products binding protein; FAS, Fas 
Cell Surface Death Receptor; HCC4, Human CC chemokine-4; IL13, interleukin 13; IL16, interleukin 16; IL17, 
interleukin 17; IL8, interleukin 8; MDC, Monocyte Derived Chemokine; MIP1alpha, Macrophage Inflammatory 
Protein 1 alpha; MIP1beta, Macrophage Inflammatory Protein 1 beta; PARC, Pulmonary and Activation-Regulated 
Chemokine; sRage, Soluble Receptor of Advanced Glycation End-products; TRAILR3, Tumor Necrosis Factor-related 
Apoptosis-inducing Ligand Receptor 3; CFH, Complement Factor H; IL18, interleukin 18; MCP1, Monocyte 
Chemotactic Protein 1; RANTES, Regulated Upon Activation, Normally T-Expressed, And Presumably Secreted; 
TNFR-II, Tumor Necrosis Factor Receptor 2; IL1ra, Interleukin 1 Receptor Antagonist; CRP, C-Reactive Protein. 
Adjusted for age, sex, BMI, waist circumference (WC), Total Cholesterol, HDL, medication for hypertension, 
smoking, prevalent CVD, lipid lowering medication. bSensitivity analysis: significant after Bonferroni correction (p-
value=0.05/26 = 1.9 × 10-3). 
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Table S6. Multivariable adjusted associations between markers of inflammation and 
fasting insulin. 
Marker N Beta (95%CI) P-value 
CD40, ng/mL 848 0.045 (0.005, 0.086) 2.9×10-2 

CD40 ligand*, ng/mL 780 -0.022 (-0.057, 0.014) 0.2 
EN-RAGE*, ng/mL 843 0.047 (0.015, 0.080) 5×10-3 

Eotaxin*, pg/mL 841 0.011 (-0.023, 0.044) 0.5 
FAS*, ng/mL 837 0.051 (0.014, 0.087) 6×10-3 

HCC4, ng/mL 850 0.054 (0.019, 0.088) 3×10-3 

IL13*, pg/mL 814 -0.071 (-0.107, -0.034) b1.6×10-4 

IL16, pg/mL 849 0.006 (-0.027, 0.039) 0.7 
IL17*, pg/mL 805 -0.010 (-0.042, 0.022) 0.5 
IL8*, pg/mL 824 0.058 (0.024, 0.091) b1.0×10-3 

MDC, pg/mL 846 0.003 (-0.035, 0.041) 0.8 
MIP1 alpha*, pg/mL 846 0.023 (-0.010, 0.056) 0.1 
MIP1 beta*, pg/mL 844 0.032 (-0.003, 0.067) 6.9×10-2 

PARC, ng/mL 845 0.016 (-0.021, 0.053) 0.3 
sRAGE*, ng/mL 847 -0.023 (-0.056, 0.009) 0.1 
TRAILR3*, ng/mL 844 0.048 (0.017, 0.079) 3.0×10-3 

CFH*, ug/mL 840 -0.031 (-0.062, -0.001) 4.6×10-2 

Complement 3*, mg/mL 851 0.096 (0.062, 0.130) b2.3×10-8 

IL18*, pg/mL 844 0.040 (0.008, 0.072) 1.5×10-2 

MCP1*, pg/mL 846 0.0003 (-0.037, 0.037) 0.9 
MIF*, ng/mL 831 0.007 (-0.025, 0.039) 0.6 
RANTES*, ng/mL 849 -0.007 (-0.040, 0.026) 0.6 
Resistin*, ng/mL 844 0.003 (-0.028, 0.035) 0.8 
TNFRII*, ng/mL 846 0.028 (-0.007, 0.064) 0.1 
Il1ra*, pg/mL 821 0.061 (0.028, 0.094) b2.7×10-4 

CRP*, ug/mL 837 0.025 (-0.010, 0.060) 0.1 
* Naturally log-transformed. CD40, cluster of differentiation 40; CD40 ligand, cluster of differentiation 40 ligand ; 
EN-RAGE, Extracellular Newly identified Receptor for Advanced Glycation End-products binding protein; FAS, Fas 
Cell Surface Death Receptor; HCC4, Human CC chemokine-4; IL13, interleukin 13; IL16, interleukin 16; IL17, 
interleukin 17; IL8, interleukin 8; MDC, Monocyte Derived Chemokine; MIP1alpha, Macrophage Inflammatory 
Protein 1 alpha; MIP1beta, Macrophage Inflammatory Protein 1 beta; PARC, Pulmonary and Activation-Regulated 
Chemokine; sRage, Soluble Receptor of Advanced Glycation End-products; TRAILR3, Tumor Necrosis Factor-related 
Apoptosis-inducing Ligand Receptor 3; CFH, Complement Factor H; IL18, interleukin 18; MCP1, Monocyte 
Chemotactic Protein 1; RANTES, Regulated Upon Activation, Normally T-Expressed, And Presumably Secreted; 
TNFR-II, Tumor Necrosis Factor Receptor 2; IL1ra, Interleukin 1 Receptor Antagonist; CRP, C-Reactive Protein. 
Adjusted for age, sex, BMI, waist circumference (WC), Total Cholesterol, HDL, medication for hypertension, 
smoking, prevalent CVD, lipid lowering medication. bSensitivity analysis: significant after Bonferroni correction (p-
value=0.05/26=1.9×10-3). 
 

 



89

Inflammatory markers and diabetes

4

 

 
 

 

 

Table S7. Associations between markers of inflammation and HOMA-IR. 
Marker N Beta (95%CI) P-value  
CD40, ng/mL 848 0.105 (0.056, 0.155) b3.4×10-5 

CD40 ligand *, ng/mL 780 -0.020 (-0.065, 0.025) 0.3 
EN-RAGE *, ng/mL 843 0.090 (0.050, 0.130) b1.0×10-5 

Eotaxin *, pg/mL 841 -0.036 (-0.077, 0.005) 8.8×10-2 

FAS *, ng/mL 837 0.117 (0.073, 0.162) b1.7×10-7 

HCC4, ng/mL 850 0.107 (0.064, 0.150) b9.5×10-7 

IL13 *, pg/mL 814 -0.168 (-0.206, -0.130) b5.0×10-17 

IL16, pg/mL 849 0.054 (0.013, 0.095) 1.0×10-2 

IL17 *, pg/mL 805 -0.027 (-0.067, 0.013) 0.1 
IL8 *, pg/mL 824 0.060 (0.019, 0.102) 4.0×10-3 

MDC, pg/mL 846 0.049 (0.003, 0.095) 3.8×10-2 

MIP1 alpha *, pg/mL 846 0.051 (0.010, 0.092) 1.4×10-2 

MIP1 beta *, pg/mL 844 0.063 (0.020, 0.106) 4.0×10-3 

PARC, ng/mL 845 0.040 (-0.005, 0.086) 8.4×10-2 

sRAGE *, ng/mL 847 -0.057 (-0.097, -0.017) 6.0×10-3 

TRAILR3 *, ng/mL 844 0.085 (0.047, 0.124) b1.5×10-5 

CFH *, ug/mL 840 0.003 (-0.036, 0.041) 0.8 
Complement 3*, mg/mL 851 0.193 (0.156, 0.230) b6.3×10-23 

IL18*, pg/mL 844 0.085 (0.046, 0.125) b2.2×10-5 

MCP1*, pg/mL 846 -0.023 (-0.069, 0.023) 0.3 
MIF*, ng/mL 831 0.040 (0.001, 0.079) 4.2×10-2 

RANTES*, ng/mL 849 -0.026 (-0.065, 0.013) 0.1 
Resistin*, ng/mL 844 0.017 (-0.023, 0.057) 0.4 
TNFRII*, ng/mL 846 0.106 (0.064, 0.148) b6.9×10-7 

Il1ra*, pg/mL 821 0.150 (0.112, 0.189) b1.9×10-14 

CRP*, ug/mL 837 0.132 (0.093, 0.170) b3.6×10-11 

Age and sex adjusted. The number of subjects differs for each marker, after outliers exclusion. *Naturally log-
transformed. CD40, cluster of differentiation 40; CD40 ligand, cluster of differentiation 40 ligand ; EN-RAGE, 
Extracellular Newly identified Receptor for Advanced Glycation End-products binding protein; FAS, Fas Cell Surface 
Death Receptor; HCC4, Human CC chemokine-4; IL13, interleukin 13; IL16, interleukin 16; IL17, interleukin 17; IL8, 
interleukin 8; MDC, Monocyte Derived Chemokine; MIP1alpha, Macrophage Inflammatory Protein 1 alpha; 
MIP1beta, Macrophage Inflammatory Protein 1 beta; PARC, Pulmonary and Activation-Regulated Chemokine; 
sRage, Soluble Receptor of Advanced Glycation End-products; TRAILR3, Tumor Necrosis Factor-related Apoptosis-
inducing Ligand Receptor 3; CFH, Complement Factor H; IL18, interleukin 18; MCP1, Monocyte Chemotactic Protein 
1; RANTES, Regulated Upon Activation, Normally T-Expressed, And Presumably Secreted; TNFR-II, Tumor Necrosis 
Factor Receptor 2; IL1ra, Interleukin 1 Receptor Antagonist; CRP, C-Reactive Protein. bSensitivity analysis: 
significant after Bonferroni correction (p-value=0.05/26=1.9×10-3). 
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Table S8. Associations between markers of inflammation and HOMA-B. 
Marker N Beta (95%CI) P-value 
CD40, ng/mL 848 0.077 (0.033, 0.122) b1.0×10-3 

CD40 ligand *, ng/mL 780 -0.012 (-0.052, 0.029) 0.5 
EN-RAGE *, ng/mL 843 0.045 (0.009, 0.081) 1.4×10-2 

Eotaxin *, pg/mL 841 -0.019 (-0.056, 0.018) 0.3 
FAS *, ng/mL 837 0.101 (0.062, 0.141) b5.5×10-7 

HCC4, ng/mL 850 0.076 (0.037, 0.114) b1.1×10-4 

IL13 *, pg/mL 814 -0.120 (-0.155, -0.085) b2.0×10-11 

IL16, pg/mL 849 0.051 (0.014, 0.087) 7.0×10-3 

IL17 *, pg/mL 805 -0.024 (-0.060, 0.011) 0.1 
IL8 *, pg/mL 824 0.051 (0.014, 0.088) 7.0×10-3 
MDC, pg/mL 846 0.048 (0.006, 0.089) 2.4×10-2 

MIP1 alpha *, pg/mL 846 0.054 (0.018, 0.091) 4.0×10-3 
MIP1 beta *, pg/mL 844 0.063 (0.025, 0.102) b1.0×10-3 

PARC, ng/mL 845 0.039 (-0.002, 0.080) 5.9×10-2 

sRAGE *, ng/mL 847 -0.009 (-0.045, 0.027) 0.6 
TRAILR3 *, ng/mL 844 0.073 (0.039, 0.108) b3.0×10-5 

CFH *, ug/mL 840 -0.013 (-0.047, 0.022) 0.4 
Complement 3*, mg/mL 851 0.140 (0.106, 0.174) b8.8×10-16 

IL18*, pg/mL 844 0.077 (0.042, 0.112) b1.8×10-5 

MCP1*, pg/mL 846 0.007 (-0.034, 0.048) 0.7 
MIF*, ng/mL 831 0.040 (0.005, 0.075) 2.6×10-2 

RANTES*, ng/mL 849 -0.012 (-0.047, 0.022) 0.4 
Resistin*, ng/mL 844 0.037 (0.002, 0.073) 3.9×10-2 

TNFRII*, ng/mL 846 0.103 (0.066, 0.141) b5.0×10-8 

Il1ra*, pg/mL 821 0.110 (0.076, 0.145) b4.4×10-10 

CRP*, ug/mL 837 0.086 (0.051, 0.122) b2.0×10-6 

Age and sex adjusted. The number of subjects differs for each marker, after outliers exclusion. *Naturally log-
transformed. CD40, cluster of differentiation 40; CD40 ligand, cluster of differentiation 40 ligand ; EN-RAGE, 
Extracellular Newly identified Receptor for Advanced Glycation End-products binding protein; FAS, Fas Cell Surface 
Death Receptor; HCC4, Human CC chemokine-4; IL13, interleukin 13; IL16, interleukin 16; IL17, interleukin 17; IL8, 
interleukin 8; MDC, Monocyte Derived Chemokine; MIP1alpha, Macrophage Inflammatory Protein 1 alpha; 
MIP1beta, Macrophage Inflammatory Protein 1 beta; PARC, Pulmonary and Activation-Regulated Chemokine; 
sRage, Soluble Receptor of Advanced Glycation End-products; TRAILR3, Tumor Necrosis Factor-related Apoptosis-
inducing Ligand Receptor 3; CFH, Complement Factor H; IL18, interleukin 18; MCP1, Monocyte Chemotactic Protein 
1; RANTES, Regulated Upon Activation, Normally T-Expressed, And Presumably Secreted; TNFR-II, Tumor Necrosis 
Factor Receptor 2; IL1ra, Interleukin 1 Receptor Antagonist; CRP, C-Reactive Protein. bSensitivity analysis: 
significant after Bonferroni correction (p-value=0.05/26=1.9×10-3). 
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Background: Inflammation plays a key role in atherosclerosis. We hypothesized that novel 
inflammatory markers may predict the risk of coronary heart disease (CHD). 
 
Methods: We investigated the association of 16 inflammatory biomarkers with the risk of 
CHD in a random subset of 839 CHD free individuals in a prospective population-based 
cohort study. A Bonferroni corrected p-value of 3.1×10-3 was used as a threshold of 
statistical significance.  
 
Results: The mean age at baseline was 72.8 years. During a median follow-up of 10.6 years, 
99 cases of incident CHD were observed. Among all inflammatory biomarkers, neutrophil 
derived human s100a12 (EN-RAGE) showed the strongest association with the risk of CHD 
(p-value 2.0×10-3). After multivariable adjustment for established cardiovascular risk 
factors, each standard deviation increase in the natural log-transformed EN-RAGE was 
associated with 30% higher risk of incident CHD (Hazard ratio: 1.30; 95% confidence interval 
(CI) CI: 1.06–1.59). Further adjustment for previously studied inflammatory markers did not 
attenuate the association. Excluding individuals with prevalent type 2 diabetes, impaired 
kidney function or individuals using antihypertensive medication did not change the effect 
estimates. Cause-specific hazard ratios suggested a stronger association between EN-RAGE 
and CHD mortality compared to stable CHD. 
  
Conclusion: Our results highlight EN-RAGE as an inflammatory marker for future CHD in a 
general population, beyond traditional CHD risk factors and inflammatory markers.  
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Introduction 
 
With 7.3 million deaths per year globally, coronary heart disease (CHD) is still the world’s 
leading cause of mortality1. Inflammation is thought to play a key role in the pathogenesis 
of atherosclerosis and CHD2. Accordingly, inflammatory markers have been investigated for 
predicting the risk of CHD, an effort that has led to the identification and validation of 
several inflammatory markers for CHD3,4,5,6. However, the inflammatory markers that have 
been investigated so far only represent a minor part of the diverse molecules that constitute 
the complex human immune response7. Exploring prospectively the association of relatively 
uninvestigated inflammatory markers with CHD may unravel novel inflammatory risk 
factors for CHD and may shed light on additional pathways that might be involved in the 
pathogenesis of atherosclerosis and CHD. 
We hypothesized that indicators of inflammation which have not been studied previously 
with the incidence of CHD are associated with incident CHD beyond traditional risk factors 
and previously studied inflammatory markers. To this end, we studied the association of 16 
biomarkers of inflammation with the risk of CHD in the Rotterdam Study, a prospective 
population-based cohort study.  
 
Methods 
 
Study Population 
The Rotterdam Study is a prospective population-based cohort study in Ommoord, a district 
of Rotterdam, the Netherlands. The design of the Rotterdam Study has been described in 
more detail elsewhere8. Briefly, in 1989 all residents of Ommoord aged 55 years or older 
were invited to participate of whom 78% (7,983 out of 10,275) agreed. The first examination 
round was completed between 1990 and 1993, after which follow-up examinations were 
conducted in 1993-1994, 1997-1999, 2002-2004 and 2009-2011. This study was based on 
data collected during the third visit (1997-1999). Among 5990 (80%) eligible individuals, 
4797 individuals visited the research center. A random subset of 971 participants was 
selected as part of a separate case-cohort study to investigate biomarkers in association 
with dementia. Given the random sampling these persons can be considered representative 
of the source population. We excluded 132 participants with history of CHD (defined as 
clinically manifest myocardial infarction, coronary artery bypass grafting, or percutaneous 
trans luminal coronary angioplasty), resulting in 839 participants for analysis. The 
Rotterdam Study has been approved by the medical ethics committee according to the 
Population Study Act Rotterdam Study, executed by the Ministry of Health, Welfare and 
Sports of the Netherlands. A written informed consent was obtained from all participants.  
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Measurement of Inflammatory Biomarkers 
In the third center visit, fasting blood samples were collected at the research center. Plasma 
was isolated and immediately put on ice and stored at -80°C. Citrate plasma (200 µL) was 
sent in July 2008 to Rules-Based Medicine, Austin, Texas (www.myriadrbm.com). Fifty 
inflammatory biomarkers were quantified using multiplex immunoassay on a custom 
designed human multianalyte profile. The intra-assay variability was less than 4% and the 
inter-assay variability was less than 13%. Biomarkers with more than 60% completeness of 
measurements were selected for imputation and further analysis (Figure 1). Among the 26 
eligible biomarkers, 10 were excluded since they have previously been investigated 
prospectively with the incidence of CHD (table S1). This resulted in a final set of 16 novel 
inflammatory biomarkers that were selected to investigate with incidence of CHD (table S2). 
The inflammatory markers investigated in the current study have no standard international 
calibration reference, therefore interpretation of the absolute values should be with 
caution. Since the current study is conducted within one set of individuals, the use of 
relative measures does not affect the effect estimates. 
 
Figure 1. Flow chart of inflammatory biomarker inclusion. 
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Coronary Heart Disease Diagnosis 
Information on the incidence of CHD was obtained from general practitioners and from 
letters and discharge reports of medical specialists. Two independent study physicians 
coded all reported events and in case of disagreement, consensus was sought. 
Subsequently, a medical specialist validated all events. Incident CHD was defined as 
myocardial revascularization, fatal and non-fatal myocardial infarction and CHD mortality. 
Definition and coding of CHD events within the Rotterdam Study is described in more detail 
elsewhere9. Follow-up data until January 1st 2011 was used. 
 
Covariates 
Anthropometric measures were obtained during the visit to the research center. Body mass 
index (BMI) was defined as weight in kilogram divided by the square of height in meters. 
Blood pressure was measured during research center visit at the right brachial artery, with 
participants in sitting position. The mean of two consecutive measurements was used. Total 
and high-density lipoprotein cholesterol (HDL-cholesterol) levels, creatinine and white 
blood cell counts were measured in fasting blood samples with standard laboratory 
techniques. The glomerular filtration rate (GFR) was estimated by the abbreviated 
modification of diet in renal disease (MDRD) equation which is recommended by the 
National Kidney Foundation10. Chronic kidney disease was defined as an eGFR < 60 
ml/min/1.73m2 11. Prevalent diabetes mellitus was defined as a fasting plasma glucose level 
≥ 7.0 mmol/L or use of anti-diabetic medication. Information on medication use, medical 
history and smoking behavior was collected via computerized questionnaires during home 
visits. Smoking was classified as current versus non-current smokers. The previously studied 
inflammatory markers were measured using the same multiplex immunoassay that was also 
used for the novel inflammatory biomarkers.  
 
Statistical Analyses 
In the first step, we used Cox proportional hazard models to investigate the age and sex 
adjusted association between each inflammatory biomarker and the incidence of CHD. All 
models met the proportional hazards assumption. Markers with a right-skewed distribution 
were transformed to the natural logarithmic scale (table S2). For a better comparison 
between the biomarkers, all markers were standardized by dividing the measured value by 
the standard deviation. We defined biomarker values as an outlier when the value was >4 
standard deviations higher or lower than the mean. Participants were excluded from the 
analysis when the biomarker value for this person was an outlier. The maximum number of 
excluded individuals was 3 among all biomarkers. We selected the significant biomarkers 
from the first step to further assess their association with CHD in multivariable analyses. In 
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this second step, we additionally adjusted the association for BMI, serum total cholesterol, 
HDL-cholesterol, systolic blood pressure, use of anti-hypertensive medication (defined as 
diuretics, anti-adrenergic agents, β blockers, calcium channel blockers and RAAS inhibitor), 
eGFR, prevalent type 2 diabetes and smoking. The hazard ratios were also calculated for the 
two upper tertiles with the first tertile as reference. In the third model, we additionally 
adjusted for the inflammatory markers that have previously been studied. In a sensitivity 
analysis, we excluded individuals with prevalent type 2 diabetes, chronic kidney disease and 
individuals using anti-hypertensive medication. Participants were censored at the time of 
occurrence of CHD, death, loss to follow-up or the end of the study period on January 1, 
2011. We estimated 10-year risks for first-incident CHD for different tertiles of the identified 
biomarker(s). The cumulative incidence curves were created taking into account competing 
events12,13.  
In addition, we analyzed EN-RAGE with the different CHD outcomes separately (myocardial 
infarction, coronary revascularization and CHD mortality). To compare directly the effect 
estimates on these specific first CHD events using Cox regression, we applied the data 
augmentation method proposed by Lunn and McNeil14. This method estimates the 
difference in cause-specific hazard ratios of EN-RAGE on the specific CHD events when 
competing CHD events and non-CHD events are present12. We presented the results for the 
model in which we adjusted for the traditional CHD risk factors. 
The measures of association are presented with 95% confidence intervals (CI). We 
hypothesized that inflammatory markers may predict the incidence of CHD. To this end, we 
tested the association between 16 markers of inflammation with the incidence of CHD. To 
avoid false positive findings, we applied a Bonferroni corrected p-value of 3.1×10-3 (0.05/16) 
as a robust threshold of significance. All other statistical tests were considered significant 
with a p-value < 0.05.  
We compared the 10-year CHD risk prediction of the traditional Framingham risk score 
model to the new model that additionally included EN-RAGE using the c-statistic difference, 
continuous net reclassification improvement (NRI) and integrated discrimination 
improvement (IDI)15,16,17. The difference in c-statistic between the base model and the 
model with EN-RAGE was corrected for optimism using 100 bootstraps. 
Approximately 5% of the participants lacked data on one or more of the cardiovascular 
covariates, except for the covariate “use of antihypertensive medication”, where 9% of the 
values were missing. Missing data for these covariates was imputed by multiple imputation 
where 5 datasets were pooled to obtain the risk estimates for the association between EN-
RAGE and incident CHD18,19. Biomarkers with missing data due to values under the lower 
detection limit were imputed with the lower detection limit. Data were handled and 
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analyzed using the IBM SPSS Statistics version 21.0.0.1 (IBM Corp., Somers, NY, USA) and R 
version 3.0.020. 
 
Results 
 
Table 1 summarizes the baseline characteristics of 839 participants (see table S2 for baseline 
characteristics in future CHD cases and non-cases). At the start of the  
 
Table 1. Baseline characteristics of participants at risk for CHD. 
Characteristics Total (n=839)  
Age, y 72.8±7.5 
Men, n (%) 355 (42) 
Body mass index, kg/m2 27±4 
Systolic blood pressure, mmHg 144±21 
Diastolic blood pressure, mmHg 75±11 
Antihypertensive medication use, n (%) 319 (38) 
Total cholesterol, mmol/L 5.8±1.0 
High-density lipoprotein cholesterol, mmol/L 1.4±0.4 
Triglycerides, mmol/L 1.5±0.7 
Current smokers, n (%) 144 (17.2) 
Prevalent type 2 diabetes, n (%) 107 (12.8) 
Estimated Glomerular Filtration Rate, ml/min/1.73m2 74±15 
CD40ligand*, ng/mL 0.028 (0.020–0.039) 
Complement 3, mg/mL 0.84±0.14 
C-reactive protein*, mg/L 1.43 (0.69–3.28) 
Interleukin 8*, pg/mL 9.21 (7.20–12.40) 
Interleukin 18*, pg/mL 190 (149–248) 
Monocyte chemotactic protein*, pg/mL 183 (151–225) 
Macrophage migration inhibitory factor*, ng/mL 0.056 (0.037–0.082) 
Regulated on activation, normal T cell expressed and secreted*, 
ng/mL 

0.50 (0.32–0.80) 

Resistin*, ng/mL 0.42 (0.31–0.49) 
Tumor necrosis factor receptor 2*, ng/mL 3.54 (2.93–4.34) 
White blood cell count, x109/L 6.4±1.7 
Plus-minus values are means ±SD. *Values are presented as median (inter-quartile range). 
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study, the mean (±SD) age was 72.8 (7.5) and 58% of the population were female. During a 
median follow-up of 10.6 years (interquartile range: 6.8–11.9), 2 were lost to follow-up, 353 
individuals died (302 unrelated to CHD) and 99 developed CHD (incidence rate: 12.7 per 
1000 person years). Out of the 16 inflammatory biomarkers, after Bonferroni correction, 
only EN-RAGE was significantly associated with CHD when adjusted for age and sex (table 
S3). The risk of CHD was nearly one third increased per standard deviation increase in the 
natural log-transformed EN-RAGE (Hazard Ratio (HR): 1.37; 95% confidence interval (CI): 
1.12–1.67) (Table 2). Compared to the lowest tertile, participants in the highest tertile 
experienced approximately a 2.6 higher risk of developing CHD compared to participants in 
the lowest tertile (HR: 2.59; 95%CI: 1.52–4.40). When we further adjusted the association 
for traditional cardiovascular risk factors, the effect estimates attenuated slightly (HR: 1.30; 
95%CI: 1.06–1.59). Additional adjustment for previously studied inflammatory markers 
yielded slightly increased effect estimates (Table 2, table S4). 
 
Table 2. The association between EN-RAGE serum levels and incident CHD.  

  HR (95% CI)* HR (95% CI)* HR (95% CI)* 
Tertile EN-RAGE n/N  Model 1  Model 2  Model 3 
First 20/277  1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 
Second 35/281 1.92 (1.11–3.33) 1.66 (0.95–2.90) 1.77 (1.00–3.15) 
Third 44/279 2.59 (1.52–4.40) 2.15 (1.25–3.69) 2.47 (1.35–4.54) 
P for trend  <0.001 0.006 0.006 
Per SD Ln (EN-RAGE) 99/837 1.37 (1.12–1.67) 1.30 (1.06–1.59) 1.46 (1.11–1.90) 
*Hazard ratios are represented per standard deviation increase in log-transformed EN-RAGE. Model 1: adjusted 
for age and sex. Model 2: adjusted for age, sex, BMI, systolic blood pressure, anti-hypertensive medication use, 
HDL- cholesterol, Total cholesterol, smoking status (current, non-current), prevalent type 2 diabetes, eGFR. Model 
3: additionally adjusted for CD40ligand, Complement 3, C-reactive protein, interleukin 8, interleukin 18, monocyte 
chemotactic protein 1, macrophage migration inhibitory factor, RANTES, Resistin, TNF receptor 2 and white blood 
cells. HR=Hazard ratio, SD=Standard deviation, EN-RAGE=extracellular newly identified receptor for advanced 
glycation end-products binding protein. 
 
Cumulative incidence curves for the tertiles of EN-RAGE adjusted for competing risks are 
depicted in Figure 2. The 10-year probability of first incident event of CHD was 0.05 (95%CI: 
0.03 – 0.08) for the first tertile, 0.11 (95%CI: 0.07 – 0.14) for the second tertile and 0.14 
(95%CI: 0.10 – 0.18) for the third tertile. 
After excluding participants with chronic kidney disease at baseline, the association 
between EN-RAGE and incident CHD attenuated slightly (1.28 (95%CI: 1.03–1.59)) (Table 3). 
Excluding participants with type 2 diabetes, the effect estimates of the association between 
EN-RAGE and CHD did not change: hazard ratio 1.29 (95% CI:1.04–1.60) in the fully adjusted 
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model. Finally, after excluding participants taking anti-hypertensive medication, the hazard 
ratio did not change (HR:1.40; 95% CI: 1.05–1.87).  
Table 4 depicts the results for the associations between EN-RAGE and the different CHD 
manifestations separately. We observed the strongest association with CHD mortality 
(HR:1.56; 95% CI: 1.19–2.04) compared to myocardial infarction and revascularization which 
were not significant. Further adjustment for the traditional cardiovascular risk factors did 
not change the effect estimate for CHD mortality. Cause-specific HRs were not significantly 
lower for revascularization compared to myocardial infarction (Lunn and McNeil p-
value=0.700), but they were borderline significant for CHD mortality compared to 
revascularization (Lunn and McNeil p-value=0.055). 
 
Figure 2. Cumulative incidence curves for first, second and third tertile of serum EN-RAGE 
in relation to incidence of coronary artery disease adjusting for competing non-coronary 
heart disease death up to 10 years of follow-up. 
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Table 3. The association of EN-RAGE with CHD in absence of patients with CKD, T2D or 
anti-hypertensive use. 
  HR (95% CI)* HR (95% CI)* 
 n/N Model 1 Model 2 
eGFR < 60 excluded 81/720 1.34 (1.09–1.65) 1.28 (1.03–1.59) 
Prevalent diabetes excluded 86/732 1.34 (1.09–1.64) 1.29 (1.04–1.60) 
Anti-hypertensive use 
excluded 

42/520 1.45 (1.10–1.92) 1.40 (1.05–1.87) 

*Hazard ratios are represented per standard deviation increase in log-transformed EN-RAGE. Model 1: adjusted 
for age and sex. Model 2: adjusted for age, sex, BMI, systolic blood pressure, anti-hypertensive medication use, 
HDL- cholesterol, Total cholesterol, smoking status (current and non-current), prevalent type 2 diabetes, eGFR. 
HR=Hazard ratio, eGFR, estimated glomerular filtration rate, EN-RAGE=extracellular newly identified receptor for 
advanced glycation end-products binding protein. 
 
Table 4. The association between EN-RAGE and incident myocardial infarction, coronary 
revascularization and CHD mortality. 

  HR (95% CI)* HR (95% CI)* 
 n/N Model 1 Model 2 

Coronary revascularization 38/837 1.10 (0.77–1.55) 0.99 (0.68–1.44) 
Myocardial infarction 51/837 1.32 (1.00–1.76) 1.30 (0.95–1.76) 
CHD mortality 51/837 1.56 (1.19–2.04) 1.57 (1.17–2.10) 
*Hazard ratios are represented per standard deviation increase in log-transformed EN-RAGE. Model 1: adjusted 
for age and sex. Model 2: adjusted for age, sex, BMI, systolic blood pressure, anti-hypertensive medication use, 
HDL- cholesterol, Total cholesterol, smoking status (current and non-current), prevalent type 2 diabetes, eGFR. 
HR=Hazard ratio, eGFR, estimated glomerular filtration rate, EN-RAGE=extracellular newly identified receptor for 
advanced glycation end-products binding protein. 
 
The c-statistic of the traditional Framingham risk score model for 10-year CHD risk was 0.730 
(95% CI: 0.672–0.788). When we added EN-RAGE to the model, the c-statistic improved to 
0.741 (95% CI:0.683–0.799) with a difference of 0.011 (95% CI: -0.012–0.033, p-value=0.33). 
Adding EN-RAGE to the Framingham risk score model resulted in a significant continuous 
net reclassification index (NRI) of 0.36 (95% CI:0.05-0.67, p-value=0.02) and integrated 
discrimination improvement of 0.026 (95% CI:0.009–0.0437, p-value=3.3×10-3). 
 
Discussion 
 
In this prospective, population-based cohort study, we found that higher EN-RAGE levels 
were associated with an increased risk of CHD beyond conventional risk factors. Further 
adjustments for inflammatory markers as well as excluding diseased individuals did not 
change the results. These findings suggest pro-inflammatory EN-RAGE as an new 
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inflammatory risk marker for CHD that represents a distinct inflammatory pathway 
compared to other inflammatory markers.  
Previous studies have observed increased levels of EN-RAGE in patients with chronic 
inflammatory disorders including inflammatory bowel disease (IBD)21, type 2 diabetes 
(T2D)22, chronic kidney disease (CKD), subclinical atherosclerosis23,24 and coronary artery 
disease25,26,27,28,29. The design of the mentioned studies is mainly cross-sectional and 
conducted in patient populations. A positive association between EN-RAGE and (CHD) 
mortality was shown in a prospective study including patients on hemodialysis30. In 
addition, a recent study in Japanese CHD individuals observed a significant association 
between EN-RAGE and future major adverse cardiac events31. To our knowledge, we are the 
first to investigate the association between EN-RAGE and CHD in a prospective population-
based cohort study with long-term follow-up. 
To address the possibility of confounding, we adjusted in the multivariable model for the 
different traditional CHD risk factors and previously studied inflammatory markers. To 
address the question whether our results were driven by a certain subgroup, we analyzed 
the data excluding participants with chronic kidney disease, T2D and antihypertensive use 
in the sensitivity analyses. Across all these analyses, there was a consistent effect of EN-
RAGE on the risk of CHD, even after adjusting for the established inflammatory markers. 
These results suggest an effect of EN-RAGE on the risk of CHD beyond well-established 
metabolic and inflammatory pathways. 
We observed a stronger association between EN-RAGE and future myocardial infarction and 
CHD mortality compared to revascularization. This suggests that EN-RAGE is more a 
determinant of acute coronary events with plaque instability rather than stable coronary 
artery disease. This observation that EN-RAGE, a member of the S100 protein family, is a 
strong determinant of acute coronary events is in line with previous studies that reported 
higher levels of mRNA and plasma levels of family S100 proteins ( S100A8/9) in patients with 
ST-elevated myocardial infarction compared to stable CAD cases32. Furthermore, a post-
mortem study in people died from sudden cardiac death has found high expression levels 
of S100A12 in coronary artery smooth muscle in the ruptured plaques, especially in 
diabetics33. However, the cause-specific hazard ratio for the CHD events were not 
significantly different using the method proposed by Lunn and McNeil. We might have been 
underpowered to observe a significant difference due to the limited number of cases in this 
cause-specific analyses. 
Studying the added value of EN-RAGE in 10-year CHD risk prediction, we found an 
improvement in risk prediction when we added EN-RAGE to the Framingham risk score. This 
suggests that EN-RAGE, as a non-invasive marker of future CHD, could be useful in predicting 
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the risk of CHD in the general population. Although we corrected the change in c-statistic 
for optimism, we believe that further studies are needed to establish the potential role of 
EN-RAGE in CHD risk prediction. 
EN-RAGE, a member of the S100 protein family of EF-hand calcium-binding proteins, is an 
endogenously produced inflammatory ligand of the Receptor of Advanced Glycation End 
products (RAGE)34 and Toll-like receptor 4 (TLR4)35. RAGE is a member of the 
immunoglobulin superfamily of cell surface molecules and is expressed in multiple tissues 
including endothelium cells, vascular smooth muscle cells and monocyte derived 
macrophages36. The binding of RAGE by EN-RAGE activates inflammatory cascades, 
including the pro-inflammatory NF-κB signaling pathway, a well-known pathway of the 
innate immune system involved in the pathogenesis of CHD34,37. Moreover, intracellular 
signaling pathways triggered by EN-RAGE may alter gene expression and up-regulate the 
synthesis of vascular cell adhesion molecule-1 and intracellular adhesion molecule-1 
synthesis34. Considering atherosclerosis as a chronic inflammatory disease, the engagement 
of RAGE by EN-RAGE may play an important role in the pathogenesis of atherosclerosis and 
subsequently CHD. In line with this evidence, the expression of EN-RAGE in vascular smooth 
muscle cells can modulate the remodeling of the aortic wall and stimulates cytokine 
production and increases oxidative stress38. Moreover, EN-RAGE accelerates 
atherosclerosis and vascular calcification in Apolipoprotein E-Null mice39. Recently EN-RAGE 
has been shown to accelerate the development of cardiac hypertrophy and diastolic 
dysfunction in mice with CKD40. The monocyte activation effect of EN-RAGE has also been 
observed to be TLR4 dependent35. It was demonstrated that EN-RAGE facilitates 
inflammatory monocyte activation by TLR4 and that this effect was modulated by RAGE. 
Toll-like receptors have been investigated extensively in the field of cardiovascular diseases 
as they are expressed in vascular and myocardial cells membranes41. The important role of 
EN-RAGE in the pathogenesis of atherosclerosis is further emphasized by a recent study 
where pharmacological inhibition of S100A12-mediated atherosclerosis improved 
atherosclerotic plaque features including smaller necrotic cores, diminished calcification 
and reduced number of inflammatory cells42.  
This study has certain strengths and limitations. The prospective population-based study 
design, the diversity of the available inflammatory biomarkers and the long-term follow-up 
of CHD can be marked as the main strengths of the current study. In addition, our findings 
are robust regarding the strict Bonferroni p-value we used as the threshold for significant 
associations in the first step. A number of limitations should also be acknowledged. First, 
although we adjusted our analysis for different potential confounders, we cannot exclude 
the effect of unknown or unmeasured confounders. However, since we adjusted for the 
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traditional and commonly used risk factors for CHD and inflammatory pathways, we believe 
that EN-RAGE as a novel inflammatory marker for CHD is interesting since it might reflect 
other pathways that lead to CHD. Second, we had to exclude inflammatory biomarkers with 
very low serum concentrations. Nonetheless, the selected biomarkers have more than 60% 
completeness of measurements indicating acceptable quality of quantification. Third, our 
population is 55 years and older. Therefore, generalization of the results to a younger age 
category should be with caution. Our study only indicates an association, we think that 
further studies are needed to establish the causal role of EN-RAGE in the pathogenesis of 
CHD. 
In conclusion, our study suggests that higher levels of serum EN-RAGE are associated with 
incidence of CHD beyond conventional cardiovascular risk factors and inflammatory 
markers. These results provide evidence for a role of EN-RAGE in the development of CHD 
and suggest this marker as a potential target for drug therapy and risk prediction.
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Supplementary material 
 
Table S1. List of previously investigated inflammatory markers with incident Coronary 
Heart Disease. 
Biomarker 
- C-reactive protein1 
- CD40 Ligand2,3 
- Complement factor 34  
- Interleukin 185 
- Monocyte chemotactic protein-16 

    - Regulated on activation, normal T cell expressed and secreted7 
- Resistin8 
- TNF receptor II9 
- Interleukin 810 
- Macrophage inhibitory factor11 
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Table S2. Differences in baseline characteristics between future CHD cases and CHD non-
cases.  

Characteristics 
CHD cases (n=99) CHD non-cases 

(n=740) 
P-value 

Age, y 74.0±7.9 72.6±7.4 0.09 
Men, n (%) 48(49) 307(42) 0.19 
Body mass index, kg/m2 27±4 27±4 0.06 
Systolic blood pressure, mmHg 148±20 144±22 0.06 
Diastolic blood pressure, mmHg 75±12 75±11 0.66 
Antihypertensive medication 
use, n (%) 

56 (57) 260 (35) <0.001 

Total cholesterol, mmol/L 5.9±1.2 5.8±0.9 0.48 
HDL-cholesterol, mmol/L 1.3±0.3 1.4±0.4 0.002 
Triglycerides, mmol/L 1.6±0.7 1.5±0.8 0.18 
Current smokers, n (%) 20 (20.2) 124 (16.8) 0.35 
Prevalent type 2 diabetes, n (%) 13 (13.1) 94 (12.7) 0.90 
eGFR, ml/min/1.73m2 74±14 74±15 0.63 
CD40ligand*, ng/mL 0.028 (0.020–0.038) 0.028(020–0.038) 0.87 
Complement 3, mg/mL 0.85±0.14 0.84±0.14 0.38 
C-reactive protein*, mg/L 1.64 (0.78–3.73) 1.42 (0.68–3.13) 0.36 
Interleukin 8*, pg/mL 10.40 (7.36–13.40) 9.15 (7.01–12.40) 0.06 
Interleukin 18*, pg/mL 206 (150–270) 188 (149–245) 0.12 
MCP1*, pg/mL 189 (151–236) 183 (151–225) 0.50 
Macrophage migration inhibitory 
factor*, ng/mL 

0.059 (0.032–0.091) 0.055 (0.037–0.082) 0.79 

RANTES*, ng/mL 0.46 (0.33–0.75) 0.51 (0.32–0.81) 0.51 
Resistin*, ng/mL 0.40 (0.27–0.64)  0.43 (0.31–0.59) 0.68 
TNFR-II*, ng/mL 3.64 (2.97–4.45) 3.52 (2.91–4.33) 0.24 
Plus-minus values are means ±SD. *Values are presented as median (inter-quartile range). CD40ligand, cluster of 
differentiation 40 ligand; eGFR, estimated glomerular filtration rate; HDL-cholesterol, high-density lipoprotein 
cholesterol; MCP1, Monocyte chemotactic protein; RANTES, regulated on activation, normal T cell expressed and 
secreted; TNFR-II, Tumor necrosis factor receptor 2. 
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Table S3. Biomarkers and their age and sex adjusted association results with 
incident Coronary Heart Disease. 

Marker1  Median (SD/IQR)1 N2 Beta (95% CI) P-
value 

nr. 
under 
LOD 

CD40, ng/mL  0.70 (0.58–0.83) 836 1.11 (0.89–1.39)  0.38 0 
CFH, μg/mL 2455.6 (838.9) 839 1.00 (1.00–1.00) 0.27 903 

EN-RAGE, ng/mL  10.80 (7.66–14.70) 837 1.37 (1.12–1.67) 0.002 0 
Eotaxin, pg/mL  161 (116–217) 838 1.11 (0.90–1.37) 0.34 3 
FASLR, ng/mL  4.69 (3.97–5.54) 832 1.06 (0.85–1.31) 0.62 0 
HCC4, ng/mL 4.90 (1.96) 838 1.17 (0.97–1.41) 0.11 0 
IL13, pg/mL  4.32 (4.09–4.52) 838 0.97 (0.79–1.19) 0.76 30 
IL16, pg/mL  5.94 (5.74–6.08) 837 1.03 (0.83–1.27) 0.79 0 
IL17, pg/mL 13.67 (5.20) 838 0.88 (0.72–1.08) 0.23 47 
IL1ra, pg/mL  68.5 (47.75–102.00) 838 1.19 (0.97–1.46) 0.10 20 
MDC, pg/mL  352 (294 -419) 836 1.09 (0.89–1.33) 0.42 0 
MIP1alpha, pg/mL 45 (38–56) 835 1.21 (0.98–1.49) 0.07 4 
MIP1beta, pg/mL  122 (95–153) 828 0.92 (0.73–1.17) 0.51 0 
PARC, ng/mL 3.38 (3.18–3.56) 834 0.97 (0.78–1.20) 0.75 0 
sRAGE, ng/mL  2.66 (1.94–3.63) 839 0.99 (0.81–1.21) 0.92 0 
TRAILR3, mg/mL  6.62 (5.16–8.41) 837 0.90 (0.73–1.10) 0.28 0 
1Markers that were not following a normal distribution were log transformed and presented as median and 
interquartile range. Measures are presented based on non-imputed values. 2Samples included in analysis, outliers 
excluded. 3CFH values are missing due to insufficient quantity of serum. CD40, cluster of differentiation 40; CFH, 
Complement Factor H; EN-RAGE, Extracellular Newly identified Receptor for Advanced Glycation End-products 
binding protein; FASLR, Fas Ligand Receptor; HCC4, Human CC chemokine-4; IL13, interleukin 13; IL17, interleukin 
16; IL17, interleukin 17; IL1ra, interleukin 1 receptor antagonist; LOD, limit of detection; MDC, Monocyte Derived 
Chemokine; MIP1alpha, Macrophage Inflammatory Protein 1 alpha; MIP1beta, Macrophage Inflammatory Protein 
1 beta; PARC, Pulmonary and Activation-Regulated Chemokine; sRAGE, soluble Receptor of Advanced Glycation 
End-products; TRAILR3, TNF-Related Apoptosis-Inducing Ligand Receptor. 
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Table S4. Effect estimates for all covariates included in model 3 per standard deviation.  
Covariate HR (95% CI) P-value 
Age 1.05 (1.01–1.08) 0.004 
Gender 0.66 (0.43–1.01) 0.05 
EN-RAGE* 1.41 (1.13–1.76) 0.002 
CD40* 1.06 (0.80–1.40) 0.68 
Complement 3 1.08 (0.86–1.37) 0.51 
C-reactive protein* 0.93 (0.73–1.19) 0.57 
Interleukin 18* 1.11 (0.90–1.37) 0.33 
Interleukin 8* 1.17 (0.94–1.46) 0.15 
Monocyte chemotactic protein 1* 0.93 (0.75–1.16) 0.52 
Macrophage migration inhibitory factor* 0.97 (0.77–1.22) 0.79 
RANTES* 0.84 (0.68–1.04) 0.11 
Resistin* 0.85 (0.68–1.06) 0.14 
Tumor necrosis factor receptor II* 1.08 (0.81–1.43) 0.61 
EN-RAGE, extracellular newly identified receptor for advanced glycation end products binding protein; RANTES, 
regulated on activation, normal T cell expressed and secreted. *Markers were natural log-transformed. 
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Background: C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade 
inflammation that is associated with multiple complex diseases. The genetic determinants 
of chronic inflammation remain largely unknown, and the causal role of CRP in several 
clinical outcomes is debated. 
 
Methods: We performed genome-wide association analyses of circulating CRP levels in 
204,402 European individuals. Additionally, we performed in silico functional analyses and 
Mendelian randomization analyses with several clinical outcomes. 
 
Results: We identify 42 novel distinct CRP-associated loci (P-value<5×10-8). The lead variants 
at the distinct loci explained up to 7.0% of the variance in circulating CRP levels. We 
identified 66 gene sets that were organized in two substantially correlated clusters, one 
mainly comprised of immune pathways, and the other characterized by metabolic pathways 
in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP 
on schizophrenia and a risk increasing effect on bipolar disorder. 
 
Conclusion: Our findings provide further insights in the biology of inflammation that may 
lead to novel interventions to treat inflammation and its clinical consequences.  
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Introduction 
 
Inflammation plays a key role in the development of complex diseases such as 
cardiovascular disease1, type 2 diabetes2, Alzheimer’s disease3, and schizophrenia4. C-
reactive protein (CRP) is a sensitive marker of chronic low-grade inflammation5, and 
elevated serum levels of CRP have been associated with a wide range of diseases6,7,8. 
Unraveling the genetics of inflammation may provide further insights into the underlying 
biology of inflammation, and may identify novel therapeutic targets to attenuate 
inflammation.  
The genetic determinants of CRP have only been partly characterized. In 2011, our group 
published a HapMap-based meta-analysis of genome-wide association studies (GWAS) 
including a discovery panel of up to 65,000 individuals and found 18 loci that were 
associated with CRP levels9. Increasing study sample size in GWAS and denser mapping of 
the genome with further advanced imputation panels may help to identify further genes 
associated with the phenotypes of interest10,11. Furthermore, by using genetic instrumental 
variables (i.e. a genetic score), Mendelian randomization (MR) allows investigation of the 
potential causal effect of an exposure on clinical outcomes, and may help to understand the 
causal pathways that link the exposure with the outcome12. The causal role of CRP in the 
development of diseases is still controversial13, and the causal pathways that link 
inflammation to complex disorders are only partly understood. 
We applied two large-scale GWAS on circulatory levels of CRP using HapMap and 
1000Genomes (1KG) imputed data to identify genetic determinants of chronic 
inflammation. Because body mass index (BMI) is a major determinant of CRP levels, we 
additionally conducted GWAS adjusted for BMI to identify associated loci independent of 
BMI. To identify any sex differences in genetic determinants of chronic inflammation, we 
further conducted GWAS in men and women separately. We applied in silico functional 
analyses on the identified loci to obtain better insights into the biological processes 
potentially regulating chronic inflammation. Finally, MR analyses were conducted to 
provide an improved understanding of the causal relation between CRP and several related 
clinical outcomes. 
 
Methods 
 
GWAS for circulating CRP levels 
We conducted a meta-analysis of GWAS including individuals of European ancestry within 
the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium 
Inflammation Working Group of the (CIWG)14. The CIWG invited cohorts for participation in 
the HapMap GWAS meta-analysis of CRP levels in 2012. In 2014 and in the light of our 
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assessment which showed complementary value of HapMap and 1KG imputed GWAS10, 
studies were further invited to participate in the 1KG GWAS meta-analysis. The 1KG GWAS 
may help to identify loci that were not covered in the HapMap GWAS and fine map loci 
found in the HapMap GWAS. Cohorts were allowed to participate in either the HapMap or 
1KG GWAS, or both. Here we present both a HapMap (204,402 individuals from 78 studies) 
and 1KG (148,164 individuals from 49 studies) imputed genotypes GWAS meta-analysis. All 
participating cohorts implemented a pre-specified study plan comprising study design, data 
quality check, data analysis, and data sharing. Serum CRP was measured in mg/L using 
standard laboratory techniques (Supplemental Methods), and values were natural log-
transformed. Individuals with auto-immune diseases, individuals taking immune-
modulating agents (if this information was available), and individuals with CRP levels 4SD or 
more away from the mean were excluded from all analyses. The characteristics of the 
participants are presented in Table S1. Individuals and genetic variants were filtered based 
on study-specific quality control criteria (Table S2). At each individual study site, genetic 
variants were tested for association with CRP levels using an additive linear regression 
model adjusted for age, sex, and population substructure, and accounting for relatedness, 
if relevant. Before meta-analysis, variants were filtered based on imputation quality at R2 
index of >0.4. To avoid type-I error inflation, study-specific GWAS were corrected for 
genomic inflation. For the HapMap study, fixed effect meta-analyses were conducted for 
each genetic variant, using the inverse variance-weighted method implemented in 
GWAMA15. For the 1KG imputed GWAS, METAL16 was used to perform a fixed effect meta-
analysis. We removed variants that were only available in <50% of the samples. The 
HapMap meta-analysis included 2,254,727 variants, and the 1KG GWAS included 
10,019,203 variants. Associations with P-value<5×10-8 were considered genome-wide 
significant. We used a stringent distance criterion, 500kb minimum between two significant 
variants, to identify distinct loci. In each locus, the variant with the smallest p-value was 
called the “lead variant”. Additionally, sex-stratified analyses were performed among 
HapMap imputed studies, and we tested for heterogeneity between sex-specific effect 
estimates as described previously17. The false-discovery rate of Benjamini-Hochberg was 
used to assess significance of the P-value for sex difference (<0.05). BMI adjusted analyses 
were conducted in the 1KG meta-analysis to determine the role of BMI in mediating the 
genetic associations with CRP, and to increase power to detect associations not mediated 
by BMI.  
 
LD Score regression 
Because population stratification is a major concern in GWAS and may lead to false-positive 
associations, we applied Linkage Disequilibrium Score regression (LDSC) to distinguish 
whether the inflation of test statistics observed in the CRP GWAS is due to the polygenic 
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architecture of CRP or reflects confounding bias due to cryptic relatedness or population 
stratification. The LD Score measures collective genetic variation acquired from all genetic 
variants in LD with the index tagging (causal) variant18. A higher LD score of an index variant 
implicates more nearby genetic variants in high LD with the index variant, which makes it 
more likely that the index variant tags causal variant(s). More genetic variants in LD with 
the index genetic variant (i.e. a higher LD score due to polygenicity) may yield higher (i.e. 
inflated) test statistics. In contrast, higher test statistics caused by cryptic population 
stratification will not be related to LD score. LD Score regression analysis performs 
regression of the summary statistics from the GWAS meta-analysis (χ2 statistics from the 
GWAS) on the LD scores across the genome. An intercept of the LD Score regression that 
equals one suggests no confounding bias, whereas an inflated intercept (larger than one) 
suggests contribution of confounding due to relatedness to the test statistics. We used the 
LDHub web interface to perform LD Score regression19. Variants were filtered to the subset 
of HapMap 3 variants, and variants with duplicated rs numbers, ambiguous variants, minor 
allele frequency (MAF)<0.01, and reported sample size <66.7% of total sample size were 
excluded. The default European LD Score file based on the European 1KG reference panel 
was used. 
Furthermore, we applied cross-trait LD score regression to estimate genetic correlation of 
chronic inflammation (using the HapMap GWAS meta-analysis) with other phenotypes 
using published GWAS summary statistics20. In brief, the cross-product of two GWAS test 
statistics is calculated at each genetic variant, and this cross-product is regressed on the LD 
Score. The slope of the regression is used to estimate the genetic covariance between two 
phenotypes.  
 
Identification of additional distinct variants in associated loci 
To identify additional distinct variants in the associated loci, we performed joint 
approximate conditional analysis using the 1KG meta-analysis summary statistics and the 
linkage disequilibrium (LD) matrix derived from the first cohort of the Rotterdam study (RS-
I) (n=5,974). We used the Genome-wide Complex Trait Analysis (GCTA) tool, which performs 
a genome-wide step-wise procedure to identify variants according to their distinct 
association with CRP (i.e. conditional P value)21,22. Only variants with an imputation quality 
of R2>0.8 in the reference set (RS-I) were used. This approximate conditional analysis may 
reveal different lead signals in a locus where multiple associated variants are in the final 
joint association model. The distinct variants identified in the CRP gene were tested jointly 
for an association with CRP using individual level data from the second and third cohort of 
the Rotterdam Study (RS-II and RS-III, totaling 5,024 subjects), and the Women’s Genome 
Health Study (WGHS) of 16,299 individuals. 
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Proportion of CRP variance explained 
The variance explained in serum CRP levels was estimated using the formula (2*MAF(1-
MAF)beta2)/var(CRP), where beta is the estimated effect of the individual variants on CRP23 
and var(CRP) is the variance in natural log-transformed CRP estimated in the RS-I cohort. 
We calculated the variance explained for four combinations of associated variants: 1. the 
lead variant at just the CRP locus; 2. the distinct variants at the CRP locus derived from the 
1KG joint conditional analysis; 3. all lead variants in the distinct loci; 4. all lead variants in 
the distinct loci and, when applicable, the distinct variants at associated loci derived from 
the approximate joint conditional analysis. 
 
Pathway analysis and gene expression 
We used Data-Driven Expression-Prioritized Integration for Complex Traits (DEPICT v.1 
rel173 beta)24 to systematically prioritize the most likely causal genes, highlight the 
pathways that are enriched by the likely causal genes and identify tissues and cell types in 
which genes from associated loci are highly expressed. DEPICT requires summary statistics 
from the GWAS meta-analysis. First, genome-wide associated variants from both GWAS 
meta-analyses were filtered by MAF>0.01, and variants with low correlation with other 
variants were selected by PLINK (version 1.90) using a clumping distance of 500 kb apart 
and/or index of LD r2 threshold <0.1. The settings for the analysis involved the usage of 1KG 
pilot phase data25 (phase 1 integrated release, version 3, CEU, GBR, TSI unrelated 
individuals; 2010.11.23) with r2>0.5 LD threshold for locus definition, 10,000 permutations 
for bias correction, and 500 repetitions for FDR calculation. To summarize and visualize the 
results, pairwise Pearson correlation coefficients were calculated between all gene-specific 
Z-scores for every pair of reconstituted DEPICT gene sets. Affinity Propagation Clustering 
(apcluster command; APCluster R package26) was used to identify clusters and 
representative examples of the clusters, and Cytoscape v3.2.1 was used for visualization of 
the results. The results of the pathway and gene prioritization results were summarized as 
a heatmap (R. v2.3.3, pheatmap v1.0.8 package27). The gene-specific Z-score describes the 
likelihood that a given gene is part of the corresponding GO term, KEGG pathway, 
REACTOME pathway, Mouse Phenotype, or protein-protein interaction network.  
Also, we performed Multi-marker Analysis of GenoMic Annotation (MAGMA)28. MAGMA 
performs gene and gene-set analysis and requires the association results of all variants, 
therefore we chose the larger HapMap GWAS for MAGMA. We used the Functional 
Mapping and Annotation (FUMA)29 tool to perform MAGMA, and applied standard settings 
for running MAGMA. 
To prioritize the most likely trait-relevant gene for each GWAS locus, we run colocalization 
analysis using the “coloc” R package v3.130 separately for the HapMap and 1KG GWAS. We 
used publicly available genome-wide eQTL data from 5,311 whole blood samples31, and 
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from the Genome Tissue Expression (GTEx) V6p portal incorporating eQTL data from 44 
post-mortem tissues32. “Coloc” uses approximate Bayes factors to estimate the posterior 
probability that GWAS and eQTL effects share a single causal variant. All significant cis-
eGenes or cis-eProbes (q<0.05 in GTEx; lowest cis-eQTL FDR<0.05 in Westra et al.31) were 
extracted ±1Mb from the lead SNP of each locus. The HapMap SNP positions were 
converted to hg19 with the liftOver command from the rtracklayer v1.38.3 package. We 
used the SNPs present in both the GWAS and eQTL datasets. For the HapMap GWAS, the 
1KG GWAS and the GTEx eQTL datasets, we performed the test using association beta, 
standard error of beta, and minor allele frequency (MAF). For the data from Westra et al.31, 
we used association P-value, MAF, and sample size, and included only the subset of cis-
eQTLs which are publicly available (up to significance FDR<0.5). We used default priors 
supplied by the coloc package (P1=1e-4, P2=1e-4, P12=1e-5; prior probabilities for 
association in GWAS, eQTL, and both datasets). Full MAF data were not available for the 
eQTL datasets, therefore we used the GIANT 1KG p1v3 EUR reference panel instead. We 
visualized the results as a heatmap using the pheatmap v1.0.8 R package27. 
 
Mendelian randomization analyses 
To assess the effect of CRP on complex disorders, we performed a two-sample Mendelian 
randomization (MR) study on nine clinical outcomes (Alzheimer’s disease (AD), bipolar 
disorder (BD), coronary artery disease (CAD), Crohn’s disease (CD), inflammatory bowel 
disease (IBD), rheumatoid arthritis (RA), schizophrenia, and diastolic (DBP) and systolic 
blood pressure (SBP)) to which CRP showed a potentially causal association at a P<0.1 in a 
previous MR study13. We used the effect estimates of the 48 lead SNPs found to be 
associated with CRP in the HapMap GWAS, and the effect estimates of the four SNPs that 
were additionally found to be associated with CRP in the 1KG GWAS in a multiple instrument 
approach for the MR analyses (n=52 SNPs). Additionally, we separately studied the effect of 
rs2794520 at the CRP locus to minimize the probability of horizontal pleiotropy that may be 
introduced in a multiple instrument approach. We tested the statistical significance of the 
association between the instrument and CRP using the formula:  

 
R2 is the variance explained of CRP by the genetic instrument (0.014 for the rs2794520 SNP 
and 0.065 for the 52-SNP score), n is the number of individuals included in the CRP GWAS, 
and k the number of variants included in the genetic score. The F statistic for the 52-SNP 
score was 273, and for the rs2794520 SNP 2,902, indicating that both instruments were 
strong. 
For the clinical outcomes, we used summary statistics from the most recent meta-analysis 
of GWA studies. For diastolic and systolic blood pressure, we used data from the UK 
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Biobank. The details of the outcome studies are summarized in Table S12. We implemented 
four different methods of MR analyses: Inverse-variance weighted method (IVW), MR-
Egger, Weighted median (WM), and Penalized weighted median (PWM). We used the 
“TwoSampleMR” package in R for the MR analyses33. Further, we applied the Bonferroni 
method to correct for multiple testing (0.05/9 phenotypes = 5.6×10-3). When the Q-statistic 
of the IVW analyses provided evidence for heterogeneity, the weighted median estimates 
were used for significance. The MR methods are described briefly below. 
Inverse-variance weighted (IVW): The causal estimate is obtained by regressing the SNP 
associations with the outcome on the SNP associations with the risk factor, with the 
intercept set to zero and weights being the inverse-variances of the SNP associations with 
the outcome. With a single genetic variant, the estimate is the ratio of coefficients 
betaY/betaX and the standard error is the first term of the delta method approximation 
betaYse/betaX. When all CRP-SNPs are valid IVs, the IVW estimates converge to the true 
causal effect. When one or more invalids IVs are present, (ie. one SNP has effect on outcome 
through a different pathway than CRP), the IVW estimate deviates from the true causal 
effect.  
MR-Egger: We used MR-Egger to account for potential unbalanced pleiotropy in the 
multiple variant instrument34. When unbalanced pleiotropy is present, an alternative effect 
(positive or negative) is present between the SNP and the outcome that may bias the 
estimate of the causal association. The MR-Egger method is similar to the IVW analysis, but 
does not force the intercept to pass through the origin. The slope of the MR-Egger 
regression provides the estimate of the causal association between CRP and the clinical 
outcome. An MR-Egger intercept that is significantly different from zero suggests directional 
pleiotropic effects that may bias uncorrected estimates of the causal effect. MR-Egger 
regression depends on the InSIDE (Instrument Strength Independent of Direct Effect) 
assumption, that states that the strengths of the effect of the SNP on the outcome is 
uncorrelated with the direct pleiotropic effect of the SNP on the outcome.  
Weighted median (WM) and penalized Weighted Median (PWM): We applied the median 
based method to provide robust estimates of causal association even in the presence of 
horizontal pleiotropy when up to 50% of the information contributed by the genetic variants 
is invalid35. In PWM analysis the effect of each variants is weighted by a factor that 
corresponds to the Q statistics (heterogeneity test) of the SNP; this means that most 
variants will not be affected by this correction, but the causal effect of the outlying variants, 
which are most likely to be invalid IVs, will be down-weighted.  
We displayed the individual SNP causal effect estimates and corresponding 95% confidence 
intervals in a forest plot. To assess whether one of the variants used in the genetic score 
had disproportionate effects, we performed “leave-one-out” analyses where one SNP at a 
time is removed from the score. We depicted the relationship between the SNP effect on 
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CRP and the SNP effect on the clinical outcomes in a scatter plot, and plotted the individual 
SNP effect against the inverse of their standard error in a funnel plot. When unbalanced 
pleiotropy is absent, the causal effect estimates of the individual should center around the 
meta-analysis estimate in the funnel plot. 
We used the proportion of variance in CRP explained by the genetic instruments (0.014 for 
the rs2794520 SNP and 0.065 for the 52-SNP score) to perform power calculations for each 
outcome using the online tool mRnd36. We calculated the power to detect a relative 5%, 
10%, 15%, and 20% difference in outcome risk. For example, a 10% difference refers to an 
OR of at least 0.90 or 1.10 in outcome risk (Table S13). 
 
Results 
 
HapMap GWAS meta-analysis for CRP levels 
The HapMap meta-analysis identified 3,977 genome-wide significant variants at P-
value<5×10-8 (QQ-plot Supplementary Fig. 1; Manhattan plot Supplementary Fig. 2), which 
mapped to 48 distinct loci (Table 1). Of the previously reported 18 variants for CRP, 16 
remained associated. Compared to the previous GWAS, the rs6901250 variant at the 
GPRC6A locus (P-value=0.09) and the rs4705952 variants at the IRF1 locus (P-value=2.7×10-

3) were not significant. The beta estimates for natural log-transformed CRP for each of the 
associated loci ranged from 0.020 to 0.229. The strongest association was observed for 
rs2794520 at the CRP gene (β=0.182 in the natural log-transformed CRP (mg/L) per copy 
increment in the coded allele, P-value=4.17×10-523), followed by rs4420638 at the APOC1/E 
gene (β=0.229, P-value=1.23×10-305). Similarly to previous GWAS meta-analysis, the lead 
variant within the interleukin-6 receptor gene (IL6R) was rs4129267 (β=0.088, P-
value=1.2×10-129). Related to the interleukin-6 pathway, we identified rs1880241 upstream 
of the IL6 gene (β= 0.028, P-value=8.4×10-14). In addition to the previously described 
interleukin-1 signaling, the IL1RN-IL1F10 locus (interleukin-1 receptor antagonist and 
interleukin-1 family member 10), we found rs9284725 within the interleukin-1 receptor 1 
gene (IL1R1, β=0.02, P-value=7.3×10-11, Table 1). The sex-specific meta-analyses did not 
identify additional loci for CRP compared to the overall meta-analysis including both sexes, 
but at four genetic variants we found evidence for heterogeneity in effect estimates 
between sexes (Supplementary table 3), though the directions of associations were 
consistent. 
In the 1KG meta-analysis, 8,002 variants were associated with CRP at P-value<5×10-8 (QQ-
plot Supplementary Fig. 3; Manhattan plot Supplementary Fig. 4). This resulted in 40 distinct 
loci, of which 36 overlapped with the HapMap meta-analysis (Table 1). The lead variant at 
the CRP locus in the 1KG GWAS was rs4287174 (β=-0.185, P-value=1.95×-398), which is in 
high LD with rs2794520 (r2=0.98), the lead variant at the CRP locus in the HapMap GWAS. 
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Among eight of the overlapping loci, the lead variant was at the same position in both GWAS 
(rs1260326, rs1490384, rs10832027, rs1582763, rs7310409, rs2239222, rs340005, and 
rs1800961). Compared with HapMap, the four additional variants identified in 1KG were 
rs75460349 (near ZDHHC18), rs1514895 (near EIF5A2), rs112635299 (near SERPINA1/2), 
and rs1189402 (near ONECUT1). The variants rs1514895 and rs1189402 were available in 
the HapMap GWAS, but were not associated at the genome-wide threshold (respectively P-
value=1.2×10-7 and P-value=8.1×10-3). The two variants rs75460349 and rs112635299 were 
not available in the HapMap GWAS, nor were variants in high LD (r2<0.8). The rs75460349 
is a low frequency variant with a coded allele frequency of 0.97 (β=0.086, P-value=4.5×10-

10). Also rs112635299 near the SERPINA1/2 gene is a low frequency variant with a MAF of 
0.02 (β=0.107, P-value=2.1×10-10). Adjustment for BMI in the 1KG GWAS (n=147,827) 
revealed six additional loci that were not associated with CRP in the HapMap and 1KG 
primary analyses (Table 1; Supplementary table 4, QQ-plot Supplementary Fig. 5; 
Manhattan plot Supplementary Fig. 6). The associations at three lead variants were much 
reduced after adjustment for BMI (rs1558902 (FTO), P-valueadjusted=0.40; rs12995480 
(TMEM18), P-valueadjusted=0.02; rs64343 (ABO), P-valueadjusted =1.0×10-7). Both the FTO and 
TMEM18 gene are well-known obesity genes. Except for the FTO, TMEM18, and ABO loci, 
all distinct loci identified in the primary 1KG analysis were also associated with CRP in the 
BMI adjusted 1KG analysis. No genome-wide significant association was observed on the X-
chromosome in the 1KG GWAS including 102,086 individuals.  
 
LD score regression 
The HapMap GWAS LD Score regression intercept was 1.03 (standard error: 0.013), and the 
1KG intercept was 1.02 (standard error 0.011). This suggests that a small proportion of the 
inflation is attributable to confounding bias (~12% for the HapMap GWAS and ~13% for the 
1KG GWAS). Hence, the vast majority of inflation is due to the polygenic architecture of 
circulating CRP levels. As depicted in Figure 1, CRP showed strong positive genetic 
correlations with anthropometric traits (e.g. BMI: Rg=0.43, P-value=5.4×10-15), glycemic 
phenotypes (e.g. type 2 diabetes Rg=0.33, P-value=3.1×10-6), lipid phenotypes (e.g. 
triglycerides Rg=0.29, P-value=7.9×10-5), and coronary artery disease (Rg=0.23, P-
value=2.4×10-5) (Supplementary table 5). By comparison, CRP showed inverse genetic 
correlations with educational attainment (e.g. college completion Rg=-0.27, P-value=9.2×10-

7), lung function (e.g. forced vital capacity Rg=-0.24, P-value=4.6×10-12), and HDL-cholesterol 
(Rg=-0.30, P-value=4.8×10-9).
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Additional signals at distinct loci 
Approximate conditional analyses in the 1KG GWAS revealed additional signals at nine loci 
(Supplementary table 6). Five loci showed one secondary signal (IL6R, NLRP3, HNF1A, 
CD300LF, and APOE/APOC1), the PPP1R3B locus had two additional signals, the LEPR locus 
had three additional signals, and the SALL1 locus had four additional signals, whereas the 
CRP locus showed a total of 13 distinct associated variants. Interestingly, the rs149520992 
rare variant (MAF=0.01) mapping to the CRP locus showed an association at P-
valueconditional=3.7×10-15 with β=-0.272 for the T-allele. The GCTA effect estimates for the ten 
distinct variants in the vicinity of the CRP gene identified in the 1KG conditional analysis are 
in high correlation with the effect estimates of these variants obtained from the RS-I and 
WGHS individual level data (rRS=0.97, and rWGHS=0.84), confirming the reliability of the GCTA 
estimates. 
 
Variance explained of CRP 
The lead variant at the CRP locus in both the HapMap (rs2794520) and 1KG (rs4287174) 
GWAS explained 1.4% of the variance in natural log-transformed CRP levels. The distinct 
variants at the CRP locus derived from the joint conditional analysis in the 1KG GWAS 
explained 4.3% of the variance. The lead variants at all distinct loci together explained 6.2% 
of the CRP variance in the HapMap GWAS, and 6.5% in the 1KG GWAS. When we added the 
distinct variants at associated loci derived from the conditional analysis, the variance 
explained by all associated loci was 11.0% in the 1KG GWAS. 
 
Functional annotation 
We applied DEPICT and MAGMA analyses for functional annotation and biological 
interpretation of the findings. The DEPICT analysis included 9,497 genome-wide significant 
variants, covering 283 genes, and prioritized 55 candidate genes across 29 regions 
(FDR<0.05, Table S8). The prioritized genes included IL6R mapping to the 1q21.3 locus 
(represented by rs4129267) and APCS to the 1q32.2 locus. Investigating 10,968 
reconstituted gene sets for enrichment, DEPICT highlighted 583 (5.3%) gene sets to be 
significantly enriched among CRP-associated loci at FDR<0.05 (Table S9). Using further 
clustering, we identified 66 groups of gene sets that substantially correlated and clustered 
in two sets, one mainly comprised of immune pathways, and the other enriched for 
metabolic pathways (Figure 2). In Figure 3, we present the prioritized genes and the most 
significant gene sets. We found synovial fluid, liver tissue, and monocytes to be enriched for 
the expression of the prioritized genes (FDR<0.05). The MAGMA analysis was applied on the 
HapMap GWAS, identifying five significantly enriched gene sets (Bonferroni-corrected 
P<0.05, Table S10). Results included consequences of gene EGF induction, positive 
regulation of gene expression, and IL-6 signaling pathway, in line with the most strongly  
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Figure 2. Results of the DEPICT functional annotation analysis. 

 

 
 
Each node represents exemplar gene set from Affinity Propagation clustering and links represent corresponding 
Pearson correlation coefficients between individual enriched gene sets (only the links with r>0.3 are shown). As an 
example, outlined are the individual gene sets inside two clusters (“Inflammatory response” and “negative 
regulation of peptidase activity”). 
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prioritized gene from DEPICT gene prioritization. MAGMA analysis prioritized liver as a sole 
enriched tissue (P-value=0.048). 
To prioritize the most likely trait-relevant gene for each GWAS locus, we interrogated the 
GWAS data with cis-eQTL data identified from 44 post-mortem tissues and a large whole  
blood eQTL meta-analysis using colocalization analysis (Table S11). Figure S7 presents the 
GWAS loci that colocalize with cis-eQTLs with the corresponding tissue, the colocalizing 
gene, and the posterior probability of one shared underlying variant driving both 
associations. Out of the 58 lead gSNPs, 25 SNPs (43%) showed evidence of colocalization 
with one or more local eQTL effects (posterior probability>0.9). For example, the rs2293476 
locus colocalizes with several cis-eQTL effects for PABC4, and pseudogenes OXCT2P1, 
RP11−69E11.4, and RP11−69E11.8. The rs10925027 locus shows colocalization with cis-
eQTL effect for NLRP3, exclusively in the highly powered blood meta-analysis. Out of 25 loci, 
for nine loci there was only one colocalizing gene. Altogether, gSNP-associated cis-eQTL 
effects were present in up to 14 different tissues, with whole blood, esophagus mucosa, 
skin, and tibial nerve being the most frequent. 

 
Mendelian randomization analyses 
We observed a protective effect of genetically determined variance in CRP with 
schizophrenia with an IVW odds ratio (OR) of the 52-SNP score of 0.89 (95%CI: 0.81-0.97, P-
value=6.6×10-3) (Tables S14-S15, Figure S8-S11). The MR-Egger intercept was compatible 
with no unbalanced pleiotropy (P-value=0.48). The estimate of the rs2794520 variant was 
comparable to the 52-SNP score estimate (OR 0.89, 95% CI 0.84-0.94, P-value=0.046). The 
WM and PWM estimates were comparable to the IVW estimate (ORWM 0.89, P-
valueWM=5.1×10-3; ORPWM=0.89, P-valuePWM=4.4×10-3). The “leave-one-out” analysis 
provided evidence that no single variant was driving the IVW point estimate (Figure S10). 
The causal OR between the rs2794520 variant and BD was 1.33 (95% CI 1.03-1.73, P-
value=0.032). For the 52-SNP score, the IVW OR was 1.16 (95% CI 1.00-1.35, P-value=0.054). 
The MR-Egger intercept was compatible with unbalanced pleiotropy (P-value=0.049). The 
MR-Egger estimate OR of the 52-SNP score was comparable to the rs2794520 estimate 
(OR=1.36, 95%CI 1.1-1.69, P-value=6.7×10-3), as were the WM and PWM estimates 
(ORWM=1.33, P-valueWM=3.4×10-3; ORPWM=1.32, P-valuePWM=4.3×10-3). 
We observed evidence against a causal association between either CRP rs2794520 
(OR=1.01, 95%CI 0.91-1.12, P-value=0.88), or the 52-SNP instrument (OR=0.96, 95%CI 0.84-
1.09, P-value=0.51) and CAD. An Egger intercept of 0.014 suggested presence of unbalanced 
pleiotropy (P-value=5.8×10-3), with an MR-Egger causal estimate of OR 0.79 (95%CI 0.67-
0.94, P-value=0.012). However, the WM and PWM showed no association between CRP and 
CAD. For AD, there was evidence against an association with rs2794520 (P-value=0.592), 
though the IVW OR showed a protective effect (OR=0.51, 95%CI 0.30-0.88, P-value=0.015).  
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The Egger intercept of 0.046 suggested unbalanced pleiotropy (P-value=0.042), and the MR-
Egger OR was 0.27 (95%CI 0.12-0.60). However, the association was null for the WM and 
PWM analyses (ORWM=1.04, P-valueWM=0.61; ORPWM=1.05, P-valuePWM=0.53). We observed 
evidence against an effect for CD, DBP, IBD, RA, and SBP for the rs2794520 variant and the 
IVW, MR-Egger, WM, and PWM analyses. 
 
Discussion 
 
Using genomic data from >200,000 individuals, we have identified 42 novel distinct signals 
for circulating CRP levels, and confirmed 16 previously identified CRP loci totaling 58 genetic 
loci associated to CRP levels. BMI-adjusted GWAS suggested that the vast majority of 
genetic risk variants affect CRP levels independent of its main determinant (BMI). The 
genome-wide in silico functional annotation analysis highlights 55 genes which are likely to 
explain the association of 29 signals to CRP levels. The data identified gene sets involved in 
the biology of immune system and liver as main regulators of serum CRP levels. Mendelian 
randomization analyses supported causal associations of genetically increased CRP with a 
protective effect on schizophrenia, and increased risk of bipolar disorder.  
Obesity is one of the main determinants of chronic low-grade inflammation in the general 
population37,38. Adjustment for BMI in the CRP GWAS abolished the association at only three 
lead variants, suggesting that the genetic regulation of chronic low-grade inflammation is 
largely independent from BMI. Notably, BMI adjustment resulted in the identification of six 
variants that were not associated with CRP in the BMI-unadjusted GWAS. This supports the 
notion that adjustment for covariates that explain phenotypic variance may improve the 
statistical power in linear model analyses of quantitative traits39. Although adjustment for 
heritable correlated traits in GWAS may bias effect estimates (collider bias)40, there is 
consistent evidence in the literature that BMI has a causal direct effect on CRP levels41, and 
therefore, collider bias in CRP GWAS adjusted for BMI is less likely.  
The sex-stratified analyses revealed significant heterogeneity in effect estimates between 
men and women at only four lead variants, which represent less than 10% of all CRP loci. 
Even among these four loci the effect directions were similar, thus the heterogeneity was 
limited to effect sizes. The data suggest that the difference between men and women in 
CRP levels is less likely to be explained by genetic factors. 
The top variant at the CRP locus in both the HapMap and 1KG GWAS explained 1.4% of the 
variance in circulating CRP levels. The approximate conditional analysis resulted in 13 
variants jointly associated within the CRP locus in the 1KG GWAS. With respect to locus 
definition, we used a conservative distance criterion compared to other GWA studies that 
often use ±500kb surrounding the GWAS peak42. Here, we used the criterion that the 
minimum distance between the boundaries of loci is 500kb. In order to identify further 
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variants associated with CRP levels, we performed approximate conditional analyses 
resulting in multiple putative additional variants, also inside and near genes that were not 
identified in the primary GWAS. As an example, the CRP locus spanned >2MB according to 
our criterion. Approximate conditional analysis revealed that two variants, namely 
rs3027012 near DARC and rs56288844 near FCER1A, both downstream of the CRP gene, 
were associated with CRP levels. Furthermore, upstream of CRP, we identified a variant near 
FCGR2A (Immunoglobulin G Fc Receptor II). These results show that for a given lead variant, 
potentially multiple causal loci, here DARC, FCER1A, and FCGRA2, alongside CRP contribute 
to chronic low-grade inflammation and variation in circulating CRP levels. 
DEPICT analysis provided further evidence that the genes annotated to the associated CRP 
variants mainly cluster in the immune and liver biological systems. Notably, the gene set 
“inflammatory response”, which captures both immune response and liver metabolism, 
was the main connector network between the two networks. This is in line with the 
observation that CRP is mainly produced by liver cells in response to inflammatory cytokines 
during acute and chronic inflammation43. Interestingly, the analysis highlighted iron 
homeostasis as an enriched gene set. In agreement, the conditional analysis highlighted a 
distinct genetic association at the hemochromatosis gene HFE, a transmembrane protein of 
the major histocompatibility complex (MHC) class I family. Previous studies show that iron 
metabolism plays a pivotal role in inflammation44,45. However, genetic pleiotropy may 
highlight co-regulated networks in pathway analysis that are not causal to inflammation per 
se. It is also important to note that the results of DEPICT analyses apply to reconstituted 
gene sets which may sometimes have slightly different overlaying biological theme than the 
original gene set annotation. 
The MR analyses validate previous evidence that genetically-elevated CRP is protective for 
the risk of schizophrenia13,46, although observational data suggest a positive association 
between CRP and risk of schizophrenia47. For bipolar disorder we observed a positive causal 
effect, which is in line with previous MR and observational studies13,48. Although the causal 
underlying mechanisms remain to be elucidated, a hypothesis for the schizophrenia 
observation might be the immune response to infections early in life. Levels of acute-phase 
response proteins in dry blood spots collected at birth are lower for patients with non-
affective psychosis, which includes schizophrenia, compared to controls, suggesting a 
weaker immune response at birth49. Also, neonates that have been exposed to a maternal 
infection and have low levels of acute-phase response proteins, have a higher risk of 
schizophrenia50. Altogether, the evidence suggests that a deficient immune response may 
contribute to chronic infection in children and the development of schizophrenia. For AD 
and CHD, the Egger intercept showed evidence of unbalanced pleiotropy and the Egger 
estimate showed a protective effect of CRP on the risk of AD and CHD. However, for both 
outcomes, the effects of the WM and PWM analyses, as well as analyses using the single 
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rs2794520 variant (which is least likely to be affected by pleiotropy) were null. The MR-
Egger estimate relies on the InSIDE assumption which states that the strength of the 
association between the genetic variants and CRP is independent from the strength of the 
direct pleiotropic effects of the genetic variants on the outcome. This assumption may be 
violated when the genetic variants are associated with a confounder of the CRP-outcome 
association. Such a scenario may occur when the genetic variants are associated with an 
exposure that is causally upstream of the exposure under study. In the context of the 
association of CRP with AD and CHD, this could be lipids or glycemic phenotypes. Several 
genetic variants used in the CRPGWAS instrument are associated with metabolic phenotypes 
that may affect CRP levels. In agreement, the WM and PWM, in which the InSIDE 
assumption is relaxed, and the single variant analysis showed no association. Furthermore, 
the observation that CRP is not causally related to CAD in the MR analyses is in comparison 
to previous published studies51. Power calculation showed that we had 100% power to 
detect a 10% difference in CAD risk, thus the probability of a false negative finding is small. 
Also, CRP is associated with future CAD in observational studies, and randomized trials have 
shown a beneficial effect of lowering inflammation using statins52 and canakinumab53 on 
CAD risk, but this effect is unlikely to be attributable to CRP. 
The strengths of our study are the use of the largest sample size for CRP to date and the use 
of both HapMap and 1KG imputed data. Furthermore, we conducted sex-specific and BMI-
adjusted analyses to study the effect of sex and body mass on the associations between 
genetic variants and CRP. To maximize power and to efficiently use the data, we meta-
analyzed all available samples in a discovery setting without replication. The consistent 
association of the variants in >50 studies at a strict Bonferroni corrected threshold provide 
confidence that our findings represent true associations. We used both HapMap and 1KG 
imputed data to identify novel genetic variants for circulating CRP levels. At the start of the 
project, more studies had HapMap imputed data available. Hence, the sample size and thus 
power in the HapMap GWAS was higher compared to the 1KG. Also, HapMap may identify 
variants that are not identified in 1KG GWAS54. Nevertheless, 1KG offers better coverage of 
uncommon variants and includes INDELs, which are not included in the HapMap reference 
panel. Including both reference panels, we used all available samples and maximized the 
possibility to identify novel genetic variants for CRP, both common and uncommon.  
However, we note limitations to our study. GWAS merely identify loci associated with 
complex phenotypes and the identification of causal genes remains challenging. We only 
included individuals of European ancestry; the generalizability of our findings to other 
races/ethnicities is uncertain. In addition, although our analyses provided support for causal 
associations, we acknowledge that we may not have identified the causal variants and we 
may not have eliminated residual confounding. 
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In conclusion, we performed the largest GWAS meta-analysis to identify novel loci 
associated with circulating CRP levels, a sensitive marker of chronic low-grade 
inflammation, and found support for a causal role of CRP with a decreased risk of 
schizophrenia and higher risk of bipolar disorder. As inflammation is implicated in the 
pathogenesis of multiple complex diseases, the new insights into the biology of 
inflammation obtained in the current study may contribute to future therapies and 
interventions.  
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Schizophrenia is a debilitating psychiatric disorder affecting millions of people worldwide. 
Both genetic and environmental factors contribute to disease development, but the 
pathophysiology of schizophrenia is poorly understood and treatment mainly consists of 
psychosocial interventions and antipsychotic medication. Mendelian randomization (MR) 
analysis has the potential to identify causal factors for an outcome of interest, providing 
insights in the biological pathways that cause disease and could aid in detecting novel 
therapeutic targets. Genome-wide association studies (GWAS) have identified more than 
one hundred loci for schizophrenia that can be used in MR analysis for the identification of 
causal factors for schizophrenia. 
In 2016, Prins and colleagues described for the first time an association between genetically 
determined CRP and schizophrenia in an MR study1. In contrast to prior published 
observational association studies in which higher CRP levels were observed in cases of 
schizophrenia patients compared to controls2, Prins et al. found a protective causal effect 
of CRP on schizophrenia. Using similar CRP and schizophrenia GWAS data, this finding was 
confirmed in a subsequent MR study that incorporated robust MR sensitivity analyses3. 
Additionally, Hartwig et al. investigated the role of IL-6 which is the major upstream 
regulator of CRP and findings in the MR of IL-6 were in agreement with the protective effect 
of CRP. Recently, in a novel CRP GWAS effort, up to 52 genetic variants were included in MR 
analyses of CRP and schizophrenia and a similar protective effect of CRP on schizophrenia 
risk was found4. Furthermore, the MR analysis that included only the genetic variant within 
the CRP gene, which reduces the chance of horizontal pleiotropy in which the genetic 
variant is independently associated with multiple phenotypes, showed similar results. 
The study by Bochao et al5, published in this issue, examined the causal association between 
CRP and several blood metabolites with schizophrenia in an MR study applying different MR 
methods. The study is important and novel for several reasons. First, the authors used the 
most recent GWAS data sets available for both CRP and schizophrenia to perform the first 
bidirectional MR analysis. Second, they are the first to apply Generalized Summary data-
based Mendelian Randomization (GSMR) analyses which has the advantage of more 
statistical power compared to MR Egger and includes the possibility to detect putative 
pleiotropic effects through the Heterogeneity in Dependent Instruments (HEIDI) test. Third, 
extensive MR sensitivity analyses were applied to exclude weak instrument bias, horizontal 
pleiotropy, and heterogeneity in the instrumental variables. Finally, with regards to blood 
metabolites, a novel MR technique developed to handle high-throughput data performing 
multiple multivariable MR models was applied. The authors observed in all MR analyses a 
protective effect of CRP on schizophrenia, and no effect of genetic liability to schizophrenia 
on CRP levels, confirming published MR work. In sensitivity analyses, no evidence was found 
for weak instrument bias or horizontal pleiotropy, and selection or survivor bias is unlikely 
to explain the association between CRP and schizophrenia.  
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Although robust MR analyses suggest a causal protective effect of CRP on schizophrenia, 
could the results still be confounded? MR analyses rely on several assumptions, one of them 
being that the instrument affects the outcome only through the risk factor. This assumption 
may be violated in the CRP-schizophrenia association when the CRP variants affect 
schizophrenia directly, not through CRP. Even the single risk variant at the CRP gene or a 
variant in high linkage disequilibrium may have an effect on schizophrenia that is not 
through serum CRP levels. Another assumption of MR analysis is that the genetic variants 
are not associated with confounders of the association between the exposure and the 
outcome. We may be unaware of confounding factors of the CRP-schizophrenia association, 
and the association of genetic variants with these confounding factors.  
If we assume that CRP truly does have a causal effect on schizophrenia, what is the biological 
explanation? C-reactive protein is a pentameric protein first discovered by William Tillet and 
Thomas Francis in 1930 and named after the C-polysaccharide of the pneumococcus 
bacteria6. CRP has a notable role in the immune system as an activator of the classic 
complement cascade, among other things. Therefore, CRP is important for antimicrobial 
defense. Prior research has indeed shown that CRP may protect against bacterial 
infections7, and infections have been hypothesized as a cause for schizophrenia8. 
Considering the role of CRP in antimicrobial defense, CRP may thus lower schizophrenia risk 
by reducing infection risk. However, there is no strong evidence yet to support this 
hypothesis. Furthermore, CRP may have a biological effect on neurocognitive function that 
is yet unknown. Since MR studies estimate the lifetime effect of the exposure on the 
outcome, Bochao et al. speculate that other CRP risk variants affect CRP levels in children 
and that possibly childhood infections attributable to environmental factors increase 
schizophrenia risk. This hypothesis does not explain the protective effect of CRP observed 
in the MR analyses, and there is no data to support the hypothesis that the genetic 
background of CRP levels in children is different from adults.  
In order to get a better understanding of the association between CRP and schizophrenia, 
it would be of interest to examine the association between CRP and infection risk in well-
powered MR studies. Genetic data on infection risk is scarce, but GWAS have been 
published for specific pathogens9. Also, an assessment of the causal association between 
infections with specific pathogens and schizophrenia may elucidate if, and which, pathogens 
may contribute to the risk of schizophrenia. Furthermore, thinking outside the field of 
epidemiology, possibly wet lab experiments designed to assess the effect of CRP on neural 
cells identify an effect for CRP on the brain. The results of Bochao et al. provide further 
evidence for a causal protective effect of CRP on schizophrenia, and future studies will 
hopefully shed light on the biological mechanism behind this remarkable observation. 
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Background: Pleiotropic genetic variants have independent effects on different 
phenotypes. C-reactive protein (CRP) is associated with several cardiometabolic 
phenotypes. Shared genetic backgrounds may partially underlie these associations.  
 
Methods: We conducted a genome-wide analysis to identify the shared genetic background 
of inflammation and cardiometabolic phenotypes using published genome-wide association 
studies (GWAS). We also evaluated whether the pleiotropic effects of such loci were 
biological or mediated in nature. First, we examined whether 283 common variants 
identified for 10 cardiometabolic phenotypes in GWAS are associated with CRP level. 
Second, we tested whether 18 variants identified for serum CRP are associated with 10 
cardiometabolic phenotypes. We used a Bonferroni corrected p-value of 1.1×10-04 
(0.05/463) as a threshold of significance. We evaluated the independent pleiotropic effect 
on both phenotypes using individual level data from the Women Genome Health Study.  
 
Results: Evaluating the genetic overlap between inflammation and cardiometabolic 
phenotypes, we found 13 pleiotropic regions. Additional analyses showed that 6 regions 
(APOC1, HNF1A, IL6R, PPP1R3B, HNF4A and IL1F10) appeared to have a pleiotropic effect 
on CRP independent of the effects on the cardiometabolic phenotypes. These included loci 
where individuals carrying the risk allele for CRP encounter higher lipid levels and risk of 
type 2 diabetes. In addition, 5 regions (GCKR, PABPC4, BCL7B, FTO and TMEM18) had an 
effect on CRP largely mediated through the cardiometabolic phenotypes.  
 
Conclusion: The results show genetic pleiotropy among inflammation and cardiometabolic 
phenotypes. In addition to reverse causation, the data suggest that pleiotropic genetic 
variants partially underlie the association between CRP and cardiometabolic phenotypes. 
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Introduction 
 
The risk of cardiometabolic diseases, the world’s leading cause of mortality, is higher in 
people with elevated levels of systemic inflammation, independent of traditional 
cardiometabolic risk factors1. Elevated levels of C-reactive protein (CRP), as a measurement 
of systemic inflammation, are associated with hypertension2, type 2 diabetes (T2D)3,4, 
coronary artery disease (CAD)1,5,6, stroke7,8, peripheral artery disease9, and mortality10. 
Although observational data suggest a link between CRP and cardiometabolic phenotypes, 
Mendelian randomization approaches have provided evidence against a causal link 
between CRP and these cardiometabolic phenotypes11,12,13,14.  
Genome-wide association studies (GWAS) have discovered multiple single-nucleotide 
polymorphisms (SNPs) associated with inflammatory markers including CRP and different 
cardiometabolic phenotypes including T2D, coronary artery disease (CAD), lipids and 
hypertension 15-21. From these GWAS we already learned that several genes, such as IL6R, 
APOC1, GCKR and HNF1A, are associated both with systemic inflammation and 
cardiometabolic phenotypes such as CAD, lipids and diabetes15,17,21,22. This phenomenon of 
one genetic locus affecting more than one phenotype is called genetic “pleiotropy”. In 
general, two types of pleiotropy can be defined. As previously defined by Solovieff et al., 
“biological pleiotropy” refers to a gene that has independent biological effects on more than 
one phenotype, and “mediated pleiotropy” refers to the situation where the genetic effect 
on phenotype B is mediated by phenotype A that is causally related to phenotype B23. 
Although both types of pleiotropy are interesting, only biological pleiotropy refers to the 
genuine pleiotropy where the effect of the genetic variant on two or more phenotypes is 
independent. 
We hypothesize that in addition to reverse causation, genetic loci with pleiotropic effects 
may underlie the association between CRP and cardiometabolic phenotypes. To this end, 
we applied a simple and robust approach to point out these pleiotropic genetic variants24. 
First, we examined whether common variants identified for cardiometabolic phenotypes 
are associated with serum CRP levels as a measure of systemic inflammation. Second, we 
conversely examined whether variants so far identified for serum CRP associate with 
cardiometabolic phenotypes. In addition, we adjusted the association between the SNP and 
CRP for the cardiometabolic phenotypes and vice versa to distinguish a genuine biological 
pleiotropic effect from mediated pleiotropy.  
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Methods 
 
Study design 
To examine the overlap between genes for inflammation and cardio-metabolic disorders 
we collected GWAS meta-analyses data from published GWAS on cardiometabolic 
phenotypes and CRP15,16,17,19,22. These GWAS are mainly conducted in individuals from 
European ancestry (Table 1). We tested the genetic association of cardiometabolic SNPs 
with systemic inflammation using the largest published GWAS meta-analysis on CRP levels 
from the CHARGE (the Cohorts for Heart and Aging Research in Genomic Epidemiology) 
inflammation working group22. Testing the genetic association of the CRP SNPs with 10 
cardiometabolic phenotypes we used the recent GWAS data from the following consortia: 
Coronary Artery Disease Genome-wide Replication and Meta-analysis plus the Coronary 
Artery Disease, CARDIoGRAMplusC4D15, International Consortium for Blood Pressure, 
ICBP16, the Meta-Analyses of Glucose and Insulin-related traits Consortium, MAGIC17,18, 
DIAbetes Genetics Replication And Meta-analysis, DIAGRAM19, The Genetic Investigation of 
Anthropometric Traits, GIANT20 and Global Lipids Genetic Consortium, GLGC21. Additionally, 
we carried out analyses in a population based cohort study to explore the type of pleiotropy 
of the overlapping SNPs. 

 
Table 1. Genome-wide association studies of cardiometabolic phenotypes and 
inflammation. 

Consortium Phenotype Sample 
size 

No. of 
Studies 

GIANT20 BMI 249,796 62 
GLGC21 HDLC, LDLC, TG, TC 99,900 46 
ICBP16 SBP, DBP 69,395 29 
MAGIC19 FG, FI 133,010 32 
DIAGRAM18 T2D 149,821 38 
CARDIoGRAMplusC4D15 CAD 194,427 49 
CHARGE inflammation22 CRP 82,725 25 
Abbreviations: BMI, body mass index; CAD, coronary artery disease; CARDIoGRAMplusC4D, Coronary Artery 
Disease Genome-wide Replication and Meta-Analysis plus Coronary Artery Disease Genetics Consortium; CHARGE, 
Cohorts for Heart and Aging Research in Genomic Epidemiology; CRP, c-reactive protein; DBP, diastolic blood 
pressure; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis; FG, fasting glucose; FI, fasting insulin; 
GIANT, Genetic Investigation of ANthropometric Traits; GLGC, Global Lipids Genetic Consortium; HDLC, HDL-
cholesterol; ICBP, International Consortium for Blood Pressure; LDLC, LDL-cholesterol; MAGIC, Meta-Analyses of 
Glucose and Insulin-related traits Consortium; SBP, systolic blood pressure; T2D, type 2 diabetes; TC, total 
cholesterol; TG, triglycerides. 
 
Cardiometabolic SNPs and association with CRP 
We first compiled a list of genome-wide significant SNPs (p-value<5×10-8) previously 
identified in large GWAS on cardiometabolic traits to test the genetic association in the CRP 
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GWAS. The following cardiometabolic traits were included to generate the SNP list: 
coronary artery disease (51 SNPs in CARDIOGRAMplusC4D, n=130,681 with 63,746 cases)15; 
blood pressure (29 SNPs in ICBP, n=69,395)16; fasting glucose, fasting insulin (53 SNPs in 
MAGIC, n=133,010)17,18; type 2 diabetes (55 SNPs in DIAGRAM, n=149,821 with 34,840 
cases)19; body-mass index (38 SNPs in GIANT, n=123,865)20; LDL cholesterol, HDL 
cholesterol, triglycerides and total cholesterol (102 loci in GLGC, n=100,184)21. When the 
SNP was not available in the CRP GWAS, we searched for a proxy with an r2>0.8. For 6 SNPs, 
this was not possible. LD-based pruning was performed (r2 threshold of 0.3) using HapMap 
LD information to make sure that independent SNPs were included in the analysis25. The 
SNP with the lowest p-value in one of the cardiometabolic GWAS was chosen. The final list 
included 283 independent SNPs that are genome-wide significantly associated with one or 
more cardiometabolic phenotypes. 
 
CRP SNPs and association with cardiometabolic phenotypes 
We used the publicly available GWAS meta-analyses data to test whether any of the 18 
independent genome-wide significant SNPs identified in the CRP GWAS were associated 
with the following cardiometabolic phenotypes: LDL cholesterol, HDL cholesterol, 
triglycerides and total cholesterol (GLGC); body mass index (GIANT); systolic blood pressure 
(ICBP); coronary artery disease (CARDIoGRAMplusC4D consortium); fasting glucose and 
fasting insulin (MAGIC); type 2 diabetes (DIAGRAM). All available GWASs provided p-values 
for all 18 CRP SNPs, except the GWAS on CAD and the glycemic phenotypes which were 
based on a custom chip array (Metabochip array26) containing 79,000 SNPs and this array 
did not include 8 of the CRP SNPs. For the SNPs that were not on the Metabochip, we used 
for fasting glucose and fasting insulin the previous GWAS published by Dupuis et al.17, for 
type 2 diabetes only the stage 1 GWAS including all HapMap SNPs19 and for CAD we used 
the summary data from the CARDIoGRAM meta-analysis only27. 

 
CRP and cardiometabolic measures 
Coronary artery diseases was defined in the CARDIoGRAMplusC4D consortium using 
standard criteria for myocardial infarction or coronary artery disease namely symptoms of 
angina pectoris, previous myocardial infarction or cardiac intervention15. Hypertension was 
defined in the ICBP consortium as systolic blood pressure ≥140 mmHg or diastolic blood 
pressure ≤90 mmHg16. Fasting glucose and fasting insulin were measured in MAGIC using 
standard laboratory techniques17. Type 2 diabetes was in the DIAGRAM consortium defined 
as fasting plasma glucose level ≥7.0 mmol/l or non-fasting glucose plasma level ≥11.0 
mmol/l and/or treatment with oral antidiabetic medication or insulin19. LDL cholesterol, 
HDL cholesterol, triglycerides and total cholesterol were measured in the GLGC using 
standard laboratory techniques21. 
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We used the discovery panel of the recently published GWAS meta-analysis on serum CRP 
(CHARGE Inflammation)22. The meta-analysis included 15 studies in the discovery panel 
(n=65,000). CRP was natural log-transformed (lnCRP) and effects represented a 1-unit 
change in lnCRP per copy increase in risk allele. 
 
Statistical methods 
In this study we evaluated 463 possible SNP-phenotype associations including 283 
independent cardiometabolic SNPs in the CRP GWAS and 18 independent CRP SNPs in 10 
different cardiometabolic GWAS. To address the issue of multiple testing we used a 
Bonferroni corrected alpha of 1.1×10-4 (0.05/463 tests) as a robust threshold for a significant 
association between the SNP and the phenotype in our study28.  
In a quantile-quantile (Q-Q) plot, a nominal probability distribution is compared against an 
empirical distribution. In the scenario that the nominal p-values form a straight line on a Q-
Q plot when they are plotted against the empirical distribution, all relations are null. When 
the observed distribution is deflected to the left from the uniform null distribution, lower 
p-values are observed compared to that expected by chance (enrichment). We used QQ-
plots to evaluate whether SNPs that are genome-wide significant associated with the 
cardiometabolic phenotype, were in the CRP GWAS distributed differently from what is 
expected under the null-hypothesis. Vice versa, we evaluated whether genes identified for 
CRP were in the cardiometabolic GWAS distributed differently from what is expected under 
the null-hypothesis. We used Fisher’s combined probability test to test for significant 
enrichment in the QQ-plots29. 

 
Evaluation of the type of pleiotropy 
To clarify the type of genetic pleiotropy (biological or mediated), we performed additional 
analyses in the Women’s Genome Health Study (WGHS) including 23,294 women30. In the 
first model, we analyzed the age-adjusted association between CRP (dependent variable) 
and the lead SNP for CRP in the pleiotropic regions. To examine whether the association is 
independent of cardiometabolic traits we further adjusted this association for BMI, lipid 
levels (HDL-cholesterol, LDL-cholesterol, triglycerides and total cholesterol) and HbA1C. We 
used HbA1C as a proxy for glycemic metabolism given the fact that glycated hemoglobin is 
an acceptable marker of average blood glucose level in the last 2-3 months31. In addition, 
we adjusted the association for age and in a stepwise manner we added lipids, BMI and 
HbA1C to the model to evaluate the different effects of the phenotypes on the association. 
Last, we analyzed the association between the pleiotropic SNP and the associated 
cardiometabolic phenotypes unadjusted and adjusted for CRP. As we tested 43 SNP-
phenotype associations in the WGHS, we used a Bonferroni corrected alpha of 1.2×10-03 as 
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a threshold of study-wide significance. All regression analyses were carried out in the 
statistical software R version 2.15.332.  
 
Women's Genome Health Study (WGHS) 
The WGHS is a prospective cohort of female North American health care professionals 
representing participants in the Women’s Health Study who provided a blood sample at 
baseline and consent for blood-based analyses. Participants were 45 or older at enrollment 
and free of cardiovascular disease, cancer or other major chronic illness. The current data 
are derived from 23,294 WGHS participants with whole genome genetic data and verified 
self-reported, European ancestry. The study protocol was approved by the institutional 
review board of the Brigham and Women's Hospital (Boston, MA, USA). All participants 
provided written informed consent to participate in the study. 
 
Covariates WGHS 
BMI (weight in kilograms divided by height in meters squared) was calculated from 
responses to the baseline questionnaire. All baseline blood samples underwent 
measurement for high-sensitivity C-reactive protein (hsCRP) via a validated 
immunoturbidometric method (Denka Seiken, Tokyo, Japan). Concentrations of total 
cholesterol (TC) and HDL-C were measured enzymatically on a Hitachi 911 autoanalyzer 
(Roche Diagnostics) with day-to-day reproducibility of 1.36% and 1.07% for TC 
concentrations of 129.8 and 277.2 mg/dL, respectively, (throughout this report, 
concentrations and units given are those reported in the referenced sources) and of 1.98% 
and 2.68% for HDL-C concentrations of 35 and 55 mg/dL, respectively. LDL-C was 
determined directly (Genzyme) with reproducibility of 2.16% and 1.98% for concentrations 
of 76.2 and 148.7 mg/dL, respectively. Triglycerides were measured enzymatically, with 
correction for endogenous glycerol, using a Hitachi 917 analyzer and reagents and 
calibrators from Roche Diagnostics; reproducibility was 1.52% and 1.49% for triglyceride 
concentrations of 82.5 and 178.8 mg/dL, respectively. Hemoglobin A1c was measured using 
turbidimetric immunoinhibition directly from packed red blood cells (Roche Diagnostics) 
with reproducibility of 3.63% and 3.77% at levels of 5.2% and 8.8%, respectively. A total of 
22,773 participants with genotyped and covariates available were included in this study. 
 
Genotyping WGHS 
DNA extracted from the baseline blood samples underwent SNP genotyping via the Illumina 
Infinium II assay for querying of a genome-wide set of SNPs from the Illumina 
HumanHap300 Duo “+” platform. This panel including the standard content of 
approximately 318,237 SNPs covering the entire genome from the HumanHap300 panel 
with an additional focused panel of 45,571 SNPs selected to enhance coverage of 
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cardiovascular candidate genes and SNPs with suspected functional consequences. For the 
current analysis, all samples had successful genotype information for >98% of the SNPs, 
while all SNPs had successful genotype information for >90% of the samples. SNPs with 
significance p-value<10−6 for deviations from Hardy-Weinberg equilibrium were excluded 
from analysis. Self-reported European ancestry was confirmed in the 23,294 samples on the 
basis of a principal component analysis using PLINK among 1,443 ancestry informative SNPs 
selected for Fst>0.4 in the HapMap2. In total, 339,875 genotyped SNPs passing the criteria 
for inclusion also had minor allele frequency at least 1 percent. On the basis of linkage 
disequilibrium relationships in the HapMap (release 22), genotypes for a total of 2,621,896 
SNPs were imputed from the 23,294 samples passing the quality criteria using Mach v. 
1.0.16. 
 
Pathway analysis 
Pathway analysis was performed on the pleiotropic loci that we identified using Ingenuity 
Pathway Analysis software tool (IPA Ingenuity Systems). The Ingenuity Knowledge Base 
(including only genes) was used as a reference set and we considered molecules and/or 
direct and indirect relationships. The confidence filter was set to experimentally observed 
or high (predicted). Pathways were generated with a maximum size of 35 genes and we 
allowed up to 25 pathways. The significance p-value associated with enrichment of 
pathways was calculated using the right-tailed Fisher’s exact test, considering the number 
of query molecules that participate in that pathway and the total number of molecules that 
are known to be associated with that pathway in the reference set. A False Discovery Rate 
of five percent was used as a threshold of significance using the Benjamini-Hochberg 
method. 
 
Results 
 
Cardiometabolic SNPs in CRP GWAS 
First, we used QQ-plots to evaluate whether the p-values for the associations of the 283 
cardiometabolic SNPs with serum CRP are distributed differently from what is expected 
under the null hypothesis in each trait group. As depicted in Figure 1, the leftward deviation 
of the dotted lines in the QQ-plots shows that the 283 SNPs known for cardiometabolic 
phenotypes to have p-values smaller than expected under the null hypothesis in the CRP 
GWAS (p-value: 7.2×10-306). 
A total of 19 SNPs out of 283 independent cardiometabolic SNPs (6.7%) were associated 
with CRP after correction for multiple testing (p-value threshold 1.1×10-4). These 19 SNPs 
were located within or close to 12 different genes APOC1, HNF1A, GCKR, IL6R, PPP1R3B, 
HNF4A, PABPC4, BCL7B, FTO, TMEM18, PLTP and MC4R. Table 2 shows the SNPs with the 
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Figure 1. Quantile-quantile plot of cardiometabolic SNPs in CRP GWAS. 

 
QQ-plot was used to evaluate whether SNPs that are genome-wide significant associated with the cardiometabolic 
phenotypes, were in the CRP GWAS distributed differently from what is expected under the null-hypothesis. The 
observed p-values (dotted line) for the phenotypes deviated significantly leftwards indicating that these p-values 
are smaller than expected under null hypothesis.  
 
lowest p-values in the 12 pleiotropic loci based on the CRP GWAS, i.e. the lowest p-value 
in that genomic locus. The eight SNPs in Table 2 with the lowest p-value were already 
known to be associated with CRP based on the recent CRP GWAS22. The next four SNPs were 
not identified in the genome-wide association study of CRP. The first novel association was 
rs1558902 with a p-value of 2.2×10-6. This SNP is located in the first intron of the FTO gene 
on chromosome 16. The second novel signal was the SNP rs2867125 which is located on 
chromosome 2, near 46kb downstream of TMEM18. This SNP had a p-value of 5.0×10-6 in 
the CRP meta-analysis. The third association was with rs6065906 which is located on 
chromosome 20, near the PLTP and PCIF1 gene (p-value=6.7×10-6). The last finding was 
rs571312 which is located 2 Mb upstream of the MC4R gene on chromosome 18 (p-
value=3.8×10-5).  
Among the associated SNPs, we observed many SNPs with different directions of effect on 
the cardiometabolic phenotypes and CRP than one would expect based on the association 
of CRP and these phenotypes in observational data. As an example, the A-allele of the SNP 
rs4420638 in the APOC1 locus increases serum CRP levels. However, this allele is associated 
with a decrease in the level of total cholesterol, LDL-cholesterol and triglycerides. We also 
observed such effects for the G-allele of the SNP rs1183910 in the HNF1A locus. This allele 
increases serum CRP levels and is associated with a decline in total cholesterol and LDL-
cholesterol. 
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Out of the 12 pleiotropic loci, 6 loci had the same lead SNP in both the CRP and one or more 
of the cardiometabolic GWAS. In the other 6 loci the lead SNPs were different between the 
CRP GWAS and the cardiometabolic GWAS. However, in the majority of these loci the lead 
SNPs of the cardiometabolic GWAS were in high LD (r2>0.8) with the lead SNP in the CRP 
GWAS. In the IL6R locus we observed the lowest LD between the top hit in the CRP GWAS 
and the CAD GWAS (r2=0.52). 

 
CRP SNPs in cardiometabolic GWAS 
We used the same QQ-plots as described previously to evaluate whether the association p-
values for the 18 CRP SNPs are distributed differently from what is expected under the null 
hypothesis in the different cardiometabolic GWAS. As depicted by the leftward deviation of 
the dotted lines in the QQ-plots for CAD (P-value=1.4×10-9), the cholesterol phenotypes 
(HDL-cholesterol, P-value=6.4×10-69; LDL-cholesterol, P-value=2.9×10-166; total cholesterol, 
P-value=3.6×10-169 and triglycerides, P-value=2.5×10-196) and the glycemic phenotypes 
(fasting glucose, P-value=2.4×10-12 and fasting insulin 5.5×10-4), the p-values for the 
association between the 18 CRP SNPs and these phenotypes are significantly smaller than 
expected under the null hypothesis (Figure 2). We did not observe such a significant 
deviation in the QQ-plots of BMI (P-value=0.18) and SBP (P-value=0.06).  
Results of the association of the 18 genome-wide significant associations with CRP-level are 
depicted in Figure 3 (Tables S2 and S3). We observed 9 associations with one or more of the 
10 cardiometabolic phenotypes close to or within the genes APOC1, HNF1A, IL6R, GCKR, 
IL1F10, PPP1R3B, HNF4A, PABPC and BCL7B (p-value<1.1×10-4). Only 1 gene (IL1F10) was 
not identified in the previous analysis where we tested the association between the 
cardiometabolic SNPs and CRP. Among all 9 associations, we found three associations that 
are not reported in the GWAS for that specific phenotype. The first was rs1183910 with CAD 
(p-value 5.6×10-6). This SNP is located in the first intron of the HNF1A gene on chromosome 
12. The second was rs6734238 with total cholesterol (p-value 1.16×10-5). This SNP is located 
on chromosome 2, nearby the IL1F10 gene and other interleukin 1 family genes. The third 
was rs4420638 with T2D (p-value 4.0x10-6) nearby the APOC1 gene on chromosome 19. 
Comparable with the previous associations results, we observed many different direction 
of effects. For instance, the A-allele of the SNP rs4420638 in the APOC1 locus increases 
serum CRP levels and is associated with a lower risk of type 2 diabetes. Furthermore, the G-
allele of the SNP rs1183910 in the HNF1A locus increases serum CRP levels and is associated 
with a lower risk of coronary artery disease. 
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Figure 2. Quantile-quantile plots of CRP SNPs in cardiometabolic GWAS.  

 
QQ-plots were used to evaluate whether SNPs that are genome-wide significant associated with CRP, were in the 
cardiometabolic GWAS distributed differently from what is expected under the null-hypothesis. The observed p-
values (dotted line) for the phenotypes HDL-cholesterol, fasting glucose, type 2 diabetes and coronary artery 
disease deviated significantly leftwards indicating that these p-values are smaller than expected under null 
hypothesis.  
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Figure 3. P-values for the associations of the 18 CRP SNPs with different cardiometabolic 
phenotypes. 

 
P-values for the associations between the 18 CRP SNPs and BMI, lipids, glycemic phenotypes, SBP and coronary 
artery disease. The genes on the x-axis represent the genes in which the CRP SNPs are located or closest by. The 
numbers on the y-axis indicate the p-values of the association between the SNPs and the cardiometabolic 
phenotypes. Significant associations are colored as depicted in the figure legend. For BMI and SBP, no significant 
associations were observed. CAD, coronary artery disease; FG, fasting glucose; FI, fasting insulin; HDLC, HDL-
cholesterol; LDLC, LDL-cholesterol; T2D, type 2 diabetes; TC, total cholesterol; TG, Triglycerides. 
 
Exploring the type of pleiotropy 
We observed a total number of 13 genetic regions with pleiotropic effects on CRP and 
cardiometabolic phenotypes: 12 regions identified in the first step testing the 
cardiometabolic SNPs with CRP and 1 additional region identified in the second step  
testing the associations of the CRP SNPs with the cardiometabolic phenotypes. Table 3 
shows the unadjusted and adjusted associations between the 13 overlapping SNPs and CRP-
level using individual level data from the WGHS. There was no significant association in the 
WGHS between the SNPs located near PLTP and MC4R and CRP after correction for multiple 
testing. The effect sizes of the genetic loci in or near the genes APOC1, HNF1A, IL6R, 
PPP1R3B, HNF4A and IL1F10 did not diminish substantially after adjustment for BMI, 
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Table 3. Pleiotropic SNPs and their association with CRP. 
                MODEL 1a               MODEL 2b  
SNP Chr Effect(se) P-value Effect(se) P-value Gene pleiotropyc 

rs4420638 19 0.269(0.019) 4.4×10-47 0.272(0.016) 1.7×10-65 APOC1 B 
rs1169288 12 0.165(0.012) 2.3×10-43 0.160(0.010) 4.0×10-56 HNF1A B 
rs1260326 2 0.110(0.011) 1.6×10-22 0.073(0.010) 3.4×10-14 GCKR M 
rs4845625 1 0.067(0.011) 2.0×10-9 0.065(0.009) 8.8×10-12 IL6R B 
rs9987289 8 0.076(0.019) 4.5×10-5 0.086(0.016) 1.5×10-7 PPP1R3B B 
rs1800961 20 0.146(0.033) 8.4×10-6 0.141(0.028) 4.7×10-7 HNF4A B 
rs4660293 1 0.048(0.013) 1.9×10-4 0.036(0.011) 1.2×10-3 PABPC4 M 
rs17145738 7 0.075(0.017) 1.3×10-5 0.019(0.015) 1.8×10-1 BCL7B M 
rs1558902 16 0.041(0.012) 6.0×10-4 0.012(0.010) 2.3×10-1 FTO M 
rs7561317 2 0.055(0.015) 1.5×10-4 0.013(0.012) 2.9×10-1 TMEM18 M 
rs6065906 20 0.026(0.014) 6.6×10-2 0.039(0.012) 1.2×10-3 PLTP B 
rs571312 18 0.038(0.013) 3.5×10-3 0.006(0.011) 6.0×10-1 MC4R M 
rs6734238 2 0.040(0.011) 3.9×10-4 0.051(0.010) 1.3×10-7 IL1F10 B 

aModel 1: adjusted for age  
bModel 2: additionally adjusted for BMI, HDL-cholesterol, LDL-cholesterol, triglycerides, total cholesterol and 
HbA1C 
cB: biological pleiotropy; M: mediated pleiotropy. 
 

cholesterol levels and HbA1C suggesting biological pleiotropy. For BCL7B, FTO and TMEM18 
the effect sizes decreased considerably implying mediated pleiotropy. The estimate of the 
association between rs1260326 (GCKR) and CRP decreased substantially after adjustment 
but was still strongly associated. We observed the same scenario for the association 
between rs4660293 (PABPC4) and CRP. When we added the phenotypes in a stepwise 
manner to the model, we observed for the mediated pleiotropic loci FTO and TMEM18 that 
the effect was mainly mediated through BMI (Table S3). For BCL7B and PABPC4, lipids 
appeared to be the most important mediators. Figure 4 shows graphically the biological and 
mediated pleiotropic effects. 

The results for the associations between the pleiotropic SNPs and the associated 
cardiometabolic phenotypes are presented in Table S4. Eight SNPs were not significantly 
associated with the cardiometabolic phenotype in the WGHS after adjustment for multiple 
testing. The majority of the estimates in- or decreased slightly after adjustment for CRP. 
However, the estimates between APOC1 and HbA1C, PABPC4 and triglycerides and BCL7B 
and HDL-cholesterol decreased considerably after the adjustment for CRP. 
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Figure 4. Biological and mediated pleiotropy of overlapping loci among inflammation and 
cardiometabolic phenotypes.  

 
Overlapping loci among inflammation and cardiometabolic phenotypes and type of pleiotropy according to the 
additional analyses. We identified six overlapping loci with mediated pleiotropic effects on CRP (left) and seven 
with a biological pleiotropic effect (right). 
 
Pathway analysis 
The results from the pathway analysis including all 13 pleiotropic genes are listed in the 
Table S5. A total number of 13 canonical pathways were significantly enriched using an FDR 
of five percent. The top pathways included the FXR/RXR activation (P-value=7.4×10-9) , 
LXR/RXR activation (P-value=4.6×10-5), Maturity Onset Diabetes of the Young (MODY) 
signaling (P-value=7.6×10-5), hepatic cholestasis (P-value=1.1×10-4) and acute phase 
response signaling (P-value=1.3×10-4). 
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Discussion 
 
We observed several overlapping common genetic risk factors for cardiometabolic 
phenotypes and systemic inflammation. The additional analyses provided evidence for six 
biological pleiotropic loci with independent effects on both CRP and the cardiometabolic 
phenotype. These pleiotropic loci suggest a shared genetic background for CRP and 
cardiometabolic phenotypes. In addition, 5 pleiotropic loci appeared to have an effect on 
CRP mediated through the cardiometabolic phenotypes. Taken together, our results 
highlight the complex shared genetic architecture of cardiometabolic phenotypes and 
chronic inflammation. 
Several of the identified biological pleiotropic loci suggest that the association between CRP 
and cardiometabolic phenotypes is not only reverse causation, but also shared independent 
genetic effects. Both the HNF1A and HNF4A loci were associated with CRP after adjustment 
for the cardiometabolic phenotypes. The effect directions were the same for type 2 diabetes 
and CRP, implying people carrying the risk allele for type 2 diabetes also have higher CRP 
values. We observed this also for the PPP1R3B locus where people carrying the risk allele 
for higher cholesterol also experience higher CRP levels. In both cases the effect on CRP is 
independent of the effect on the corresponding cardiometabolic trait. 
Three of the associations that were not reported in the GWAS on CRP-level (FTO, TMEM18 
and MC4R) are associations with SNPs discovered in the GWAS on BMI by Speliotes et al20. 
Moreover, these SNPs were also the leading findings in this large BMI GWAS meta-analysis. 
Our additional analyses clearly showed that after adjustment for BMI, the effects of FTO 
and TMEM18 decreased substantially, resulting in a non-significant association, which 
suggests that their effect on inflammation is indeed mediated by BMI. This is in line with 
previous research that already provided evidence for a causal role of BMI in inflammation14. 
Conversely, none of the SNPs identified in the CRP GWAS were associated with BMI when 
we tested these SNPs in the BMI GWAS. 
Our results also suggest a role for lipids in systemic inflammation. When we adjusted the 
association between BCL7B loci and CRP for the cardiometabolic phenotypes including 
lipids, the association was not present anymore. This locus appears to increase systemic 
inflammation through their effect on lipids. Also the association between PABPC4 and CRP 
decreased after adjustment for CRP, but there was a significant residuals effect suggesting 
partly mediated effects through lipids. The observation that lipids may cause inflammation 
is in line with previous studies that have shown an important role for oxidized LDL-
cholesterol molecules and free fatty acids in the development of systemic inflammation33. 
However, in addition to the mediated pleiotropic loci among lipids and CRP, we also 
observed loci with independent effects (biological pleiotropy) on lipids and CRP including 
APOC1, HNF1A and HNF4A, highlighting the complex interrelationship of lipids and 
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inflammation. Moreover, the pathway analysis confirmed the role of the pleiotropic genes 
in both inflammation and lipid metabolism. 
We observed little overlap between risk loci for CAD and CRP. Apart from the IL6R gene, our 
results suggest an association with CAD at the HNF1A locus. The HNF1A gene is an important 
hepatic nuclear transcription factor that has been associated in GWAS with lipids and 
diabetes19,21. This gene is known to regulate many target genes involved in lipid metabolism 
and transport34. A previous study has associated this locus with different cardiovascular 
phenotypes including coronary artery calcification and incident CHD35. Unfortunately we 
were not able to look-up 9 CRP SNPs in the larger CAD Metabochip GWAS because these 
variants were not on the Metabochip and no appropriate proxies were available. This might 
partly explain the little overlap between CRP and CAD genetic risk variants. 
In the additional analyses we used glycated hemoglobin (HbA1C) to adjust for fasting 
glucose, fasting insulin, T2D and other components of the glucose homeostasis. HbA1C 
represents the average glucose level in the last 3 months, implying that this is only a proxy 
for the complex glucose homeostasis rather than a covariate that reflects its entire 
biological metabolism. Therefore, there may still be residual confounding from other 
biological pathways that have an effect on glucose and insulin levels. This could explain the 
observed residual effect of GCKR on CRP after adjustment for the cardiometabolic 
phenotypes. 
In the evaluation of the type of pleiotropy, we adjusted the association between the 
pleiotropic SNP and CRP for the cardiometabolic phenotypes. For some variants we 
observed a convincing attenuation in the effect estimates (BCL7B, FTO and TMEM18). For 
other variants, the attenuation was less pronounced (GCKR and PABPC4). From these results 
we cannot conclude whether the residual effect is residual confounding or a true residual 
effect. Additionally, for several variants the effect estimates were the same or even 
increased after adjustment suggesting biological pleiotropy. The latter increase in estimate 
might be due to negative confounding where the SNP has an opposite direction of effect on 
the cross-associated phenotype compared to CRP and the effect of this phenotype on CRP 
is in the same direction (negative confounding). We also analyzed the association between 
the pleiotropic SNP and the cardiometabolic phenotypes unadjusted and adjusted for CRP. 
Although there is ample of evidence against a causal role for CRP in the development of 
cardiometabolic phenotypes, for some associations the effect estimates attenuated 
considerably11,12,13,14. This might be explained by the fact that CRP is correlated with many 
intermediate phenotypes that mediate the association between the SNP and the 
cardiometabolic phenotype.    
Among some pleiotropic SNPs we observed opposite direction of effects on the phenotypes 
than one would expect based on their effects on the health of the possessor and the 
association of CRP and these cardiometabolic phenotypes in observational data. This 
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phenomenon is known as “antagonistic pleiotropy”36. For instance, the SNP in the HNF1A 
locus increases serum CRP level according to the G allele and decreases LDL-cholesterol 
level. For biological pleiotropic loci we can substantiate this antagonistic effect. A genetic 
locus may have a deleterious effect on one phenotype, but an independent beneficial effect 
on a second phenotype. An explanation for these findings might be the fact that the effect 
sizes and variances explained by the genetic variants are small and therefore they only play 
a minor role in the phenotypical correlations. Moreover, the high frequency of seemingly 
detrimental alleles in human populations may partly be the effect of antagonistic 
pleiotropy37. As expected, among the loci where no independent effect was observed 
(mediated pleiotropy), we did not observe antagonistic pleiotropy.  
Our study has certain strengths. We used the largest available GWAS data on lipids, blood 
pressure, BMI, CAD, glycemic traits, T2D and CRP from the GLGC, ICBP, GIANT, 
CARDIoGRAMplusC4D, MAGIC, DIAGRAM and CHARGE Inflammation consortia to attain as 
much power as possible. By including only genome-wide significant findings, we restricted 
the analysis to the most robust genetic associations. Moreover, we used a conservative 
method to correct for multiple testing, lowering the probability of false positive findings. 
Nonetheless, some limitations should be acknowledged. Although we used the largest 
available GWAS sample sizes, the identified common genetic variants for above mentioned 
phenotypes only explain a modest fraction of the genetic variance of these phenotypes 
(ranging from 5 to 12 percent). Therefore, the effects of the cardiometabolic SNPs on CRP 
and vice-versa may still be too small to detect cross-phenotype associations, resulting in an 
underestimation of the amount of genetic overlap. Moreover, we only focused on common 
SNPs and it might be that also rare variants underlie the shared genetic associations. The 
method we applied to distinguish “biological” from “mediated” pleiotropy is a classical and 
widely used approach in the field of epidemiology. However, we cannot completely rule out 
reverse causation or unknown confounders as potential drivers of the association between 
the genetic variant and CRP. Furthermore, we only studied GWAS including participants of 
European ancestry. We are aware of differences in haplotype structures between different 
ethnicities; however, the results are likely to be generalizable given the biological pathways.  
In conclusion, we observed several genetic loci with independent effects on both CRP and 
one or more cardiometabolic phenotypes. These results suggest that the association 
between CRP and cardiometabolic phenotypes is partly explained by a shared genetic 
background.  
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Table S4. Pleiotropic SNPs and their association with cardiometabolic phenotype. 
          Age adjusted    Age + CRP adjusted   
SNP chr beta se P-value beta se P-value Gene Phenotype 
rs4420638 19 7.657 0.642 9.5×10-33 9.047 0.637 1.4×10-45 APOC1 TC 
rs4420638 19 0.053 0.008 2.5×10-10 0.103 0.008 1.4×10-39 APOC1 TG 
rs4420638 19 -1.545 0.236 6.0×10-11 -2.131 0.233 7.6×10-20 APOC1 HDLC 
rs4420638 19 8.287 0.526 1.6×10-55 8.875 0.527 3.4×10-63 APOC1 LDLC 
rs4420638 19 -0.026 0.009 4.2×10-03 -0.006 0.009 5.0×10-01 APOC1 HbA1C 
rs1169288 12 2.471 0.411 1.9×10-09 3.299 0.409 7.2×10-16 HNF1A TC 
rs1169288 12 2.261 0.338 2.4×10-11 2.594 0.339 2.0×10-14 HNF1A LDLC 
rs1169288 12 0.003 0.006 6.4×10-01 0.017 0.006 3.5×10-03 HNF1A HbA1C 
rs1260326 2 3.595 0.388 2.2×10-20 3.070 0.385 1.7×10-15 GCKR TC 
rs1260326 2 0.070 0.005 8.5×10-43 0.050 0.005 7.5×10-27 GCKR TG 
rs1260326 2 -0.013 0.006 1.7×10-02 -0.023 0.005 2.5×10-05 GCKR HbA1C 

rs9987289 8 -2.773 0.664 3.0×10-05 -2.405 0.658 2.6×10-04 PPP1R3B TC 

rs9987289 8 -1.085 0.244 8.5×10-06 -1.246 0.240 2.2×10-07 PPP1R3B HDLC 
rs9987289 8 -2.210 0.546 5.2×10-05 -2.068 0.545 1.5×10-04 PPP1R3B LDLC 
rs9987289 8 0.015 0.010 1.1×10-01 0.021 0.009 2.3×10-02 PPP1R3B HbA1C 
rs1800961 20 -4.927 1.130 1.3×10-05 -4.217 1.119 1.6×10-04 HNF4A TC 
rs1800961 20 -2.163 0.415 1.8×10-07 -2.474 0.409 1.5×10-09 HNF4A HDLC 
rs1800961 20 -2.960 0.929 1.4×10-03 -2.685 0.928 3.8×10-03 HNF4A LDLC 
rs1800961 20 0.022 0.016 1.7×10-01 0.030 0.016 6.3×10-02 HNF4A HbA1C 
rs4660293 1 -0.575 0.164 4.6×10-04 -0.473 0.162 3.5×10-03 PABPC4 HDLC 
rs4660293 1 0.020 0.006 7.5×10-04 0.011 0.005 3.9×10-02 PABPC4 TG 
rs17145738 7 0.458 0.218 3.5×10-02 0.299 0.215 1.6×10-01 BCL7B HDLC 
rs17145738 7 -0.074 0.008 3.7×10-21 -0.060 0.007 4.6×10-17 BCL7B TG 
rs1558902 16 0.541 0.049 5.0×10-28 0.470 0.044 9.7×10-27 FTO BMI 
rs1558902 16 0.028 0.006 2.2×10-06 0.025 0.006 1.9×10-05 FTO HbA1C 
rs7561317 2 -0.344 0.060 1.3×10-08 -0.243 0.054 6.6×10-06 TMEM18 BMI 
rs6065906 20 -1.154 0.178 9.0×10-11 -1.209 0.175 5.7×10-12 PLTP HDLC 
rs6065906 20 0.039 0.006 1.4×10-09 0.043 0.006 1.5×10-13 PLTP TG 
rs571312 18 0.281 0.055 2.8×10-07 0.209 0.049 1.7×10-05 MC4R BMI 
rs6734238 2 -1.164 0.388 2.7×10-03 -1.358 0.385 4.1×10-04 IL1F10 TC 
Abbreviations: BMI, body mass index; chr, chromosome; CRP, C-reactive protein; HbA1C, haemoglobin A1C; 
HDLC, HDL-cholesterol; LDLC, LDL-cholesterol; se, standard error; SNP, single-nucleotide polymorphism; TC, total 
cholesterol; TG, triglycerides 
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Table S5. Pathway analysis results from the 13 pleiotropic genes. 

aSignificant at False Discovery Rate of 5 percent. 

  

Caninocal Pathway p-valuea 
FXR/RXR Activation 7.4×10-9 

LXR/RXR Activation 4.6×10-5 
Maturity Onset Diabetes of the Young (MODY) signaling 7.6×10-5 
Hepatic Cholestasis 1.1×10-4 
Acute Phase Response signaling 1.3×10-4 
LPS/IL-1 Mediated Inhibition of RXR function 2.6×10-4 
Role of Macrophages, Ficorblasts and Endothelial Cells in Rheumatoid 
Arthritis 

6.6×10-4 

IL-6 signaling 2.1×10-3 
Atherosclerosis Signaling 2.4×10-3 
Acyl-CoA Hydrolysis 7.2×10-3 
Role of Osetoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis 7.4×10-3 
Systemic Lupus Erythematosus Signaling 7.5×10-3 
Colorectal Cancer Metastasis Signaling 8.5×10-3 
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Background: Genome-wide association studies (GWAS) have identified multiple genetic loci 
for C-reactive protein (CRP) and lipids, of which some overlap. We aimed to identify genetic 
pleiotropy among CRP and lipids in order to better understand the shared biology of chronic 
inflammation and lipid metabolism.  
 
Methods: In a bivariate GWAS, we combined summary statistics of published GWAS on CRP 
(n=66,185) and lipids, including LDL-cholesterol, HDL-cholesterol, triglycerides, and total 
cholesterol (n=100,184), using an empirical weighted linear-combined test statistic. We 
sought replication for novel CRP associations in an independent sample of 17,743 
genotyped individuals, and performed in silico replication of novel lipid variants in 93,982 
individuals. 
 
Results: Fifty potentially pleiotropic SNPs were identified among CRP and lipids: 21 for LDL-
cholesterol and CRP, 20 for HDL-cholesterol and CRP, 21 for triglycerides, and CRP and 20 
for total cholesterol and CRP. We identified and significantly replicated three novel SNPs for 
CRP in or near CTSB/FDFT1 (rs10435719, P-valuereplication: 2.6×10-5), STAG1/PCCB (rs7621025, 
P-valuereplication: 1.4×10-3) and FTO (rs1558902, P-valuereplication: 2.7×10-5). Seven pleiotropic 
lipid loci were replicated in the independent set of MetaboChip samples of the Global Lipids 
Genetics Consortium. Annotating the effect of replicated CRP SNPs to the expression of 
nearby genes, we observed an effect of rs10435719 on gene expression of FDFT1, and an 
effect of rs7621025 on PCCB.  
 
Conclusion: Our large scale combined GWAS analysis identified numerous pleiotropic loci 
for CRP and lipids providing further insight in the genetic interrelation between lipids and 
inflammation. In addition, we provide evidence for FDFT1, PCCB and FTO to be associated 
with CRP levels. 
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Introduction 
 
Genome-wide association studies (GWAS) have identified hundreds of genetic loci for 
cardiovascular disease and it’s risk factors, including chronic inflammation and lipids1,2,3. 
Some of the identified genetic variants are associated with more than one phenotype, 
termed genetic pleiotropy4. Examples are APOC1(rs4420638) and HNF1A (rs1183910), 
which are associated both with lipids and C-reactive protein (CRP)2,3. As randomized clinical 
trials have shown a coextending effect of statin treatment on the lowering of LDL-
cholesterol and CRP, we do expect inflammation and lipids to share certain biological 
pathways5,6. Moreover, there is accumulating evidence that the pleiotropic effects are 
partially independent, although the biological mechanisms are not fully understood7. The 
identification of further pleiotropic genes could provide insight into the biological 
mechanisms that link chronic inflammation to lipids. 
Therefore, we aimed to identify further shared genes for lipids and CRP. In order to enhance 
the statistical power of genetic studies to find pleiotropic genes for the correlated 
phenotypes of interest, we applied a method that combines GWAS meta-analysis summary 
statistics allowing for mixed directions of effect, a common observed phenomenon in 
genetic pleitropy8. In a second step we sought to replicate novel associations with lipids and 
CRP in an independent sample of 93,982 genotyped individuals for lipids and 17,743 
genotyped individuals for CRP. We identified multiple overlapping genetic variants between 
CRP and lipids and confirmed novel genes implicated in the biology of chronic inflammation. 
 
Methods 
 
The present study includes three stages. First, we performed a bivariate GWAS combining 
published GWAS data on CRP and lipids to identify pleiotropic variants for CRP and lipids. In 
a second step, we sought replication of novel associations in independent samples of 
genotyped individuals. Finally, we carried out functional analyses in a third step to point out 
potential underlying transcriptional mechanisms. 
We used the data from the largest published GWAS on CRP as well as the publicly available 
GWAS on lipids from GLGC to explore the genetic pleiotropy between inflammation and 
lipids2,3. We combined summary association test statistics from the CRP GWAS separately 
with the GWAS on HDL-cholesterol, LDL-cholesterol, triglycerides and total cholesterol. The 
CRP GWAS meta-analysis included 65,000 individuals from 15 different studies in the 
discovery panel and after replication, 18 loci were genome-wide significantly associated 
with serum CRP level3. The lipids GWAS comprised 100,184 individuals for total cholesterol, 
95,454 for LDL-cholesterol, 99,900 for HDL-cholesterol and 96,598 for triglycerides across 
46 studies. The lipid GWAS identified a total of 95 lipid loci (52 for total cholesterol, 37 for 
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LDL-cholesterol, 47 for HDL-cholesterol and 32 for triglycerides)2. The CRP and lipids GWAS 
used HapMap imputed data (build 36). All studies that contributed genotype data to the 
CRP GWAS also contributed data to the lipids GWAS. We ensured that effect alleles were 
harmonized across the two GWAS before applying the bivariate GWAS method. Overall, 
2,501,549 common Single Nucleotide Polymorphisms (SNPs) were tested for their 
association with CRP and total cholesterol, 2,501,711 with CRP and triglycerides, 2,501,543 
with CRP and HDL-cholesterol and 2,501,749 with CRP and LDL-cholesterol. An aggregated 
p-value was calculated using the method described below. 
 
Bivariate Genome-Wide Association Study 
To better understand the shared biology of CRP and lipids by further identifying shared 
genes between CRP and lipids, we aimed to increase power by combining the summary 
statistics from the CRP and lipid GWAS. We chose to use a recently introduced method that 
performs bivariate GWAS allowing for mixed directions of effect. The method combines 
summary statistics (Z test statistics) from univariate GWAS of CRP pairing with the summary 
statistics of each univariate GWAS meta-analysis of lipid phenotypes, using an empirical-
weighted linear-combined test statistics (eLC), implemented in a C++ eLX package. We have 
recently used this method in the identification of pleiotropic genes for menopause and 
menarche and the details of the method are presented elsewhere8,9. eLC allows having 
opposite direction of effect on the combined phenotypes, which is common between CRP 
and cholesterol phenotypes2,3. Briefly, eLC directly combines correlated Z test statistics 
(calculated as β/SE derived from the original GWAS) obtained from univariate GWAS meta-
analyses with a weighted sum of univariate test statistics to empirically maximize the overall 
association signals and also to account for the phenotypical correlations among CRP and 
lipids. Our eLC approach is expressed as 

𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 =  ∑[max(|𝑇𝑇𝑘𝑘|, 𝑐𝑐)∗ |𝑇𝑇𝑘𝑘|]
𝑘𝑘

1
 

where Tk is a matrix of K statistics for K phenotypes (for bivariate, K is equal to 2) and c is a 
given non-negative constant. The optimal weighting is estimated empirically using the 
Monte Carlo Simulation10 and the bona-fide p-values for eLC test statistics are calculated 
through permutation. The sample covariance matrix of the test statistics of all SNPs from 
the univariate GWAS analyses is used as an approximation of the variance-covariance matrix 
Σ of univariate test statistics. Σ: 

[  Var(Z1)    Cov(Z1,𝑍𝑍2)  
Cov(Z1, Z2)  Var(Z2) ] 

where Z1 and Z2 consist of unbiased univariate test statistics of all the SNPs for the two traits 
on genome-wide scale for the first (Z1) and second (Z2) trait. The null hypothesis in the 
bivariate analysis is β_1=0 AND β_2=0; the H1 is β_1 not equal to 0 or β_2 not equal to 0. 
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The results were considered genome-wide significant when (1) the bivariate p-values were 
< 5×10-8 and (2) the bivariate p-value was at least one order of magnitude lower than both 
individual trait p-values and (3) when the individual trait p-values were at least nominally 
significant (p-value<0.05). When multiple SNPs were significant in a locus, the SNP with the 
lowest p-value was chosen for replication. The eLC method is implemented in eLX package 
using C++ (see Weblinks). 
 
Replication Study 
The bivariate GWAS resulted in three possible scenarios. First, the pleiotropic variant or the 
locus harboring the pleiotropic variant (defined as ±500MB of the pleiotropic SNP) was 
genome-wide significant in both the primary univariate GWAS of CRP and the lipid trait. 
Second, the pleiotropic signal was significant in either the CRP or the lipid univariate GWAS. 
Third, the pleiotropic signal was neither genome-wide significant in the CRP nor in the lipid 
GWAS. Per definition, a variant is considered pleiotropic when there is robust evidence for 
an association with two or more phenotypes. Therefore, we only selected the variants that 
were not genome-wide significant in the primary univariate GWAS for replication in an 
independent sample of genotyped samples. We intended to replicate the novel associations 
with CRP levels in three cohort studies that did not contribute to the original CRP GWAS. 
The independent cohorts were the second (n=1,943) and third (n=2,962) cohort of the 
Rotterdam Study and the LifeLines cohort study (n=12,838; supplementary method) 11,12. 
The total sample size for the replication of potentially novel CRP variants comprised 17,743 
individuals. In an attempt to replicate the potential novel lipid variants, we performed an in 
silico replication in the publicly available association results from the participants of the 
GLGC that did not contribute to the original lipids GWAS we used for the pleiotropy analysis. 
This replication set comprises 93,982 individuals genotyped using the Metabochip array13, 

14. For the SNPs that were not available on the Metabochip, we selected the best available 
proxy SNP on the Metabochip for replication (r2>0.5). We used a Bonferroni corrected p-
value of 0.05 divided by the number of SNPs tested for replication as a threshold of 
significance in the replication study. 
 
Expression Quantitative Trait Loci (eQTL) 
In an attempt to annotate the pleiotropic variants to a pleiotropic gene, we searched in 
tissues related to lipids and inflammation for eQTL effects of the pleiotropic variants or 
reasonable proxy variants (r2>0.80).  
The eQTL analyses in whole blood comprised 5,311 individuals from seven studies in the 
discovery setting with both genetic and gene expression data available15. The discovery 
meta-analysis including the seven studies (EGCUT, InCHIANTI, Rotterdam Study, Fehrmann, 
HVH, SHIP-TREND and DILGOM). Results are publicly available (access URL: 
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http://genenetwork.nl/bloodeqtlbrowser/). eQTLs were deemed cis when the distance 
between the SNP and the midpoint of the RNA probe was <250kb. We only considered a 
significant eQTL effect of the pleiotropic SNP when the p-value exceeded the FDR corrected 
threshold for multiple testing.  
We searched for liver eQTL effects by use of the eQTL browser provided by the university 
of Chicago ( access URL: http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/). The liver tissue 
dataset by Schadt et al. comprised 427 individuals from European ancestry with liver specific 
gene expression and genotyping data available16. An eQTL was deemed cis when the SNP 
was within 1Mb of the annotated start or stop site of the corresponding structural gene. 
The authors used an FDR correction of 10% for a significant association. The dataset by 
Innocenti et al. comprised 266 individuals from 2 different studies. Cis eQTL was defined as 
<250kb from the gene transcription start site and the FDR for significant association was set 
to 5%17.  
We used the GTEx adipose tissue dataset (access URL: 
http://www.gtexportal.org/home/eqtls/tissue?tissueName=Adipose_Subcutaneous) to 
search for potential eQTLs in adipose tissue. The dataset consisted of 111 individuals with 
both gene expression and genotype data available18 Cis radius was defined as +/- 1mb from 
transcription start site. An eQTL was deemed significant when the FDR q-value<=5%. 
 
Results 
 
Bivariate Genome-Wide Association Analysis 
Manhattan plots for the bivariate GWAS are depicted in Figure 1. Table 1 indicates the 
results from the bivariate analysis combining CRP and LDL-cholesterol genetic association 
data. The bivariate analysis resulted in 21 potentially pleiotropic loci. We identified fourteen 
loci associated with CRP levels which had no genome-wide significant SNP in the original 
GWAS of CRP. These potential novel associations were located in or near CELSR2, IRF2BP2, 
ABCG8, GCNT4, HLA-DQB1, FRK, TRIB1, FADS2, ST3GAL4, BRAP, C12orf51, CARM1/LDLR, 
NCAN and RASIP1. The potential novel associations for LDL-cholesterol were located in or 
near GCKR, IL1F10, RORA, RASIP1 and in HNF4A. The SNPs identified in the bivariate GWAS 
near HLA-DQB1, FRK, BRAP, c12orf51 and CARM1/LDLR were not genome-wide significant 
in the original univariate GWAS on LDL-cholesterol, however other SNPs in their vicinity 
were significant in the original GWAS on LDL-cholesterol and the loci have thus been 
reported previously. The variants in and near PPP1R3B, HNF1A and APOC1 were already 
genome-wide significant in both GWAS of CRP and LDL-cholesterol. 
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We identified 20 potential pleiotropic SNPs (Table 2). The variants near CELSR2, STAG1, HLA-
DRA, JMJD1C, FADS1, LIPC, CETP, LYPLA3, LIPG and MC4R were not genome-wide significant 
in the original CRP meta-GWAS analysis. Seven SNPs were potentially novel for both CRP 
and HDL-cholesterol: the SNP rs12742376 located in C1orf172 on chromosome 1 (Pbivariate = 
1.4×10-8) , rs7621025 in STAG1 on chromosome 3 (Pbivariate=1.2×10-9), rs9378212 near HLA-
DRA (Pbivariate=6.7×10-10), rs10761731 in JMJD1C (Pbivariate=2.2×10-8), rs1936797 in RSPO3 on 
chromosome 6 (Pbivariate=6.7×10-9), rs4871137 near SNTB1 (Pbivariate=3.3×10-8) on 
chromosome 8 and the FTO SNP rs1558902 (Pbivariate=5.0×10-9) on chromosome 16. The 
variants near CELSR2 and PLTP were not significant in the original GWAS on HDL-cholesterol, 
but these loci were identified in the original GWAS. The variants in or near PABPC4, BAZ1B, 
PPP1R3B, APOC1 and HNF4A were already genome-wide significant in both the CRP and 
HDL-cholesterol univariate GWAS. 
Table 3 lists the 21 potentially pleiotropic SNPs that were identified combining the GWAS 
results of triglycerides and CRP. For triglycerides, we identified eleven potential novel 
associations compared to the original GWAS located in or near PABPC4, LEPR, ADAR, CRP, 
IL1F10, PPP1R3B, CTSB/FDFT1, ARNTL, CABP1, MC4R and HPN. The variant near PLA2G6 was 
not genome-wide significant in the original GWAS, but this locus was identified in the 
original GWAS. The variants in and near ADAR, MSL2L1, HLA-C, CTSB/FDFT1, LPL, ARNTL, 
FADS1, CETP, MC4R, SF4, HPN, ZNF335/PLTP and PLA2G6 were potential novel associations 
with CRP level. Five loci were not genome-wide significant in either the original GWAS on 
CRP or triglycerides: the SNP rs1127311 within ADAR on chromosome 1 (Pbivariate=6.4×10-9), 
rs10435719 located 77Kb upstream of CTSB on chromosome 8 (Pbivariate=2.0×10-10), 
rs10832027 located in the second intron of ARNTL on chromosome 11 (Pbivariate=9.4×10-9), 
rs571312 on chromosome 18 near MC4R (Pbivariate=2.8×10-8), and the chromosome 19 
rs1688043 in the fifth intron of HPN (Pbivariate=4.1×10-8). In both the original GWAS of CRP 
and triglycerides, GCKR and APOC1 were already genome-wide significant. 
Twenty potentially pleiotropic SNPs were identified combining CRP and total cholesterol 
(Table 4). The SNPs in or near ZNF644, SLC44A4, C7orf50 and RORA were potentially novel 
for total cholesterol. The variants near HLX, ABCG5, IL1F10, C7orf60 and CARM1 were not 
genome-wide significant in the GWAS on total cholesterol, but the loci were identified in 
this original GWAS. For CRP, ZNF664, CELSR2, HLX, IRF2BP2, ABCG5, GCNT4, SLC44A4, HLA-
DQB1, FRK, ST3GAL4, CARM1 and NCAN were potentially novel compared to the univariate 
GWAS. The SNPs near ZNF644 and C7orf50 were novel pleiotropic loci for both CRP and 
total cholesterol.  
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Replication of the Novel Pleiotropic Loci 
In total, we sought replication for 36 potential novel SNPs for CRP in 17,743 genotyped 
individuals from three independent cohort studies. Using a Bonferroni corrected threshold 
for multiple testing (0.05/36=1.4×10-3), three SNPs remained significantly associated with 
CRP levels when we performed replication analysis (Supplementary table I). These variants 
included the SNPs rs10435719 in CTSB/FDFT1 (Preplication=2.6×10-5), rs1558902 near FTO 
(Preplication=2.7×10-5) and rs7621025 near STAG1 (Preplication=1.4×10-3).  
We aimed replication for 23 potential novel SNPs for lipids (4 for LDL-cholesterol, 7 for HDL-
cholesterol, 9 for triglycerides and 3 for total cholesterol) in an in silico analysis including 
93,982 individuals. We could significantly replicate 2 variants for LDL-cholesterol (HNF4A 
and RASIP1), three for HDL-cholesterol (C1orf172, RSPO3 and STAG1), one for triglycerides 
(CTSB) and one for total cholesterol (C7orf50) (Supplementary table II). 
 
Expression Quantitative Trait Loci (eQTL) 
To annotate the effect of the replicated pleiotropic variants to the expression level of 
nearby genes, we investigated the association between the pleiotropic variants and gene 
expression levels in three different tissues relevant to CRP and lipids by use of large publicly 
available datasets: whole blood (n=5,311)15, liver (n=42716 and 26617) and adipose 
tissue(n=111)18. For the replicated pleiotropic variant rs10435719 near CTSB and FDFT1, we 
observed significant associations in whole blood with expression levels of two genes: CTSB 
itself (P-value=1.67×10-6), and FDFT1 (P-value=1.10×10-96). In addition, the SNP rs7621025 
near STAG1 and PCCB was strongly associated with expression of the gene PCCB in whole 
blood (P-value=1.1×10-40). No eQTL effect was observed in the liver and adipose tissue. 
 
Discussion 
 
We identified fifty potential pleiotropic SNPs which affect both CRP and lipid levels, of which 
we replicated three novel CRP variants: rs10435719 (CTSB/FDFT1), rs7621025 
(STAG1/PCCB) and rs1558902 (FTO). In silico expression analyses suggested a role for 
rs10435719 in the gene expression of both CTSB and FDFT1 and rs7621025 appeared to 
have an effect on the gene expression of PCCB.  
The locus harboring rs10435719 near CTSB and FDFT1 that was identified for CRP in our 
study has previously been identified for triglycerides in the joint analysis of the Global Lipids 
Genetics Consortium combining GWAS data with Metabochip association results14. We 
observed a significant effect of rs10435719 on the expression of both CTSB and FDFT1. The 
effect of the CRP increasing allele (T) was weakly associated with a decrease in the 
expression of CTSB, whilst we observed a strong association of the T-allele with an increase 
of FDFT1 gene expression. FDFT1 encodes the enzyme squalene synthase which is involved 
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in the cholesterol biosynthesis19. Apart from lipids, FDFT1 has been identified in a GWAS on 
fatty liver disease20. Squalene Synthase Inhibitors (SSI) have been developed and are 
successful in the reduction of cholesterol levels as well as CRP levels21. This pleiotropic effect 
of cholesterol synthesis blockers on both lipid levels and inflammation is thought to be the 
consequence of altered isoprenoids levels that may activate pro-inflammatory pathways22. 
The observation that the CRP increasing allele is associated with an increase in FDFT1 gene 
expression suggests an effect of rs10435719 on serum CRP through FDFT1. However, we 
searched in large databases to identify robust eQTL effects of the novel variants. Therefore, 
we were unable to test the association between the expression and CRP and we cannot 
draw a firm conclusion on the causal effect of the gene expression in the association 
between the genetic variant and CRP. 
We identified the SNP rs7621025 (STAG1/PCCB) as a pleiotropic variant for HDL-cholesterol 
and CRP. We confirmed the effect of rs7621025 on serum CRP in an independent set of 
individuals and this genomic region has been identified in a GWAS of lipids14. The SNP 
rs7621025 is located within STAG1, but has a strong effect on the expression of PCCB, 
located ±300kb downstream of rs7621025 on chromosome 3. PCCB has been identified in a 
GWAS of the protein fibrinogen, an acute phase response protein sharing many genes with 
CRP23. Our results provide further evidence that the PCCB gene is involved in inflammation.  
We identified the FTO gene as a pleiotropic locus for CRP and HDL-cholesterol. The A allele 
of rs1558902 was associated with an increase of CRP and a decrease in HDL cholesterol. In 
several GWAS on BMI, the A allele of rs1558902 was also associated with an increase in 
BMI24,25. Previous studies have highlighted the causal effect of obesity on inflammation26, 
and the effect directions are consistent with mediation of both the association with CRP 
and HDL-cholesterol by BMI. We have previously shown that the effect of FTO on CRP is 
indeed mediated through BMI27. Further research is needed to demonstrate whether this is 
also true for HDL-cholesterol. Our results provide further evidence for the role of obesity in 
inflammation and highlight the pleiotropic effects of the FTO locus on both chronic 
inflammation and lipid metabolism. 
Genetic pleiotropy can be divided in biological and mediated pleiotropy4. In biological 
pleiotropy, the effect of the pleiotropic variant on two or more phenotypes is independent. 
In mediated pleiotropy, one phenotype mediates the association between the genetic 
variant and the second phenotype. Both biological and mediated pleiotropic effects may 
occur for CRP and lipids28. In the current study, we did not disentangle the different 
subtypes of pleiotropy. Moreover, we observed pleiotropic variants with an opposite 
direction of effect than expected based on the phenotypical correlation in observational 
epidemiological studies. In biological pleiotropy, opposite directions of effect may occur. As 
an example, although CRP and LDL-cholesterol are positively associated in observational 
epidemiological studies, the A-allele of the SNP rs1183910 (HNF1A) is associated with lower 
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CRP levels but higher LDL-cholesterol. Opposite direction of effects are often seen in genetic 
studies and highlight the complex interplay between correlated phenotypes, in our study 
CRP and lipids25. We did not disentangle the different subtypes of pleiotropy, which is a 
limitation of the current study. 
Our study has certain strengths. We add to previous studies showing that the multivariate 
method we applied can be effectively utilized to identify potential novel and pleiotropic loci. 
This method only requires GWAS summary data instead of individual level data from all 
participating cohorts. Thanks to close collaboration between studies across the world, 
researchers have performed large GWAS meta-analyses for a vast amount of phenotypes 
and this data is available for further research. Second, we used the largest GWAS meta-
analyses that have so far been done on CRP and lipid levels to identify pleiotropic genetic 
loci. By doing so, we enhanced the statistical power to detect these loci considerably. Third, 
we provided robust evidence for three novel CRP loci by replication in an independent 
sample of genotyped individuals. A limitation of the bivariate meta-analysis is that very 
strong signals in one of the individual traits may overshadow the weak association with the 
other phenotype. We set a criterion for the univariate p-values <0.05 to minimize the 
chance of false positive findings. In many instances the effect of the pleiotropic loci on CRP 
or lipids is very small. We did not replicate all our pleiotropic loci. This could be due to lack 
of power in the replication. In concordance, we replicated a larger proportion of the lipid 
variants in the larger lipid replication sample compared to CRP. Also, variants closer to 
significance did replicate in the replication study of both CRP and lipids. Also, several 
variants had substantial heterogeneity I2 in the replication which lowers the power for 
replication. Furthermore, the replication sample size was for some variants smaller than 
17,743 due to absence of the variants in one or more of the replication studies. However, 
we cannot rule out the possibility that bivariate p-values are driven by strong associations 
with one of the phenotypes and produce false positive results. In addition, for the 
replication of the lipid variants, we used the Metabochip results from the GLGC. Several 
variants selected for replication were not present on the Metabochip. Although we selected 
the best available proxy SNP for replication, variants in moderate LD may have limited 
power for replication. The method used in the current manuscript to prioritize variants with 
pleiotropic effects among inflammation and cholesterol are hypothesis generating and 
further functional work regarding the role of the identified variants in cholesterol 
metabolism and inflammation is necessary. 
In conclusion, our results provide evidence for substantial overlap in genetic susceptibility 
for chronic inflammation and lipid metabolism. In addition, through bivariate genome-wide 
association studies and replication in an independent sample of individuals we could 
identify novel genes for CRP.  
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Background: Vitamin D deficiency is widely prevalent and has been associated with many 
diseases. It has been suggested that vitamin D has effects on the immune system and 
inhibits inflammation. The aim of our study was to investigate whether vitamin D has an 
inhibitory effect on systemic inflammation by assessing the association between serum 
levels of vitamin D and C-reactive protein.   
 
Methods: We studied the association between serum 25-hydroxyvitamin D and C-reactive 
protein through linear regression in 9,649 participants of the Rotterdam Study, an 
observational, prospective population-based cohort study. We used genetic variants related 
to vitamin D and CRP to compute a genetic risk score and perform bi-directional Mendelian 
randomization analysis.  
 
Results: In linear regression adjusted for age, sex, cohort and other confounders, natural 
log-transformed CRP decreased with 0.06 (95% CI: -0.08, -0.03) unit per standard deviation 
increase in 25-hydroxyvitamin D. Bi-directional Mendelian randomization analyses showed 
no association between the vitamin D genetic risk score and lnCRP (Beta per SD=-0.018; p-
value=0.082) or the CRP genetic risk score and 25-hydroxyvitamin D (Beta per SD=0.001; p-
value=0.998).  
 
Conclusion: Higher levels of Vitamin D are associated with lower levels of C-reactive protein. 
In this study we did not find evidence for this to be the result of a causal relationship.  
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Introduction 
 
Low vitamin D levels are present in up to 50% of the adult population in developed 
countries1. The most important causes for low vitamin D are lack of sun exposure, which 
leads to inadequate production of the precursor of vitamin D in the skin, and insufficient 
nutritional intake. The vitamin D receptor is present on immune cells, such as monocytes 
and T-helper cells. Therefore it is speculated that vitamin D could have effect on immune 
response and chronic inflammation2,3,4. Inflammation is known to be involved in several 
complex disorders, potentially through its influence on cell growth, tissue damage, 
pancreatic beta-cell failure and the development of atherosclerosis5. Previous studies 
investigating the association between vitamin D and inflammation have shown inconsistent 
results6,7,8,9,10,11,12,13,14,15. Some studies found inverse associations between serum vitamin D 
and inflammatory markers, yet due to the observational nature of these studies the 
question of causality remains unanswered8,9. 
Conclusions about causality cannot be drawn merely based on the presence of an 
association in an observational design. A complementary alternative is to apply the 
Mendelian randomization approach, in which the relationship between a genetic 
determinant of a predictor variable and a specific outcome is studied (Figure 1)16,17. If there 
is indeed a causal effect of vitamin D on inflammation as measured with C-reactive protein 
(CRP), genetic determinants related to vitamin D should be associated with CRP levels In 
turn, if inflammation would lower vitamin D levels, genetic determinants of CRP would be 
expected to be associated with vitamin D levels. These associations are less prone to 
confounding, since the genetic variants are inherited randomly and do not associate with 
any other factors. Moreover, reverse causation is unlikely, due to the constant nature of 
genetic variants over their life course16,17.  
 
Figure 1. Concept of Mendelian randomization 

 
 
We investigated the association between serum 25-hydroxyvitamin D and CRP in the 
Rotterdam Study, a prospective population–based cohort. Furthermore, we evaluated a 
potential causal effect by using genetic variants in bi-directional Mendelian randomization 
analysis.  
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Methods 
 
Study population 
This study was conducted among participants of the first (RSI), second (RSII) and third (RSIII) 
cohort of the Rotterdam Study, a prospective population-based cohort study that has been 
ongoing since 1989 in the district of Ommoord in the city of Rotterdam, The Netherlands. 
The design of this study has been described previously18,19. In brief, residents aged 55 and 
over living in the district of Ommoord in Rotterdam, the Netherlands, were invited to 
participate. Seventy-eight percent of the invitees agreed to participate and were included 
in the first study cohort (n=7,983). In 1999 the study was extended with a second cohort, 
comprising 3,011 subjects that had reached the age of 55 years and over. Finally, a third 
cohort consisting of 3,932 subjects aged 45 and over was included in 2006, after which the 
study population totals 14,926 subjects. The study was approved by the medical ethics 
committee at Erasmus University Rotterdam. All participants gave written informed 
consent. 
 
25-hydroxyvitamin D 
Plasma levels of 25-hydroxyvitamin D were measured in non-fasting samples of 1,428 
subjects at the first visit of RSI (RSI-1) and 3,799 samples at the third visit of RSI (RSI-3), of 
which 1,323 were overlapping. Plasma 25-hydroxyvitamin D was measured in fasting 
samples of 2,464 and 3,420 subjects at the first visits of RSII (RSII-1) and RSIII (RSIII-1) 
respectively.  
In RSI-1, 25-hydroxy vitamin D (25OHD) serum levels were measured using a 
radioimmunoassay (IDS Ltd, Boldon, UK, available at www.idsltd.com). This test detects 
levels within a range of 4 to 400 nmol/l, with a sensitivity of 3 nmol/l, a within-run precision 
<8% and a total precision <12%. Measurements in RSI-3, RSII-1 and RSIII-1 were done using 
an electrochemiluminescense-based assay (Elecsys Vitamin D Total, Roche Diagnostics, 
Mannheim, Germany). This test detects levels within a range of 7.50 - 175 nmol/l, with a 
sensitivity of 10 nmol/l, a within-run precision <6.5% and a total precision <11.5%.  
 
C-reactive protein 
At RSI-1, plasma levels of CRP were measured in non-fasting samples of 6,569 subjects, and 
at RSI-3 in 3,986 subjects, of which 3,694 were overlapping. The samples were put on ice 
immediately and were processed within 30 minutes. Samples were kept frozen at -20°C until 
CRP was measured. High-sensitivity CRP was measured using a rate near-infrared particle 
immunoassay (IMMAGE Immunochemistry System, Beckman Coulter, Fullerton, CA). This 
system detects concentrations from 0.2 to 1,440 mg/l, with a within-run precision <5.0%, a 
total precision <7.5%, and a reliability coefficient of 0.995. 
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In RSII-1 and RSIII-1, plasma levels of CRP were measured in fasting samples of 2,512 and 
3,440 subjects respectively. CRP was measured using a particle enhanced 
immunoturbidimetric assay (Roche Diagnostics, Mannheim, Germany), which detects 
concentrations from 0.3-350 mg/l, with a sensitivity of 0.6 mg/l. 
 
Genotyping 
Genotyping was done using genomic DNA extracted from peripheral venous blood samples 
according to standard procedures. Genotyping was performed with the version 3 Illumina 
Infinium HumanHap 550K chip RSI and RSII and the Illumina Infinium HumanHap 610 Quad 
chip in RSIII. SNPs with allele frequency ≤1%, Hardy–Weinberg equilibrium P-value<10–6, or 
SNP call rate <98% were excluded. Imputation was performed with 1000 Genome phase I, 
version 3 as the reference panel using the maximum likelihood method implemented in 
MACH20,21. We selected four vitamin D related SNPs based on a genome-wide association 
study (GWAS) on serum 25-hydroxyvitamin D22. For C-reactive protein, we selected 18 SNPs 
from the latest available GWAS on serum C-reactive protein23. The selected SNPs are listed 
in Table 1. 
 
Table 1. SNPs associated with 25-hydroxyvitamin D or C-reactive protein. 
SNP Associated with Risk Allele Nearest Gene 
rs12785878 25-hydroxyvitamin D G DHCR7 
rs10741657 25-hydroxyvitamin D G CYP2R1 
rs2282679 25-hydroxyvitamin D G GC 
rs6013897 25-hydroxyvitamin D A CYP24A1 
rs2794520 C-reactive protein C CRP 
rs4420638 C-reactive protein A APOC1 
rs1183910 C-reactive protein G HNF1A 
rs4420065 C-reactive protein C LEPR 
rs4129267 C-reactive protein C IL6R 
rs1260326 C-reactive protein T GCKR 
rs12239046 C-reactive protein C NLRP3 
rs6734238 C-reactive protein G IL1F10 
rs9987289 C-reactive protein A PPP1R3B 
rs10745954 C-reactive protein A ASCL1 
rs1800961 C-reactive protein C HNF4A 
rs340029 C-reactive protein T RORA 
rs10521222 C-reactive protein C SALL1 
rs12037222 C-reactive protein A PABPC4 
rs13233571 C-reactive protein C BCL7B 
rs2847281 C-reactive protein A PTPN2 
rs6901250 C-reactive protein A GPRC6A 
rs4705952 C-reactive protein G IRF1 
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Covariates 
Body Mass Index (BMI) was calculated as weight in kilogram divided by the square height in 
meters. Height and body weight were measured while the participants wore indoor clothing 
and no shoes. Blood pressure was defined as the mean of two consecutive measurements, 
which were obtained by trained research assistants from the right brachial artery, with the 
patient in a sitting position.  
Total cholesterol and high-density lipoprotein were measured with standard laboratory 
techniques, after which the TC/HDL ratio was calculated. Prevalent diabetes mellitus was 
defined as a fasting serum glucose≥7.0 mmol/l, a non-fasting serum glucose≥11.1 mmol/l 
and/or use of anti-diabetic medication. The abbreviated modification of diet in renal disease 
(MDRD) equation was used to estimate glomerular filtration rate24. Smoking habits were 
divided in three categories: former smoker, current smoker and never smoker. Information 
on current health status, medical history, medication use, alcohol use, smoking behavior 
and education was obtained by trained research assistants during home visits. Level of 
education was categorized according to the International Standard Classification of 
Education.25 Bone mineral density measurement of the femoral neck was performed by dual 
energy X-ray absorptiometry (DXA) (Lunar DPX-L densitometer, Madison, WI, USA)26. From 
these measurements, sex-specific T-scores were calculated using the NHANES reference 
population of Caucasian males and females aged 20 to 29 years27. 
  
Statistical analysis 
To assess the relation between 25-hydroxyvitamin D and CRP we performed linear 
regression analysis. Due to its right skewed distribution, CRP levels were natural log-
transformed prior to analysis. Participants with values larger than 4 standard deviations 
from the mean in natural log-transformed CRP (lnCRP) and/or 25-hydroxyvitamin D were 
excluded from the analyses. 
In the first model, we assessed the association between lnCRP and 25-hydroxyvitamin D in 
samples taken from RSI-3, RSII-1 and RSIII-1, adjusting for age, sex and cohort. In the second 
model, additional adjustments were made for variables including body mass index (BMI), 
total cholesterol to high-density lipoprotein ratio (TC/HDL ratio), systolic blood pressure 
(SBP), smoking status, alcohol intake, estimated glomerular filtration rate (eGFR), prevalent 
type 2 diabetes mellitus (DM), season of blood drawing and level of education. We also 
performed stratified linear regression analysis for deficient (<50 nmol/l), insufficient (50 – 
75 nmol/l) and sufficient (>75 nmol/l) plasma levels of vitamin D, in accordance with the 
guidelines of the Endocrine Society28. Additionally, we repeated these analyses in a 
quadratic model, in which we added a variable for squared 25-hydroxyvitamin D to assess 
whether the relation between 25-hydroxyvitamin D and CRP was non-linear. To account for 
potential confounding by use of vitamin D supplements, we repeated our analyses in a 
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subset of RSI-3 (n=2,746), which we adjusted for prevalent osteoporosis as a proxy for 
supplement use. 
We constructed a genetic risk score (GRS) by adding the 25-hydroxyvitamin D lowering 
alleles (coded 0–2) from each selected SNP for each individual22. For C-reactive protein, we 
created a similar genetic risk score from 18 CRP related SNPs, with the effect allele being 
the CRP raising allele23. We performed linear regression analysis to confirm the association 
between the genetic risk scores and their respective phenotypes. We then performed bi-
directional Mendelian randomization analyses. First, we tested the associations between 
individual 25-hydroxyvitamin D related SNPs and lnCRP and corrected them using 
Bonferroni correction29. We used age, sex and cohort adjusted linear regression to examine 
the effect of the GRS for 25-hydroxyvitamin D on lnCRP and the effect of the GRS for CRP 
on 25-hydroxyvitamin D. Furthermore, we used a method proposed by Dastani et al. to 
approximate the effect of the GRS for 25-hydroxyvitamin D on lnCRP using data of a CRP 
GWAS with a sample size of 66,185 so we would be able to achieve greater power23,30. 
For all but one variable, less than 2% of participants had missing data. For alcohol intake the 
percentage missing was 6.7%. We used multiple imputation, creating 5 datasets, to 
complete cases with missing values for the variables included in our analysis. We did not 
impute 25-hydroxyvitamin D or C-reactive protein levels, but we did enter them as predictor 
variables in our imputation model. An overview of missing data is given in Table S1.  
Tests were considered statistically significant at p-values lower than 0.05. Analyses were 
performed with IBM SPSS Statistics version 21.0. 
 
Results 
 
Characteristics of the population under study are shown in Table 2, categorized according 
to vitamin D status. The mean age of the participants was 64.9 years and 43.2 % were male. 
The mean plasma 25-hydroxyvitamin D level was 55.9 nmol/l (SD 27.6) and median CRP was 
1.6 mg/l (IQR: 0.70–3.55). Study participants that had data on 25-hydroxyvitamin D 
available (n=9,649) were divided in groups of sufficient vitamin D levels (n=2,294), 
insufficient levels (n=2,784) or deficient levels (n=4,571). Participants from the population 
eligible for analysis were younger, had lower blood pressure, a lower prevalence of diabetes 
and a higher education than those from the non-eligible population (Table S2). After 
correcting for age, the differences in systolic blood pressure and alcohol intake disappeared.  
Table 3 shows the results of the linear regression analysis of lnCRP on 25-hydroxyvitamin D. 
In the age, sex and cohort adjusted linear regression, lnCRP decreased with 0.13 unit (95% 
CI: -0.15, -0.11) per standard deviation increase in 25-hydroxyvitamin D. There was a 
consistent trend across the three different categories of vitamin D levels (p-value=4.98×10-

25). After further adjustment for BMI, SBP, eGFR, TC/HDL ratio, alcohol intake, smoking,  
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Table 2. Characteristics of study participants. 
 <50 nmol/l 50–75 nmol/l >75 nmol/l 
Number of subjects 4,571 2,784 2,294 
Age, years 70.9 (10.7) 63.5 (8.7) 62.1 (7.9) 
Sex, male 1,725 (37.7) 1,303 (46.8) 1,139 (49.7) 
Body mass index, kg/m2  28 (5) 27 (4) 26 (4) 
25-hydroxyvitamin D, nmol/l 32.6 (10.6) 61.8 (7.1) 95.0 (16.5) 
C-reactive protein, mg/l 2.0 (0.8-4.1) 1.4 (0.6-3.1) 1.2 (0.5-2.7) 
Systolic blood pressure, mmHg 141 (22) 138 (20) 136 (20) 
eGFR, ml/min/1,73m2 81 (19) 82 (17) 82 (16) 
TC/HDL ratio 4.5 (1.4) 4.3 (1.3) 4.2 (1.3) 
Alcohol intake, gram/day  5.7 (0.3-15.0) 15.0 (1.4-16.3) 15.0 (2.9-24.3) 
Smoking    
     Never 1,504 (32.9) 799 (28.7) 623 (27.2) 
     Former 1,931 (42.2) 1,388 (49.9) 1,156 (50.4) 
     Current 1,064 (23.3) 566 (21.0) 499 (21.8) 
Prevalent DM 701 (15.3) 272 (9.8) 148 (6.5) 
Level of education    
      ISCED 0 692 (15.1) 286 (10.3) 225 (9.8) 
      ISCED 1 1,838 (40.2) 1,130 (40.6) 904 (39.4) 
      ISCED 2 1,275 (27.5) 806 (29.0) 714 (31.1) 
      ISCED 3 742 (16.2) 548 (19.7) 424 (18.5) 
Numbers show mean (SD) for age, body mass index, 25-hydroxyvitamin D, systolic blood pressure, eGFR and 
TC/HDL ratio, median (IQR) for C-reactive protein and alcohol intake, and frequency (%) for sex, smoking, prevalent 
DM and level of education. 
Abbreviations: eGFR, estimated glomerular filtration rate; TC/HDL ratio, total cholesterol to high-density 
lipoprotein ratio; DM, diabetes mellitus; ISCED, International Standard Classification of Education. 
 
 
 
Table 3. Association between serum 25-hydroxyvitamin D and C-reactive protein. 
 N Model 1 Model 2  
  Beta (95% CI) Beta (95% CI) 
<50 nmol/l 4,571 Reference Reference 
50 – 75 nmol/l 2,784 -0.23 (-0.28, -0.18) -0.12 (-0.17, -0.07) 
>75 nmol/l 2,294 -0.28 (-0.34, -0.22) -0.12 (-0.18, -0.07) 
P-value for trend  4.98×10-25 4.48×10-6 

    
Per SD 25OHD* 9,649 -0.13 (-0.15, -0.11) -0.06 (-0.08, -0.03)  
P-value  2.31×10-27 1.70×10-6 
Model 1: adjusted for age, sex and cohort. 
Model 2: adjusted for age, sex, cohort, body mass index, total cholesterol to high-density lipoprotein ratio, systolic 
blood pressure, prevalent diabetes mellitus, estimated glomerular filtration rate, smoking, alcohol intake, season 
and level of education. 
*25OHD denotes 25-hydroxyvitamin D. 
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prevalent diabetes, season of blood drawing, income and level of education, the effect 
estimates attenuated substantially (B=-0.06, 95% CI: -0.08, -0.03, p-value for 
trend=4.48∙10-6). We repeated these analyses with a quadratic term for vitamin D added 
to the regression model. Squared vitamin D was significantly associated with log-
transformed CRP in both the first (p-value=8.55∙10-9) and the second model (p-
value=3.21∙10-6) (Table S3). Moreover, in a subset of RSI-3 in which we additionally 
adjusted for osteoporosis, we found similar results in the first and second model as in the 
previous analyses comprising the larger study population (Table 4). Our quadratic model 
was not significant in this subset (Table S4). 

Table 4. Association between serum 25-hydroxyvitamin D and C-reactive protein in 
subjects with data on osteoporosis available. 
  Model 1 Model 2  Model 3 
 N Beta (95% CI) Beta (95% CI) Beta (95% CI) 
<50 nmol/l 1,579 Reference Reference Reference 
50–75 nmol/l 749 -0.22 (-0.31, -0.12) -0.12 (-0.21, -0.03) -0.12 (-0.21, -0.03) 
>75 nmol/l 418  -0.26 (-0.37, -0.14) -0.15 (-0.26, -0.04) -0.15 (-0.26, -0.04) 
P-value for 
trend 

 6.15×10-7 0.003 0.003 

     
Per SD 
25OHD* 

2,746 -0.12 (-0.17, -0.08) -0.07 (-0.12, -0.03)  -0.07 (-0.11, -0.02) 

P-value  5.48×10-7 0.004 0.004 
Model 1: adjusted for age and sex. 
Model 2: adjusted for age, sex, body mass index, total cholesterol to high-density lipoprotein ratio, systolic blood 
pressure, prevalent diabetes mellitus, estimated glomerular filtration rate, smoking, alcohol intake, season and 
level of education. 
Model 3: additionally adjusted for osteoporosis. 
* 25OHD denotes 25-hydroxyvitamin D. 
 
Mendelian randomization analyses 
The genetic risk scores for vitamin D and CRP were robustly associated with their respective 
phenotypes (S1 and S2 Figs). The 25-hydroxyvitamin D GRS explained 5.1% of the variation 
in serum 25-hydroxyvitamin D. The 25-hydroxyvitamin D GRS was not associated with lnCRP 
(n=10,788, β=-0.018 per SD, p-value=0.082). Moreover, there was no significant trend 
across the GRS quartiles (Figure 2). Associations of individual SNPs with lnCRP are shown in 
S5 Table. Among all, rs2282679 (GC: Vitamin D binding protein) was significantly associated 
with lnCRP (p-value=0.027), however, after correcting for multiple testing this was no longer 
significant. The additional analysis that estimated the effect of the GRS for 25-
hydroxyvitamin D on lnCRP in data of a CRP GWAS did not provide a significant result (p-
value=0.23). The CRP GRS explained 5.5% of the variation in lnCRP. We did not observe a 
significant association between the CRP GRS and serum 25-hydroxyvitamin D (n=6,267, 
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β=0.001 per SD, p-value=0.998). Similarly, after dividing the GRS in quartiles, there was no 
significant trend (Figure 2).  
 
Figure 2. Results of Mendelian randomization analyses with the genetic risk scores in 
quartiles.  
 

 
 
Panel A: quartiles of the 25-hydroxyvitamin D genetic risk score in relation to C-reactive protein. P-value for 
trend=0.056.  
Panel B: quartiles of the C-reactive protein genetic risk score in relation to 25-hydroxyvitamin D. P-value for 
trend=0.374 
Error bars represent 95% confidence intervals. 
 
Discussion 
 
Our observational data suggest an inverse association between serum 25-hydroxyvitamin D 
and C-reactive protein. However, since genetic determinants of serum vitamin D were not 
associated with serum CRP in the Mendelian randomization approach, our study does not 
provide evidence for a causal relationship between vitamin D and inflammation.   
There are several ways in which vitamin D is able to affect the immune system that could 
explain the observed association with CRP. It has been shown that immune cells, such as 
macrophages and dendritic cells, express 1-a-hydroxylase, and thus are able to locally 
convert 25-hydroxyvitamin D into the active form of vitamin D, 1.25-dihydroxyvitamin D31,32. 
Moreover, the vitamin D receptor is present on leukocytes, T-helper cells and monocytes. 
1.25-dihydroxyvitamin D has been shown to inhibit production of inflammatory markers 
such as IFN-γ, IL-2, and IL-5 by T-helper 1 lymphocytes33,34. Vitamin D also inhibits synthesis 
of IL-6 by monocytes, which is the primary stimulant of CRP production in the liver35,36. 
Previous observational studies that investigated the relationship between vitamin D and 
inflammatory markers such as CRP have shown mixed results. Shea et al. studied the 
relation of vitamin D with several inflammatory markers cross-sectionally in 1,381 subjects 
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from the Framingham Offspring Study cohort and did not find a significant association for 
most of the markers, including CRP6. Another, smaller study by Michos et al. did also not 
find a significant association between vitamin D and CRP7. Patel et al. observed an inverse 
relation between vitamin D and CRP in patients with polyarthritis8. Amer et al. found a 
significant inverse association between 25-hydroxyvitamin D and CRP in a cross-sectional 
setting in a population of 15,167 adults with a mean age of 46 years from the United States. 
However, for vitamin D levels above the population median of 21 ng/ml, this relationship 
reversed, leading the authors to conclude that above this level, vitamin D may actually be 
pro-inflammatory9. In our study, we found that a quadratic model fit the data better than a 
linear model, suggesting that the relation between vitamin D and CRP may indeed not be 
linear. The analyses by Amer et al. were done in a younger population and were not 
adjusted for season of blood drawing or geographical location, which may explain the 
difference compared to our results.   
Several randomized controlled trials have been performed to investigate the effect of 
vitamin D supplementation on CRP. Coussens et al. found that 95 patients who were treated 
for tuberculosis and received additional vitamin D supplementation had a faster drop in CRP 
levels than those who received placebo10. In a small study of 54 subjects by Timms et al. 
there was a decrease in CRP after one year of vitamin D supplementation, but the study was 
unblinded and included severely vitamin D deficient subjects (25-hydroxyvitamin D <11 
ng/ml or <27 nmol/l) only11. Chen et al. performed a meta-analysis of randomized controlled 
trials that investigated the effect of vitamin D on high-sensitive C-reactive protein. They 
analyzed data of 10 studies, totaling 924 subjects, and found that vitamin D had a significant 
effect on C-reactive protein. Since there was evidence of heterogeneity these results should 
be interpreted with caution12. However, other randomized trials have not been able to 
confirm these effects. Schleithoff et al. investigated cytokine profiles in 93 heart failure 
patients who received vitamin D supplementation or placebo. After 9 months of follow-up 
there was no effect on CRP13. In a study of 314 subjects, Pittas et al. found that after 3 years 
of vitamin D supplementation there was no significant difference in the decrease of CRP 
between the placebo and treatment group14. Bjorkman et al. did not find an effect of 
vitamin D supplementation versus placebo in a 6-month trial in 218 older patients15. 
High vitamin D levels may be the result of oral supplementation. Subjects that have an 
indication to use vitamin D supplements are generally people with decreased bone mineral 
density28. These subjects are more likely to have comorbidities, and thus increased CRP 
levels. Therefore, use of supplements is a possible confounder of the association between 
vitamin D and CRP. Since no reliable data were available for vitamin D supplementation, we 
used prevalent osteoporosis as a proxy for use of vitamin D supplements and adjusted for 
this in a sensitivity analysis. This did not influence our effect estimate. The quadratic model 
was not significant in this subset, possibly due to a small sample size and limited power.  
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Mendelian randomization analyses did not provide significant results. The association 
between the vitamin D GRS and lnCRP is not consistent with the observational association 
that we found between serum vitamin D and lnCRP, since the direction of effect is opposite. 
The result was mainly driven by one SNP, rs2282679, which is located in the gene that 
encodes the vitamin D binding protein that has no other known functions.  
The major strengths of this study are the large sample size for measurements of both CRP 
and vitamin D, and a comprehensive assessment of this association using both 
observational and genetic data. By using analytic methods proposed by Dastani et al., we 
were able to greatly increase the number of subjects for Mendelian randomization analysis. 
We are the first study to investigate the causal relationship between vitamin D and 
inflammation through the Mendelian randomization approach. Some limitations should be 
acknowledged. The 25-hydroxyvitamin D GRS explained only 5.1% of the variation in serum 
25-hydroxyvitamin D and the CRP GRS only explained 5.5 of the variation in serum CRP, 
which could mean that our study is underpowered to find a significant association in 
Mendelian randomization analyses. We only studied one inflammatory marker to assess the 
association between vitamin D and inflammation. However, CRP is a widely used marker for 
chronic inflammation that comprises different aspects of the complex immune system. We 
aimed to adjust for vitamin D supplement intake, but we did not have a representative 
variable and had to use a proxy on which information was only available for a small number 
of people. Our population consisted of elderly individuals, who have more co-morbidities 
than younger people and are more likely to be sun deprived, which could have had impact 
on our results. Furthermore, the results may not be valid for all ethnic groups, since our 
population consisted of Caucasian individuals.  
In conclusion, serum vitamin D was inversely associated with CRP, but results of Mendelian 
randomization analyses do not provide evidence for a causal association. The observed 
association between vitamin D and CRP is possibly due to residual confounding, but a causal 
relationship cannot be ruled out yet. Further studies are necessary to understand the role 
and mechanisms of vitamin D on non-communicable disease prevention and the potential 
effect of vitamin D supplementation on inflammation.  
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Supplementary material 
 
Figure S1. Quartiles of the 25-hydroxyvitamin D genetic risk score in relation to 25-
hydroxyvitamin D. 

Error bars represent 95% confidence intervals. 
P-value for trend=1.07×10-35. 
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Figure S2. Quartiles of the C-reactive protein genetic risk score in relation to C-reactive 
protein.  

Error bars represent 95% confidence intervals.  
P-value for trend=7.99×10-40. 
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Table S1. Overview of missing data. 
Variable Percentage missing Imputed yes/no 
Cohort 0 No 
Age 0 No 
Sex 0 No 
25-hydroxyvitamin D 0 No 
lnCRP 0 No 
Body Mass Index 1.4 Yes 
Systolic blood pressure 0.6 Yes 
TC/HDL 1.4 Yes 
Diabetes Mellitus 0.4 Yes 
eGFR 1.6 Yes 
Season 0.3 Yes 
Alcohol intake 6.7 Yes 
Smoking 1.0 Yes 
Level of education 0.9 Yes 
Abbreviations: lnCRP=natural log-transformed C-reactive protein; TC/HDL ratio=total cholesterol/high density 
lipoprotein ratio; eGFR=estimated glomerular filtration rate. 
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Table S2. Comparison of the population under study with the population not under study. 
 Population for analysis Population not eligible 

for analysis P-value 

Number 9,649 4,977  
Age, years 64.9 (9.8) 73.5 (10.8) <0.001 
Sex, male 4,167 (43.2) 1,860 (37.4) <0.001 
Body mass index, 
kg/m2 27 (5) 27 (4) 0.927 

Systolic blood 
pressure, mmHg 140 (21) 142 (23) 0.001 

eGFR, ml/min/1,73m2 81.2 (17.9) 80.4 (18.6) 0.392 
TC/HDL ratio 4.4 (1.4) 4.4 (1.3) 0.841 
Alcohol Intake, 
gram/day  12.1 (0.7-15.0) 2.9 (0.0-15.0) <0.001 

Smoking    <0.001 
Never 2,926 (30.3) 641 (12.9)  
Former 4,475 (46.4) 796 (16.0)  
Current 2,129 (22.5) 484 (9.7)  
Prevalent DM 1,121 (11.6) 695 (14.0) <0.001 
Level of education   <0.001 
ISCED 0 1,203 (12.5) 1,458 (29.9)  
ISCED 1 3,872 (40.1) 1,841 (37.0)  
ISCED 2 2,777 (28.8) 1,064 (21.4)  
ISCED 3 1,714 (17.8) 402 (8.1)  
Numbers show mean (SD) for age, body mass index, systolic blood pressure, eGFR and TC/HDL ratio, median (IQR) 
for alcohol intake, and frequency (%) for sex, smoking, prevalent DM and level of education. 
Abbreviations: eGFR=estimated glomerular filtration rate; TC/HDL ratio=total cholesterol to high-density 
lipoprotein ratio; DM=diabetes mellitus; ISCED=International Standard Classification of Education. 
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Table S3. P-values for the association between serum 25-hydroxyvitamin D and C-reactive 
protein in a quadratic model. 
 N Model 1 Model 2  

Squared 25OHD* 9,649 p-value=8.55×10-9 p-value=3.21×10-6 
Model 1: adjusted for age, sex and cohort. 
Model 2: adjusted for age, sex, cohort, body mass index, total cholesterol to high-density lipoprotein ratio, systolic 
blood pressure, prevalent diabetes mellitus, estimated glomerular filtration rate, smoking, alcohol intake, season 
and level of education. 
*25OHD denotes 25-hydroxyvitamin D. 
 
 
 
 
Table S4. P-values for the association between serum 25-hydroxyvitamin D and C-reactive 
protein in a quadratic model in subjects with data on osteoporosis available. 

Model 1: adjusted for age and sex. 
Model 2: adjusted for age, sex, body mass index, total cholesterol to high-density lipoprotein ratio, systolic blood 
pressure, prevalent diabetes mellitus, estimated glomerular filtration rate, smoking, alcohol intake, season and 
level of education. 
Model 3: additionally adjusted for osteoporosis. 
*25OHD denotes 25-hydroxyvitamin D. 
 
 
 
 
Table S5. Individual associations of vitamin D related SNPs with C-reactive protein. 
SNP Beta p-value 
rs12785878 -0.003 0.897 
rs10741657 -0.007 0.659 
rs2282679 -0.036 0.027 
rs6013897 -0.012 0.493 
After Bonferroni correction the threshold for significance lies at P-value=0.0125.

 N Model 1 Model 2  Model 3  

Squared 25OHD* 2,746 p-value=0.153 p-value=0.333 p-value=0.336 
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Background: Chronic low-grade inflammation reflects a subclinical immune response 
implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA 
methylation is associated with chronic low-grade inflammation may reveal novel pathways 
or therapeutic targets for inflammation. 
 
Methods: We performed a meta-analysis of epigenome-wide association studies of serum 
C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large 
European population (n=8,863) and trans-ethnic replication in African-Americans (n=4,111). 
 
Results: We found differential methylation at 218 CpG sites to be associated with CRP (P-
value<1.15×10-7) in the discovery panel of European ancestry, and replicated (P-
value<2.29×10-4) 58 CpG sites (45 unique loci) among African-Americans. To further 
characterize the molecular and clinical relevance of the findings, we examined the 
association with gene expression, genetic sequence variants, and clinical outcomes. DNA 
methylation at 9 (16%) CpG sites was associated with whole blood gene expression in cis (P-
value<8.47×10-5), 10 (17%) CpG sites were associated with a nearby genetic variant 
(P<2.50×10-3), and 51 (88%) also were associated with at least one related cardiometabolic 
entity (P-value<9.58×10-5). An additive weighted score of replicated CpG sites accounted for 
up to 6% inter-individuals variation (R2) of age- and sex-adjusted CRP, independent of 
known CRP-related genetic variants. 
  
Conclusion: We have completed an epigenome-wide association study of chronic low-grade 
inflammation and identified many novel genetic loci underlying inflammation that may 
serve as targets for the development of novel therapeutic interventions for inflammation. 
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Introduction 
 
Chronic low-grade inflammation is a complex immune response that plays an important role 
in the pathogenesis of multiple chronic diseases, including diabetes and cardiovascular 
disease1,2. C-reactive protein (CRP) is a sensitive marker of chronic low-grade inflammation 
in community-dwelling adults3, and is associated in population-based studies with an 
increased risk of incident coronary heart disease, stroke, and nonvascular mortality4. 
Several pathways have been identified for chronic low-grade inflammation1,5, and genetic 
studies have found candidate loci through discovery of genetic sequence determinants of 
circulating CRP levels6. However, most of the molecular mechanisms underlying inter-
individual variation in inflammation in the general population and the inter-relation with 
complex diseases remain to be elucidated. 
Epigenetic modifications comprise biochemical alterations to the genome that leave the 
underlying nucleic acid sequence unchanged but can affect phenotypic expression. DNA 
methylation is a pivotal and stable epigenetic mechanism whereby a methyl group is 
attached to the DNA sequence, most often a cytosine nucleotide that neighbors a guanine 
nucleotide. DNA methylation is affected by both genetic and environmental factors, and 
regulates gene expression and chromosome stability7. Investigating DNA methylation in 
chronic low-grade inflammation may point to functional epigenetic changes that occur in 
the context of inflammation.  
We performed the first meta-analysis of epigenome-wide association studies of 
methylation of DNA on chronic low-grade inflammation using CRP as a sensitive 
inflammatory biomarker (Figure 1). We first conducted a discovery meta-analysis, 
comprising 8,863 participants of European ancestry. Since race or ethnicity may affect 
epigenetic associations8, we conducted trans-ethnic replication in 4,111 individuals of 
African-American ancestry. We further investigated the association between replicated 
DNA methylation sites and both cis- gene expression and genetic variants. Finally, 
differentially methylated CpG sites were examined for association with cardiometabolic 
phenotypes to study potential epigenetic links between inflammation and cardiometabolic 
diseases. 
 
Methods 
 
Discovery and replication study population  
Our study was conducted within the framework of the Epigenetics working group of the 
Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium9. The 
discovery study population was comprised of 8,863 individuals from the following eleven 
cohort studies (listed in alphabetical order): the Cardiovascular Health Study (CHS),  
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the European Prospective Investigation into Cancer and Nutrition (EPIC) Norfolk study, the 
Framingham Heart Study (FHS), the Invecchiare in Chianti study (InCHIANTI), the 
Kooperative Gesundheitsforschung in der Region Augsburg (KORA) study, the Lothian Birth 
Cohorts 1921 and 1936 (LBC1921/1936), the Normative Aging Study (NAS), the Rotterdam 
Study (RS), and the Women’s Health Initiative (WHI). All individuals in the discovery cohorts 
were of European descent. The trans-ethnic replication population consisted of 4,111 
African American individuals from the Atherosclerosis Risk in Communities (ARIC) study, the 
CHS, the Genetic Epidemiology Network of Arteriopathy (GENOA) study, the Grady Trauma 
Project (GTP), and the WHI. The studies are described in detail in the supplemental methods 
(Additional file 13: Supplemental methods). Individuals with autoimmune diseases 
(rheumatoid arthritis, lupus erythematosus, Crohn’s disease, type 1 diabetes) and 
individuals receiving immune-modulating agents were excluded from all analyses, when 
disease status and medication data were available. Individuals without such data were 
assumed to be disease-free and non-users. All participants gave written informed consent 
and protocols were approved by local institutional review boards and ethic committees.  
 
C-reactive protein measurements 
Serum CRP was measured in mg/L using high-sensitivity assays in all studies except the 
Lothian Birth Cohorts (LBC), in which CRP was measured with the use of a normal sensitivity 
assay. CRP was measured in blood samples drawn at the same time and center visit as blood 
was drawn for DNA methylation quantification. CRP values were natural log-transformed 
(lnCRP). Study-specific methods on the quantification of CRP are described in the Additional 
file 13: Supplemental methods. Distributions of the natural log transformed serum CRP 
levels per study are depicted in Additional file 6: Figure S1. 
 
DNA methylation quantification 
For the quantification of the DNA methylation, DNA was extracted from whole blood in all 
studies. All studies used the Illumina Infinium Human Methylation450K BeadChip (Illumina 
Inc, San Diego, CA, USA) for DNA methylation measurement except GENOA, which used the 
Illumina Infinium HumanMethylation27K BeadChip (Illumina Inc, San Diego, CA, USA). The 
450K Beadchip assays methylation of >480,000 CpGs and is enriched for gene regions and 
covers 99% of all genes. DNA methylation data pre-processing was conducted 
independently in different studies and β values were normalized using study-specific 
methods. We used methylation β values to represent the proportion of the total signal 
intensity, which ranges from 0 to 1. Further study-specific methods and filtering criteria can 
be found in Additional file 13: Supplemental methods and Additional file 2: Table S2. A CpG 
site was deemed polymorphic when a SNP in the 1000 Genomes Project (Phase 1) with a 
minor allele frequency ≥0.01 resided at the position of the cytosine or guanine on either 
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strand, or within 10 basepairs from the CpG within the probe binding site8. Polymorphic 
CpG sites were excluded from all analyses. Also, cross-reactive probes were excluded from 
all analyses10. In total, 434,253 probes were available for analysis.   
 
Epigenome-wide association study 
The epigenome-wide association study was performed at each center separately. 
Individuals with CRP values >4 standard deviations (SD) from the respective cohort mean 
lnCRP were excluded from all analyses. In the primary model, we used linear mixed effect 
regression models to study the methylation β-values, specified as the dependent variable, 
as a function of lnCRP adjusting for age, sex, white blood cell proportions, technical 
covariates (array number and position on array), smoking (current, former and never), and 
body mass index (BMI). Technical covariates were modeled as random effects. Measured or 
estimated (Houseman method implemented in the minfi package in R11,12) leukocyte 
proportions were included to account for cell type admixture (Additional file 2: Table S2). 
When applicable, models were additionally adjusted for study specific covariates such as 
study site (fixed effect) and family structure (random effect). Regression models and 
adjustments were comparable in the discovery and replication analyses. The effect size 
represents the change in DNA methylation per 1-unit increase in lnCRP. 
 
Meta-analysis 
Fixed effects meta-analyses were conducted using the inverse-variance weighted method 
implemented in METAL, corrected for double lambda control (individual studies and meta-
analysis).13 In the discovery phase, a Bonferroni correction was applied to correct for 
multiple testing with a significance threshold of 0.05/434,253=1.15×10-7. We then 
examined the significant CpG sites for trans-ethnic replication in 4,111 individuals of 
African-American ancestry using a Bonferroni-corrected significance threshold for the 
number of CpG sites taken forward for replication. Between-study heterogeneity was 
examined with Cochran’s Q statistic with a Bonferroni-corrected significance threshold for 
the number of replicated CpG sites. We performed a power calculation for the replication 
analysis using the GPower 3.1 tool (Additional file 6: Figure S2).14 Additionally, the European 
and African-American samples were combined in one meta-analysis. 
 
Sensitivity analyses 
In a subset of the discovery cohorts that had further confounders available (CHS, FHS, 
InCHIANTI, KORA, NAS, RS, and WHI), the replicated CpG sites were additionally adjusted 
for other potential confounders. These covariates were selected based on strong 
associations with CRP in observational research15. In addition to the variables of the primary 
model, the sensitivity model included waist circumference, total/high-density lipoprotein 
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(HDL)-cholesterol ratio, prevalent diabetes (defined as fasting glucose ≥7.0 mmol/L, non-
fasting glucose ≥11.1 mmol/L, or the use of diabetes medication), hypertension treatment 
(use of diuretics, anti-adrenergic agents, β-blockers, calcium channel blockers, and RAAS 
inhibitors), lipid treatment (use of statins, ezetimibe, and colestyramine), hormone 
replacement therapy, and prevalent coronary heart disease. Since the population for 
analysis in the second model was expected to be slightly smaller compared to the primary 
model due to missing data for certain covariates, we repeated the primary model to include 
only individuals present in the second model.  
To investigate the association between the replicated CpG sites and serum CRP levels in 
CD4+ cells, we tested the association in the Genetics of Lipid Lowering Drugs and Diet 
Network (GOLDN) study which quantified DNA methylation in CD4+ cells. Associations with 
a consistent effect direction and P-value<0.05 were considered significant.   
 
Annotation of CpG sites 
We used the genome coordinates provided by Illumina (GRCh37/hg19) to identify 
independent loci. A distance criterion of 500kb on either side of each epigenome-wide 
significant signal was used to define independent loci. In addition to the gene annotation 
provided by Illumina based on RefSeq database, the UCSC database was explored to further 
annotate the CpG sites to potential genes (nearest gene).     
 
Methylation and genetic score  
To calculate the variance explained by the replicated CpGs, we first selected independent 
CpGs based on pairwise Pearson correlation R2. To this end, we first ranked the significant 
CpGs by discovery p-value in ascending order. We then iteratively excluded CpGs correlated 
with the top CpG site (r2>0.1) until we reached a list of independent CpGs (n=8). The eight 
CpGs were used to construct a methylation score weighted by the effect estimates from 
regression in the FHS with lnCRP as the dependent variable, and residuals of the DNA 
methylation (after regressing out age, sex, batch effect, cell counts, smoking, and BMI) as 
the independent variable. Using a linear regression model, we calculated the CRP variance 
explained by the methylation score (multiple R2, adjusting for age and sex) in ARIC, KORA, 
NAS, and RS. Furthermore, an additive effect-size weighted genetic score for CRP was 
constructed in RS to include 18 SNPs identified in the largest GWAS of CRP (genotyping 
information RS in Additional file 13: Supplemental methods)6. We calculated weighted 
dosages by multiplying the dosage of each risk allele (0, 1 or 2) with the published effect 
estimate. We calculated the CRP variance explained by the genetic score, and both the 
methylation and genetic score combined6. Additionally, the interaction between the 
methylation and genetic score on CRP was studied using a multiplicative interaction term. 
Finally, we assessed the association between the genetic and methylation scores. 
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Association with cardiometabolic phenotypes 
The association between the significant CpGs and BMI, total cholesterol, HDL-cholesterol, 
triglycerides, fasting glucose, fasting insulin, prevalent diabetes, prevalent coronary heart 
disease (CHD) and incident CHD was explored in CHS, FHS, InCHIANTI, KORA, NAS, RS, and 
WHI. The analyses on fasting glucose and fasting insulin only included non-diabetic 
individuals. Diabetes was defined as fasting glucose ≥7.0 mmol/L, non-fasting glucose ≥11.1 
mmol/L or the use of glucose-lowering medication. The lipid traits and fasting glucose were 
analyzed in mmol/L, whilst fasting insulin was analyzed in pmol/L. Fasting insulin and 
triglycerides were natural log-transformed. CHD (available in ARIC, CHS, EPICOR, FHS, KORA, 
NAS, RS, and WHI) was defined as fatal or non-fatal myocardial infarction, coronary 
revascularization, and unstable angina. The statistical models for the cross-phenotype 
analyses were similar to the basic CRP model (including age, sex, white blood cell counts, 
technical covariates and smoking) with DNA methylation as the dependent variable. The 
associations were also adjusted for BMI, except the association with BMI itself. We 
conducted fixed effect meta-analyses using inverse-variance method for total cholesterol, 
HDL-cholesterol, fasting glucose, fasting insulin and prevalent diabetes. For incident CHD, 
associations were analyzed using (penalized) Cox regression models. Results of the cross-
phenotype associations with BMI and triglycerides were meta-analyzed combining p-values 
taking into account the study sample size and direction of effect. Both methods are 
implemented in METAL. We used a Bonferroni corrected p-value of 0.05 divided by the 
number of significant CpGs multiplied by nine phenotypes as a threshold of significant cross-
phenotype association.  
 
Gene expression analyses 
To assess the relations of replicated CpGs with gene expression, we examined the 
association between replicated CpGs and whole blood gene expression of cis-genes (250kb 
up- and downstream of the CpG). The methylation-expression analyses were conducted in 
3,699 individuals from the FHS, KORA, and RS with both DNA methylation and gene 
expression available from the same blood samples. In RS and KORA, we first created 
residuals for both DNA methylation and mRNA expression after regressing out age, sex, 
blood cell counts (fixed effect) and technical covariates (random effect). We then examined 
the association between the residuals of DNA methylation (independent variable) and 
mRNA expression (dependent variable) using a linear regression model. In FHS, we removed 
25 surrogate variables (SVs)16 from the gene expression, along with sex, age, and imputed 
blood cell fractions as fixed effects, and technical covariates, such as batch effects and lab 
effects as random effects. We also removed 25 separately computed SVs from the 
methylation data, along with sex, age, and imputed blood cell fractions as fixed effects, and 
technical covariates, such as batch effects and lab effects as random effects. We then 
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associated the two data using simple linear model. Expression probes were aligned to 
genes, and unique methylation-gene expression results from FHS (n=2,262), KORA (n=707), 
and RS (n=730) were meta-analysed using the sample size weighted method implemented 
in METAL, based on p-values and direction of the effects. To reduce the type 1 error, results 
for the methylation-expression associations were adjusted for multiple testing using the 
Bonferroni correction (0.05/590 tests: P<8.47×10-5). Furthermore, for the significant 
methylation-expression associations, we tested the association between the gene 
expression and serum CRP levels. We examined the association between gene expression 
(dependent variable) and CRP levels (independent variable) in a linear model adjusted for 
age, sex, blood cell counts, technical covariates (plate ID and RNA quality score), tobacco 
smoking and body mass index. Results from GTP (n=114), FHS (n=5,328), InCHIANTI (n=590), 
KORA (n=724), and RS (n=870) were meta-analysed using the sample size weighted method 
implemented in METAL (P-value<0.05 was considered significant)13. Information on gene 
expression quantification in the specific studies can be found in the Additional file 13: 
Supplemental methods. 
 
Genetic correlates of DNA methylation 
We studied genetic variants in the proximity (±250kb) of the inflammation-related CpGs for 
a methylation quantitative trait effect on the percentage of methylation of the CpG site (cis-
mQTL). The discovery analyses were conducted in the RS in which 730 participants were 
available with both genetic and epigenetic data. Genotyping information for the RS is 
described in Additional file 13: Supplemental methods. We used the expression quantitative 
trait loci (eQTL) mapping pipeline to study associations between genetic variants in a 500kb 
window around the CpG site and the percentage of methylation at this CpG site17. This 
pipeline has been applied previously to study expression quantitative trait loci (eQTLs). 
Instead of analyzing gene expression, we modeled the correlation between genetic variants 
and DNA methylation and adjusted for 20 principal components derived from the DNA 
methylation data to account for potential unrelated variation in the DNA methylation 
caused by environmental or technical effects (batch effects). The threshold of significance 
for cis-mQTLs was defined according to the pipeline specifications by FDR of 5%. When 
multiple cis-mQTLS were identified for the same CpG site, only the SNP with the lowest p-
value was reported. Next, significant cis-mQTLs were replicated in FHS. The cis-mQTL 
analysis in FHS was performed on 2,408 individuals having both genotype and methylation 
data. Genotyping information for FHS is described in Additional file 13: Supplemental 
methods. We removed 50 principal components from the epigenomics data, along with sex, 
age, and imputed blood cell fractions as fixed effects, and technical covariates, such as batch 
effects and lab effects as random effects. We then associate the epigenomic residual data 
with the genotypic data accounting for 10 principal components computed using the 



Chapter 11

230

Chapter 11 

 
 

Eigenstrat software using fixed effect linear model. We collected effect value, T statistics, 
and p-value. We used a Bonferroni corrected p-value of 0.05/20=2.5×10-3 (based on 20 
findings in the discovery) for significant replication in FHS. Subsequently, replicated cis-
mQTLs were tested for association with serum CRP in the largest published CRP GWAS 
(n=66,185) to strengthen the causal inference from our findings6. 
 
GWAS catalog, pathway analysis, and tissue enrichment 
We used the National Human Genome Research Institute (NHGRI) GWAS catalog to query 
whether genes annotated to replicated CpGs were enriched for genes identified in 
published GWAS18. Altogether, 7,600 SNPs, annotated to 4,498 genes, associated with 988 
phenotypes at GWAS p-value ≤ 5×10-8, were retrieved on August 25, 2016 from the NHGRI 
GWAS catalog. Methylation CpGs were matched by gene symbols with the reported genes 
in the GWAS catalog. CpGs not annotated to a gene were discarded. Enrichment statistics 
were performed using one-sided Fisher’s test. Next, enrichment of canonical pathways was 
explored using Ingenuity® Pathway Analysis software tool (IPA®, QIAGEN Redwood City, 
www.qiagen.com/ingenuity). Replicated CpGs which mapped to a UCSC Refseq gene were 
included in pathway analyses. Pathway analyses were performed using the Ingenuity 
Pathway Analyses (IPA) software tool (IPA build version 338830M, content version: 
23814503, release date 2016-10-04, analysis date 2015-08-03; 
http://www.ingenuity.com/). Gene enrichment in canonical pathways was assessed in the 
core analysis module using Fisher’s exact test right tailed. Furthermore, we used 
experimentally-derived Functional element Overlap analysis of ReGions from EWAS 
(eFORGE) to identify tissue specific or cell-type specific signals19. eFORGE analyzes a set of 
differentially methylated CpGs for enrichment of overlap with DNase 1 hypersensitivity sites 
in different cell types of the ENCODE project. All 58 replicated CpGs were entered as the 
input of the eFORGE analysis. The set of 58 CpGs were tested for enrichment for overlap 
with putative functional elements compared to matched background CpGs. The functional 
elements considered are DNase I hotpsots fromthe ENCODE project. The matched 
background is a set of the same number of CpGs as the test set, matched for gene 
relationship and CpG island relationship annotation. Thousand matched background sets 
were applied. The enrichment analysis was performed for different tissues, since functional 
elements may differ across tissues. Enrichment outside the 99.9th percentile (-log10 
binomial p-value: ≥3.38) was considered statistically significant (red). 
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Results 
 
Clinical characteristics 
The nine participating discovery (n=8,863) and four replication cohorts (n=4,111), and the 
clinical characteristics of the participants are presented in Table 1 (further details, 
Additional file 1: Table S1). The mean age in the participating studies ranged from 41 years 
in the GTP cohort to 87 years in LBC1921. The majority (54%) of the samples were from 
women. Some of the cohorts differed based on selection criteria for entry into the study. 
The NAS only included men, while the WHI only included women. Mean serum CRP levels 
(SD) ranged from 2.3 (3.7) mg/L in the KORA study to 7.2 (8.4) mg/L in the African American 
coronary heart disease cases of WHI. 
 
Discovery meta-analysis 
We identified 218 CpG sites significantly associated (P-value<1.15×10-7) with CRP in the 
meta-analysis of European participants, adjusted for age, sex, white blood cell proportions,  
 
Table 1. Characteristics of the discovery (n=8,863) and replication (n=4,111) studies. 
Study N Country Age (years) Women (%) CRP (mg/L) BMI (kg/m2) 
Discovery (European)      
CHS 187 USA 76 (5) 56 6.6 (11.0) 31 (6) 
EPIC-Norfolk 1,287 UK 60 (9) 54 3.3 (5.4) 27 (4) 
FHS 2,427 USA 66 (9) 52 3.1 (6.7) 28 (5) 
InCHIANTI 498 Italy 63 (16) 55 3.2 (3.5) 27 (4) 
KORA 1,700 Germany 61 (9) 51 2.3 (3.7) 28 (5) 
LBC 1921 169 UK 87 (0) 54 3.7 (8.4) 26 (4) 
LBC 1936 296 UK 70 (1) 50 5.3 (6.8) 28 (4) 
NAS 648 USA 73 (7) 0 3.3 (6.1) 28 (4) 
Rotterdam 702 Netherlands 60 (8) 54 2.7 (4.7) 28 (5) 
WHI controls 471 USA 68 (6) 100 3.8 (5.5) 28 (6) 
WHI cases 478 USA 69 (6) 100 4.9 (6.4) 29 (6) 
       
Replication (African American)     
ARIC 2,264 USA 56 (6) 64 5.9 (7.8) 30 (6) 
CHS 193 USA 73 (5) 65 5.2 (5.6) 29 (5) 
GENOA 939 USA 66 (8) 71 6.7 (12.3) 31 (6) 
GTP 112 USA 41 (13) 70 5.9 (8.1) 33 (8) 
WHI controls 309 USA 62 (6) 100 6.1 (7.5) 31 (7) 
WHI cases 294 USA 64 (7) 100 7.2 (8.4) 32 (6) 
Characteristics are mean (SD), unless otherwise specified. BMI denotes body mass index, CRP C-reactive protein, 
UK United Kingdom and USA United States of America. 
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technical covariates, smoking, and BMI (Manhattan and QQ-plot, Figure 2, and Additional 
file 2: Table S2, and Additional file 3: Table S3). Serum CRP was positively associated with 
125 CpG sites and negatively associated with 93. The top CpG site was cg10636246 at 1q23.1 
located within 1,500 base pairs of the transcription start site of Absent in melanoma 2 
(AIM2) (effect size=-0.0069, P-value=2.53×10-27), an interferon-gamma induced protein 
involved in the innate immune response by inducing caspase-1-activating inflammasome 
formation in macrophages.  
 
Replication meta-analysis 
Of the 218 CpG sites significantly associated with CRP in our discovery meta-analysis, 58 
replicated (P-value<2.29×10-4) in a trans-ethnic replication meta-analysis of 4,111 
individuals of African-American ancestry (Table 2). The replicated CpG sites annotated to 45 
separate loci. The most significant CpG site in the discovery panel (cg10636246; AIM2) was 
also strongly related to serum CRP in individuals of African-American ancestry (effect size=-
0.0081, P-value=6.31×10-9). Effect estimates of the 58 replicated CpG sites assessed in the 
European and African-American panel were highly correlated (r=0.97). Cochrane’s Q 
statistics displayed homogeneity for >95% of the 58 replicated loci in both the European 
discovery panel and the African-American replication panel (study specific effect estimates 
Additional file 4). In addition, we conducted a meta-analysis combining the European and 
African-American whole blood samples resulting in 258 significant CpGs (Additional file 5).  
 
Sensitivity analyses 
Further adjustment of the replicated CpG sites for additional potential confounders (waist 
circumference, total/HDL-cholesterol ratio, prevalent diabetes, hypertension treatment, 
lipid treatment, hormone replacement therapy, and prevalent coronary heart disease) did 
not substantially change the effect estimates and P-values. Additional file 6: Figure S3 
depicts the correlation between the effect estimates and –log10 P-values in the primary 
model compared to the multivariable adjusted model, respectively. Furthermore, 18 CpGs 
were found to be associated with serum CRP levels in CD4+ cells in the GOLDN study (P-
value<0.05) (Additional file 7: Table S6).  

Methylation and genetic scores 
Additive weighted methylation and genetic scores were constructed to calculate 
percentage of total CRP variance explained. A methylation score including eight 
independent CpGs (cg10636246, cg17501210, cg18608055, cg03957124, cg04987734, 
cg04523589, cg17980786, and cg02341197) explained 5.8% of the variance of CRP in ARIC, 
2.3% in KORA, 5.0% in NAS, and 4.6% in RS. A genetic score including 18 independent CRP
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Table 2. DNA methylation sites associated with serum CRP levels. 

CpG sites Chr Position Effect size 
EA 

P-value  
EA 

Effect size 
AA 

P-value 
AA Gene 

cg10636246 1 159046973 -0.0069 2.53×10-27 -0.0081 6.31×10-09 AIM2 
cg17501210 6 166970252 -0.0065 2.06×10-26 -0.0076 9.45×10-05 RPS6KA2 
cg02650017 17 47301614 -0.0021 4.87×10-25 -0.0011 7.71×10-06 PHOSPHO1 
cg12992827 3 101901234 -0.0057 9.73×10-22 -0.0086 4.42×10-14 NFKBIZ 
cg16936953 17 57915665 -0.0077 3.74×10-21 -0.0125 1.13×10-13 TMEM49 
cg19821297 19 12890029 -0.0051 5.19×10-21 -0.0055 6.58×10-06 GCDH 
cg07573872 19 1126342 -0.0052 1.24×10-20 -0.0068 2.98×10-09 SBNO2 
cg26470501 19 45252955 -0.0045 2.85×10-20 -0.0051 4.08×10-07 BCL3 
cg12054453 17 57915717 -0.0082 6.96×10-20 -0.0117 4.25×10-12 TMEM49 
cg18608055 19 1130866 -0.0043 1.94×10-19 -0.0078 2.96×10-11 SBNO2 
cg06192883 15 52554171 0.0045 2.29×10-19 0.0073 8.29×10-12 MYO5C 
cg18181703 17 76354621 -0.0053 2.13×10-18 -0.0091 7.08×10-13 SOCS3 
cg18942579 17 57915773 -0.0056 4.77×10-16 -0.0098 8.70×10-12 TMEM49 
cg19769147 14 105860954 0.0029 1.51×10-15 0.0029 6.60×10-05 PACS2 
cg20995564 2 145172035 -0.0051 2.04×10-15 -0.0089 2.69×10-10 ZEB2 
cg02734358 4 90227074 -0.0048 3.09×10-15 -0.0051 5.51×10-05 GPRIN3 
cg07094298 4 2748026 -0.0056 4.76×10-15 -0.0058 5.32×10-06 TNIP2 
cg01059398 3 172235808 -0.0042 4.51×10-14 -0.0068 2.27×10-05 TNFSF10 
cg06690548 4 139162808 -0.0048 1.21×10-13 -0.0029 1.52×10-07 SLC7A11 
cg02003183 14 103415882 0.0047 3.59×10-13 0.0051 4.36×10-05 CDC42BPB 
cg26804423 7 8201134 0.0027 3.87×10-13 0.0038 4.82×10-07 ICA1 
cg13585930 10 72027357 -0.0037 1.42×10-12 -0.0046 7.95×10-05 NPFFR1 
cg03957124 6 37016869 -0.0030 3.13×10-12 -0.0039 1.39×10-05 FGD2 
cg12053291 12 125282342 0.0029 5.99×10-12 0.0038 9.80×10-05 SCARB1 
cg02481950 16 21665002 0.0022 7.84×10-12 0.0034 2.92×10-06 METTL9 
cg04987734 14 103415873 0.0041 8.40×10-12 0.0051 1.40×10-04 CDC42BPB 
cg15551881 9 123688715 0.0039 4.62×10-11 0.0049 3.99×10-07 TRAF1 
cg27023597 17 57918262 -0.0050 5.02×10-11 -0.0070 5.96×10-06 MIR21 
cg05575921 5 373378 -0.0059 5.44×10-11 -0.0063 1.17×10-04 AHRR 
cg27469606 19 1154485 -0.0020 5.62×10-11 -0.0023 1.96×10-06 SBNO2 
cg01409343 17 57915740 -0.0037 3.56×10-10 -0.0081 6.12×10-10 TMEM49 
cg21429551 7 30635762 -0.0069 4.42×10-10 -0.0080 1.68×10-05 GARS 
cg23761815 10 73083123 0.0022 8.86×10-10 0.0029 6.85×10-05 SLC29A3 
cg08548559 22 31686097 -0.0038 9.94×10-10 -0.0049 9.88×10-05 PIK3IP1 
cg26610247 8 142297175 0.0029 1.07×10-09 0.0041 4.59×10-06 TSNARE1 
cg27050612 17 46133198 -0.0019 1.30×10-09 -0.0029 8.23×10-05 NFE2L1 
cg15721584 3 181326755 0.0055 1.71×10-09 0.0072 1.14×10-05 SOX2OT 
cg06126421 6 30720080 -0.0052 1.80×10-09 -0.0059 1.53×10-04 TUBB 
cg00851028 1 234905772 0.0023 1.95×10-09 0.0042 1.46×10-05 - 
cg24174557 17 57903544 -0.0038 1.97×10-09 -0.0051 1.65×10-04 TMEM49 
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cg05316065 8 130799007 -0.0027 2.26×10-09 -0.0051 2.28×10-07 GSDMC 
cg04523589 3 48265146 0.0022 2.49×10-09 0.0031 4.47×10-05 CAMP 
cg17980786 3 32933637 0.0026 4.58×10-09 0.0055 1.47×10-09 TRIM71 
cg25325512 6 37142220 -0.0031 5.31×10-09 -0.0052 4.94×10-05 PIM1 
cg00812761 4 53799391 0.0025 5.60×10-09 0.0036 1.36×10-04 SCFD2 
cg27637521 17 76355202 -0.0016 5.69×10-09 -0.0017 3.69×10-05 SOCS3 
cg26846781 17 61620942 0.0018 5.99×10-09 0.0033 3.03×10-05 KCNH6 
cg00159243 12 109023799 -0.0026 8.22×10-09 -0.0036 1.38×10-04 SELPLG 
cg15310871 8 20077936 0.0022 8.63×10-09 0.0027 2.96×10-05 ATP6V1B2 
cg15020801 17 46022809 0.0024 1.67×10-08 0.0033 9.47×10-05 PNPO 
cg03128029 2 203143288 -0.0027 1.90×10-08 -0.0036 2.03×10-04 NOP58 
cg22749855 17 76353952 -0.0024 3.22×10-08 -0.0035 5.15×10-05 SOCS3 
cg02341197 21 34185927 0.0030 3.92×10-08 0.0045 2.54×10-05 C21orf62 
cg12269535 6 43142014 -0.0028 4.39×10-08 -0.0046 1.57×10-04 SRF 
cg25392060 8 142297121 0.0025 5.60×10-08 0.0036 2.15×10-04 TSNARE1 
cg27184903 15 29285727 0.0024 5.84×10-08 0.0052 4.91×10-07 APBA2 
cg18663307 21 46341389 0.0029 6.98×10-08 0.0048 1.04×10-04 ITGB2 
cg09182678 22 50328711 -0.0016 9.02×10-08 -0.0019 1.26×10-04 DENND6B 
Effect sizes represent the changes in normalized DNA methylation Beta-values per 1-unit increase in natural log-
transformed CRP (mg/L). Chr and Position are in GRCh37/hg19. AA denotes African American and EA European 
Ancestry. 
 
SNPs explained 4.9% of the CRP variance in RS, and the methylation and genetic scores 
together explained 9.0%. Notably, no significant interaction or association was observed 
between the genetic and methylation scores, suggesting that they independently explain 
variance in CRP. 
 
Association with cardiometabolic phenotypes  
We examined the associations between the 58 replicated CRP-related CpG sites and nine 
cardiometabolic traits and diseases (BMI, lipids, glycemic phenotypes, prevalent coronary 
heart disease, and incident coronary heart disease). After Bonferroni correction for multiple 
testing based on 58 CpG sites and nine phenotypes (P-value<0.05/522=9.58×10-5), we 
observed 89 significant associations with 51 unique CpG sites (Additional file 8: Table S7). 
There was major overlap with BMI (46 CpGs). CpGs that were significantly associated with 
higher BMI, fasting glucose, fasting insulin, risk of diabetes, triglycerides, and risk of CHD 
were also associated with higher CRP levels. For HDL-cholesterol and total cholesterol, CpGs 
were associated with lower CRP levels (Figure 3).   
 
Gene expression analyses 
Of the 58 replicated CpG sites, 9 (16%) were significantly associated with expression of 9 
unique genes in cis (P-value<8.47×10-5) (Additional file 9: Table S8). Furthermore, of those 
9 genes, the expression levels of 4 genes were associated with serum CRP levels (P- 
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value<0.05). In these 4 cases we could show corresponding triangular relationships between 
DNA methylation, gene expression, and serum CRP levels. For example, increased 
methylation at cg10636246 was associated with lower serum CRP levels and lower 
expression of AIM2, and lower expression of AIM2 was associated with lower CRP levels 
(Figure 4). 
 
Figure 4. Illustration of the methylation-CRP, methylation-expression, and expression-
CRP association for cg10636246 (AIM2). 
 

 
 
Genetic correlates of DNA methylation in cis 
In the RS, we identified 20 cis-mQTL pairs (19 unique SNPs and 20 unique CpG sites) for the 
replicated CpG sites, 10 of these cis-mQTL pairs could be replicated in the FHS (P-
value<2.5×10-3) (Additional file 10: Table S9). For example, the strongest correlation was 
observed between rs12677618 and cg25392060 (located 4,903 base pairs away from each 
other; β=-0.011; P-value=2.73×10-126). None of the 10 replicated cis-mQTL variants was 
significantly associated with serum CRP levels after Bonferroni correction for multiple 
testing (P-value>0.005) in the largest published GWAS to date of 66,185 individuals6.   
 
GWAS catalog, pathway analysis and tissue enrichment 
The 58 CpG sites were annotated to 47 genes, which are associated in GWAS with 18 
phenotypes (Additional file 11: Table S10). We found enrichment in GWAS of epilepsy, renal 
cell carcinoma, and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity and mass.  
Pathway enrichment analyses were carried out in 47 unique genes that were annotated to 
the 58 replicated CpG sites in the Ingenuity Pathway Analysis database. The top pathways 
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included growth hormone signaling, IL-9 signaling, atherosclerosis and IL-6 signaling 
(Additional file 12: Table S11).  
Analysis of tissue specific DNase I hotspots yielded enrichment predominantly in 
epithelium, blood vessel, and various blood cells (especially CD14+ macrophages) 
(Additional file 6: Table S4).   
 
Discussion 
 
This meta-analysis of epigenome-wide association studies of CRP, a sensitive marker of 
chronic low-grade inflammation, identified and validated 58 CpG sites in or near 45 unique 
loci in leukocytes of individuals of European and African descent. The associations were 
robust to adjustment for potential confounders and explained more than 6% of the 
variation in circulating CRP concentrations. We demonstrated that several inflammation-
related CpG sites were associated with expression of nearby genes, and many CpG sites 
showed pleiotropic associations with cardiometabolic phenotypes as well as the clinical 
disease coronary heart disease.  
DNA methylation may differ by race or ethnicity8, challenging replication across individuals 
of varying descent in epigenetic studies. We were able to replicate up to 27% of our findings 
with comparable effect estimates, demonstrating that our results are generalizable across 
Europeans and African-Americans. The trans-ethnic replication approach of our study 
strengthens the confidence of true-positive findings and supports the notion that despite 
differing baseline epigenetic profiles, different ethnicities may have consistent epigenetic 
associations with respect to inflammation. 
Increased DNA methylation at the top signal cg10636246 near AIM2, was associated with 
lower expression of AIM2 and lower CRP levels. In agreement, lower AIM2 expression was 
associated with lower serum CRP levels. As an inflammasome receptor for double stranded 
DNA activating inflammatory cascades, AIM2 is implicated in host defense mechanisms 
against bacterial and viral pathogens, and thus is key in the human innate immune 
response20,21. The data suggest that methylation near AIM2 play a role in low-grade 
inflammation in the general population. Nevertheless, the results from the current study do 
not infer causal directionality. 
Several of our hits were associated with future clinical events. For example, three 
inflammation-related CpG sites were also associated with incident CHD. Hypomethylation 
at cg18181703 (SOCS3), cg06126421 (TUBB), and cg05575921 (AHRR) were associated with 
higher CRP levels and increased risk of future CHD. The gene product of SOCS3, suppressor 
of cytokine signaling 3, plays a pivotal role in the innate immune system as a regulator of 
cytokine signaling22. The role of SOCS3 in atherosclerosis has been established23. We 
observed that lower DNA methylation was associated with increased expression of SOCS3 
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and increased serum CRP. Differential methylation at the AHRR loci has been robustly 
demonstrated to be associated with cigarette smoking24. The association of AHRR 
methylation with CRP and incident CHD may highlight a connection between CRP and 
cardiovascular disease that is shared between cigarette smoking and independent 
mechanisms. Furthermore, we found two CpG sites that have recently been identified in an 
EWAS of incident type 2 diabetes25. We hypothesize that inflammation-related epigenetic 
features may explain at least part of the observed associations between CRP, a sensitive 
marker of chronic low-grade inflammation, and related clinical events including CHD and 
diabetes.  
Many replicated CpG sites demonstrated associations with cardiometabolic phenotypes, 
emphasizing the substantial epigenetic overlap with those phenotypes. Taken together, 
these pleiotropic epigenetic associations across various phenotypes may provide novel 
insights into shared epigenetic mechanisms and provide opportunities to link chronic low-
grade inflammation and cardiometabolic phenotypes. Our findings may help to focus on 
genomic regulation of pertinent loci that may be attractive targets for perturbation or 
therapeutic intervention. 
CRP is affected by both genetic and environmental factors15. Although we may have slightly 
overestimated the variance explained since the testing cohorts participated in the discovery 
and replication meta-analysis, the CRP methylation score augmented the explained 
variance beyond that accounted for by the CRP genetic score. This suggests that the 
methylation score harbors information that may be independent from the genetic factors 
underlying CRP. In agreement with a previous report on the added value of a methylation 
score in explaining variance in BMI, we further add that methylation may explain further 
variation of complex traits that have substantial environmental components26. 
In the present study, we were able to present stringent triangular relationships between 
DNA methylation, gene expression, and serum CRP levels at four loci. However, firm 
conclusions regarding causal directionality are challenging in epigenetic studies. Although 
ten (17%) of the replicated methylation sites had cis-mQTLs, we were not able to detect a 
significant association between these mQTLs and CRP levels in the largest published CRP 
GWAS, which may be due to the limited power, or the findings represent methylation 
changes downstream of CRP. However, our findings were biologically plausible and 
consistent with previous observations. For example, GWAS enrichment analysis suggested 
enrichment in genes identified for renal cell carcinoma. CRP is commonly elevated in renal 
cell carcinoma patients27. Furthermore, pathway analyses identified regulatory mechanisms 
related to inflammatory processes such as STAT3 and IL-6 signaling pathway, the pro-
inflammatory upstream regulator of serum CRP levels28. Taken together, these results 
suggest that DNA methylation plays a role in establishing or maintaining CRP levels in the 
general population. 
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The major strengths of the present study are its large sample size and multi-ethnic nature, 
allowing a valid interpretation of results for both European and African-American 
populations. Furthermore, careful and comprehensive adjusting models reduced the 
chance of confounding. In addition, DNA methylation was quantified in whole blood, which 
is primarily composed of leukocytes, a key component of the human immune system and 
therefore highly relevant to systemic inflammation. The combination of epigenomics with 
genomics and transcriptomics data as well as enrichment analyses allowed the exploration 
of functional properties of our findings.  
The study has limitations. The 450K array captures approximately 2-4% of the total human 
DNA methylation, mainly in genic regions, thus limits the discovery of potentially important 
CpG sites that are not measured on the array. Furthermore, although we adjusted the 
analyses for measured or estimated cell type proportions, we cannot completely rule out 
the presence of residual confounding by white blood cell distributions. Residual 
confounding from differences in unmeasured cell count heterogeneity introduced by 
correlation between CRP and unknown cell subtypes may bias our results. Also, the 
annotation of CpGs and SNPs to genes is challenging in genomic studies. We annotated 
primarily based on distances, which may have incorrectly annotated genes. Further, we 
replicated our findings from the European discovery in African-Americans. The differences 
in ethnicities and the African-American sample size may have limited replication of the 
findings. Our study was limited to blood samples and while this has been demonstrated to 
be a good surrogate tissue29, we would not be able to infer tissue specific methylation 
changes. Specifically, as CRP is synthesized in the liver, our current study design would not 
allow us to detect hepatic methylation changes. We did not observe associations with 
nearby gene expression for all CpGs we identified. However, the limited sample size for 
methylation-expression analyses, failure for expression probes to pass quality control, 
tissue-specificity, and long-distance effects may explain this observation. Furthermore, DNA 
methylation may also affect chromosome stability and alternative splicing, two functional 
consequences of DNA methylation which we have not investigated in the present study. 
Finally, we cannot exclude residual confounding, and cannot determine causal 
directionality. 
We performed the first meta-analysis of epigenome-wide association studies of CRP, a 
sensitive marker of low-grade inflammation. We identified 58 DNA methylation sites that 
are significantly associated with CRP levels in individuals of both European and African-
American ancestry. Since inflammation is implicated in the development of multiple 
complex diseases, the discoveries from the current study may contribute to the 
identification of novel therapies and interventions for treatment of inflammation and its 
clinical consequences. 
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Background: Tumor necrosis factor alpha (TNFα) is a proinflammatory cytokine with 
manifold consequences for mammalian pathophysiology, including cardiovascular disease. 
Strategies for therapeutic inhibition of TNFα have produced mixed results, necessitating a 
deeper understanding of TNFα biology to enhance treatment precision. 
 
Methods: We performed a discovery meta-analysis (n=4,163) of epigenome-wide 
associations with cross-sectional circulating TNFα from five studies with external replication 
(n=667). Follow-up analyses investigated associations of identified methylation loci with 
gene expression and incident coronary heart disease (n=11,461 with 1,895 events). 
 
Results: In the discovery stage, circulating TNFα levels were associated with methylation of 
seven cytosine-phosphate-guanine (CpG) sites (P-value≤2.24×10-7), located in or near 
DTX3L-PARP9 (cg00959259, cg08122652, cg22930808), NLRC5 (cg16411857, cg07839457), 
and ABO (cg13683939, cg24267699) after accounting for multiple testing. Of those, 
negative associations between TNFα and the methylation of two loci in NLRC5 (cg16411857 
and cg07839457) and one in DTX3L-PARP9 (cg08122652) externally replicated (P≤0.003). 
Methylation at the replicated TNFα loci was negatively associated with neighboring gene 
expression in two of the three participating cohorts; in turn, expression of NLRC5, DTX3L, 
and PARP9 was strongly (P-value≤0.003) positively associated with TNFα. Methylation of 
cg07839457 in NLRC5 was weakly associated with neighboring sequence variant on 
chromosome 16 (rs17369768), located at a transcriptionally active region in multiple 
tissues, and nominally associated with metabolic traits (visceral adipose tissue volume, 
waist circumference, weight) and inflammatory conditions (psoriasis, rheumatoid arthritis) 
in external databases. All replicated TNFα-related CpGs were associated with a significant 
reduction in the risk of incident CHD (9-19% decreased risk per 10% higher methylation per 
CpG, P-value≤0.003). 
 
Conclusion: We identified and replicated novel epigenetic correlates of circulating TNFα in 
blood samples and linked these loci to CHD risk, opening opportunities for validation and 
therapeutic applications.
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Introduction 
 
Tumor necrosis factor alpha (TNFα) is a proinflammatory cytokine with pleiotropic effects 
in human health and disease. In addition to its well-characterized pathogenic contributions 
to inflammatory and autoimmune diseases, atherosclerosis, type 2 diabetes, and cancer, 
TNFα also plays a key homeostatic role in pathogen defense, tissue repair and regeneration, 
and organ development (reviewed in Kalliolias, et al.1). Therapeutic inhibition of TNFα is 
used in clinical settings with both successes (e.g. in various forms of autoimmune diseases) 
and failures (e.g. in multiple sclerosis2). Furthermore, treatment with TNF inhibitors has long 
been known to lower the risk of cardiovascular disease among autoimmune disease 
patients3, and currently several trials (e.g. NCT01893996) are assessing cardioprotective 
effects of inhibiting inflammatory cytokines. Recently, the randomized placebo-controlled 
CANTOS trial4 (NCT01327846) reported significant reductions in recurrent cardiovascular 
risk due to interleukin-1 inhibition, achieved independently of changes in lipid levels. While 
such findings highlight the clinical promise of targeting systemic inflammation in the setting 
of cardiovascular disease, the underlying mechanisms of action remain elusive. 
Circulating levels of TNFα have a moderate genetic determinant, with heritability estimates 
ranging from 17%5 to 39%6 in large-scale European twin studies to 68% in a Ugandan 
community with a high prevalence of tuberculosis7. Known common mutations account for 
a small fraction of that heritable component, explaining <4% of TNFα variance in a recent 
meta-analysis of genome-wide association studies (personal correspondence). Emerging 
evidence suggests that epigenetic processes like DNA methylation, which reflect changes in 
gene expression that occur without sequence mutations, may offer promising clues in the 
search for missing TNFα heritability. For example, methylation of cytosine-phosphate-
guanine (CpG) loci in the TNF promoter was associated with TNFα expression and plasma 
TNFα levels in several population-based studies8,9. In vitro, experimental manipulation of 
DNA methylation has been shown to alter the cells’ ability to produce TNFα10, offering 
causal support for the association observed in population studies. To date, however, no 
study has comprehensively examined the DNA methylation across the entire genome in 
relation to circulating levels of TNFα in large human populations, or has interrogated TNFα 
epigenetics with regards to cardiovascular risk. 
Therefore, we conducted the first epigenome-wide meta-analysis of associations between 
circulating TNFα levels and DNA methylation in whole blood samples or isolated 
lymphocytes from 4,163 individuals in the Cohorts for Heart and Aging Research in Genetic 
Epidemiology (CHARGE) consortium. We subsequently achieved replication of the top CpG 
loci in an independent population, evaluated the associations between DNA methylation 
and cis-gene expression, and assessed genotype contributions to the observed CpG 
methylation variation in the regions of interest. Finally, we investigated the association of 
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the top epigenetic correlates of circulating TNFα with incident coronary heart disease (CHD) 
in a meta-analysis comprising 11,461 participants with 1,895 CHD events. 
 
Methods 
 
Discovery and Replication Populations 
In the discovery phase, the epigenome-wide study included individuals of European descent 
from six studies participating in the CHARGE consortium11: Framingham Heart Study (FHS), 
Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study, The Invecchiare in 
Chianti Study (InCHIANTI), Kooperative Gesundheitsforschung in der Region Augsburg 
(KORA), Lothian Birth Cohort 1921 (LBC1921), and Normative Aging Study (NAS). Two 
Finnish cohorts, the Northern Finland Birth Cohort 1966 (NFBC66) and the Helsinki Birth 
Cohort Study (HBCS), were designated for replication. Individuals who reported an 
autoimmune diagnosis or taking immune-modulating agents (e.g. TNFα blockers) were not 
included in the analyses. Further details about each study are included in Table 1 and 
eMethods 1. Notably, NAS and HBCS were excluded from the main analysis based on the 
extreme variability in TNFα measurements (Table 1), which could be due to previously 
reported poor performance of multiplexed assays compared to ELISA.12 All study protocols 
were approved by Institutional Review Boards of the participating study sites, and all 
participants provided written informed consent.  
 
Laboratory Measurements 
Circulating TNFα levels were measured in pg/ml using the approaches listed in Table 1. In 
all but one cohort (FHS), TNFα was measured at the same time and center visit as blood was 
drawn for the quantification of DNA methylation. In FHS, TNFα was measured in the same 
individuals approximately seven years prior to the DNA methylation assay. Circulating TNFα 
was natural log-transformed (lnTNFα) to reduce skewness of the distribution. Individuals 
whose lnTNFα measurements were more than four standard deviations away from the 
cohort mean were excluded from subsequent analyses. 
 
DNA Methylation Measurements, Normalization, and Quality Control 
All studies used the Illumina Infinium Human Methylation450 Beadchip (Illumina Inc, San 
Diego, CA) to quantify epigenome-wide DNA methylation. In all studies but one, these 
measurements were performed on DNA extracted from whole blood samples; the GOLDN 
study isolated and quantified DNA methylation on CD4+ T-cells. Study-specific approaches 
to methylation data processing are summarized in eTable 1.  
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Statistical Analyses 
In the discovery phase, each cohort fit three linear mixed effect regression models to assess 
associations between lnTNFα (predictor) and normalized methylation β scores (outcomes). 
The base model adjusted for age and sex as fixed effects and technical covariates (array, 
row, and/or column number) as a random effect. The second model additionally adjusted 
for white blood cells (WBC) subtypes for studies reporting methylation in whole blood 
samples. The third model adjusted for the same covariates as the second model plus 
smoking (current, former, or never) and body mass index (BMI) in kg/m2. All covariates were 
selected based on their known associations with DNA methylation. Cohorts additionally 
adjusted for relatedness or other study-specific covariates as necessary (eTable 2). Results 
from the five cohorts participating in the main discovery analysis were meta-analyzed using 
a fixed effects, inverse-variance weighted approach in METASOFT13. Because GOLDN was 
the only cohort that used CD4+ T-cells and not whole blood samples, we ran a sensitivity 
meta-analysis excluding GOLDN. We performed additional sensitivity analyses including 
NAS and HBCS, cohorts with extremely variable Milliplex-measured TNFα. 
To maximize statistical power of discovery, we carried CpGs forward to the replication 
phase if the false discovery rate (FDR) for the specific CpG was below 0.05. Models used in 
the replication analysis were identical to those implemented in the discovery phase. To 
minimize the chance of false positives, we implemented the more stringent Bonferroni 
correction in the replication phase: 0.05/number of statistically significant hits from the 
discovery meta-analysis. 
 
Gene Expression Measurements and Analysis 
The CpG sites that significantly replicated in the independent replication sample were 
further tested for association with cis-gene expression in whole blood in 3,738 participants 
with available gene expression measurements: FHS, KORA, and RS. Methods for the 
expression measurements and analysis are described in eMethods 2. mRNA transcripts that 
achieved statistical significance in at least two cohorts were further evaluated for 
association with circulating TNFα in FHS, using regression models adjusted for age, sex, 
imputed WBC counts, smoking, BMI, and technical covariates. 
 
Integrating DNA Methylation and Sequence Data 
To establish genetic contributions to the observed methylation of the top loci, we studied 
genetic associations with DNA methylation in cis (±20kb) using the GOLDN study as the 
discovery cohort and RS as the replication population. Genotyping, imputation procedures, 
and statistical analysis for both cohorts are described in eMethods 3. The variants that 
achieved nominal significance in the replication phase were tested for association with 



Chapter 12

250

Chapter 12 

 
 

circulating TNFα in GOLDN using linear mixed models adjusting for age, sex, study site (fixed 
effects) and family (random effect).  
In addition to meQTL analyses, we searched for overlap with the genomic regions containing 
the replicated sites in two genome-wide association study (GWAS) catalogs 
(http://www.ebi.ac.uk/gwas/search, accessed 25-4-2017, and 
http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner, accessed 7-8-2017) to 
assess previously reported associations of sequence variants in the regions of interest and 
disease traits.  
 
Associations with Incident CHD 
We tested associations between the replicated epigenetic correlates of circulating TNFα and 
incident CHD in a CHARGE consortium fixed effects meta-analysis that included 470,346 
CpGs, 1,895 disease events, and 11,641 participants from the following cohorts: 
Atherosclerosis Risk in Communities, Cardiovascular Health Study, Long-term Follow-up of 
Antithrombotic Management Patterns In Acute Coronary Syndrome Patients, FHS, 
InCHIANTI, KORA, NAS, and Women’s Health Initiative. The definition of CHD events 
included coronary insufficiency, coronary revascularization, recognized MI (hospitalization 
with diagnostic ECG changes and/or biomarkers of MI), and coronary death. Participants 
with prevalent CHD at enrollment were excluded. Each cohort study obtained written 
informed consent from participants and ethics approval from its respective institutional 
review boards and ethics committees. In each cohort, associations were adjusted for age, 
sex, smoking status, education, BMI, differential WBC counts (either directly measured or 
imputed), and technical covariates. Data were meta-analyzed using an inverse-variance 
weighted fixed effects method. This lookup was restricted to the top four CpG sites from 
the circulating TNFα meta-analysis; findings were considered statistically significant if P-
value<0.05/4=0.0125. Further details about the incident CHD meta-analysis14 are available 
in eMethods 4. 
 
Functional Annotation 
We used Hudson Alpha Institute for Biotechnology - ENCODE project custom methylation 
tracks implemented in the UCSC genome browser as well as the Illumina annotation file to 
visualize and annotate the functional potential of the top CpGs, including such indicators of 
regulatory activity as H3K27Ac marks, DNAseI hypersensitivity elements in relevant cell 
types, and genomic location of the CpGs (promoter vs gene body, exon vs intron, etc). 
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Results 1 
 2 
General Characteristics 3 
Demographic and TNFα characteristics of all participating cohorts are summarized in Table 4 
1. The cohorts varied in age, ranging from the mean age of 31(±0.3) years in NFBC66 to 5 
87(±0.4) years in the LBC1921 cohort. The cohorts were approximately half female with the 6 
exception of NAS and HBCS, which only recruited men. NAS and HBCS were also unique in 7 
reporting exceptionally high and variable concentrations of TNFα compared to all other 8 
cohorts. The observed discrepancy may be due to technical differences between 9 
approaches to TNFα quantification (Milliplex vs. ELISA), as documented in Table 1.  10 
 11 
Figure 1. Epigenome-wide associations between DNA methylation and circulating TNFa in 12 
the discovery stage. 13 

 14 
This graph includes data of 4,163 participants in the discovery analyses. The red horizontal line denotes the 15 
FDR=0.05 threshold for statistical significance. 16 
 17 
Meta-analysis, Replication, and Sensitivity Analyses 18 
The three models fit to test associations between epigenome-wide methylation and TNFα 19 
levels yielded similar results (Table 2, eTables 3 and 4); namely, the cg16411857 site in 20 
NLRC5 emerged as the top hit with all approaches. Based prior evidence in support of 21 
adjusting epigenetic models for smoking and BMI15, all subsequent analyses focused on the 22 
third model.  23 
The results of the epigenome-wide analyses are summarized in Table 2 and visualized in 24 
Figure 1 and eFigure 1. Seven CpG sites located in three genomic regions emerged as the 25 
top hits in the discovery stage (FDR<0.05). Of those, three CpG sites—two located in the 26 
NLR family CARD domain containing 5 gene (NLRC5) and one in the deltex E3 ubiquitin ligase 27 
3L/ poly(ADP-ribose) polymerase family member 9 gene complex (DTX3L/PARP9)— 28 
replicated in 677 individuals from the NFBC66 cohort. All replicated associations were in the 29 
same direction and had comparable effect sizes. Another locus in DTX3L/PARP9 was not 30 
able to undergo replication due to failing quality control procedures in NFBC66; however, 31 
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due to its proximity and similarity of associations to the replicated cg08122652, we included 
it in subsequent analyses.  
Inclusion of the two cohorts that measured TNFα using the Milliplex method, namely NAS 
in discovery (eTable 5) and HBCS in replication, increased genomic inflation by 19% (=0.94 
in the main analysis vs. =1.13 with NAS included). While the NLRC5 and DTX3L/PARP9 hits 
still emerged as significant in the discovery stage, none replicated in HBCS. Excluding GOLDN 
from the discovery stage due to differences in methylation measurements (CD4+ T-cells vs. 
whole blood, eTable 6) yielded five of the seven significant hits observed in the main 
analysis, including the NLRC5 and DTX3L/PARP9 loci.  
 
Table 2. Associations of methylation sites and circulating TNFα.a 
  Discovery  Replication 
CpG site Gene β±SE P-value I2 β±SE  P-value  
cg16411857 NLRC5 -0.01±0.002 2.14×10-13 15% -0.009±0.003 0.003 
cg07839457 NLRC5 -0.02±0.003 6.31×10-10 70% -0.01±0.004 0.0003 
cg00959259 DTX3L; 

PARP9 
-0.01±0.003 7.36×10-8 56% NA NA 

cg22930808 DTX3L; 
PARP9 

-0.01±0.002 6.92×10-8 58% -0.008±0.004 0.04 

cg13683939 Intergenic; 
proximal to 
ABO 

0.04±0.008 1.42×10-7 71% -0.02±0.01 0.18 

cg24267699 ABO -0.009±0.002 1.67×10-7 89% 0.002±0.002 0.47 
cg08122652 DTX3L; 

PARP9 
-0.008±0.002 2.24×10-7 78% -0.007±0.002 0.003 

Abbreviations: β, regression coefficient; CpG, cytosine-phosphate-guanine; I2, heterogeneity statistic; standard 
error; TNFα, tumor necrosis factor α. 
aModel adjusted for age, sex, white blood cell proportions, technical covariates, smoking, and BMI with FDR < 0.05 
in the discovery stage. Results that met the Bonferroni threshold in the replication stage (P-value=0.05/7=0.007) 
are in bold. bhg19. 
 
Methylation vs. Expression vs. Circulating TNFα  
We observed nine cis-eQTMs (methylation-expression pairs) between methylation at the 
four TNFα-associated loci and cis-gene expression in FHS. All were robust in RS, while none 
reached significance in KORA. CpG-transcript pairs that satisfied the Bonferroni threshold in 
at least two cohorts are presented in Table 3. Direction (negative for all transcripts except 
the methylation with karyopherin subunit alpha 1 gene (KPNA1) pair) and magnitude of 
associations were consistent between FHS and RS. Of the five transcripts that were 
significantly associated with TNFα-linked CpGs in both FHS and RS (NLRC5, DTX3L, KPNA1, 
PARP9, and the poly(ADP-ribose) polymerase family member 14 gene (PARP14)), three were 
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positively associated with circulating TNFα in FHS, with respective P of 5.47×10-5 (NLRC5), 
0.003 (DTX3L), and 0.003 (PARP14) meeting the Bonferroni threshold. 
 
Table 3. Associations between methylation status of top TNFα CpG sites and neighboring 
gene expression. 
CpG site Transcript P-value in 

RS (n=750) 
P-value in FHS 
(n=2,262) 

P-value in 
KORA (n=726) 

Direction of 
Association 

cg16411857 NLRC5 0.0002 2.56×10-8 0.16 --- 
cg07839457 NLRC5 2.10×10-7 1.85×10-8 0.44 --- 
cg00959259 DTX3L 1.07×10-6 1.80×10-9 0.80 --+ 
 PARP9 2.86×10-22 2.58×10-13 0.81/0.07a ---- 
 PARP14 9.21×10-23 6.51×10-17 n/a --? 
 DTX3L 2.91×10-7 2.13×10-6 0.61 --- 
 KPNA1 0.0003 0.00004 n/a ++? 
cg08122652 PARP9 1.04×10-25 1.09×10-9 0.12/0.26a ---- 
 PARP14 1.25×10-24 8.48×10-15 n/a --? 
Abbreviations: CpG, cytosine-phosphate-guanine; FHS, Framingham Heart Study; KORA,  Kooperative 
Gesundheitsforschung in der Region Augsburg Study; TNFα, tumor necrosis factor α. aTwo probes (ILMN_1731224 
and ILMN_2053527) corresponded to PARP9 in KORA. 
 
Methylation vs. Sequence Variation vs. Circulating TNFα  
Of all significant methylation correlates of TNFα, only cg07839457 showed nominally 
significant (P-value<0.05) replication of associations with two neighboring NLRC5 sequence 
variants: rs17369768 and a deletion at the 57042641 position on chromosome 16 (eTable7). 
Neither loci were significantly associated with circulating TNFα in GOLDN (P-value=0.60 and 
P-value=0.61, respectively). However, rs17369768 was nominally associated with visceral 
adipose tissue volume, waist circumference, weight, psoriasis, and rheumatoid arthritis in 
public databases (http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner).  
 
Associations with Incident CHD 
Methylation at all four TNFα-associated loci was robustly negatively associated with the risk 
of incident CHD in the meta-analysis of CHARGE cohorts (Table 4, eFigure 2). Adjusted for 
the appropriate covariates, each 10% increase in methylation of a given TNFα-associated 
locus was associated with a 9% to 19% decrease in the risk of an adverse CHD event.  
 
GWAS Catalog Look-Up and Functional Annotation 
Of the three common SNPs in or near NLRC5 that were reported in the GWAS catalog, two 
(rs821470 and rs17290922) were associated with schizophrenia-related phenotypes16,17. 
The closest reported variant to the DTX3L/PARP9 locus (rs2173763) was associated with 
major depressive disorder18. Conversely, a search for SNPs previously reported to be 
associated with circulating TNFα yielded no results located in the regions harboring the 
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replicated epigenetic hits, although an ABO polymorphism (from a region that emerged as 
a top hit yet did not replicate) was identified as a TNFα protein quantitative trait locus in an 
earlier analysis of KORA data19. 
Bioinformatic regulatory annotations for the DTX3L/PARP9 and NLRC5 regions are 
presented in eFigures 3 and 4, respectively. Both sets of loci are adjacent to or overlap 
regulatory elements, supporting observed associations with gene expression.  
  
Table 4. Associations between incident CHD and methylation status of top TNFα CpG sites 
in a meta-analysis of 8 cohorts with 1,895 disease events and 11,641 participants. 
CpG site Chr Positiona Gene HR (95% CI) P-value 
cg16411857 16 57023191 NLRC5 0.86 (0.78, 0.95) 0.003 
cg07839457 16 57023022 NLRC5 0.89 (0.80, 0.94) 3.1×10-5 
cg00959259 3 122281975 DTX3L;PARP9 0.91 (0.84, 0.97) 0.002 
cg08122652 3 122281939 DTX3L;PARP9 0.81 (0.74, 0.89) 2.0×10-5 
Abbreviations: β, regression coefficient; Chr, chromosome; CI, confidence interval; CpG, cytosine-phosphate-
guanine; HR, hazard ratio per 10% increase in methylation; TNFα, tumor necrosis factor α. ahg19. 
 
Discussion 
 
Using epigenome-wide data from adult participants of European descent, we have 
identified and replicated novel associations between leukocyte DNA methylation loci in two 
genomic regions mapping to NLRC5 and DTX3L/PARP9, the expression of corresponding 
genes, and circulating TNFα. Most notably, DNA methylation at the same loci that were 
correlated with lower plasma TNFα levels was also associated with a substantial reduction 
in the risk of incident CHD in a multi-ethnic, well-powered meta-analysis. 
Both genomic regions that were discovered and validated in our analysis encode proteins 
that play a pivotal role in the immune response. NLRC5 is a specific transactivator of major 
histocompatibility complex (MHC) class I genes20, which encode human leukocyte antigens 
(HLA) proteins that set off the adaptive immune reaction21, These processes are induced 
chiefly by interferon-gamma (IFNγ) stimulation, although also by toll-like receptor ligands, 
other interferons, and viral infections22. By activating CD8+ T-cells via MHC class I proteins, 
NLRC5 has also been shown to upregulate IFNγ, creating a positive feedback loop that 
ensures an effective response to intracellular pathogens23. 
The role of NLRC5 as a master regulator of the immune response, combined with its 
remarkable specificity, has positioned it as a promising therapeutic target in multiple clinical 
settings. The specific methylation loci that emerged as our top findings, cg16411857 and 
cg07839457, have been shown to be significantly hypomethylated in blood from immune-
suppressed HIV-infected individuals, also correlating negatively with viral load24. In another 
whole blood DNA methylation study, both CpGs were linked to circulating IL-18, offering a 
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possible mechanism for the association we observed with CHD incidence24. Of clinical 123 
interest, the NLRC5 promoter (and specifically the cg16411857 locus) was shown to be 124 
hypermethylated in 13 distinct cancer types, with a corresponding reduction in expression 125 
of not only NLRC5 but also of other genes in the MHC class I family—providing a mechanism 126 
for evasion of CD8+ T-lymphocyte antitumor activity25. Therefore, our study adds to the 127 
robust body of evidence in support of NLRC5 involvement in a wide range of 128 
pathophysiologic conditions. 129 
Similarly to NLRC5, increased expression of DTX3L-PARP9 has been shown to enhance IFNγ 130 
signaling and therefore host immune response26. Recent evidence suggests that DTX3L- 131 
PARP9 may also play a key role in vascular inflammation and atherosclerosis. In 132 
macrophage-like cell lines stimulated with IFNγ, experimental silencing of PARP9 has 133 
suppressed the induction of TNFα (consistently with the directions of association observed 134 
in our analyses) while silencing of PARP14 has had opposite effects (in contrast with our 135 
observations); additionally, PARP14 deficiency was shown to promote atherogenesis in 136 
mice27. Possible explanations for the discrepancy in the direction of association may include 137 
cell type (macrophages vs. T-lymphocytes or whole blood), tightly controlled experimental 138 
conditions in cell culture/murine models vs. observational data from free-living humans, 139 
chance, or other factors. Therapeutic inhibition of other PARP enzymes—specifically 140 
PARP1—has also been shown to confer cardioprotective effects28 as well as to reduce 141 
circulating TNFα in vivo29. Although the inconsistency of the PARP14 finding across studies 142 
merits close attention in future investigations, our analysis contributes to growing evidence 143 
linking PARP enzymes with systemic inflammation and CHD27. 144 
In follow-up analyses, we found only limited evidence of genotype contributions to the 145 
methylation of the CpG sites of interest, suggesting the importance of environmental 146 
determinants. A prior analysis of the GOLDN study reported moderate heritabilities for the 147 
top loci associated with TNFα in our analysis, with some of them (e.g. cg07839457) likely to 148 
be enriched in the genomic regions that evade erasure during embryogenesis30. It is 149 
therefore possible that the methylation of loci like cg07839457 in NLRC5 could be 150 
programmed by environmental exposures (notably pathogens) and transmitted across 151 
generations, although further targeted studies are needed to rigorously test this hypothesis. 152 
To date, the presented analysis is the largest epigenetic study of circulating TNFα, both in 153 
sample size and scope. Previously, a number of studies have interrogated relationships 154 
between methylation in the tumor necrosis factor gene (TNF) gene promoter, 155 
corresponding gene expression (where available), and circulating TNFα levels in various 156 
disease contexts, e.g. rheumatoid arthritis, chronic periodontitis31,32, type 1 diabetes33, or 157 
obesity8. Interestingly, TNF was not among the top regions associated with circulating TNFα 158 
in our meta-analysis or in published GWAS of TNFα.19 Furthermore, there was little overlap 159 
between findings of our epigenome-wide meta-analysis and previous GWAS of TNFα. The 160 
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only exception concerns our observed but unreplicated association between TNFα and 161 
methylation loci in ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3- 162 
galactosyltransferase gene (ABO) that were also observed in a previous protein quantitative 163 
trait loci GWAS19, which presented evidence that the effect was assay-specific and may be 164 
driven by cross-reactivity with ABO antigens. Finally, to the best of our knowledge, the 165 
NLRC5 and DTX3L-PARP9 findings have not been reported in epigenetic studies of other 166 
proinflammatory cytokines, although a recent meta-analysis of C-reactive protein reported 167 
multiple associations with methylation loci in other interferon pathway genes34, illustrating 168 
distinct yet related epigenetic determinants of the human immune response. 169 
Given the inflammatory relevance of the TNFα phenotype, the use of leukocyte-derived 170 
DNA for methylation measurements constitutes a clear strength of the study. Furthermore, 171 
the accessibility of blood facilitates future translational applications of our findings (e.g. 172 
development of risk stratification tools or other personalized approaches). The second 173 
strength of our study stems from restricting our main analyses to cohorts that measured 174 
TNFα using ELISA, considered the ‘gold standard’ for clinical use35, thus reducing spurious 175 
variation. Third, we achieved independent replication of our top hits in NFBC66, increasing 176 
confidence in the validity of our findings. Finally, DNA methylation measurements were 177 
available in multiple cohorts that also offered genotype and expression data, enabling an 178 
integrative approach to identify the mechanisms linking methylation and circulating TNFα. 179 
 However, several limitations of our integrative analyses must be noted. First, the 180 
expression findings replicated robustly between FHS and RS, but not in KORA. Possible 181 
reasons include discrepancies in population characteristics, gene expression 182 
measurements, or chance. Second, FHS measurements of methylation and TNFα were taken 183 
several years apart, while all other cohorts performed them contemporaneously. However, 184 
the FHS findings were similar to those derived from cross-sectional studies, and the 185 
difference in time between the measurements would bias the effect estimates towards the 186 
null, further reassuring our results. Third, the reported associations may not be interpreted 187 
as causal because they were established in observational data that do not preclude bias, 188 
e.g. due to residual confounding. Causal inference methods such as Mendelian 189 
randomization, used widely to corroborate findings of epigenome-wide studies, are not 190 
optimal for our study because strong genetic instruments for either 1) the methylation at 191 
the top loci, which we showed to be only weakly related to the genotype and 2) TNFα itself 192 
are not currently available. Future studies may consider directly interrogating the 193 
relationship between DNA methylation in NLRC5 and PARP9-DTX3L and systemic 194 
inflammation in experimental models.  195 
In summary, we report novel evidence linking DNA methylation in two immune response- 196 
related regions—NLRC5 and PARP9-DTX3L—with corresponding gene expression, 197 
circulating TNFα, and incident CHD in a population-based meta-analysis, highlighting the 198 
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potential of these regions as translational targets. Further, our findings illustrate the utility 199 
of agnostic methylome-wide studies in identifying physiologically meaningful phenomena. 200 
In concert with evidence from in vitro and in vivo functional studies, our findings yield 201 
valuable insights into immunopathology of CHD. 202 

203 
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The supplementary material of this manuscript can found at the following webpage: 
https://jamanetwork.com/journals/jamacardiology/fullarticle/2677631. 
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Background: Tobacco smoking, a risk factor for diabetes, is an established modifier of DNA 
methylation. We hypothesized that tobacco smoking modifies DNA methylation of genes 
previously identified for diabetes. 
 
Methods: We annotated CpG sites available on the Illumina450K array to diabetes genes 
previously identified by genome-wide association studies (GWAS), and investigated them 
for an association with smoking comparing current to never smokers. The discovery study 
consisted of 630 individuals (Bonferroni corrected P-value=1.4×10-5), and we sought 
replication in an independent sample of 674 individuals. The replicated sites were tested 
for association with nearby genetic variants and gene expression and fasting glucose and 
insulin levels.  
 
Results: We annotated 3,620 CpG sites to the genes identified in the GWAS on type 2 
diabetes. Comparing current to never smokers, we found 12 differentially methylated CpG 
sites, of which five replicated: cg23161492 within ANPEP (P-value=1.3×10-12); cg26963277 
(P-value=1.2×10-9), cg01744331 (P-value=8.0×10-6) and cg16556677 (P-value=1.2×10-5) 
within KCNQ1; cg03450842 (P-value=3.1×10-8) within ZMIZ1. The effect of smoking on DNA 
methylation at the replicated CpG sites attenuated after smoking cessation. Increased DNA 
methylation at cg23161492 was associated with decreased gene expression levels of ANPEP 
(P-value=8.9×10-5). rs231356-T, which was associated with hypomethylation of cg26963277 
(KCNQ1), was associated with an higher odds of diabetes (OR=1.06, P-value=1.3×10-5). 
Additionally, hypomethylation of cg26963277 was associated with lower fasting insulin 
levels (P-value=0.04). 
 
Conclusion: Tobacco smoking is associated with differential DNA methylation of the 
diabetes risk genes ANPEP, KCNQ1 and ZMIZ1. Our study highlights potential biological 
mechanisms connecting tobacco smoking to excess risk of type 2 diabetes. 
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Introduction 
 
In the last decade, genome-wide association studies (GWAS) have been conducted in order 
to identify DNA sequence variants for a wide range of diseases including type 2 diabetes1,2,3. 
These GWAS have successfully identified numerous single-nucleotide polymorphisms 
(SNPs) located in and near genes that may be key in the development of type 2 diabetes. 
Up to now, a total number of 88 genetic loci have been identified for type 2 diabetes4.  
Tobacco smoking is associated with an increased risk of type 2 diabetes5. Several biological 
mechanisms have been proposed through which smoking may have an effect on the 
development of diabetes, including inflammation and the effect of nicotine on insulin 
resistance6. However, the exact molecular mechanisms connecting smoking to an increased 
risk of diabetes remain largely unknown. Previous research has established an important 
role of tobacco smoking on DNA methylation, the epigenetic mechanism of attachment of 
a methyl-group to a nucleotide7,8,9. DNA methylation has several functions on the human 
genome including the regulation of gene expression and maintaining genome stability10. In 
line with this, previous studies have suggested a role for DNA methylation as a potential 
pathway in the association between tobacco smoking and an increased risk of diabetes11.  
We hypothesized that tobacco smoking changes DNA methylation of susceptibility loci 
identified in GWAS for type 2 diabetes. We therefore investigated the association between 
DNA methylation in whole blood at loci identified for type 2 diabetes through GWAS and 
current tobacco smoking in a Dutch population-based cohort study. Furthermore, we 
investigated the potential effect of DNA methylation on the expression of genes nearby the 
identified methylation sites. 
 
Methods 
 
Study population  
The study was conducted using data from the Rotterdam Study. The design of the 
Rotterdam Study has been described elsewhere12. In brief, 1990 all inhabitants living in the 
neighborhood Ommoord in Rotterdam, the Netherlands, aged 55 years and over were 
invited to participate (RS-1). In 2000, the cohort was extended with 3,011 participants aged 
55 years and over that had reached the age of 55 or had moved into the research area (RS-
2). In 2006, a third cohort of 3,934 participants aged 45 years and older was initiated (RS-
3). The discovery panel consisted of 630 non-diabetic participants in the first visit of RS-3 
(diabetes was defined as a serum glucose level ≥7.0 mmol/L or the use of glucose-lowering 
medication) of a random subset of 747 Caucasian subjects with DNA methylation data 
available. We sought replication of the identified CpG sites in a set of 674 non-diabetic 
participants from the third visit of RS-2 and the second visit of RS-3. The individuals in the 
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replication study did not participate in the discovery study. The Rotterdam Study has been 
approved by the medical ethics committee according to the Population Screening Act: 
Rotterdam Study, executed by the Ministry of Health, Welfare and Sports of the 
Netherlands. All participants in the present analysis provided written informed consent to 
participate and to obtain information from their treating physicians.  
 
Data collection 
Data on tobacco smoking was collected during home interviews. Participants were asked 
about past and present cigarette, cigar and pipe smoking behavior and where then 
categorized into current, former and never tobacco smokers. We asked current smokers the 
start age of smoking and amount of cigarettes per day. Former smokers were asked for the 
age of smoking cessation. Five of the participants had missing smoking status and were 
therefore excluded from any analysis. During the center visit, weight and height were 
measured in standing position wearing normal cloths. Body mass index (BMI) was calculated 
as height in meters by weight in kilograms squared. All participants had blood samples taken 
during the visit to quantify DNA methylation, messenger RNA (mRNA) expression levels, 
DNA sequence variants and other blood measurements.  
 
DNA methylation data 
DNA was extracted from whole peripheral blood (stored in EDTA tubes) by standardized 
salting out methods. Genome-wide DNA methylation levels were measured using the 
Illumina Human Methylation 450K array13. In short, samples (500ng of DNA per sample) 
were first bisulfite treated using the Zymo EZ-96 DNA-methylation kit (Zymo Research, 
Irvine, CA, USA). Next, samples were hybridized to the arrays according to the 
manufacturers’ protocol. The methylation percentage of a CpG site was reported as a beta-
value ranging between 0 (no methylation) and 1 (full methylation). Processing of the 
Rotterdam Study DNA methylation samples was performed at the Genetic Laboratory of 
Internal Medicine, Erasmus University Medical Centre Rotterdam. 
Quality control of the samples was done with Genome Studio (v2011.1, methylation module 
version 1.9.0). In the discovery panel, a total number of 16 samples were removed: 7 had a 
sample call rate below 99%; 5 had incomplete bisulfite conversion and 4 had gender swaps. 
In the replication set, all samples passed the quality control based on the first two principal 
components obtained using principal component analysis (PCA), and no gender swaps were 
detected. Further quality control of the probes was done based on the detection p-value 
calculated with Genome Studio. Probes with a detection p-value of more than 0.01 in more 
than 1% of the samples were excluded. Additionally, sample level QC was performed using 
MethylAid14. This resulted in a total set of 474,528 probes which were normalized using the 
Dasen option of the WateRmelon R-package15. 
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mRNA expression data 
Whole-blood was collected (PAXGene Tubes – Becton Dickinson) and total RNA was isolated 
(PAXGene Blood RNA kits - Qiagen). To ensure a constant high quality of the RNA 
preparations, all RNA samples were analyzed using the Labchip GX (Calliper) according to 
the manufacturer’s instructions. Samples with an RNA Quality Score more than 7 were 
amplified and labelled (Ambion TotalPrep RNA), and hybridized to the Illumina 
HumanHT12v4 Expression Beadchips as described by the manufacturer’s protocol. 
Processing of the Rotterdam Study RNA samples was performed at the Genetic Laboratory 
of Internal Medicine, Erasmus University Medical Centre Rotterdam. The RS-III expression 
dataset is available at GEO (Gene Expression Omnibus) public repository under the 
accession GSE33828: 881 samples are available for analysis. 
Illumina gene expression data was quantile-normalized to the median distribution and 
subsequently log2-transformed. The probe and sample means were centered to zero. 
Genes were declared significantly expressed when the detection p-values calculated by 
GenomeStudio were less than 0.05 in more than 10% of all discovery samples, which added 
to a total number of 21,238 probes. Quality control was done using the eQTL-mapping 
pipeline16. We only analyzed probes that uniquely mapped to the human genome build 37 
and represented gene mRNA expression17. 
 
Selection of methylation sites 
A recent review summarizing all diabetes GWAS findings was used to compile a list of 
variants significantly associated with diabetes (88 variants)4. Next, the list of 88 variants was 
extended with polymorphisms in linkage disequilibrium (R2 > 0.8) in the HapMap panel and 
within 500kb using the SNAP Proxy Search tool 
(https://www.broadinstitute.org/mpg/snap/ldsearch.php). The final list included 890 SNPs 
and those SNPs were tested for in-gene variants and effects on expression of a gene within 
1Mb as found in a large publically available blood cis-expression-quantitative trait loci (cis-
eQTL) database (FDR<0.05)16. We identified 525 SNPs that were in-gene (mapping to 72 
unique genes) and 316 SNPs with an eQTL effect (mapping to 50 unique genes). The final 
number of unique genes was 111. The methylation probes within and near these diabetes-
related genes as provided by Illumina were included in the analysis. We excluded probes 
from the Infinium HD methylation SNP list with a minor allele frequency above 1% as 
provided by Illumina, since variations in these SNPs can cause bias in the methylation 
measurement18. We further excluded known cross-reactive probes, since they can 
introduce bias in the results19. In total, we included 3,620 CpG sites in the analyses. 
 
Statistical analysis 
The characteristics of the discovery and replication population were compared between 
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current and never smokers using IBM SPSS Statistics version 21.0.0.1 (IBM Corp.). The p-
values were calculated using independent sample T-tests for continuous variables and Chi-
square tests for dichotomous variables.  
The 3,620 methylation probes were tested for association with tobacco smoking using a 
linear mixed model with the LME4 package in R version 3.1.0 with Dasen normalized beta-
values of the CpG sites as outcome measure20. Extreme outliers (>4SD from the mean and 
>4SD from the before last) in the DNA methylation values were excluded. We first compared 
current to never smokers and then performed a sensitivity analysis on the identified CpG 
sites comparing former to never smokers. Covariates were selected based on known 
association with DNA methylation. The selected covariates with fixed effects were age, sex 
and BMI21-24. Houseman estimated white blood cell proportions were used as fixed effects 
to correct for cell mixture distribution25. Array number and position on array were added in 
the model as covariates with random effects to correct for batch effects. We corrected for 
multiple testing using a robust Bonferroni corrected p-value of 1.4×10-5 as the threshold for 
significance (0.05/3,620 probes).  
The probes identified in the discovery analysis were tested for replication in the 
independent samples from the Rotterdam study. We used identical models with the 
addition of cohort (RS-2 or RS-3) as a variable in the model to adjust for a potential cohort 
effect. A Bonferroni corrected p-value of 0.05 divided by the number of significant findings 
in the discovery study was used as a threshold of significant replication. 
The replicated probes were further tested with total pack years in the current smokers to 
test the association between tobacco smoking and cumulative exposure of smoking. We 
further investigated the association between the replicated probes and time since cessation 
in former smokers to study the change in methylation after smoking cessation. To decrease 
the possibility of confounding in our association, we further adjusted the model in a second 
analysis for other possible confounders and mediators. This analysis included total 
cholesterol, HDL-cholesterol, triacylglycerol levels (natural log-transformed), systolic blood 
pressure, daily alcohol intake, and C-reactive protein levels (natural log-transformed).  
 
Functional analysis 
Since DNA methylation may have an effect on gene expression, we tested the association 
between DNA methylation and mRNA expression levels of nearby genes (cis) within 500kb 
of the replicated CpG sites (250kb up and downstream of the CpG location). First, residuals 
for mRNA expression were created after regressing out the measured cell counts 
(granulocytes, lymphocytes, monocytes, platelets and erythrocytes), fasting state, RNA 
quality score, plate number, age and sex on the mRNA expression levels using a linear mixed 
model. We then created residuals for DNA methylation regressing out the measured white 
blood cells, age, sex, array number and position on array on the Dasen normalized beta-
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values of the CpG sites using a linear mixed model. The residuals of the mRNA expression 
levels and the residuals of the Dasen normalized beta-values of the CpG sites were tested 
for association using a linear regression model.  
We also studied the association between the replicated CpG sites and serum measures of 
fasting glucose and insulin combining both the discovery and replication samples. Serum 
glucose and insulin were measured using standard laboratory techniques. The models were 
adjusted for the same covariates as in the main analyses, with the addition of smoking 
category. Serum insulin was natural log-transformed. A Bonferroni corrected p-value for 
five tests was used. Furthermore, we searched for genetic variants (methylation 
Quantitative Trait Loci (metQTLs)) associated with the replicated methylation sites in the 
publicly available data from the paper by Grundberg et al26. Significant met-QTLs were then 
tested for an association with type 2 diabetes in the publicly available data from the 
DIAGRAM consortium, using a Bonferroni corrected p-value of 0.01 (0.05/5 met-QTLs)3.  
 
Results 
 
A total of 630 participants were included in the discovery study. Clinical characteristics of 
the study population by smoking category are listed in Table 1. The participants were on 
average 59.5±8.0 years old and 45% was male. The samples consisted of 175 current 
smokers and 184 never smokers, whereas 271 participants were former smokers. On 
average, current smokers had lower HDL-cholesterol, higher triacylglycerol and serum C-
reactive protein compared to never smokers. Also alcohol consumption was higher in 
current smokers compared to former and never smokers. In the replication panel, 68 
individuals were current smoker and 238 never smokers, whereas 368 individuals were 
former smokers. Clinical characteristics of the replication population can be found in 
Supplementary table 1. 
After correction for multiple testing (P-value=1.4×10-5), we identified 12 differentially 
methylated CpG sites when comparing current smokers to never smokers in the discovery 
study (Table 2). The 12 differentially methylated CpG sites were located within eight genes. 
The most significant finding was cg23161492 located within the gene ANPEP on 
chromosome 15 (P-value= 1.3×10-12). On chromosome 11, four CpG sites located within the 
gene KCNQ1 were significantly associated with current tobacco smoking (cg26963277, P-
value=1.2×10-9; cg13428066, 5.8×10-6; cg01744331, 8.0×10-6; cg16556677, 1.2×10-5). Within 
the gene ZMIZ1 on chromosome 10, two CpG sites were significant differentially methylated 
between current and never smokers (cg03450842, 3.1×10-8; cg21344746, 6.6×10-6). In 
addition, we identified CpG sites in and near INPP5E, NDUFS5, FCHSD2, PBX4 and TCF19 to 
be differentially methylated in current smokers compared to never smokers. 
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Table 1. Baseline characteristics of the study population. 
  Smoking category  
 Total Current  Former Never P-valuea 

N 630 175 271 184  
Age, years 59.5 (8.0) 57.9 (6.6) 60.9 (8.5) 59.0 (8.1) 0.16 
Sex, male (%) 283 (45%) 85 (49%) 126 (47%) 72 (39%) 0.07 
Body mass index, kg/m2 27.4 (4.5) 26.7 (4.4) 27.6 (4.3) 27.6 (4.8) 0.07 
Fasting glucose, mmol/l 5.35 (0.55) 5.33 (0.58) 5.40 (0.55) 5.30 (0.52) 0.65 
Systolic blood pressure, 
mmHg 138.5 (63.0) 136.4 (60.4) 139.7 (67.4) 138.7 (58.8) 0.71 

Diastolic blood pressure, 
mmHg 88.0 (65.0) 86.0 (62.1) 89.0 (69.8) 88.4 (60.3) 0.71 

Total cholesterol, mmol/l 5.60 (1.03) 5.60 (1.07) 5.62 (1.01) 5.56 (1.02) 0.72 
HDL-cholesterol, mmol/l 1.41 (0.40) 1.34 (0.39) 1.44 (0.41) 1.44 (0.37) 0.01 
Triglycerides, mmol/l 1.45 (0.81) 1.62 (1.02) 1.39 (0.62) 1.40 (0.81) 0.02 
C-reactive protein 2.55 (4.74) 3.17 (7.03) 2.52 (3.54) 2.03 (3.31) 0.05 
Alcohol, g/day 18.3 (11.0) 19.4 (12.7) 19.0 (10.9) 16.1 (9.3) 0.006 
Fastingb, yes (%) 628 (100%) 173 (99%) 271 (100%) 184 (100%) 0.15 
Data are mean (SD) or n (%). HDL-cholesterol denotes high density lipoprotein. 
aCurrent versus never smokers. 
bThe subjects who provided blood after an overnight fast. 
 
 
 
Table 2. Significant associations between current versus never tobacco smoking and 
methylation of diabetes genes. 

   Discovery  Replication   
CpG site Chr Position Beta(SE) P-value Beta(SE) P-value Gene 
cg23161492 15 90357202 -0.044(0. 006) 1.3×10-12 -0.045(0.006) 3.4×10-11 ANPEP 
cg26963277 11 2722407 -0.026(0.004) 1.2×10-9 -0.034(0.004) 3.3×10-14 KCNQ1 
cg03450842 10 80834947 -0.017(0.003) 3.1×10-8 -0.030(0.004) 2.2×10-12 ZMIZ1 
cg14024579 9 139332845 -0.022(0.004) 1.1×10-7 -0.015(0.006) 0.01 INPP5E 
cg14656441 1 39500070 0.026(0.005) 1.5×10-6 0.016(0.008) 0.05 NDUFS5 
cg13912027 11 72759293 0.022(0.005) 2.1×10-6 -0.001(0.006) 0.89 FCHSD2 
cg00591868 19 19729048 -0.015(0.003) 4.6×10-6 -0.003(0.005) 0.51 PBX4 
cg13428066 11 2677768 0.015(0.003) 5.8×10-6 0.007(0.006) 0.28 KCNQ1 
cg21344746 10 80831230 0.016(0.004) 6.6×10-6 0.001(0.005) 0.82 ZMIZ1 
cg16095155 6 31127863 -0.013(0.003) 7.2×10-6 -0.007(0.004) 0.12 TCF19 
cg01744331 11 2722358 -0.013(0.003) 8.0×10-6 -0.025(0.003) 7.4×10-12 KCNQ1 
cg16556677 11 2722401 -0.015(0.003) 1.2×10-5 -0.027(0.004) 3.9×10-10 KCNQ1 
Adjusted for age, sex, body mass index, houseman estimated white blood cell proportions and batch effects. Chr 
denotes chromosome. Position according to Hg19. Bonferroni corrected threshold for significance: 
0.05/3,620=1.4×10-5. 
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We attempted replication of the 12 differentially methylated CpG sites from the discovery 
study in 674 independent participants of the second and third cohort of the Rotterdam 
Study. We used a p-value of 4.2×10-3 (0.05/12) as a threshold of significant replication. We 
significantly replicated the five CpG sites cg23161492 (ANPEP), cg26963277 (KCNQ1), 
cg03450842 (ZMIZ1), cg01744331 (KCNQ1) and cg16556677 (KCNQ1) (Table 2). 
Furthermore, the replicated associations were robust to further adjustment for possible 
confounders including systolic blood pressure, total cholesterol, HDL-cholesterol, 
triacylglycerol, alcohol consumption and C-reactive protein (Table S2). Boxplots of 
replicated probe beta-values per smoking category are presented in Figure 1. 
When we adjusted the effect of the top signal within the KCNQ1 gene (cg26963277) for the 
second (cg01744331) or third (cg16556677) signal within KCNQ1, cg26963277 was 
associated with current smoking, whereas cg01744331 and cg16556677 did not show an 
association (P 0.84 and 0.35, respectively). 
To study the effect of smoking cessation on the replicated CpG sites, we compared former 
to never smokers and tested the association between time since smoking cessation and 
DNA methylation. DNA methylation at the five CpG sites were not differentially methylated 
comparing former to never smokers (Table 3). Methylation at cg23161492 (P-value=2.6×10-

6), cg26963277 (P-value=2.1×10-4), cg01744331 (P-value=5.1×10-5) and cg16556677 (P-
value=1.2×10-3) was associated with time since smoking cessation. Additionally, 
methylation at the CpG sites cg23161492, cg26963277, cg03450842 and cg01744331 was 
associated with cumulative exposure of tobacco smoking.  
In the 630 individuals from the discovery panel, six genes out of 20 candidates were found 
to be significantly expressed in the analyzed whole blood samples. The 12 methylation- 
 
Table 3. Association between CpG sites and former compared to never smokers, time 
since smoking cessation and cumulative smoking exposure in pack years. 

 Former versus never 
smokers Cessation time Packyears 

CpG site Beta(SE) P-value Betaa(SE) P-value Betaa(SE) P-value  
cg23161492 -0.007(0.006) 0.24 0.014(0.003) 2.6×10-6 -0.007(0.002) 2.8×10-3 
cg26963277 -0.006(0.003) 0.05 0.006(0.002) 2.1×10-4 -0.006(0.002) 9.0×10-4 
cg03450842 -0.005(0.002) 0.06 0.002(0.001) 0.20 -0.003(0.001) 1.6×10-3 
cg01744331 -0.003(0.002) 0.21 0.005(0.001) 5.1×10-5 -0.004(0.001) 1.1×10-4 
cg16556677 -0.007(0.003) 7.1×10-3 0.005(0.001) 1.2×10-3 -0.003(0.001) 0.05 
aBeta represent change in methylation per 10 years since smoking cessation and per 10 packyears. 
Adjusted for age, sex, body mass index, white blood cell counts and batch effects. Bonferroni corrected threshold 
for significance: 0.05/15 =3.3×10-3. 
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expression combinations can be found in Table S3. The p-value threshold for association 
was 4.2×10-3 (0.05/12 tests). Increased methylation at cg23161492 was negatively 
associated with gene expression levels of ANPEP (P-value=8.9×10-5) (Figure S1).  
We observed a putative effect of the CpG site cg26963277 with fasting serum insulin (effect: 
0.004, P-value=0.04). Results for the associations between all replicated CpG sites and 
serum fasting glucose and insulin are presented in Table S4. 
We identified a significant met-QTL for all replicated CpG sites, except cg0345084 (Table 
S5). The T-allele of the SNP rs231356 is associated with lower methylation of both 
cg26963277 and cg01744331 (KCNQ1). Also, the T-allele of the SNP rs231356 is associated 
with an increased odds of type 2 diabetes (Odds Ratio=1.06, P-value=1.3×10-5). 
 
Discussion 
 
Our findings suggest that tobacco smoking is associated with differential methylation of CpG 
sites within the type 2 diabetes risk genes ANPEP, KCNQ1 and ZMIZ1. The associations were 
robust to adjustment for potential confounders and the effect of tobacco smoking appeared 
to be reversible after smoking cessation. In addition, methylation within ANPEP was 
significantly associated with gene expression levels of ANPEP. Furthermore, methylation at 
KCNQ1 was associated with fasting insulin levels, and genetic data supported the role of 
methylation at KCNQ1 in the development of diabetes. This study provides further insight 
into potential biological mechanisms underlying the association between tobacco smoking 
and an excess risk of type 2 diabetes. 
In contrast to the findings comparing current to never smokers, we found similar DNA 
methylation levels at the replicated CpG sites comparing former to never smokers. 
Furthermore, four significant CpG sites were associated with time since smoking cessation, 
suggesting a return after smoking cessation to DNA methylation levels similar to never 
smokers. This is in agreement with previous studies investigating the role of smoking 
cessation on DNA methylation7, 27, 28. DNA methylation may return to levels similar to never 
smokers at some sites, whilst other sites stay differentially methylated. Our results are in 
agreement with a potential beneficial effect of smoking cessation on DNA methylation at 
risk loci for diabetes. Furthermore, we observed for four CpG sites a dose-dependent effect 
of smoking underscoring the importance of cumulative tobacco exposure over time. 
We identified three CpG sites within intron 11 of KCNQ1 (potassium channel, voltage gated 
KQT-like subfamily Q, member 1) to be differentially methylated in smokers compared to 
never smokers. Previous studies have reported differential DNA methylation at the KCNQ1 
locus in pancreatic islets and adipose tissue of diabetes cases and non-diabetes controls29, 

30. Adjustment analyses suggested that cg26963277 is the driving CpG site associated with 
current smoking at this locus. Furthermore, we found the metQTL (rs231356) for  
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Figure 1. Boxplots depicting the methylation values in the replicated CpG sites in current, 
former, and never smokers. 
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cg26963277 to be associated with the risk of diabetes. More specifically, the T-allele of 
rs231356 is associated with lower methylation of cg26963277 and an increased odds of type 
2 diabetes. In agreement with this observation, tobacco smoking lowers methylation at 
cg26963277 and is associated with an increased risk of diabetes. Additionally, our data 
suggest an association between cg26963277 and fasting insulin levels: increasing 
methylation was putatively associated with increasing fasting insulin levels. Although we 
did not observe an association between DNA methylation at cg26963277 and expression of 
KCNQ1, our results provide evidence that smoking may increase the risk of diabetes through 
decreased methylation at KCNQ1 and a subsequent decrease in fasting insulin levels. 
Further, current tobacco smoking was associated with a 4.4% decrease in methylation at 
cg23161492 located near the 5’ UTR of the gene ANPEP and this decreased methylation was 
correlated with increased gene expression levels of ANPEP. The ANPEP gene encodes the 
protein alanine aminopeptidase, a widely expressed enzyme with various cellular processes 
including cell proliferation, differentiation and apoptosis31. The observation that current 
smoking, which increases the risk of type 2 diabetes, may lead to higher gene expression 
levels of ANPEP is in line with the observation of Locke and colleagues32. The risk allele of 
the SNP rs2007084 identified in the DIAGRAM consortium is also associated with increased 
gene expression of ANPEP in islet cells32. This suggests that increased expression of ANPEP 
leads to an increased risk of type 2 diabetes. The observation that DNA sequence variation 
and DNA methylation at this locus is associated with increased expression levels of ANPEP 
suggests a role for ANPEP in the pathogenesis of type 2 diabetes, rather than the gene 
AP3S2 proposed by prior GWAS3. 
We further identified the CpG cg03450842 near the 5’ UTR of ZMIZ1, to be differentially 
methylated among smokers compared to never smokers. The CpG cg03450842 has been 
identified previously to be associated with smoking11.Unfortunately, we had no expression 
data available in our samples for this gene and could therefore not study the effect of 
methylation at cg03450842 on gene expression of ZMIZ1.  
The strength of the current study is the large sample size with available data on DNA 
methylation, gene expression and genetic variants which allowed in detail investigation of 
the interrelationship between tobacco smoking, DNA methylation and gene expression. A 
limitation of the current work is the use of whole blood samples for the quantification of 
DNA methylation and gene expression. As both methylation and expression may be tissue 
specific, we might have overlooked potential associations between tobacco smoking and 
differential methylation of diabetes related genes in other tissues, for instance liver, fat, 
pancreas or muscle tissue. Furthermore, observed associations may not be generalizable to 
other tissues. Another limitation is the challenge of gene annotation in GWAS. GWAS locate 
DNA sequence variants for phenotypes, but the underlying causal gene might be difficult to 
designate. To minimize this problem we limited our analysis to genes annotated to in-gene 
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variants and known cis-eQTL effects. Therefore the diabetes risk genes selected in our study 
are more plausible to be the causal gene for diabetes.  
In summary, our study suggests an effect of tobacco smoking on DNA methylation of the 
diabetes-related genes ANPEP, KCNQ1 and ZMIZ1. Our study provides further insight into 
potential mechanisms linking tobacco smoking to an excess risk of type 2 diabetes. 
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Supplementary material 
 
Table S1. Clinical characteristics of the replication population. 

                                                   Smoking category 
  Total  Current Former  Never  P-valuea 
N  674  68  368  238    
Age, years  67.4 (6.0)  66.3 (6.2)  67.7 (5.7)  67.2 (6.2)  0.27  
Sex, male (%)  277 (41%)  24 (35%)  176 (48%)  77 (32%)  0.76  
Body mass index, kg/m2  27.5 (4.0)  26.0 (3.5)  28.0 (4.1)  27.1 (3.9)  0.03  
Fasting glucose, mmol/l  5.42 (0.57)  5.32 (0.52)  5.49 (0.57)  5.35 (0.56)  0.74  
Systolic blood pressure, 
mmHg  

144.7 (22.2)  139.9 (19.4)  145.9 (23.0) 144.3 (21.4) 0.11  

Diastolic blood pressure, 
mmHg  

84.5 (11.7)  81.3 (10.0)  85.6 (12.3)  83.9 (11.0)  0.07  

Total cholesterol, mmol/l  5.60 (0.99)  5.62 (1.05)  5.59 (1.00)  5.59 (0.97)  0.30  
HDL-cholesterol, mmol/l  1.55 (0.44)  1.60 (0.56)  1.52 (0.43)  1.58 (0.42)  0.77  
Triglycerides, mmol/l  1.42 (0.79)  1.44 (0.75)  1.50 (0.88)  1.28 (0.60)  0.11  
Fastingb, yes (%)  673 (99.9%)  68 (100%)  367 (99.7%) 238 (100%)  NA  
Data are mean (SD) or n (%).  
aCurrent versus never smokers.  
bThe subjects who provided blood after an overnight fast. 
 
 
 
 
Table S2. Significant associations between tobacco smoking and methylation of diabetes 
genes, adjusted for potential confounding factors. 
CpG site  Beta  SE  P-value Gene  

cg23161492  -0.040  0.006  2.6×10-10  ANPEP  
cg26963277  -0.025  0.004  2.5×10-8  KCNQ1  
cg03450842  -0.012  0.003  5.8×10-4  ZMIZ1  
cg01744331  -0.013  0.003  1.4×10-5  KCNQ1  
cg16556677  -0.015  0.004  3.8×10-5  KCNQ1  
Adjusted for age, sex, body mass index, houseman estimated white blood cell proportions, batch effects, systolic 
blood pressure, total cholesterol, HDL-cholesterol, triglycerides (natural logarithm), alcohol consumption and C-
reactive protein (natural logarithm).  
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Table S3. Association between identified CpG sites and expression of nearby genes.  
CpG site  Gene  ILMNID  Beta  SE P-value 
cg01744331  CDKN1C  ILMN_1718565  4.824  2.044  0.02  
cg01744331  NAP1L4  ILMN_1804327  0.988  1.096  0.37  
cg01744331  SLC22A18  ILMN_2382505  -0.005  1.704  1.00  
cg16556677  NAP1L4  ILMN_1804327  0.775  0.867  0.37  
cg16556677  SLC22A18  ILMN_2382505  -0.295  1.347  0.83  
cg16556677  CDKN1C  ILMN_1718565  -0.321  1.623  0.84  
cg23161492  ANPEP  ILMN_1763837  -4.352  0.973  8.9×10-06  
cg23161492  AP3S2  ILMN_1731596  0.109  0.35  0.76  
cg23161492  C15ORF38  ILMN_2189406  -0.111  0.387  0.77  
cg26963277  CDKN1C  ILMN_1718565  2.998  1.359  0.03  
cg26963277  SLC22A18  ILMN_2382505  2.007  1.13  0.08  
cg26963277  NAP1L4  ILMN_1804327  -0.631  0.728  0.39  
Residual expression after adjustment for age, sex, batch effects, houseman estimated white blood cell proportions, 
erythrocytes and platelet cell counts, fasting state and RNA quality score associated with residual methylation after 
adjustment for age, sex, houseman estimated white blood cell proportions and batch effects. Estimates are 
changes in residual expression per percentage residual methylation increase. Bonferroni corrected threshold of 
significance: 0.05/12=4.2x10-3.  

 
Table S4. Results for the associations between the replicated CpG sites and fasting 
serum glucose and insulin levels.  
CpG site  Effect  P-value 
cg23161492  0.0015  0.58  
cg26963277  -0.0012  0.47  
cg03450842  -0.0010  0.47  
cg01744331  -0.0003  0.79  
cg16556677  -0.0006  0.69  
cg23161492  0.0051 0.10  
cg26963277  0.0039  0.04  
cg03450842  -0.0002  0.93  
cg01744331  0.011  0.45  
cg16556677  0.0031  0.09  
Effect represents the effect in methylation beta-value per 1-unit increase in fasting glucose (mmol/l) or natural 
logarithm of insulin (pmol/l). P represents the unadjusted p-value.  
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Table S5. Replicated CpG sites, met-QTLs and association with type 2 diabetes.  

CpG site  SNP  Distancea  Effect 
Allele 

met-
QTL 
beta  

met-QTL 
P-value 

T2D 
OR  

T2D P-
value  

cg23161492  rs11073891  6,792  C  0.023  1.5×10-14 1.00  0.88  
cg26963277  rs231356  17,065  T  -0.010  8.9×10-6  1.06  1.3×10-5  
cg01744331  rs231356  17,015  T  -0.011  2.5×10-6  1.06  1.3×10-5  
cg16556677  rs2283194  265  G  -0.011  3.2×10-5  1.00  0.95  
aDistance between CpG sites and met-QTL SNP. 
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Background: Tobacco smoking, a risk factor for coronary artery disease (CAD), is known to 
modify DNA methylation. We hypothesized that tobacco smoking modifies methylation of 
the genes so far identified for CAD by genome-wide association study (GWAS). 
 
Methods: We selected genomic regions based on 150 single-nucleotide polymorphisms 
(SNPs) identified in the largest GWAS on CAD. We investigated the association between 
current smoking and the CpG sites within and near these CAD related genes. Methylation 
was measured with the Illumina Human Methylation 450K array in whole blood of 724 
Caucasian subjects from the Rotterdam Study, a Dutch population based cohort study. 
Significant CpG sites were then checked for association with mRNA expression of nearby 
CAD genes.  
 
Results: A total of 3669 CpG sites within 169 CAD related genes were studied for association 
with current compared to never smoking. Fifteen CpG sites were significantly associated 
after correction for multiple testing (Bonferroni corrected P-value<1.4×10-5). These sites 
were located in the genes TERT, SARS, GNGT2, SMG6, SKI, TOM1L2, SIPA1, MRAS, CDKN1A, 
LRRC2, FES and RPH3A . In twelve sites, current smoking was associated with a decreased 
methylation compared to never smoking and in three sites it was associated with increased 
methylation. The effect estimates decreased in nine of the CpG sites when comparing 
current to former smoking. One CpG site, cg05603984 (SKI) was found to be associated with 
expression of nearby CAD-related gene PRKCZ. 
 
Conclusions: Our study provides examples of CAD related genes of which differential 
methylation is associated with tobacco smoking.   
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Introduction 
 
Coronary artery disease (CAD) is a worldwide health problem with a high mortality rate and 
disease burden1. In recent years, large genome-wide association studies (GWAS) have been 
conducted to identify genetic risk factors for a vast amount of diseases including CAD. These 
GWAS have successfully identified tens of single-nucleotide polymorphisms (SNPs) located 
in genes and their vicinity that might play a role in the pathophysiology of CAD. The 
CARDIoGRAMplusC4D consortium is the largest CAD GWAS consortium comprising 63,746 
CAD cases and 130,681 controls2. This consortium has found 46 susceptibility loci 
significantly associated with the risk of CAD and 104 loci suggestive for CAD.  
One of the major risk factors for CAD is tobacco smoking which accounts for 10-15% of the 
risk3. Recent studies have shown that smoking can interact with genetic variation to 
increase the risk of CAD4,5. One of the potential mechanisms for this interaction is DNA 
methylation. DNA methylation is the attachment of a methyl-group to a nucleotide which 
occurs most often at the cytosine nucleotide of CpG dinucleotides. Methylation has varying 
functions at different locations in the human genome including influence on gene 
expression6. 
Since studies have established an important role for smoking in DNA methylation7,8,9, we 
hypothesized that tobacco smoking changes DNA methylation of genes near genetic loci 
identified for CAD, which in turn could alter gene expression of these genes. We therefore 
investigated the association between methylation of genes near CAD-GWAS loci in whole 
blood and tobacco smoking in the Rotterdam Study. Furthermore, we investigated the 
correlation between methylation and expression of CAD related genes nearby the identified 
differentially methylation sites. 
 
Methods 
 
Study population  
The study was conducted using data from the third cohort of the Rotterdam Study. The 
design of the Rotterdam Study has previously been described elsewhere10. Briefly, all 
inhabitants from the neighborhood Ommoord in Rotterdam aged 45 years and over were 
invited to participate. During the center visit, 3934 participants were examined between 
February 2006 and December 2008. We performed the analyses on a random subset of 747 
Caucasian subjects from the center visit. The study was approved by the medical ethics 
committee at Erasmus University Rotterdam, Rotterdam, the Netherlands, and all examined 
participants gave written informed consent. 
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Data collection 
Data on tobacco smoking was collected during home interviews. Participants were asked 
about past and present cigarette, cigar and pipe smoking behavior and where then 
categorized into current, former and never tobacco smokers. Seven participants had 
missing smoking status and were therefore excluded from any analysis. During the center 
visit, weight and height were measured in standing position wearing normal cloths. All 
participants had blood samples taken during the visit to quantify DNA methylation, 
messenger RNA (mRNA) expression levels and other blood measurements.  
 
DNA methylation data 
DNA was extracted from whole peripheral blood (stored in EDTA tubes) by standardized 
salting out methods. Genome-wide DNA methylation levels were measured using Illumina 
Human Methylation 450K array11. In short, samples (500ng of DNA per sample) were first 
bisulfite treated using the Zymo EZ-96 DNA-methylation kit (Zymo Research, Irvine, CA, 
USA). Next, they were hybridized to the arrays according to the manufacturers protocol. 
The methylation percentage of a CpG site was reported as a beta-value ranging between 0 
(no methylation) and 1 (full methylation).  
Quality control of the samples was done with Genome Studio. A total number of 16 samples 
were removed: 7 had a sample call rate below 99%; 5 had incomplete bisulfite conversion 
and 4 had gender swaps. Quality control of the probes was done based on the detection p-
value calculated with Genome Studio. Probes with a detection p-value of more than 0.01 in 
more than 1% of the samples were excluded. This resulted in a total set of 474,528 probes 
which were normalized using the Dasen option of the WateRmelon R-package12. 
 
mRNA expression data 
Whole-blood was collected (PAXGene Tubes – Becton Dickinson) and total RNA was isolated 
(PAXGene Blood RNA kits - Qiagen). To ensure a constant high quality of the RNA 
preparations, all RNA samples were analysed using the Labchip GX (Calliper) according to 
the manufacturer’s instructions. Samples with an RNA Quality Score > 7 were amplified and 
labelled (Ambion TotalPrep RNA), and hybridized to the Illumina HumanHT12v4 Expression 
Beadchips as described by the manufacturer’s protocol. Processing of the Rotterdam Study 
RNA samples was performed at the Genetic Laboratory of Internal Medicine, Erasmus 
University Medical Center Rotterdam. The RS-III expression dataset is available at GEO 
(Gene Expression Omnibus) public repository under the accession GSE 33828: 881 samples 
are available for analysis. 
Illumina gene expression data was quantile-normalized to the median distribution and 
subsequently log2-transformed. The probe and sample means were centered to zero. 
Genes were declared significantly expressed when the detection p-values calculated by 
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GenomeStudio were <0.05 in more than 10% of all discovery samples. A total number of 
21,238 probes with a detection p-value of less than 0.05 in more than 10% of the probes 
were included. Quality control was done using the eQTL mapping pipeline. 
 
Statistical analysis 
The characteristics of the study population were compared between current and never 
smokers using IBM SPSS Statistics version 21.0.0.1 (IBM Corp.). The p-values were calculated 
using independent sample T-test for continuous variables and Chi-square test for 
dichotomous variables.  
Of the 150 SNPs discovered by CARDIoGRAMplusC4D, 96 were located within a gene2. In 
addition, 58 SNPs had known effect on expression of a gene within 1Mb as found in a large 
publically available blood cis-expression-quantitative trait loci (eQTL) database 
(FDR<0.05)13. We annotated these SNPs to 85 genes with an in-gene variant and 84 cis eQTL 
genes (Table S1). The methylation probes within and near these CAD related genes as 
provided by Illumina were included in the analysis. We excluded probes from the Infinium 
HD methylation SNP list with a minor allele frequency above 1% as provided by Illumina, 
since variations in these SNPs can cause bias in the methylation measurement14. We further 
excluded known cross-reactive probes, since they can introduce bias in the results15. The 
remaining 3,669 methylation probes were checked for association with tobacco smoking 
using a linear mixed model with the LME4 package in R version 3.1.0 with Dasen normalized 
beta-values of the CpG sites as outcome measure16. We first compared current to never 
smokers and then performed a sensitivity analysis on the identified CpG sites comparing 
current to former smokers. Covariates were selected based on known association with DNA 
methylation and different distributions between current and never smokers in our samples. 
The selected covariates with fixed effects were age, sex and BMI17,18,19,20. Houseman 
estimated white blood cell proportions were used as fixed effects to correct for cell mixture 
distribution21. Array number and position on array were added in the model as covariates 
with random effects to correct for batch effects. We corrected for multiple testing using a 
robust Bonferroni corrected p-value of 1.4×10-5 as the threshold for significance (0.05/3,669 
probes).  
To decease the possibility of confounding in our association, we further adjusted model in 
a second analysis for other possible confounders and mediators. This analysis included total 
cholesterol, triglyceride levels, systolic blood pressure, alcohol intake and type 2 diabetes 
mellitus.  
 
Functional analysis 
Since DNA methylation may have an effect on gene expression, we tested the association 
between DNA methylation and mRNA expression of nearby CAD related genes. In the 724 
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individuals under study, 16 genes out of 26 candidates were found to be expressed in blood. 
First, we regressed out the Houseman estimated white blood cell proportions, the 
erythrocytes and platelets cell counts, fasting state, RNA quality score, plate number, age 
and sex on the mRNA expression levels using a linear mixed model. We then regressed out 
the Houseman estimated white blood cell proportions, age, sex, array number and position 
on array on the beta-values of the CpG sites using a linear mixed model. The residuals of 
the mRNA expression levels and the residuals of the beta-values of the CpG sites were 
checked for association using a linear regression model. The p-value threshold for 
association was 1.4×10-3 (0.05/35 tests). Significant associations were verified with a 
mediation analysis with current versus never smoking as exposure, beta-values of the CpG 
site a mediator and mRNA expression levels as outcome using the mediation package in R22.  
 
Results 
 
Characteristics of the participants under study are summarized in Table 1. Of the 724 
subjects in the study, 195 were current smokers and 201 were never smokers. The mean 
age was 59.9 years. Among the current smokers 50% was male, among the never smoker 
37% (p-value=0.008). 
The 150 SNPs identified in the CAD GWAS were annotated to 85 genes with an in-gene 
variant and 84 cis eQTL genes within 1Mb of the identified SNPs (Table S1). These genes had 
3669 methylation sites measured on the array within and near the gene as provided by 
Illumina. After correction for multiple testing, 15 CpG sites were significantly associated 
with current smoking (p-value<1.4x10-5) (Table 2). Current tobacco smoking was associated 
with a 1.2 to 2.4 percent lower DNA methylation compared to never smoking in 12 of the 
CpG sites. In three CpG sites, current tobacco smoking was associated with a 1.2 to 1.8 
percent higher DNA methylation. The effect estimates of the associations did not change 
when we further adjusted for total cholesterol, triglyceride levels, systolic blood pressure, 
alcohol intake and type 2 diabetes mellitus as potential confounders or mediators. In a 
sensitivity analysis in current smokers, two sites were significantly associated with 
cumulative exposure to tobacco smoking (Table 3). 
When comparing current to former smokers, the effect estimates were lower and the 
differences were no longer significant in 10 of the 15 CpG sites (Table 2). This was confirmed 
in a sensitivity analysis in former smokers, which showed that cessation time was associated 
with differences in methylation level in three of the identified CpG sites (Table 3). The two 
top CpG sites, cg24908166 and cg12324353, were annotated to TERT (Table 3). The two 
CpG sites were positively correlated with each other (r=0.27, p-value<0.001) and were 
located within 1kb from each other in an intron of TERT. Two other CpG sites cg05603985 
and cg09469355 were located within 1kb from each other in the first exon and intron of SKI. 
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Table 3. Association between packyears and cessation time and methylation of significant 
CpG sites. 
 Packyearsa Cessation timeb 
CpG site Estimate (SE) P-value Estimate (SE) P-value 
cg24908166 −0.001 (0.001) 0.24 −0.003 (0.001) 0.02 
cg12324353 −0.003 (0.001) 2.3×10−3 0.002 (0.001) 0.05 
cg03725309 −0.002 (0.002) 0.15 0.004 (0.002) 0.02 
cg00980784 −0.003 (0.001) 0.01 −0.001 (0.001) 0.69 
cg13916835 −0.002 (0.002) 0.14 0.002 (0.002) 0.24 
cg09469355 −0.003 (0.001) 0.04 −0.006 (0.001) 6.0×10−5 
cg05603985 −0.002 (0.001) 0.03 0.004 (0.001) 1.2×10−3 
cg04324276 −0.002 (0.001) 0.22 0.002 (0.001) 0.17 
cg25468516 −0.001 (0.001) 0.20 0.003 (0.001) 0.06 
cg22907952 −0.003 (0.001) 1.8×10−3 0.002 (0.001) 0.12 
cg15474579 −0.004 (0.001) 0.02 0.005 (0.001) 1.5×10−3 
cg20496896 0.002 (0.002) 0.12 −0.003 (0.001) 3.9×10−3 
cg09397246 0.001 (0.002) 0.35 −0.001 (0.002) 0.38 
cg26405020 0.002 (0.001) 0.06 −0.002 (0.001) 0.05 
cg18236066 −0.002 (0.001) 0.18 0.003 (0.001) 0.04 
Bonferroni-corrected threshold 3.3×10−3. 
aIn current smokers, per 10 packyears, adjusted for age, sex, BMI, Houseman estimates, batch effects. 
bIn former smokers, per 10 years of smoking cessation, adjusted for age, sex, BMI, Houseman estimates, batch 
effects. 
 
Methylation of these two sites was positively correlated with each other (r=0.57, p-
value<0.001).  
CpG sites cg09397246 and cg26405020 were located within 1500 basepairs from the 
transcription start site of FES. These sites were within 2 basepairs from each other and had 
a positive correlation (r=0.88, p-value<0.001). The other significant hits were annotated to 
SARS, GNGT2, SMG6, TOM1L2, SIPA1, MRAS, CDKN1A, LRRC2 and RPH3A. The beta-value 
distributions for all identified CpG sites stratified by the three smoking categories can be 
found in Figure S1. 
The associations between the 15 CpG sites and mRNA expression of nearby CAD genes are 
shown in Table S2. Increased methylation of cg05603985 (SKI) was associated with 
increased expression of cis eQTL gene PRKCZ (estimate=0.035, p-value=1.4×10-4). The 
mediation analysis however, was not significant (proportion mediated 0.24, p-value=0.79). 
The other CpG sites were not associated with gene expression. 
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Discussion 
 
The results of the current study suggest an association between tobacco smoking and DNA 
methylation of 12 genes suggested to be associated to CAD via GWAS. One of these CpG 
sites was found to be associated with expression of nearby CAD-related gene PRKCZ. 
We found that the effect estimates of tobacco smoking on DNA methylation decreased in 
10 of the 15 CpG sites when comparing current to former smokers as compared to never 
smokers. This suggests that the effect of tobacco smoking on DNA methylation of these CpG 
sites is relatively sustained after smoking cessation.  
The top two CpG sites, cg24908166 and cg12324353, are located within TERT (telomerase 
reverse transcriptase). High levels of TERT expression are found in macrophages of human 
atherosclerotic lesions23.Two other CpG sites, cg09397246 and cg26405020, were located 
near the transcription start site of FES (FES proto-oncogene, tyrosine kinase), which has 
been identified by GWAS to be associated with blood pressure and hypertension24. Smoking 
was further associated with methylation of cg09469355 and cg05603985 within SKI (avian 
sarcoma viral oncogene homolog) which is a repressor of TGF-beta activity. Decreased TGF-
beta activity is associated with atherosclerosis development and plaque instability25,26. This 
could be a plausible pathway through which smoking can increase the occurrence of CAD 
since smoking has already been associated with decreased plasma levels of TGF-beta and 
decreased expression of TGF-beta in bronchial cell lines27,28. 
Methylation of cg05603985, located in the first exon of SKI, was positively associated with 
the expression of the nearby CAD related gene PRKCZ even though this association did not 
survive the mediation analysis. PRKCZ is a known cis eQTL gene for the CAD SNP rs10797416 
within SKI and is located approximately 100kb upstream of SKI. According to ENCODE 
(GSM788075, Farnham – USC, PBMC cells), cg05603985 (SKI) is located within a regulatory 
region which might suggest that the CpG site lies within an enhancer of PRKCZ29. PRKCZ 
(protein kinase C, zeta) is involved in proliferation, differentiation and secretion of almost 
all cell types including myocardial cells. Apart from human height and antipsychotic 
treatment response, it has not been related to any diseases in large GWAS studies30,31.  
None of the other CpG sites were associated with the expression of nearby CAD related 
genes. The lack of an association does not necessarily mean that methylation of these sites 
has no effect on expression but could result from an insufficient statistical power. This also 
applies for the non-significant mediation analysis. Furthermore, mRNA expression is tissue 
specific and an association can therefore not be found in whole blood. Finally, not all 
methylation sites in the human genome have an effect on mRNA expression. It could be 
that these methylation sites function through histone modification or DNA stability which 
could not be studied in the current work. Last, it could be that these sites are merely 
biomarkers of tobacco smoking6. 
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The availability of DNA methylation and mRNA expression data from the same samples is a 
major strength of this study. Therefore, we were able to conduct an in depth exploration of 
the association between smoking, DNA methylation and mRNA expression of CAD related 
genes. Our study involved methylation and expression data from whole blood samples and 
not from vascular or lung tissue. This could be a limitation, since methylation and expression 
might be tissue specific. However, the relationship between smoking and DNA methylation 
has been confirmed in other tissues including lung tissue32. A second limitation is the 
challenge of gene annotation in GWAS. GWAS locate risk variants for the phenotype under 
study, but the underlying causal gene might be difficult to designate. To minimize this 
problem we limited our analysis to in-gene variants and variants with known cis eQTL 
effects. Therefore the CAD related genes in our study are more plausible to be actual causal 
variants for CAD, thus making the results more convincing.  
Our study provides examples of CAD related genes of which differential methylation is 
associated with tobacco smoking. Whether or not these genes are in the causal pathway 
between smoking and coronary artery disease needs further elucidation as well as further 
efforts in large samples.  
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Supplementary material 
 
Table S1. CARDIoGRAMplusC4D SNPs and annotated genes. 
SNP Chr Positiona Within Gene cis-eQTL gene 
rs10797416 1 2172202 SKI C1orf86, PRKCZ 
rs11206510 1 55268627   
rs17114036 1 56735409 PPAP2B  
rs1490738 1 88910193  GTF2B, PKN2 
rs4268379 1 109579760 SARS  
rs602633 1 109623034   
rs12127701 1 109639787 MYBPHL  
rs7515901 1 109641419 MYBPHL  
rs11806316 1 115555005   
rs11204666 1 148809752  CTSS, CTSK 
rs4845625 1 152688691 IL6R IL6R, AQP10 
rs12125501 1 167540432 NME7  
rs6700559 1 198912696  DDX59 
rs2292096 1 199093392 CAMSAP1L1 DDX59 
rs2820315 1 200138887 LMOD1 IPO9 
rs17465637 1 220890152 MIA3  
rs16986953 2 19805954   
rs515135 2 21139562   
rs7561273 2 24101018   
rs10495907 2 43852230  DYNC2LI1 
rs6544713 2 43927385 ABCG8  
rs1561198 2 85663500  VAMP8, USP39, VAMP5, GNLY 
rs2252641 2 145517931   
rs816889 2 151033541 RND3  
rs2351524 2 203589237 NBEAL1  
rs2571445 2 218391399 TNS1 TNS1 
rs4566357 2 227630259 COL4A4 COL4A4 
rs11718455 3 44031902   
rs11710224 3 46561282 LRRC2  
rs7642590 3 48074754 MAP4 NME6 
rs11916151 3 88363366   
rs1393786 3 137336725 PPP2R3A PCCB 
rs2306374 3 139602642 MRAS  
rs4301033 3 151525308  TSC22D2 
rs17655141 4 44814329   
rs17083481 4 54351705 PDGFRA  
rs17087335 4 57533340 C4orf14  
rs7356185 4 120386559 USP53  
rs1429141 4 148507517   
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Table S1 (continued). CARDIoGRAMplusC4D SNPs and annotated genes. 
SNP Chr Positiona Within Gene cis-eQTL gene 
rs4469055 4 148605171   
rs6841581 4 148620640   
rs4690974 4 156613091   
rs7692387 4 156854759 GUCY1A3  
rs2736100 5 1339516 TERT  
rs10051876 5 87300520   
rs273909 5 131695252 SLC22A4 SLC22A4, SLC22A5 
rs246600 5 142497090 ARHGAP26  
rs2294461 6 6559500 LY86  
rs9472428 6 12830159 PHACTR1  
rs883947 6 12895700 PHACTR1  
rs12526453 6 13035530 PHACTR1  
rs13211739 6 13070981 PHACTR1  
rs12205331 6 35006433 ANKS1A  
rs1321309 6 36746614  CDKN1A 
rs3778448 6 39271179 KCNK5 C6orf64 
rs10947789 6 39282900 KCNK5  
rs4613862 6 82668990   
rs17062853 6 134142738   
rs12190287 6 134256218 TCF21  
rs12663498 6 151045533 PLEKHG1  
rs2048327 6 160783522 SLC22A3  
rs6926458 6 160939856 LPA  
rs4252120 6 161063598 PLG  
rs1247351 6 161283909   
rs2023938 7 19003300 HDAC9  
rs972158 7 26301532 SNX10  
rs217 7 27917546 JAZF1  
rs1167800 7 75014132 HIP1 HIP1 
rs2395858 7 106751669 COG5 COG5, HBP1 
rs11556924 7 129450732 ZC3HC1 KLHDC10 
rs4591971 7 130996735   
rs10237377 7 139403605 PARP12 TBXAS1 
rs264 8 19857460 LPL LPL 
rs6984210 8 22089560 BMP1  
rs17485781 8 27943481 C8orf80  
rs2954029 8 126560154   
rs10962774 9 16958831   
rs3217992 9 21993223 CDKN2B, 

CDKN2BAS1, 
MTAP 
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Table S1 (continued). CARDIoGRAMplusC4D SNPs and annotated genes. 
SNP Chr Positiona Within Gene cis-eQTL gene 
rs16905599 9 22059144 CDKN2BAS1  
rs10965228 9 22072380 CDKN2BAS1  
rs1333049 9 22115503   
rs495828 9 135144688  GBGT1, SURF6 
rs2505083 10 30375128 KIAA1462  
rs11238956 10 44069860   
rs17155842 10 44072639   
rs501120 10 44073873   
rs3748242 10 81904767  ANXA11, SFTPD 
rs7074064 10 88673102 BMPR1A  
rs2246833 10 90995834 LIPA IFIT5, LIPA, IFIT1 
rs11191447 10 104642313 C10orf32, 

AS3MT 
NT5C2, C10orf32, ARL3 

rs12765878 10 105659612 OBFC1  
rs93139 11 9716184 SWAP70  
rs7116641 11 43653493  HSD17B12 
rs12801636 11 65147893 PCNXL3 SIPA1 
rs590121 11 74951798 SERPINH1 GDPD5 
rs606452 11 74953826 SERPINH1  
rs974819 11 103165777   
rs9326246 11 116116943   
rs683800 11 125688966 DCPS FOXRED1, SRPR 
rs4762911 12 20052013   
rs4149033 12 21209077 SLCO1B1  
rs2681472 12 88533090 ATP2B1 WDR51B 
rs6490029 12 110182840 CUX2 SH2B3 
rs3184504 12 110368991 SH2B3 SH2B3 
rs3809274 12 110528716  SH2B3, ATXN2 
rs17630235 12 111076069  TMEM116 
rs2891403 12 111621955 RPH3A OAS1 
rs2244608 12 119901371 HNF1A OASL, C12orf43 
rs11057841 12 123882696 SCARB1  
rs9319428 13 27871621 FLT1  
rs9316753 13 54365930   
rs10507753 13 68180277   
rs11617955 13 109616103 COL4A1  
rs7139492 13 109713796 COL4A1  
rs12873154 13 109718853 COL4A1  
rs4773144 13 109758713 COL4A2  
rs11619057 13 109806392 COL4A2  
rs9515201 13 109838799 COL4A2  
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Table S1 (continued). CARDIoGRAMplusC4D SNPs and annotated genes. 
SNP Chr Positiona Within Gene cis-eQTL gene 
rs9515203 13 109847624 COL4A2  
rs2895811 14 99203695 HHIPL1  
rs2146238 14 99242482 CYP46A1  
rs6494488 15 62811257  RBPMS2, ANKDD1A 
rs11072794 15 76793637  PSMA4 
rs7173743 15 76928839  CTSH 
rs7181240 15 76932181   
rs2880765 15 83857466 AKAP13 AKAP13 
rs17514846 15 89217554 FURIN FES, FURIN, MAN2A2 
rs2521501 15 89238392 FES FES, FURIN, UNC45A, MAN2A2, RCCD1 
rs7496815 15 89862501   
rs2281727 17 2064695 SMG6 SRR, TSR1 
rs12936587 17 17484447  SREBF1, PEMT, RASD1 
rs4299203 17 17818884 LRRC48 SREBF1, C17orf39, DRG2, ATPAF2, 

TOM1L2 
rs2071167 17 39643045 UBTF ASB16, C17orf65, SLC4A1, SLC25A39, 

G6PC3, C17orf53, UBTF, RUNDC3A 
rs15563 17 44360192 UBE2Z ATP5G1, CALCOCO2, UBE2Z 
rs16948048 17 44795465  GNGT2, PHOSPHO1 
rs4793721 17 47166312 CA10  
rs2070783 17 59760703 PECAM1  
rs4410190 18 18274198   
rs1122608 19 11024601 SMARCA4 C19orf52, CARM1, SMARCA4 
rs892115 19 11124650 SPC24 KANK2 
rs17318596 19 46628935  BCKDHA, B3GNT8 
rs2075650 19 50087459 TOMM40 PVRL2 
rs2288911 19 50141124 APOC2, APOC4  
rs8111989 19 50501048  VASP, KLC3, CKM 
rs6088638 20 32934175 ACSS2 GGT7, EDEM2 
rs867186 20 33228215 PROCR, EDEM2 EIF6, ACSS2 
rs2832227 21 29454947 C21orf7  
rs9982601 21 34520998  MRPS6 
rs1034565 22 18364211 ARVCF  
rs9608859 22 28997277   SF3A1, MTFP1 
Chr denotes chromosome.  
aBased on genome build 37.  
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Table S2. Association between methylation and expression of CAD and cis-eQTL genes. 
CpG site Gene Probe Estimate (se) P-value 
cg03725309 SARS ILMN_1786972 0.003 (0.006) 0.57 
cg00980784 GNGT2 ILMN_1671237 0.012 (0.008) 0.12 
cg13916835 SMG6 ILMN_1695280 -0.009 (0.005) 0.11 
 TSR1a ILMN_1775761 -0.0009 (0.006) 0.88 
 TSR1a ILMN_2092232 -0.001 (0.006) 0.82 
cg09469355 SKI ILMN_1710598 -0.0004 (0.006) 0.95 
 C1orf86b ILMN_2097790 0.015 (0.009) 0.10 
 PRKCZb ILMN_2253286 0.005 (0.006) 0.34 
 PRKCZb ILMN_2386982 0.0009 (0.009) 0.92 
 PRKCZb ILMN_1697267 0.012 (0.073) 0.09 
cg05603985 SKI ILMN_1710598 -0.0009 (0.007) 0.89 
 C1orf86b ILMN_2097790 0.013 (0.011) 0.24 
 PRKCZb ILMN_2253286 0.006 (0.007) 0.41 
 PRKCZb ILMN_2386982 0.009 (0.011) 0.42 
 PRKCZb ILMN_1697267 0.035 (0.009) 1.4×10-4 
cg15474579 CDKN1A ILMN_1784602 -0.006 (0.013) 0.65 
cg04324276 TOM1L2 ILMN_1686261 0.005 (0.005) 0.36 
 TOM1L2 ILMN_1711109 -0.005 (0.005) 0.41 
cg25468516 SIPA1 ILMN_1682930  -0.010 (0.011) 0.35 
 SIPA1 ILMN_2415536 0.044 (0.098) 0.65 
cg09397246 FES ILMN_1693650 -0.008 (0.009) 0.40 
 FURINc ILMN_1790228 -0.001 (0.007) 0.16 
 UNC45Ac ILMN_1726434 0.007 (0.006) 0.21 
 UNC45Ac ILMN_2395932 -0.005 (0.007) 0.49 
 MAN2A2c ILMN_1815148 -0.010 (0.006) 0.12 
cg26405020 FES ILMN_1693650 -0.030 (0.012) 0.01 
 FURINc ILMN_1790228 -0.018 (0.010) 0.09 
 UNC45Ac ILMN_1726434 0.007 (0.008) 0.42 
 UNC45Ac ILMN_2395932 -0.008 (0.009) 0.40 
 MAN2A2c ILMN_1815148 -0.010 (0.009) 0.24 
cg18236066 RPH3A ILMN_1693717 0.014 (0.007) 0.05 
 RPH3A ILMN_1663356 0.014 (0.007) 0.06 
 OAS1 ILMN_1675640 -0.033 (0.025) 0.19 
 OAS1 ILMN_2410826  -0.027 (0.025) 0.29 
  OAS1 ILMN_1658247 0.010 (0.020) 0.62 
Bonferroni p-value threshold 9.2×10-4. Model: residual expression after adjustment for age, sex, batch effects, 
houseman estimated white blood cell proportions, erythrocytes and platelet cell counts, fasting state and RNA 
quality score associated with residual methylation after adjustment for age, sex, houseman estimated white blood 
cell proportions and batch effects. Estimates are changes in residual expression per percentage residual 
methylation increase. 

aGene with cis-eQTL FDR<0.05 with rs2281727 (CARDIoGRAMplusC4D SMG6). 

bGene with cis-eQTL FDR<0.05 with rs10797416 (CARDIoGRAMplusC4D SKI). 

cGene with cis-eQTL FDR<0.05 with rs2521501/rs17514846 (CARDIoGRAMplusC4D FES/FURIN).
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The objective of this thesis was to provide further insights in the cause and consequence of 
inflammation in relation to diabetes and cardiovascular disease (CVD). I used advanced 
descriptive methods in epidemiology to study the population risk of type 2 diabetes and 
applied molecular epidemiology approaches including genomics, epi-genomics, and 
inflammation markers to study the link between chronic inflammation and diabetes and 
CVD. I performed a GWAS to identify genetic variants for circulating C-reactive protein (CRP) 
levels, and sought to unravel the causal role of chronic inflammation in cardiometabolic 
diseases. Next, I analysed DNA methylation data to identify methylation changes related to 
chronic inflammation, and studied smoking related methylation changes in genes identified 
for type 2 diabetes and CHD. 
Here, I will discuss the main findings of this thesis and I will address important 
methodological issues that were encountered. Furthermore, future directions in the 
research of diabetes, CVD and molecular epidemiology are presented. 
 
Main findings and interpretation 
 
Lifetime risk of diabetes 
In Chapter 2 of this thesis I estimated a lifetime risk of type 2 diabetes in the Netherlands 
comparable to estimations in the USA and Australia. I reported that 1 in 3 individuals are at 
risk of type 2 diabetes through their life. The numbers were even higher for prediabetes, 
showing that 1 in 2 will develop prediabetes at some point in their life, and 3 in 4 individuals 
with prediabetes will eventually progress to overt diabetes. These numbers illustrate the 
high lifetime risk of diabetes and indicate the importance of prevention early in life, even 
before prediabetes occurs. In agreement with data from the USA1, I found that the lifetime 
risk of diabetes is more than 50% in severely obese individuals. With respect to treatment 
for diabetes, we estimated that eventually 1 in 10 individuals will require insulin treatment 
to successfully lower blood sugar levels. Altogether, these estimates underscore the public 
health problem of diabetes in Western society, and highlights the role of weight 
management in prevention of diabetes.  
It has previously been shown that genetic information adds to the discriminative ability to 
identify individuals with high risk of diabetes2,3,4. In chapter 3, I could show that genetic 
information is useful in lifetime risk prediction of diabetes. Furthermore, individuals at high 
genetic risk that adhere to a normal weight have a substantial lower risk of diabetes 
compared to their obese counterparts (22% versus 58%). This observation again 
underscores the importance of weight management in prevention of diabetes, and suggest 
that adherence to a normal weight can offset high genetic risk of diabetes.  
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Inflammatory markers for diabetes and coronary heart disease 
Inflammation is known to play an important role in the pathophysiology of diabetes and 
CHD5,6, but CRP is unlikely to be causal7,8. It is thought that certain inflammatory processes 
contribute to cardiometabolic diseases and increase CRP levels. In part 2, I show the 
potential of exploring novel inflammation markers to provide a further understanding of 
the link between inflammation and disease. Using a panel of inflammation markers, I 
observed that higher EN-RAGE (Extracellular Newly identified Receptor for Advanced 
Glycation End-products binding protein) was associated with an increased risk of 
prediabetes, and higher IL-13 (interleukin-13) with an increased risk of diabetes. Higher IL-
17 (interleukin-17) was associated with a lower risk of type 2 diabetes. The associations 
between EN-RAGE, IL-13, and IL-17 with prediabetes and diabetes were independent from 
the association between CRP and incidence of prediabetes and diabetes. In chapter 5, I 
found that individuals in the highest tertile of EN-RAGE had a 2.5-fold higher risk of CHD 
compared to the individuals in the lowest tertile. This association also appeared to be 
independent from CRP and other inflammatory markers.  
 
Inflammation: genetics and beyond 
In chapter 6, in a GWAS of CRP I confirmed 16 genetic variants previously identified for CRP, 
and found 42 novel distinct genetic variants. The identified genes were mainly annotated 
to liver metabolism and immune pathways, and mostly appeared to be independent from 
BMI. Although BMI increases CRP levels, this finding suggests that most of the CRP variation 
explained by genetics is independent from body fat mass. Interestingly, in the Mendelian 
randomization (MR) analysis I did observe a causal association between CRP and the risk of 
schizophrenia and bipolar disorder. Genetically higher CRP is associated with a decreased 
risk of schizophrenia and an increased risk of bipolar disorder. In chapter 8 and 9, I 
succeeded to identify shared genetic risk variants between CRP levels and cardiometabolic 
phenotypes, mainly related to liver metabolism (for example HNF1A, HNF4A, APOC1, and 
GCKR). At several loci, I observed horizontal pleiotropy, i.e. the association with CRP 
appeared to be independent of the metabolic phenotype (HNF1A and HNF4A). Other loci 
were associated with CRP mediated through the metabolic phenotype (vertical pleiotropy), 
for instance the BMI-associated loci FTO and TMEM18. These pleiotropic findings provide 
further insights into the complex association between inflammation and metabolic 
phenotypes. Furthermore, in chapter 10 I carried out a bidirectional MR study on the 
association between vitamin D and CRP. I confirmed the association between vitamin D and 
CRP in observational data, but could not find any evidence for a causal association in neither 
direction. I may conclude that this association is likely to be confounded by shared risk 
factors. 
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Epigenetic landscape of inflammation 
I conducted an EWAS on CRP levels in chapter 11 in order to describe the epigenetic 
landscape of chronic inflammation. I found robust evidence for associations between DNA 
methylation and circulating CRP levels at 45 genetic loci. DNA methylation mainly affect 
gene expression, and I could demonstrate associations between DNA methylation and 
nearby gene expression at 16% of the findings. Furthermore, several CpG sites were 
associated with risk of clinical diseases, including CHD. Also, in chapter 12 I performed an 
EWAS on the blood levels of the proinflammatory cytokine tumor necrosis factor α (TNFα). 
I demonstrated that DNA methylation at two genetic loci, namely NLRC5 and DTX3L-PARP9, 
two immune response related genes, was associated with circulating TNFα levels. DNA 
methylation at NLRC5 and DTX3L-PARP9 was also associated with incident CHD. DNA 
methylation correlated with lower TNFα levels was associated with reduction of CHD risk. 
The CRP and TNFα EWAS show the potential of EWAS to identify epigenetic changes related 
to inflammation and open the way for further studies investigating the pathways that relate 
inflammation to changes in DNA methylation.  
In addition, in chapter 13 and 14, I investigated the role of DNA methylation in the increased 
risk of type 2 diabetes and CHD in smokers. I observed that tobacco smoking is associated 
with differential methylation of ANPEP, KCNQ1, and ZMIZ1 which are identified by GWAS 
for risk of type 2 diabetes. For CHD, I also observed associations between tobacco smoking 
and DNA methylation at CHD risk loci. Altogether, these data suggest that smoking 
contributes to an increased risk of disease through alterations in DNA methylation. 
 
CRP and complex disease: cause, consequence, or epiphenomenon?  
 
CRP and type 2 diabetes 
Inflammation is known to play a key role in the pathogenesis of type 2 diabetes and 
inflammatory markers are shown to predict risk of type 2 diabetes5. First reported in 2001, 
Pradhan et al. investigated the association between serum CRP levels and risk of type 2 
diabetes9. After adjustment for conventional diabetes risk factors, individuals in the highest 
quartile of CRP had a 4.2 times higher risk of diabetes compared to individuals in the lowest 
quartile. Numerous studies confirmed the association between serum CRP levels and risk of 
diabetes10,11,12. However, it has been debated whether the association between CRP and 
diabetes is causal or just represents an observation. One study has reported a positive 
association between a CRP haplotype and incidence of diabetes13. However, the finding was 
not replicated in subsequent studies7,14, concluding that a causal role for CRP is unlikely. 
Furthermore, there is substantial evidence that inflammation is a consequence of 
obesity15,16, which in turn is an important risk factor for diabetes17. In chapter 8 I focused on 
the shared genetics of inflammation and metabolic phenotypes, and observed genetic 
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pleiotropy between CRP and glucose metabolism suggesting that shared genetics play a role 
in the association reported in observational data. In addition, the genetic pleiotropy 
between CRP and metabolic phenotypes appeared to be highly complex. First, several 
pleiotropic variants had a mediated effect on CRP levels, i.e. they have an effect on 
metabolic disturbances and subsequently affect CRP levels (vertical pleiotropy). Secondly, 
other pleiotropic variants are independently associated with CRP levels, thus not mediated 
through an intermediate phenotype (horizontal pleiotropy). Thirdly, I observed for some 
pleiotropic SNPs an opposite direction of effect between the effect allele and CRP from what 
is expected from observational data. For instance, although higher CRP is associated with 
an increased risk of diabetes, at the APOC1 gene, the rs4420638-A allele is associated with 
higher CRP levels and lower type 2 diabetes risk. Altogether, from the findings of chapter 8 
it is likely that CRP is both a consequence of metabolic disturbances and an epiphenomenon 
in the association with diabetes, rather than a cause. I may further conclude that revealing 
the shared genetics of associated phenotypes may provide understanding of the nature of 
the observed association. 
  
CRP and coronary heart disease 
There is ample evidence in observational studies that CRP is associated with risk of CHD18. 
However, several studies have rejected the hypothesis that CRP is causal to CHD8,19. In 
chapter 6, I performed MR analyses to study the causal role of CRP in the pathogenesis of 
CHD. There appeared to be an association between genetically elevated CRP and risk of CHD 
in the MR-Egger analysis. However, this might be due to the fact that the MR-Egger estimate 
relies on the InSIDE assumption. The InSIDE assumption denotes that the strength of the 
association between the genetic variants and CRP is independent from the strength of the 
direct pleiotropic effect of the genetic variants on CHD (outcome). The InSIDE assumption 
may be violated when the genetic variants are associated with a confounder of the CRP-
CHD association, especially when the genetic variants are associated with a phenotype that 
is causally upstream of CRP. For the CRP-CHD association, this might be interleukin 6 or 
other phenotypes. In the weighted median (WM) and penalized weighted median (PWM) 
MR analyses, the InSIDE assumption is relaxed20. For CHD, the WM and PWM MR analyses 
showed evidence against a causal association between CRP and CHD. Finally, the single 
rs2794520 CRP variant was not associated with CHD. This association is not as powerful as 
others, however, is least likely to be affected by pleiotropy. Altogether, it is more likely that 
CRP is a consequence of other CHD risk factors, rather than a cause of CHD. In chapter 8, 
further evidence is provided for shared genetics between CRP and CHD, for instance at the 
IL6 and IL6R loci. Interleukin 6 is the main determinant of CRP production in liver21, and is 
identified in GWAS of CHD22. Altogether, these data support the hypothesis that CRP is not 
causal to CHD, but rather a consequence of CHD and CHD risk factors. 
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CRP and schizophrenia 
Increased CRP levels are associated with increased risk of schizophrenia in observational 
studies23. Thus far, the general concept was that increased inflammation enhances the risk 
of schizophrenia23. However, in a recent MR effort using 18 genetic variants identified for 
CRP, the data suggested a causal role for CRP in the protection of schizophrenia14. In chapter 
6, I extended the genetic score with further variants identified for CRP and observed a 
similar causal protective association. Also the single rs2794520 CRP variant showed a similar 
effect. Given that there is no genome-wide significant genetic risk variant for schizophrenia 
in linkage disequilibrium with the CRP locus, the observed protective effect seems to be 
genuine24. A hypothesis for this observation might be the immune response to infections 
early in life, i.e. a genetic profile that allows a stronger inflammatory response to stimuli 
might protect humans against infections that might induce schizophrenia later in life. A 
previous study has compared levels of acute-phase reactant proteins in dry blood spots 
collected at birth between patients with non-affective psychosis, which includes 
schizophrenia, and controls25. Cases of non-affective psychosis had lower levels of three 
acute-phase response proteins, namely serum amyloid P (SAP), tissue plasminogen 
activator (tPA), and procalcitonin, compared to controls, suggesting a less pronounced 
immune response at birth. In line with this observation, other studies have provided 
evidence that neonates with a history of severe infections have a higher risk of future 
schizophrenia26,27. Also, neonates that have been exposed to a maternal infection with 
cytomegalovirus or toxoplasma gondii, with low levels of acute-phase response proteins, 
have a higher risk of schizophrenia28. This evidence suggests that children with a less 
efficacious immune response may have chronic infection that over time contribute to the 
development of schizophrenia. Further research, possibly functional studies, are needed to 
elucidate the observed association between genetically elevated CRP levels and lower risk 
of schizophrenia. 
 
Methodological considerations 
 
Genetic studies 
Since the first GWAS in 200529, GWAS have succeeded in discovering thousands of genetic 
loci associated with numerous phenotypes and clinical outcomes30. With the identification 
of novel genetic loci, further insight is provided into the biology underlying many diseases. 
By continuing the gene “hunting” GWAS, the number of associated loci is expected to 
continue increasing in the future by increasing the sample size and improving the 
imputation panels31. The first wave of GWAS have mainly identified common genetic 
variants with - relatively - larger effect sizes. Future GWAS will search for genetic loci that 
have smaller effect sizes or are less common. Some researchers have criticized the search 
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for such variants as they consider them to be less important. It should be noted that such 
variants may play an equally important role in disease pathophysiology32. Novel variants 
with small effect sizes could provide insights into biological systems underlying phenotypic 
variance and may help in personalized risk prediction. As an example, the first GWAS in 
1,087 participants on lipid levels did not identify HMGCR, a gene that is targeted by the most 
common lipid-lowering drug, i.e. statins33. Statins inhibit the 3-hydroxy-3-methylglutaryl-
coenzyme A reductase, the protein product of HMGCR, and are highly effective in lowering 
cholesterol levels and the risk of cardiovascular disease34. It was not until 2010 when the 
HMGCR gene was identified in a GWAS meta-analysis including >100,000 individuals35. 
Individuals carrying the rs12916-C allele had on average 2.84 mg/dL higher total cholesterol, 
whereas other variants comprise >4mg/dL total cholesterol elevation. This example shows 
that novel loci with smaller effect sizes do not necessarily represent less important loci, but 
might even have the potential to significantly affect the disease pathogenesis. 
Augmenting the sample size and denser mapping including low frequency variants may help 
to identify further genetic variants underlying complex phenotypes. In this thesis, I 
performed in chapter 6 two GWAS using different imputation panels (HapMap and 
1000Genomes). The two CRP GWAS presented are not directly comparable, as the sample 
sizes were different between the two studies. In general, I identified more loci in the 
HapMap GWAS as the sample size was larger. Nevertheless, four loci were specific to the 
1000Genomes GWAS, of which two were not available in the HapMap imputed data. Those 
two SNPs had low frequencies with minor allele frequency <0.05. The other two variants 
that were unique to the 1000Genomes GWAS were present in the HapMap GWAS, but 
showed less significant association. This may be due to the improved imputation of the 
variants in 1000Genomes compared to HapMap. I may conclude that the different 
imputation panels are complementary as they may identify specific loci, a finding which is 
in comparison to other studies36,37. Although I support the development of novel imputation 
panels such as the Haplotype Reference Consortium38, the identification of novel loci is 
expected to be more noticeable when increasing sample sizes. 
Most published GWAS to date are based on SNP arrays that tag common genetic variants 
across the genome. One of the major challenges in GWAS is the identification of the causal 
variant(s) at the associated genetic loci and the underlying mechanism by which the 
associated variants affect the phenotypic variance. Fine-mapping refers to the search for 
one or more causal variants at associated loci. With the increasing availability of whole-
genome sequence data in large samples, imputation panels will be upgraded and the search 
for causal variants through fine-mapping will likely improve, but might be limited by 
available sample sizes. In line with the challenge of the identification of the causal variant is 
the follow up of GWAS findings in functional studies and translating them into targets for 
therapeutic interventions. This has been a major source of criticism on GWAS in last years. 
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However, with the advent of databases such as ENCODE39 and the integration of gene 
expression40, DNA methylation41, histone modification amongst other, genes and causal 
pathways can be prioritized for follow-up studies such as wet lab experiments. It is probably 
a matter of time before novel treatments from GWAS findings are on the market to treat 
clinical diseases42. 
 
Epigenetic studies 
Since the introduction of the Illumina® Beadchip DNA methylation assay technology for the 
quantification of DNA methylation at thousands of genetic loci across the human genome, 
the era of epigenome-wide association studies was started43. Illumina® first introduced the 
27K array that assays DNA methylation at approximately 27,000 sites. A few years later 
Illumina® launched the Illumina® Infinium Human Methylation450K BeadChip. Now, already 
the third version of the Illumina® methylation chip, the MethylationEPIC BeadChip 850K, is 
available. As the human genome includes approximately 28 million CpG sites, the beadchips 
only cover a small part of the full epigenome, but include >99% of all genes. After the 
introduction of the arrays, many papers have focused on the pre-processing of the 
methylation array data44,45,46. Here, I will focus on the study design after the pre-processing, 
and discuss some methodological consideration of data analysis.  
In this thesis, I analysed the methylation data using linear regression analysis. Traditionally, 
methylation has been analysed as the dependent variable. Depending on the research 
question of the researcher, one might be interested in the effect of DNA methylation on the 
phenotype or vice versa. For instance, when someone is interested in the influence of 
tobacco smoking on DNA methylation, smoking could be modelled as a determinant of DNA 
methylation. However, if someone is interested in the variance explained in serum CRP 
levels by a set of CpG sites, the DNA methylation should be introduced as the independent 
variable, and CRP as the dependent variable. Thus, depending on the research question, the 
DNA methylation variable is handled as an independent or dependent variable. I believe this 
is important in order to draw correct interpretation about the observed associations as 
effect estimates are different and not easy to convert. In chapter 11 I modelled DNA 
methylation as the dependent variable and CRP as an independent variable. However, for 
estimation of the variance explained in CRP by the methylation, I modelled CRP as the 
dependent variable. Note that power is not affected, thus the p-value should not be 
affected.  
In population-based cohort studies, DNA methylation is mainly quantified in whole blood 
samples since blood samples can be collected in a non-invasive manner and can be easily 
obtained from the participants. DNA in whole blood samples is mostly composed of white 
blood cell DNA, since red blood cells and platelets do not contain DNA. However, there are 
numerous types of circulating white blood cells in whole blood (for instance monocytes, 
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granulocytes, CD4+ cells, CD8+ cells), and DNA methylation patterns differ between the 
different types of white blood cells. Furthermore, white blood cell composition may be 
dependent on the outcome under investigation. Altogether, this may introduce 
confounding of the association between DNA methylation and the outcome under study 
ensuing false positive associations. To overcome the confounding by white cell composition, 
adjustment in the regression analysis for the different types of white blood cells is required. 
In some studies, different types of white blood cells are measured in the samples from 
which the DNA methylation is derived. These quantifications can be easily used for 
adjustment in the regression analysis. However, only a minority of the studies have 
measured different white blood cell types. To get an estimation of white blood cell 
composition, Houseman et al. introduced an imputation method to obtain white blood cell 
composition based on DNA methylation signatures47. Currently, the Houseman method is 
widely applied in EWAS to adjust for white blood cell composition. However, there are 
several limitations in the use of the white blood cell composition variables. First, Houseman 
et al. merely used five human adult samples to build the model for white blood cell 
composition estimation, and thus external validity may be limited. Second, the Houseman 
estimates have been used to impute cell counts in non-adult samples, for instance in the 
cord blood of neonates48. In this particular population, imputation performs much worse 
compared to older individuals49. Recently, a reference panel for cord blood cell proportions 
has been introduced50, which shows much better performance compared to adult reference 
panel estimated cell compositions51. Altogether, inaccurate estimation of white blood cell 
composition may introduce serious confounding, especially when the outcome under study 
is related to white blood cell composition (e.g. immune-related phenotypes, auto-immune 
diseases). Further reference panels for specific populations with different characteristics 
are warranted. 
In GWAS, cryptic relatedness should be accounted for in the association analysis to avoid 
false positive findings caused by confounding by population stratification. To detect 
population stratification in GWAS it is common to estimate the genomic control lambda 
(λ)52. The genomic control is based on the concept that only a few genetic variants are 
associated with the phenotype of interest, and the other variants follow the distribution 
under the null hypothesis of no association between the variant and the phenotype. After 
computing the λ, the association analyses are adjusted for the genomic control. Since most 
complex traits are highly polygenic, GWAS with large sample sizes show higher inflation that 
may present true associations. To distinguish polygenicity from confounding bias in GWAS, 
the relation between association results and linkage disequilibrium can be used to estimate 
the contribution of polygenicity and bias to the results using LD score regression53. When 
the first EWAS were published, the same methods were implemented to assess genomic 
inflation54. However, the interpretation of the inflation factor in EWAS is challenging since 
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it is unknown how many CpG sites are expected to associate with the phenotype under 
study and there are no methods to estimate the contribution of bias to the inflation factor. 
In chapter 11, the QQ-plot showed inflation in the genome-wide DNA methylation in white 
blood cells with circulating CRP. As white blood cells are the main component of our 
immune system, and CRP is a sensitive marker of the overall immune response, I may expect 
many associations between DNA methylation sites and circulating CRP. Therefore, the 
assumptions underlying the genomic control hypothesis may not hold. I believe that future 
EWAS should provide a further understanding of the number of CpG sites that are expected 
to be associated with the phenotype under study in order to correctly interpret the inflation 
factor. 
In the current thesis, I have performed both GWAS and EWAS of circulating CRP levels. 
GWAS and EWAS have certain similarities with respect to design, data processing, and 
analyses, however, there are definitely also differences with respect to design, analyses, 
and interpretation of the results. A major challenge in EWAS is the interpretation of the 
direction of the association results. In GWAS, as DNA sequence variants are inherited at 
random and do not alter during the life course (apart from somatic mutations), the causal 
inference is that genetic functional variants tagged by the associated genetic variants 
causally influence the phenotype. However, in EWAS this interpretation is more challenging 
since DNA methylation is affected by environmental factors and thus may change over time. 
To unravel the directionality of the association in EWAS, Mendelian Randomization (MR) 
methods can be used. Since I randomly inherit genes from our parents, genetic variant can 
be used to infer causality. As an example, in chapter 11 and 12 I studied the association 
between DNA methylation and circulating CRP and TNFα levels. The results could not be 
used to infer causality, i.e. it is not known whether cytokine levels are affecting DNA 
methylation, DNA methylation alters cytokine levels, or a common factor (such as obesity) 
is modifying both. I therefore applied MR analyses to infer causality. First I identified genetic 
variants associated with the DNA methylation sites (mQTLs), and subsequently associated 
the mQTLs with CRP and TNFα. I could not successfully assign a direction to the associations. 
This might be due to lack of power, since MR requires large samples to infer causality. 
Investigation of the association between baseline DNA methylation with prospective 
changes in the phenotype might provide further insights in the direction of the 
association55, but is not conclusive. Future analytical techniques or wet lab experiments are 
necessary to infer correct causal inference of the associations observed in EWAS.  
In genome- and epigenome-wide association studies researchers aim to find genes for the 
trait of interest through a hypothesis-free approach. In this thesis, one of the aims was to 
identify genetic loci for CRP levels. In both the EWAS and GWAS of CRP I identified genetic 
loci related to CRP levels. With respect to the findings in the EWAS and GWAS of CRP levels,  
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I did not observe overlapping genetic loci. This is in line with findings from other studies on 
for instance BMI and glycemic phenotypes55,56. Also for TNFα, I found different genomic 
regions in the EWAS compared to the GWAS57. There are several possible explanation for 
the observation that GWAS and EWAS lack overlap of genetic loci. Methylation signals may 
truly target different genetic loci compared to GWAS and provide additional unique 
information. However, it could be that the findings from EWAS mostly represent DNA 
methylation changes attributable to the phenotypes, thus changes in DNA methylation due 
to inflammation, and rarely present causal associations as in GWAS in which the genetic 
variation alters inflammation. Furthermore, DNA sequence variation is present and similar 
in all tissues, whereas DNA methylation may differ between tissues and population-based 
DNA methylation studies merely study whole blood DNA since this is an easily accessible 
tissue. For instance for CRP levels, I learned from GWAS that genes active in liver tissue play 
an important role in CRP levels. Overlapping genetic loci in the liver may be missed by 
assessing DNA methylation in whole blood in relation to CRP. 
 
Mendelian Randomization 
Observational studies are limited by the fact that the observed associations cannot be 
automatically inferred to be causal58. Confounding, selection bias, or reverse causation may 
be a potential source of incorrect inference of associations in observational data58. One 
solution to overcome this shortcoming of observational studies are randomized controlled 
trials. In a randomized controlled trial individuals are randomly assigned to either receive 
the treatment under investigation or not. In this case, when all other variables are constant 
between the two groups, researchers may determine the effect of the treatment. However, 
commencing a randomized trial may be neither practical nor ethical to draw correct 
inference for associations observed in observational research. Therefore, alternative 
approaches to infer causality have been developed, such as MR59. According to the second 
law of Mendel, genes are randomly inherited from parents during meiosis. The basic 
principle of Mendelian randomization lays in the fact that, if the observed association is 
causal, genetic variants that affect the level of the exposure that itself is associated with the 
risk of the outcome, should be associated with the outcome. Owing to GWAS in large 
populations, over the last decade researchers have successfully identified many genetic 
factors that contribute to the risk of many diseases. These genetic risk variants may be used 
to construct powerful instrumental variables for MR analyses. As these data are now 
increasingly available to the scientific community, MR is now recognized as a valuable 
technique to draw inference of associations from observational studies.  
In this thesis I applied MR analyses in several chapters. In chapter 6 I used different MR 
approaches to investigate the causal effect of CRP levels on multiple clinical outcomes. I 
observed a causal relation between CRP levels and schizophrenia, an association that I    
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have extensively discussed above. Also in chapter 10, I used MR to infer causality regarding 
the association between vitamin D and CRP; no causal relationship could be established. 
Furthermore, in chapter 11 I applied MR to determine which CpG sites that were associated 
with CRP levels in a cross-sectional manner are a determinant of CRP levels. Unfortunately, 
I found no evidence for any causal association between the CpG sites as determinants for 
CRP levels. 
Although MR is increasingly popular and has provided answers to several pending research 
questions, interpretation of MR studies should be done with caution. One of the major 
problems in MR is pleiotropic genetic effects, particularly when using multiple genetic 
variants. The use of multiple genetic variants as the instrumental variable has the advantage 
of increasing the variance explained of the exposure and thus increasing power60. However, 
this strategy increases the likelihood of pleiotropic effects. The variants used in the MR 
models may be associated with another intermediate phenotype, and thus the genetic 
variants serve as proxies for more than one intermediate factor. In this scenario of genetic 
pleiotropy, the MR assumption that the instrumental variable is independent from any 
confounding factor of the exposure-outcome association is violated. This problem also 
holds for CRP. As detailed in chapter 8, many genetic variants identified in the GWAS for 
CRP are associated with other metabolic phenotypes such as lipid levels, glycaemic 
phenotypes, and adiposity. Several statistical methods have been developed to overcome 
this issue, such as the MR-egger regression61 and weighted median20 approaches. However, 
although these techniques provide solutions to weaken the assumptions needed for a 
consistent estimation of the causal effect, they are not conclusive. The use of merely one 
genetic variant that directly influences the levels of the exposure, for instance the 
rs2794520 variant associated with CRP levels near to the CRP gene, will likely produce the 
most robust results. Furthermore, in MR studies individuals are randomized at conception. 
However, GWAS are commonly performed in large population-based or case-control 
studies that start at older ages, for instance 45 years of age for the Rotterdam Study. This 
may cause selection or survival bias. For instance, if individuals with higher CRP levels die 
prior to inclusion in the study and die prior to the development of chronic illnesses, than 
bias could occur because individuals with lower CRP levels live longer and may develop 
chronic illnesses such as CVD and schizophrenia.  
 
Clinical implications 
 
The first clinical implication of the findings from this thesis is the use of the lifetime risk 
estimates in diabetes risk communication to patients. Patients prefer absolute risks and 
long-term risks in the communication of disease risk. To get a sense of disease risk, absolute 
risks are easier to interpret compared to relative risk, and as a 40-year old is on average 
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expected to live more than ten years, a long-term risk or lifetime risk provides a more 
comprehensive disease risk. The estimates provided in the first chapter are widely 
applicable in clinical settings. Furthermore, the lifetime risk estimates are highly useful 
information for public health services to estimate disease burdens in the general 
population. The addition of genetic information to disease prediction is already possible, 
but will likely further improve in the future with the discovery of novel and rare genetic risk 
variants increasing the discriminative ability. 
Targeting inflammation with statins is successful in reducing CVD events62. Currently, 
promising studies are ongoing for inflammation lowering treatments in diabetes and CHD63, 

64. In future, targeting specifically inflammation with immune-modulating agents may be an 
additional treatment to prevent cardiometabolic disease. Then, the findings from the CRP 
GWAS presented in this thesis could play a key role in the identification of genes and 
important causal pathways. Furthermore, the possible adverse consequences of immune 
treatment may be evaluated based on data I obtain from genetic pleiotropy studies. For 
instance, it has been suggested that long-term IL-1 inhibition for the treatment of rheumatic 
diseases may enhance the risk of future CVD65. Information about horizontal pleiotropic 
genetic effects may help to predict adverse effects of pharmacological treatments. 
Genetic risk prediction is a promising strategy in the near future to identify individuals early 
in life that may benefit from an intervention or treatment lowering the risk of developing 
disease. In chapter 3 I showed that genetic data predicts the risk of developing diabetes. 
The identification of further variants associated with clinical disease may eventually 
improve risk stratification. It is waiting for studies that incorporate genetic data in risk 
prediction in clinical practice for common diseases. 
 
Future directions 
 
Today, GWAS have discovered hundreds to thousands of genetic variants associated with a 
diversion of phenotypes. Since the number of genetic variants in the genome is finite, it is 
likely that several causal variants overlap between distinct phenotypes. Further evidence 
for this hypothesis comes from the fact that causal mutations in Mendelian disorders are 
associated with different phenotypic features in the affected individual. Thus, it is likely that 
many genetic variants affect many phenotypes32. The increasing number of associated 
variants with phenotypes will extend the knowledge on genetic pleiotropy. I used published 
GWAS that probably reflect the “tip of the iceberg” with respect to associated genetic loci, 
and thus the extension of sample sizes in future GWAS will produce an incredible amount 
of information with respect to genetic pleiotropy. The identification of shared genes and 
pathways between associated phenotypes and diseases may alter classification and 
treatment of diseases. Resources such as the UK Biobank66 and Million                                 
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Veteran Program67 including hundreds of thousands of individuals will be of incredible value 
in the identification of further genetic variants for complex diseases and to improve the 
understanding of cellular networks32. 
Most genetic studies on inflammation are conducted in population-based cohort studies to 
study chronic inflammation in the general population. Not much is known about the genetic 
background of acute inflammation in the setting of an infectious illness such as sepsis that 
requires hospital admission. A previous study has failed to find robust evidence for genetic 
variants underlying sepsis mortality68. Well-designed genetic studies are warranted to find 
DNA sequence variants underlying acute inflammation. 
Causal inference in EWAS remains challenging. In the majority of the published reports, the 
causal direction of the association between DNA methylation and the phenotype under 
study could not be established. A major limitation in unravelling the causality in DNA 
methylation studies is the lack of strong genetic instruments for MR analyses. Therefore, 
large studies are necessary to identify genetic instruments for DNA methylation and 
phenotypes to improve the power to successfully conduct robust MR analyses. Also, the 
findings in part 4 may be the start for wet lab experiments to unravel the role of the DNA 
methylation findings in inflammation and cardiometabolic disease. For instance the DNA 
methylation findings near the gene AIM2 in the CRP epigenetic study, what is the role of 
AIM2 in low-grade inflammation and may targeting AIM2 help to lower inflammation? 
 
Concluding remarks 
 
In this thesis, I have found genetic and epigenetic markers for inflammation and sought to 
disentangle the complex interplay between inflammation and diabetes and CVD. In this 
chapter I gave an overview of the findings, discussed methodological issues, and provided 
my view on the future directions. Exciting times are coming as genetic and epigenetic 
findings are expected to being translated into clinical practice in coming years improving 
prediction, prevention, and treatment of disease. 
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Inflammation plays a pivotal role in the pathogenesis of type 2 diabetes and coronary heart 
disease (CHD). C-reactive protein (CRP) is a sensitive marker of inflammation and has been 
of major interest in epidemiological studies of diabetes and CHD. In this thesis, we aimed to 
study the link between inflammation and diabetes and CHD with the use of genetic and 
epigenetic information. For this, we used data from population based cohort studies and 
collaborated with numerous studies worldwide in large consortia. 
The first part of this thesis is dedicated to the descriptive epidemiology of prediabetes and 
type 2 diabetes. In chapter two, we estimated that the lifetime risk of developing diabetes 
during the lifespan is approximately one in two for prediabetes, and one in three for over 
type 2 diabetes. The vast majority of individuals with prediabetes at the age of 45 will 
eventually develop overt diabetes. The lifetime risk is highly dependent on body mass index 
(BMI), and attenuates with advancing age. To investigate the effect of genetic information 
on the lifetime risk of diabetes, we constructed in chapter three a genetic score for diabetes 
based on genetic risk variants derived from large genome-wide association studies for 
diabetes. We found that genetic information adds to the lifetime risk prediction of diabetes, 
and the data showed that lean individuals at high genetic risk have a substantial lower risk 
of developing diabetes compared to their obese counterparts. This observation suggest that 
a healthy BMI may offset high genetic risks. 
To explore other inflammatory markers with risk of diabetes, we performed in chapter four 
a biomarker study in which we tested several biomarkers with the risk of diabetes. We 
found that higher EN-RAGE and higher IL-13 were associated with a higher risk of diabetes. 
We also explored novel inflammatory markers for CHD, and observed that individuals with 
higher levels of EN-RAGE are at increased risk of CHD, mainly hard CHD. We suggest that 
EN-RAGE may have a role in the pathogenesis of diabetes and CHD, or may add to the risk 
prediction of these phenotypes. 
Part three is devoted to the identification of genetic variants underlying circulating CRP, and 
overlapping genetic variants between CRP and cardiometabolic phenotypes. In Chapter six 
we performed a meta-analysis of genome-wide association studies of CRP levels. Both a 
HapMap imputed GWAS meta-analysis, and a 1000Genomes imputed meta-analysis were 
conducted. We confirmed 18 established genetic loci for CRP, and found 40 additional loci. 
Mendelian randomization analyses suggested a causal link between CRP and schizophrenia, 
whereas the association between CRP and CHD is likely to be confounded by pleiotropic 
genetic variants. The causal association between CRP and schizophrenia may be explained 
by the response of the immune system in early life as discussed in chapter seven. In chapter 
eight and nine, we studied the genetic overlap between CRP and cardiometabolic diseases, 
and observed numerous overlapping genetic variants. The pleiotropic genetic architecture 
underlying CRP and cardiometabolic phenotypes is highly complex, and further research will 
likely result in further insights in the shared pathways. In chapter ten, we sought to study 
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the hypothesis that vitamin D is causally associated with levels of CRP. The data suggested 
no causal association, and therefore we may conclude that the association between vitamin 
D and CRP is likely to be confounded. 
The role of DNA methylation in inflammation and cardiometabolic phenotypes is discussed 
in part four. In chapter 11, the association between epigenome-wide DNA methylation and 
circulating CRP levels was studied. We identified numerous CpG sites that were associated 
with CRP levels, and could identify associations between those CpG sites and nearby gene 
expression. The epigenome-wide association study of CRP provided further insights in the 
epigenetic landscape of general inflammation. Also, in chapter 12 we found CpG sites 
associated with circulating TNFα levels. The TNFα-associated methylation sites were 
associated with incident CHD. DNA methylation correlated with lower TNFα levels were 
associated with reduction of incident CHD, a finding that is in line with other observational 
studies. As smoking materially affects DNA methylation and increases the risk of diabetes 
and CHD, in chapter 13 and 14 we sought to identify DNA methylation changes attributable 
to smoking at genes known to be causally involved in the risk of diabetes and CHD. For both 
diabetes and CHD, we observed associations between smoking and DNA methylation 
nearby genes identified for diabetes and CHD, suggesting that smoking affects the risk of 
those disease through alterations in DNA methylation.
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Inflammatie speelt een cruciale rol in de pathogenese van type 2 diabetes en coronaire 
hartziekte. C-reactive protein (CRP) is een gevoelig meetinstrument voor inflammatie en in 
de afgelopen jaren is er veel epidemiologische onderzoek gedaan naar de relatie tussen CRP 
en diabetes en coronaire hartziekte. In deze thesis wilden we de relatie tussen inflammatie 
en diabetes en coronaire hartziekte bestuderen met gebruik van genetica en epigenetica. 
Om dit te bewerkstelligen hebben we data van bevolkingsonderzoeken over de hele wereld 
gebruikt en samengewerkt met andere universiteiten in grote internationale consortia. 
Het eerste deel van deze thesis is gewijd aan de beschrijvende epidemiologie van 
prediabetes en type 2 diabetes. In hoofdstuk twee hebben we berekend dat het levenslang 
risico om prediabetes te ontwikkelen één op twee is, en dat het levenslang risico om type 2 
diabetes te ontwikkelen één op drie is. Het overgrote merendeel van de mensen met 
prediabetes op de leeftijd van 45 jaar zal uiteindelijk type 2 diabetes ontwikkelen. 
Bovendien zagen we dat het levenslang risico op diabetes sterk afhankelijk is van de body 
mass index, en het levenslang risico daalt naarmate men ouder wordt. Om het effect van 
genetische informatie op het levenslang risico van diabetes te bestuderen hebben we in 
hoofdstuk drie een genetische score gemaakt gebaseerd op genetische risico varianten die 
in grootschalig genetisch onderzoek van diabetes zijn gevonden. We hebben aangetoond 
dat genetische informatie bijdraagt aan de voorspelling van het levenslange risico op 
diabetes, en de data liet zien dat magere mensen met een hoog genetisch risico een 
substantieel lager risico hebben op het ontwikkelen van diabetes in vergelijking met obese 
mensen met een hoog genetisch risico. Deze observatie suggereert dat een lage body mass 
index een hoog genetisch risico kan compenseren. 
In de zoektocht naar potentiele nieuwe inflammatoire markers die geassocieerd zijn met 
het risico op diabetes hebben we in hoofdstuk vier een biomarker studie verricht waarin we 
verschillende biomarkers hebben onderzocht met het risico op diabetes. We vonden dat 
een hoger EN-RAGE en hoger IL-13 waren geassocieerd met een hoger risico op diabetes. 
We hebben ook nieuwe inflammatoire biomarkers onderzocht voor coronaire hartziekte. In 
deze studie vonden we dat hogere EN-RAGE waarden geassocieerd waren met een hoger 
risico op coronaire hartziekte. Deze resultaten wijzen op een mogelijke rol voor EN-RAGE in 
de pathogenese van diabetes en coronaire hartziekte en een potentiele meerwaarde in de 
risico voorspelling van deze beide ziekten. 
Deel drie van deze thesis is gewijd aan het identificeren van genetische varianten voor CRP 
waarden in bloed, en het identificeren van overlappende genetische varianten tussen CRP 
en cardiometabole fenotypes. In hoofdstuk zes hebben we een meta-analyse van 
genoomwijde associatie studies naar CRP waarden uitgevoerd. We hebben zowel een 
HapMap geïmputeerde als een 1000Genomes geïmputeerde meta-analyse verricht. De 
studie bevestigde 18 eerder gevonden genetische locaties in het genoom die geassocieerd 
zijn met CRP, en resulteerde in 40 nieuwe associaties met CRP. Analyses waarin 
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Mendeliaans randomiseren werd toegepast suggereerde een causaal verband tussen CRP 
en schizofrenie, daar waar het causaal verband tussen CRP en coronaire hartziekte 
waarschijnlijk veroorzaakt wordt door pleiotrope genetische varianten. Het causale verband 
tussen CRP en schizofrenie wordt mogelijks verklaard door de reactie van het 
immuunsysteem vroeg in het leven, zoals beschreven in hoofdstuk zeven. In hoofdstuk acht 
en negen hebben we de genetische overlap tussen CRP en cardiometabole ziekten 
bestudeerd, waarbij we verscheidene overlappende genetische varianten hebben kunnen 
aanduiden. De pleiotrope genetische architectuur van CRP en cardiometabole fenotypes is 
zeer complex, en het is ter verwachten dat toekomstig onderzoek meer inzichten kan geven 
in de gedeelde biologie van CRP en cardiometabole fenotypes. In hoofdstuk tien hebben we 
de hypothese dat vitamine D een causaal verband heeft met CRP waarden bestudeerd. De 
data suggereerde geen causaal verband en daarom concluderen we dat het verband tussen 
vitamine D en CRP waarschijnlijk beïnvloed wordt door andere factoren. 
De rol van DNA methylatie bij inflammatie en cardiometabole fenotypes hebben we in deel 
vier van deze thesis bekeken. In hoofdstuk 11 hebben we het verband tussen 
epigenoomwijde DNA methylatie en CRP waarden in bloed bestudeerd. We vonden 
verscheidene CpG-gebieden die geassocieerd waren met CRP, en we konden verbanden 
leggen tussen deze CpG-gebieden en genexpressie in de buurt van de CpG-gebieden. De 
epigenoomwijde associatie studie van CRP heeft nieuwe inzichten gegeven in het 
epigenetische landschap bij inflammatie. In hoofdstuk 12 hebben we ook CpG gebieden 
gevonden die geassocieerd waren met TNFα waarden in het bloed. De TNFα geassocieerde 
methylatie gebieden waren tevens geassocieerd met het vroegtijdig krijgen van coronaire 
hartziekte. DNA methylatie dat correleerde met lagere TNFα warden in het bloed was 
geassocieerd met een legere kans op het krijgen van coronaire hartziekte. Deze bevinding 
komt overeen met andere observationele studies. Gezien roken een sterk effect heeft op 
DNA methylatie en het risico op diabetes en coronaire hartziekte verhoogd, hebben we in 
hoofdstuk 13 en 14 het verband tussen roken en DNA methylatie veranderingen in genen 
die gekend zijn voor diabetes en coronaire hartziekte onderzocht. Voor zowel diabetes als 
coronaire hartziekte hebben verbanden gevonden tussen roken en de DNA methylatie van 
genen die gekend zijn voor diabetes en coronaire hartziekte. Dit suggereert dat roken 
mogelijk een effect op deze ziekten heeft via veranderingen in DNA methylatie.
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