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Abstract

A randomization test can be used to statistically test hypotheses in multiple baseline designs

to complement the commonly used visual inspection analysis. A crossed factor simulation

study was performed to investigate the power of a randomization test in an multiple baseline

design. The results show that the degree of autocorrelation of the observations, the number

of participants, the effect size, the overlap of possible start moments of the intervention

between participants, the ratio of the number of measurements in the baseline- and inter-

vention phase, a gradually emerging effect, and the number of measurements had strong

main effects on the power. The two-way interactions between number of participants and

effect size, and between the number of measurements and the number of start moments of

the intervention also had a large effect. An online tool was developed to calculate the power

of a multiple baseline design given several design characteristics.

Introduction

The single-case design has a long history in psychology as it was already used by famous foun-

ders like [1–4]. It is not restricted to the field of psychology, however, and can be used to

inform and develop theory, evaluate the effectiveness of interventions, and study the behavior

of organisms [5]. Although the kind of research questions involved in single case designs often

differ from multiple case designs, single case designs may be viable alternatives for ordinary

randomized trial designs when the number of participants is small, normality and homogene-

ity of variance assumptions are not warranted, or the sample is not random [6]. They are used

in a clinical setting to evaluate the effect of a certain intervention on a small group of patients

[7–9], but also in an educational context to test whether a manipulation can help students [10–

12].

Although single case designs may vary greatly in their specific design properties, what is

typical for all single case designs is that for each case, the outcome variable is measured repeat-

edly in each of two or more treatment conditions or phases (e.g., a baseline phase and an inter-

vention phase). The effect of the intervention is evaluated by comparing the pattern of

observed outcomes under the different treatment conditions, in which each case serves as its

own control [13].
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In this study we focus on the power of the multiple baseline across subjects AB design,

abbreviated as across subjects MBD [14]. The across subjects MBD is the most common form

of single case designs [15]. This across subjects design relies on group averages. [6] showed

that a randomization test can also be used for single case designs with a single subject. How-

ever, the power of a single case single subject design is close to zero unless the effect of the

intervention was huge and the number of measurements large (i.e. Cohen’s d>1.5 and more

than 40 measurements).

In the across subjects MBD design several measurements of some kind of outcome variable

are administered to two or more subjects. These subjects are usually people, and we will there-

fore use the word participants throughout this manuscript but the MBD is applicable settings,

behaviors, or groups as well. In the AB design all baseline measurements, A, precede the inter-

vention measurements, B. This AB design differs from the alternation design in which baseline

and treatment phases alternate. Although the AB design may have less internal validity than

the alternation design which can better obviate history and maturation biases [14], the AB

design has equal validity in situations where experimental control is demonstrated and it is

often the only possible design for practical or ethical reasons. For example, in a clinical context,

where the effect of some drug is evaluated one can mostly not alternate the phases where the

drug is absent and where it is present. The AB design fits best in this situation.

In a multiple baseline AB design, the baseline phase ideally starts at the same time for each

participant, while the intervention phase ideally begins at a different time for each participant.

This is because start the baseline measurements at the same time but fluctuating the start time

of the intervention for participants helps to guard against some threats to internal validity due

to maturation or common history. Intervention phase patterns that are similar across partici-

pants are interpreted as evidence that the outcome responds to intervention [16]. This ideal

design is often not applied in practice, however, which can be considered a methodological

flaw [17].

Traditionally, the effect of an intervention in single case designs is evaluated using visual

inspection of the pattern of observations. Visual inspection analysis offers a wide range of pos-

sibilities to investigate the patterns of individual time series and several measures have been

developed to quantify this visual inspection (e.g. [18–21]). One may compare the means or

medians of the observations in the baseline and intervention phase, or compare the range or

standard deviation in the two phases. Alternatively, researchers can look at trend lines or

inspect the percentage of non-overlapping observations (see https://architecta.shinyapps.io/

SingleCaseDesigns/ for a tool to do the visual inspection analysis). Despite the obvious advan-

tages and the intuitive attractiveness of visual inspection in single case designs, it has been crit-

icized for high error rates and subjectivity [22–23]. [24] compared visual inspection with

statistical analysis and concluded that the conclusions from visual analysis and statistical analy-

sis had low level of agreement (see also [25–27]). Although the results of these studies are

informative in that they confirm that statistical inference cannot be replaced by conclusions

formed purely on visual inspection, we argue that the comparison of the two kinds of analyses

which are inherently different is questionable. As the term already indicates, visual inspection

is a meant to inspect the time series patterns and the effect of an intervention for one or a

small number of participants. Statistical inference, instead, is aimed at generalization of a test

statistic to some kind of population. Some researchers [28–29] even argue that because visual

inspection analyses can merely detect major effects, these analyses lead to less Type I errors

and an increase in Type II errors. We agree with [30] who recommended complementing

visual analysis with a statistical analysis of the data, whenever possible.

When a researcher’s goal is to statistically evaluate the mean effect of an intervention in a

single case multiple baseline design, (s)he can’t really use parametric tests, like F and t tests,
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because data from single case designs violate the assumptions on which the parametric tests

depend. That is, normality and homogeneity of variances can often not be guaranteed because

the number of participants is small in single case designs. Moreover, the assumption of inde-

pendent observations is problematic because data from single case designs are dependent,

which can lead to autocorrelated residuals that can seriously bias the results from the paramet-

ric tests (see, e.g., [31–34, 23]). [14] explain that time series analysis can be used to handle the

autocorrelated residuals, but this analysis method requires a lot more measurements than are

usually available in single case MBD to detect the pattern of autocorrelations and identify the

model [35–37].

A researcher could consider the nonparametric randomization test to analyze single case

multiple baseline designs, since this test does not rely on any distributional assumptions (See

S1 File, for some history of the randomization test).

In a multiple baseline design across subjects the randomization method may be based on

the random assignment of participants to baselines. This method was presented by [38]. It

may also be based on the random assignment of the start of the intervention for each of the

participants [39]. [40] elaborated a combination of these two methods both randomizing the

assignment of the participants to baselines and the start of the intervention. [41] compared

this randomization test with those of [38] and [39], and concluded that the power is similar.

Koehler and Levin’s randomization test allows a more practical design because of the

researcher defined staggered start moments of the intervention. In our study we therefore

focused on this randomization procedure. We shortly explain the rationale of the Koehler and

Levin’s randomization here, for a complete example we refer the reader to the S2 File. Let N be

the number of participants under study, then the randomization procedure by Koehler and

Levin’s requires specifying N separate ranges of start points for the intervention. If there are

N = 3 participants that are measured 15 times each for example, these three ranges could be

[T5-T6], [T7-T8] and [T9-T10] respectively, with T representing time points (with T5 repre-

senting the fifth time point). We won’t go into the how these ranges should be determined in

practice as it is beyond the scope of this article, but we do want to mention that in practice

determining these ranges is often a difficult step because it depends on the minimum number

of baseline- and intervention measurements that are required to get a stable baseline- and

intervention estimate, where the minimum number of required measurements depends on the

specific context. When the N separate start ranges are determined, each consisting of k possible

start moments, all possible combinations of participant i (i = 1,. . .,N) and start point k are

determined leading to N!
Qi¼N

i¼1
ki permutations. Note that the total number of permutations is

smaller when there is an overlap in the range of possible start moments of the intervention for

different participants [14]. One of these permutations, that is, one of the combinations of par-

ticipants and start moment of the intervention is used in the actual data collection, and the

mean baseline- and intervention scores are calculated based on the specific start moments

used. Next, baseline- and intervention scores are calculated form the observed data, using each

of N!
Qi¼N

i¼1
ki permutations of individual and start moments. The mean differences averaged

over all participants of all permutations together form the distribution of the randomization

test. Note that this distribution does not rely on any distributional assumptions, and is not

likely to be symmetric. Finally the p-value is calculated by dividing the number permutations

that have an averaged mean difference equal or more extreme than the observed averaged

mean difference by the total number of permutations. The power of the randomization test is

defined as the probability that the null hypothesis is correctly rejected.

There are two things important to realize. First, because the shape of the distribution is

unknown, the randomization test is one-tailed, instead of two-tailed. Second, the null
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hypothesis of this randomization test is not that the mean baseline is equal to the mean inter-

vention score. Because there is a minimum number of baseline and a minimum number of

intervention observations which are not part of the randomization, the mean difference

between the baseline scores and the intervention scores may not be zero. Instead, the null

hypothesis is that the mean difference between baseline and interventions observations is

equal for all possible permutations. From this it follows that the Type I error rate is the proba-

bility that one decides that the mean difference between baseline and interventions observa-

tions is not equal for all possible permutations when there is in fact no effect for permutations.

The Type II error is the probability that one decides that the mean difference between baseline

and interventions observations is equal for all possible permutations when there is an effect for

permutations.

Although the randomization test does not rely on distributional assumptions, there is a

necessary and sufficient condition when using a randomization distribution to obtain valid

statistical significance [42–43]. This is the exchangeability assumption which states that obser-

vations can be exchanged with other observations without loss of meaning to the grouping/

sequence. In a single case design multiple measurements within a relatively short interval are

taken from the same person and these observations will nearly always be autocorrelated to at

least some degree [44]. This autocorrelation on the measurement level will, although to a less

extent, be reflected in the test statistic of the randomization test which violates the exchange-

ability condition.

Some researchers argue that autocorrelated data do not affect the statistical validity of ran-

domization tests if the amount of data per phase is sufficiently large [14, 45, 44]. [38] and [46]

have suggested, respectively, that autocorrelation equally affects all the permuted data in the

randomization distribution and that randomization tests overcome autocorrelation problems.

However, [47] (see also [48–49, 43, 50–51]) are critical about the validity of the randomization

test when observations are autocorrelated. [41] are, as far as we know, the only researchers

who evaluated the effect of autocorrelation in an AB across subjects MBD. They concluded

that it is important to take the level of autocorrelation into account when investigating the

power of MBD’s.

They showed that the Koehler-Levin randomization test can control Type I error rates even

with a considerable amount of autocorrelation, the power of the randomization test, however,

was negatively related to the autocorrelation.

Besides the autocorrelation there are several other factors which may influence the power

of the Koehler Levin randomization test in a single case AB multiple baseline design. A few of

these factors, like the number of participants and the number start moments of the interven-

tion and the number of measurements in the baseline- and intervention phases may be con-

trolled by the researcher. Others, like the effect size, whether there is a correlation between the

mean of the baseline and the mean of the intervention scores and whether the variation in the

outcome is similar in the two phases will mostly be determined and restricted by the context of

the research, and the researcher can mostly not change these factors to enhance power. The

goal of this paper is to investigate the effect of these factors on the power in a range of practi-

cally realistic scenarios. We think that researchers using a randomization tests to evaluate their

MBD may really be interested in the results of this study because there is hardly any literature

on this topic nor is there software available which can be used to a priori evaluate the power of

a particular design.

Before we will describe the details of the simulation study that was performed to evaluate

the effect of the factors we will first explain the factors in a bit more detail.

First, as explained above, the level of autocorrelation between the observations within a par-

ticipants is expected to effect the power. Just like [41] we took a range of autocorrelations into
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account from 0 to .5. The higher the autocorrelation, the lower the expected power. We had no

reasons to expect this effect to interact with other factors of the design (see S4 File).

Second, an across subjects MBD requires at least two participants. The larger the number of

participants the larger the number of permutations. A minimum number of participants is

required to be able to reject the null hypothesis, since the p-value is calculated by dividing by

the total number of permutations. [41] showed, though, that the total number of permutations

may not be related to the power of the design.

Third, the larger the number of possible start moments of the intervention per participants,

the larger the number of permutations. The actual range of possible start moments may be

delimited by the number of participants, the minimum number of observations in each phase

and the total number total number of measurements. In many contexts quite some baseline

observations are required to get a stable estimate of the baseline score of an individual. In this

case the range of possible start moments of the intervention may not be large. Note that, as a

consequence, the number of permutations for the randomization test may be too small to

reach statistical significance.

Fourth, in a multiple baseline design, the number of measurements may differ for partici-

pants. In general, the more measurements, the more reliable the test statistic because it is based

on more observations. It depends on the actual context in which the outcome is measured how

much observations are required to get stable estimates of the baseline and the intervention

scores.

Fifth, the within participant effect size will have an influence on the power. Multiple kinds

of effect sizes for single case designs have been discussed [8, 52]. In our study we defined the

within participant effect size as the mean difference of a participant’s baseline and intervention

scores divided by the pooled standard deviation of the scores in the baseline and the interven-

tion phases. [41] found that a Cohen’s d of at least 1.5 is required to have sufficient power

(power = .80). In their study they investigated the effect of effect sizes .5, 1, 1.5 and 2 in a design

with four participants and two start moments of the intervention. The power of d’s of .5 and 1

was very low for all randomizations tests they compared.

Sixth, in order to get stable mean estimates for both the baseline and the intervention phase

it seems preferable to have as many measurements as possible in both phases. However, this

may not be preferred from a practical point of view. In almost all clinical contexts where the

intervention is a treatment and the baseline observations are collected when someone is on the

waiting list to be treated, one wants to start the treatment as soon as possible. Moreover, more

observations during the treatment will often be preferred over an equal number of observa-

tions in the baseline and the intervention. The question is whether a smaller number of mea-

surements in the baseline phase than in the intervention phase has a negative effect on the

power, compared to an even number of observations in both phases.

Seventh, the power may be influenced by an overlap in the range of possible start moments

of the intervention for different participants. Although unique possible start moments are pre-

ferred, the actual context may not allow a nonoverlapping ranges. This may be the case when

the number of measurements is small or when a large number of baseline measurements is

required to get a stable baseline score. An overlap in possible start moments in combination

with a small number of participants leads to smaller number of permutations which may have

a negative effect on the power.

Eighth, in clinical contexts, the effect of an intervention may often be correlated with the

mean baseline scores across subjects. Note that this effect can exist apart from, or in addition

to, the autocorrelation of the observations within a participant. We investigated whether corre-

lated baseline and intervention means across subjects have a negative effect on the power.

Power in a single case multiple baseline design

PLOS ONE | https://doi.org/10.1371/journal.pone.0228355 February 6, 2020 5 / 21

https://doi.org/10.1371/journal.pone.0228355


Ninth, the ratio of variation in scores in baseline and intervention phase may have an influ-

ence on the power. In some contexts one may expect a homogenous variation in scores in the

baseline and the intervention phase. In many contexts however, the intervention will cause the

observations to become more similar or just more variable. While the mood of depressive peo-

ple may be stably low when on the waiting list, it may become more variable because of the

effect of the psychotherapy treatment. Contrary, people suffering from a bipolar disease may

become less alternating in mood as soon as they got the right medicine. We investigated what

the effect is on the power of this heterogeneity in variances between the scores in the baseline

and the intervention phase.

Finally, the effect of an intervention may appear suddenly, directly after the onset of the

treatment or emerge gradually during the intervention. The effect-size of a gradually emerging

effect is obviously smaller than of a suddenly appearing effect (see [53] for an overview of effect

sizes with gradually emerging effects). In our study we evaluated the effect of a gradually

emerging effect on the power of the randomization test.

The different factors may not only have main effects on power, but could also possibly

interact. In our simulation study we therefore used a crossed design of all factor levels, except

for the factors autocorrelation and gradually emerging effect which we didn’t expect to inter-

act. Because higher order effects may be less informative in general, we only discuss the results

of the main- and two way interactions. Although the general results on the main- and two way

interaction effects of the factors on the power presented below contribute useful knowledge to

the relatively sparse literature about randomization tests in MBD’s, their usefulness may be

limited for researchers who wants to know whether their specific MBD with several interacting

factors has sufficient power. In order to enable researchers to study the power of their specific

design we developed an online tool (https://architecta.shinyapps.io/power_MBD/). This tool

can be used to evaluate the higher order interaction effects, gives a power estimate for the spe-

cific design, and shows how changes in the design properties influence the power. Moreover,

we offer researchers the opportunity to do their own simulation study in which they can simu-

late the power of their own MBD and which is not restricted to the levels of the factors we

included in our simulation study.

Method

The manuscript and supporting information sections can be viewed at http://dx.doi.org/10.

17504/protocols.io.9vrh656.

Simulated Factors

In order to evaluate the effect of the above-mentioned factors on the power of the randomiza-

tion test in a AB across subject MBD a simulation study was performed. Table 1 shows the fac-

tors and their levels. The autocorrelation between the observations within a participant were 0,

.1, .2, .3, .4 and .5 following [41]. The number of participants was varied from 2 to 12. The

number of possible start moments per participant varied from 2 through 4. The number of

total measurements was 15, 30 and 60. For the effect size Cohen’s d was used having the values

.3, .6 and 1. The effect size was simulated for each participant separately. The standard devia-

tion within the baseline and intervention phase could be identical (both 1); the standard devia-

tion in the baseline phase could be twice as large as the standard deviation in the intervention

phase (sdB = 1.33, sdI = .67); or the standard deviation in the intervention phase could be twice

as large as the standard deviation in the baseline phase sdB = .67, sdI = 1.33); For each partici-

pant baseline scores were simulated for all measurements t by the autoregressive function Bt =

AR�Bt−1 + et, where AR varied from 0 to 0.5, and e, the error, is drawn from a normal

Power in a single case multiple baseline design
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distribution with mean = 0 and standard deviation equal to the standard deviation of the base-

line scores (i.e. .67, 1, or 1.33). Note that Bt = 1 = et = 1. The autoregressive function for the

scores in the intervention is the same, It = AR�It−1 + et, except that the error is drawn from a

normal distribution with mean of .3, .6, or 1, and standard deviation equal to .67, 1, or 1.33.

Furthermore, the number of baseline and intervention phase measurement was similar or

there were more observations in the intervention phase than in the baseline phase. The num-

ber of observations was at least two within each phase. The start moments per participant

could be unique or overlap. When the start moments were unique all participants had different

possible start moments. For example, when there were three participants, the number of start

moments was four, and the total number of measurements was 30, the range of possible start

moments could be 4, 5, 6, 7; 8, 9, 10, 11; and 12, 13, 14, 15 while in the overlapping situation

the range of possible start moments could be 4, 5, 6, 7; 5, 6, 7, 8; 6, 7, 8, 9. Note that large over-

lap in start moments was chosen to capitalize on the effect of overlap.

The mean score in the baseline phase was related to the scores in the intervention phase or

not. When the means were correlated the autoregressive function to simulate the intervention

scores was It ¼ �B þ AR � It� 1 þ et. Note that this equals a correlation of .7 between the baseline

and the intervention means.

When all factor levels—except for the factors autocorrelation and gradually emerging

effects which were both fixed to 0 (See S4 and S5 Files, for an explanation)—were crossed

there were 648 different scenario’s. Some combinations of factor levels were impossible, how-

ever. This was the case when the number of measurements was 15 or 30. S1 Table shows which

combinations were impossible. Moreover, a minimum number of permutations is required

make statistical testing meaningful. That is, with less than 20 permutations, the p value cannot

become smaller than a Type I error rate of .05. This is the case when the number of participants

is 2 and the number of possible start moments is 2 or 3. The power is per definition 0 in these

situations and the randomization test should not be considered.

In order to study the effect of autocorrelation of the observations within a participant on

the power of the MBD we did a separate simulation study in which we evaluated the effect of

autocorrelation for a default situation and nine alternative situations which each differed from

the default situation with respect to one factor level. These ten situations were simulated for

four and eight participants. Table 2 shows the factor levels of the default situation and the alter-

native situations.

In order to study the effect of a gradually emerging effect on the power of the MBD we also

did a separate simulation study in which we again evaluated the effect of a gradually emerging

effect for a default situation and nine alternative situations which each differed from the

Table 1. Factors and their levels of the simulation study.

Factor Levels

Autocorrelation (AR) AR = 0, 0.1, 0.2, 0.3, 0.4, 0.5

Number of participants (i) i = 2, .., 12
Number of possible start moments intervention (k) k = 2, 3, 4
Number of measurements (t) t = 15, 30, 60
Ratio sd in baseline (B) and intervention (I) sdB = sdI; sdB = 2sdI; 2sdB = sdI
Effect size (d) d = .3, .6., 1
Equal # of scores baseline & intervention TRUE; FALSE

Non-overlap of possible start moments TRUE; FALSE

Correlated mean baseline and mean intervention TRUE; FALSE

Gradually emerging effect (portion of intervention measurements) 0, ¼, ⅓, ½

https://doi.org/10.1371/journal.pone.0228355.t001
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default situation with respect to one factor level. These ten situations were simulated for six

participants. Table 3 shows the factor levels of the default situation and the alternative situa-

tions. Next we formulated ten alternative designs in which only one of the factor levels was dif-

ferent from the default design. For these ten designs we simulated data in the same way as was

done for the simulations in the main text with a suddenly emerging effect and gradually

emerging effects during ¼, ⅓, and ¼ of the treatment measurements.

Simulation study

Program R [54] was used to run the simulations. See S3 File for the R code.

Table 2. Overview of the default and nine alternative designs used to investigate the effect of autocorrelation on power.

Situation # of possible start

moments, k
correlated B1 and I2

Mean, rBI

Equal # of obs. in B and I,

#obsB = #obsI

Non-

overlapping k
number of

measurements, t
Mean diff. B

and I, d
sd B sd I

default 3 FALSE TRUE TRUE 60 1 1 1

k = 2 2 FALSE TRUE TRUE 60 1 1 1

k = 4 4 FALSE TRUE TRUE 60 1 1 1

rBI 3 TRUE TRUE TRUE 60 1 1 1

#obsB =

#obsI

3 FALSE FALSE TRUE 60 1 1 1

Non

Overlap k
3 FALSE TRUE FALSE 60 1 1 1

d = .3 3 FALSE TRUE TRUE 60 0.3 1 1

d = .6 3 FALSE TRUE TRUE 60 0.6 1 1

sdB = 2sdI 3 FALSE TRUE TRUE 60 1 1.33 0.67

2sdB = sdI 3 FALSE TRUE TRUE 60 1 0.67 1.33

Shaded cells show the factor level that is different from the default scenario.
1B = Baseline,
2I = Intervention

https://doi.org/10.1371/journal.pone.0228355.t002

Table 3. Overview of the default and nine alternative designs used to investigate the effect of gradually emerging effects on power.

Situation # of possible start moments,

k
Equal # of obs. in B1 and I2, #obsB =

#obsI

AR number of measurements,

t
Mean diff. B and I,

d
sd B sd I

default 3 TRUE 0 60 1 1 1

k = 2 2 TRUE 0 60 1 1 1

k = 4 4 TRUE 0 60 1 1 1

AR = .5 3 TRUE .5 60 1 1 1

Nr.

Measurements = 30

3 TRUE 0 30 1 1 1

#obsB = #obsI 3 FALSE 0 60 1 1 1

d = .3 3 TRUE 0 60 0.3 1 1

d = .6 3 TRUE 0 60 0.6 1 1

sdB = 2sdI 3 TRUE 0 60 1 1.33 0.67

2sdB = sdI 3 TRUE 0 60 1 0.67 1.33

Shaded cells show the factor level that is different from the default scenario.
1B = Baseline,
2I = Intervention

https://doi.org/10.1371/journal.pone.0228355.t003
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In the randomization test the p-value was calculated by dividing the number of permuta-

tions that have a test statistic as extreme or more extreme than the observed test statistic by the

total number of permutations. Because the number of permutations becomes very large with

an increasing number of participants we draw a sample of 400 permutations from the total

number. A pilot study showed that the p-value of this sample of 400 permutations was very

similar to the results of the complete permutation distribution. In order to calculate the power,

500 replications were simulated and the power was calculated by dividing the number of repli-

cations with a p-value below .05 (Type I error rate) by 500. A pilot study showed that 500 repli-

cations were sufficient to get a stable estimate of the power. For each of the scenario’s the

power was calculated 100 times. A pilot study showed that 100 replications were sufficient to

get a stable estimate of average power.

Results

Type I error

Before we evaluated the power we first checked the type one error rates for all factor levels.

The nominal Type I error rate was .05. S2 Table shows the actual mean Type I error rates and

the standard deviation. Because not all factor levels could be crossed when the number of

measurements were equal to 15 or 30 (see Table 2) the Type I error rates were evaluated for

the scenario’s having 60 measurements. The Type I error rate was .01 when there were two

participants. This means that the power for a design with only two participants will be low

because of the low error rate. For three, four and five participants the actual error rate was a bit

lower than the nominal error rate (resp. .046, .049, .048). From six participants the Type I

error rate is .05. Based on these results we decided to only include six or more participants to

evaluate the Type I error rate for the other factors. For all factors except the ratio of the stan-

dard deviation in the baseline and the intervention phase the mean Type I error rate was .05.

When the standard deviation in the baseline phase was half the standard deviation in the inter-

vention phase the Type I error rate was .051, slightly liberal. When the standard deviation was

larger in the baseline phase or when the standard deviations were equal the Type I error rate

was .049, slightly lower than the nominal Type I error rate.

In order to investigate the effect of the number of measurements on the Type I error rate

we took a subsample with only eight participants and overlap in start moments of the interven-

tion. With this selection all other factors levels could be crossed. When the number of mea-

surements was 15, the Type I error rate was .049. With 30 and 60 measurements the Type I

error rate was .05.

Power

Effect of autocorrelation on power. The power was calculated for the ten situations

described in Table 3 for four and eight participants and autocorrelations 0, .1, .2, .3, .4 and .5.

Fig 1 shows the results for four and eight participants. For all of the 20 situations, there is nega-

tive relationship between the autocorrelation and the power. The effect of the autocorrelation

on the power doesn’t seem to interact with other design features. In S4 File, we showed that

the power for a specific design with autocorrelated data could almost perfectly be predicted by

the power and the standard deviation of the power of that design when the data were not

autocorrelated.

Effect of a gradually emerging effect on power. Table 4 shows the power and effect size

of the ten scenario’s in four situations. In the first situation the effect is suddenly emerging

from the first treatment measurement. In the other situations the effect was emerging during

respectively ¼, ⅓, and ½ of the treatment measurements. The results show that the effect of a
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gradually emerging effect on the power is strong and negative. For all scenario’s the power

drops much more than the effect size does.

Most of the times researchers will be interested in the final effect of the intervention and

not in the average effect in which the gradually emerging effect measurements are included. In

S5 File, we evaluated the power of a randomization test when corrected for the gradually

emerging effect.

Fig 1. Effect of autocorrelated observations on power for 10 designs with 4 and 8 participants.

https://doi.org/10.1371/journal.pone.0228355.g001

Table 4. Power and effect size for the default and nine alternative designs used to investigate the effect of gradually emerging effects.

Portion of intervention measurements at which the effect is emerging

0 ¼ ⅓ ½
Power ES� Power ES Power ES Power ES

default .97 1.00 .40 1.01 .26 0.89 .15 0.77

k = 2 .91 1.00 .21 1.01 .15 0.89 .10 0.77

k = 4 .99 1.00 .58 1.01 .39 0.89 .21 0.77

Autocorrelation = .5 .80 1.00 .25 1.01 .18 0.89 .09 0.76

Nr. Measurements = 30 .74 1.00 .17 1.00 .13 0.88 .12 0.77

#obsB = #obsI .94 1.00 .70 1.02 .48 0.90 .26 0.78

d = .3 .29 0.30 .12 0.30 .09 0.27 .07 0.23

d = .6 .70 0.60 .22 0.61 .16 0.53 .10 0.46

sdB = 2sdI .96 1.00 .37 1.01 .24 0.89 .14 0.77

2sdB = sdI .96 1.00 .38 1.01 .26 0.89 .07 0.65

�ES = effect-size

https://doi.org/10.1371/journal.pone.0228355.t004
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Effect of other design factors on power. Since the effect of autocorrelation on the power

could well be predicted by the power and standard deviation of the power when the autocorre-

lation was 0, we evaluated the effect of the factors on the power for data in which the autocor-

relation was 0. The online tool (https://architecta.shinyapps.io/power_MBD/) can be used to

calculate the power for a given design and a range of autocorrelations (AR = 0 − .5). An analy-

sis of variance was performed to evaluate the effect of the other factors on the power of the

randomization test. Because not all factor levels could be crossed when the number of mea-

surements was equal to 15 or 30 (see Table 2) the first analysis was performed on the scenario’s

having 60 measurements. We included all main- and two-way interaction effects. Although

higher order interaction effects could be evaluated, we think, a general interpretation of these

effects is less informative. For calculating the effect of a specific AB across subjects MBD on

the power we refer the reader to the online tool which can be used to graphically evaluate the

effect of higher order interaction effect as well as calculating the power for a specific combina-

tion of factor levels. Since the number of simulated power estimates were large (100) in each

cell of the design the significance of the main and interaction effects is not very informative.

We therefore focused on the effect size partial eta squared, Z2
p. Effect sizes of .02 were inter-

preted as small, .13 as medium and .26 as large [55].

Fig 2 shows the main effects of the seven factors as well as the effect sizes, partial eta

squared. Note that the power estimates of the individual factor levels are averaged over all

other factors. For example, in panel A, the estimated power (.6) for eight participants is aver-

aged over effect sizes d = .3, d = .6 and d = 1. This makes it difficult to interpret the trends in

an absolute way. The effect size, Z2
p, of the number of participants (Panel A, Fig 2) is .95, which

Fig 2. Main effects and effect sizes of seven factors on power.

https://doi.org/10.1371/journal.pone.0228355.g002

Power in a single case multiple baseline design

PLOS ONE | https://doi.org/10.1371/journal.pone.0228355 February 6, 2020 11 / 21

https://architecta.shinyapps.io/power_MBD/
https://doi.org/10.1371/journal.pone.0228355.g002
https://doi.org/10.1371/journal.pone.0228355


is very large. The power increases fast with a larger number of participants. The effect of the

effect size on the power (Panel C, Fig 2) is also very large (Z2
p ¼ :95). The number of start

moments of the intervention (Panel B, Fig 2) has a large partial eta squared (Z2
p ¼ :54), and the

power increases when the number of possible start moments increases from 2 to 3 start

moments and the effect on power is even stronger from 3 to 4 start moments. When the num-

ber of measurements is similar in the baseline and the intervention phase the power is larger

than when there are more measurements in the intervention phase (Panel D, Fig 2). This effect

is large, Z2
p ¼ :45. Averaged over all other factors, unique possible start moments result in

higher power than overlap in start moments. This effect is large as well, Z2
p ¼ :51. The effect of

the ratio in standard deviation between the baseline and the intervention phase (panel F, Fig 2)

is of medium size, Z2
p ¼ :16. The power is largest when there is more variation in the interven-

tion phase than in the baseline phase and smallest when there is more variation in the baseline

phase than in the intervention phase. The effect size of the effect for correlated baseline and

intervention means is close to 0 (panel E, Fig 2), indicating that a correlation of .7 between the

mean of the baseline and the mean of the intervention measurements does not result in a dif-

ferent power estimate than a correlation of 0.

Fig 3 shows all two-way interactions between number of participants and all other factors.

The strongest interaction effect is the interaction between number of participants and effect

size (Panel B, Fig 2), Z2
p ¼ :73. When the effect size Cohen’s d is .3 (small effect) the power will

not exceed .5 even when there are twelve participants. Having a medium effect size (d = .6),

eight participants are required to have sufficient power (.8). Having a large effect size (d = 1),

sufficient power can be reached with only six participants. Note, again, that these power esti-

mates were obtained by aggregating over all other factors. A medium effect, Z2
p ¼ :11, was

found for the interaction between number of participants and overlap in start moments of the

intervention. Panel D in Fig 3 shows that the benefit of non-overlapping possible start

moments of the intervention is larger when there is a larger number of participants. A some-

what smaller interaction effect, Z2
p ¼ :09, was found between number of participants and the

ratio number of measurements in the baseline and the intervention phase (Panel C, Fig 3).

When there are two or three participants there is hardly a difference between a similar number

Fig 3. Two way interaction effects on the power including number of participants.

https://doi.org/10.1371/journal.pone.0228355.g003
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of measurements in both phases or more measurements for the intervention phase. From four

participants there is benefit of a similar number of measurements in both phases. Fig 3, panels

A, E and F show that the other two-way interaction effects with number of participants are

small or absent.

Fig 4 shows that the remaining two-way interaction effects including start moment inter-

vention are small or negligible. Although the main effect of effect size Cohen’s d is huge, there

are no interaction effects with the other factors except for number of participants. Fig 5 shows

Fig 4. Two way interaction effects on the power including possible start moments of the intervention.

https://doi.org/10.1371/journal.pone.0228355.g004

Fig 5. Two way interaction effects on the power including effect size, Cohen’s d.

https://doi.org/10.1371/journal.pone.0228355.g005
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that the remaining two-way interaction effects including Cohen’s d are very small. Fig 6 shows

the remaining two way interaction effects. These effects are very small except for the medium

effect size, Z2
p ¼ :12, for the interaction between the ratio of the number of baseline and inter-

vention measurements and the ratio of the standard deviation within the baseline and the

intervention measurements (Fig 6, Panel C). When there are more measurements during the

intervention phase and the standard deviation is larger in the baseline phase the power is

smaller than in all other combinations. It turned out that when there is a similar number of

observations in the baseline and the intervention phase that the ratio of the standard deviation

does not affect the power.

Number of measurements. S1 Table showed that with 15 and 30 measurements not all

factors could be crossed. In order to investigate the effect of the number of measurements and

its interactions with the other factors we took a subsample with only eight participants and

overlap in start moments of the intervention. With this selection all other factors levels could

be crossed. We did an analysis of variance and again focused on the effect size to evaluate the

effect of number of measurements and its two-way interactions. Note again that the power

estimates for one level or a combination of levels was obtained by aggregating over the remain-

ing factors.

Fig 7, Panel A shows that there is a large effect of number of measurements, Z2
p ¼ :43. The

increase in power from 15 to 30 measurements is larger than the gain in power between 30

and 60 measurements. The interaction between number of measurements and start moments

of the intervention is also large, Z2
p ¼ :38. Panel B, Fig 7 shows that for two or three possible

start moments there is hardly any difference between the number of measurements levels but

Fig 6. Remaining two way interaction effects on the power.

https://doi.org/10.1371/journal.pone.0228355.g006
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when there are four possible start moments of the intervention the power increases consider-

ably from 15 to 30 measurements. The interaction effect of number of measurements and

Cohen’s d (Panel C, Fig 7) turned out to be of medium size, Z2
p ¼ :1. With a small effect size

(d = .3) the number of measurements hardly affected the power. When the effect is medium

(d = .6) or large (d = 1) there is a considerable gain in power from 15 to 30 measurements.

Panel D in Fig 7 shows a medium to large effect size, Z2
p ¼ :2, for the interaction effect

between the number of measurements and the ratio of the number of measurements in the

baseline and the intervention phase. When there is a similar number of measurements in both

phases, there in an increase in power from 15 to 30 and 30 to 60. When there are more mea-

surements in the intervention phase, however, the gain in power from 30 to 60 measurements

is not present.

Discussion

In this study we provided information about the influence of several factors on the power of a

randomization test in a single case multiple baseline across subjects design. The results showed

that autocorrelation of the observations has a negative effect on the power. This effect did not

interact with any other design properties. However, the effect of autocorrelation of the obser-

vations on the power turned out to be a function of the power and the standard deviation of

the power when the autocorrelation was 0.

The number of participants had a large effect on the power as well as the within participant

effect size. With small within participant effect sizes (Cohen’s d = .3), the usefulness of a ran-

domization test is limited as it has hardly any power even with twelve participants (power <

.5). With a medium effect, Cohen’s d = .6, sufficient power (.8) is reached from ten partici-

pants. Having a large effect, Cohen’s d = 1, six participants already result in an expected power

of .8. These results may seem disappointing at first glance, given that medium and large effect

sizes are more rare than common in experimental designs in the social sciences (However, see

[56] for an empirical evaluation of Cohen’s effect size guidelines in the context of individual

differences.). However, one may not compare the context in which these large n randomized

trials designs take place with the single case multiple baseline design contexts. Single case

design have often been used in educational or clinical contexts in which one wants to evaluate

an intervention or a therapy which effect has already been established or proven in the educa-

tional or clinical population from which the participants originate. The goal of the single case

Fig 7. Main- and two-way interaction effects including number of measurements on the power. Note that number

of participants is eight and possible start moments of the intervention overlap.

https://doi.org/10.1371/journal.pone.0228355.g007
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studies is often not to evaluate whether the results of an intervention can be generalized to the

population but rather to evaluate if an intervention is effective in a certain subgroup. The focus

of single case studies is more on internal than on external validity [57]. In such situations

medium or large effects are far more likely.

The number of possible start moments of the intervention also had a strong main effect on

the power. Taking three instead of two possible start moments leads a significant increase in

power and this increase is even larger from three to four possible start moments. This effect

hardly interacts with any of the other factors taken into account. More possible start moments

leads to a larger number of combinations in the permutation distributions. Following [41], we

did not expect this larger permutation distribution to have a positive effect on the power

beforehand. An explanation may be found in the way we chose the start moments in our

design. We defined the possible start moments consecutively leading to a wider range of possi-

ble start moments over participants when there were more possible start moments per partici-

pant. Take for example a situation with three participants, two possible start moments and 60

measurements. This could lead to the following set of start moments [27, 28]; [29, 30]; [31, 32].

The first possible start moment of the intervention is the 27th measurement and the last possi-

ble start moment is the 32nd measurement. In the same situation but now with three possible

start moments, the start moments could be [26, 27, 28]; [29, 30, 31]; [32, 33, 34], leading to the

wider range from 26 through 34. As you can see, in there is a confounding effect when choos-

ing more possible start moments, a wider range. It is probably not the number of possible start

moments per participants, but the wider range of possible start moments over participants

which leads to a higher power. One may, of course, solve this confounding problem by fixing

the range and choosing non-consecutive possible start moments. We think, however, that

non-consecutive possible start moments are exceptional and successive possible start moments

are generally preferred in practice.

The same line of reasoning can be used to explain the effect of the non-overlap of possible

start moments of the intervention. Non-overlapping possible start moments result in a higher

power than overlapping start moments. In the overlap condition the range of possible start

moments is smaller than in the unique possible start moments condition. This results in a con-

found. Choosing for overlapping start moments may not be an intended choice of the

researcher but merely imposed by practical restrictions. In a clinical context, for example, it

may be required that a therapy starts within a certain range of measurements.

For a higher power of the randomization test it is preferred to choose a similar number of

baseline and intervention measurements. This effect is easily explained by the fact that more

measurements lead to more stable estimates of the mean. We compared only two conditions

here because the situation with more baseline than intervention measurements may not be fea-

sible in practice. There were some remarkable interactions of this factor. One is the number of

measurements. With only 15 measurements, the difference in number of measurements in the

baseline and intervention phase between the two conditions (equal # observations vs. more

intervention observations) is relatively small leading to no difference in power for the two con-

ditions. With 60 measurements, however, the difference in number of measurements in the

baseline and intervention phase between the two conditions is large, leading to a higher power

in a design with a similar number of measurements than in a design with more intervention

measurements. In a design with a similar number of measurements both means will be rather

stable estimates, while in a design with more intervention measurements the second case the

estimate of the baseline mean will be relatively instable.

There is also an interesting interaction between the factor equal number of measurements

and the ratio of the variation in scores in the phases. When there are less measurements in the

baseline phase and there is more variation in scores in this phase, the power turned out to be

Power in a single case multiple baseline design

PLOS ONE | https://doi.org/10.1371/journal.pone.0228355 February 6, 2020 16 / 21

https://doi.org/10.1371/journal.pone.0228355


lower than any other combination of these two factors. This effect can be explained by the fact

that a relatively small number of measurements and large variation will lead to unstable mean

estimates which has a negative effect on the power.

The number of measurements clearly had an effect on the power of the randomization test.

As marked before, more measurements lead to more stable means which is beneficial for the

power. An interesting result is, though, that, other factors equal, the power increased in partic-

ular by moving from 15 to 30 observations. From 30 to 60 the power gain is small. This may be

an important result from a practical point of view because collecting 60 measurements might

be quite demanding.

The results of our study showed that the power of the randomization test was not different

for correlated and uncorrelated baseline and intervention means across participants. So

although the effect of autocorrelated data on the power was large, the effect of correlated base-

line and intervention means across participants was absent. Since it often happens in practice

that the means of the baseline and intervention scores are correlated across participants, it may

be good to know that this correlation does not negatively affect the power.

In our crossed-factor simulation study we only simulated suddenly emerging intervention

effects. That is, our intervention data were simulated from a normal distribution having a

mean as large as the specified effect size. In practice the effect of the intervention may often be

gradually instead of suddenly emerging. In a separate simulation study we differentiated

between suddenly and gradually emerging intervention effects and the results showed that the

effect of a gradually emerging effect on the power is very large. Based on these results we advise

the researcher who is primary interested in the final effect of an intervention to exclude the

measurements in which the effect is still emerging from the randomization test. This is of

course only possible when the number of intervention measurements in which the effect has

emerged is sufficiently large. One may check this and simulate the power of a specific design

with a gradually emerging intervention effect using our online tool.

In our study, we focused on comparing individual means and the mean difference of the

baseline and the intervention data formed distribution of the randomization test. We choose

this test statistic because it is probably the most prevalent and well-known (e.g., [14, 41]).

However, the randomization test is a distribution free test and does not require the test statistic

to have a specific form. This characteristic offers a researcher to investigate other aspects of the

data than the mean, such as the median and mode. Researchers might even test variation in

scores in the baseline and intervention, ranges, and even regression lines or fluctuations over

time may be interesting aspects of the data on which the baseline and the intervention phase

can be compared. Obviously, the power results of this study can only be used for single case

research where the mean difference is the statistic of interest but we think the next step is to

investigate the power of randomization test for other statistics as well.

As elaborated on in the introduction, statistical testing was, and maybe still is, not an indis-

putable topic in the single case literature. Some researchers claim that data should not be

aggregated at all, but shown graphically, direct and in absolute measures [58–59]. According

to these researchers not only statistical testing should be in ban but also summarizing data in

descriptive statistics leads to a loss in information and can therefore be misleading. We agree

with these researchers in that recklessly grabbing some kind of mainstream statistic either for

descriptive or inferential aims is bad practice. We also agree that–in general, not only in the

context of single case designs, much more attention should be given to the visual representa-

tion of raw data before aggregating it to whatsoever statistic. We think, however, that it is not

the descriptive or inferential statistics that are to be blamed, but the carelessness and ignorance

in which these statistics are applied and interpreted. In our view descriptive statistics like sev-

eral measures of effect size (see e.g. [8]), but also inferential statistics may add significant
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incremental validity to the interpretation of data resulting from single case designs when these

statistics are used correctly.

We believe that the randomization test, when used correctly, is a very flexible and comple-

mentary tool to value the statistical reliability of single case study outcome. We emphasize the

correct use, because there are some pitfalls that are easily overlooked but may seriously hamper

the interpretation of the statistical test. In order to correctly using a randomization test in a

multiple baseline AB design it is required that one carefully specifies the range of possible start

moments of the intervention a priori and then randomly draw the start moment of the inter-

vention. This is important because in the randomization test it is assumed that each combina-

tion can actually occur in reality and that each combination of start moments has an equal

probability to be drawn. When one of those aspects is not the case, a correct interpretation of

the p-value cannot be guaranteed. In practice it may not be easy to define the range of possible

start moments a priori. Take, for example, the clinical context where the baseline observations

are collected when people are on the waiting list for a therapy. In this case it may be impracti-

cal, and even unethical to define a range of possible start moments beforehand and randomly

draw one. Furthermore, in several contexts it may be inadequate or even impossible to ran-

domly decide the start moment of the intervention. This is for example the case where an

intervention has to start just after the baseline has reached stability. In these situation the ran-

domization test discussed in this manuscript should not be used.

In this study we showed that, given that the above mentioned pitfalls are taken note of,

the multiple baseline AB design might be powerful in many practical situations. As long as

the observations within a participant are not too strongly correlated, neither the number of

participants, the number of measurements and the expected effect size is too small, the ran-

domization test has power to statistically evaluate a difference in baseline and intervention

means. To conclude, we agree with many researchers on single case designs that statistical

evidence should progress in tandem with the visual inspection analysis. To our opinion

these two kinds of analyses are complementary rather than incompatible. For future research

we would like to extend this study to other outcomes measures developed by visual inspec-

tion analysis.
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29. Hurtado-Parrado, C., & López-López, W. D2015]. Single-case research methods: history and suitability

for a psychological science in need of alternatives. Integrative Psychological and Behavioral Science.

30. Morley S., & Adams M. (1991). Graphical analysis of single-case time series data. British Journal of

Clinical Psychology, 30, 97–115. https://doi.org/10.1111/j.2044-8260.1991.tb00926.x PMID: 2059754

31. Gorman B. S., & Allison D. B. (1996). Statistical alternatives for single-case designs. In Franklin R. D.,

Allison D. B., & Gorman B. S. (Eds.), Design and analysis of single-case research (pp. 159–214). Hills-

dale, NJ, US: Lawrence Erlbaum Associates, Inc.

32. Hooton J. (1991). Randomization tests: Statistics for experimenters / j. w. l. Hooton. Computer Pro-

grams in Biomedicine, 35, 43–43.

33. Kazdin A. (1982). Single-case research designs: Methods for clinical and applied settings. New York:

Oxford University Press.

34. Recchia M., & Rocchetti M. (1982). The simulated randomization test. Computer Programs in Biomedi-

cine, 15, 111–6. https://doi.org/10.1016/0010-468x(82)90062-9 PMID: 6897213

35. Box G.E.P., Jenkins G.M. and Reinsel G.C. (1994). Time Series Analysis; Forecasting and Control. 3rd

Edition, Prentice Hall, Englewood Cliff, New Jersey.

36. Crosbie J. (1993). Interrupted time-series analysis with brief single-subject data. Journal of Consulting

and Clinical Psychology, 61, 966–974. https://doi.org/10.1037//0022-006x.61.6.966 PMID: 8113497

37. Tryon W. W. (1982), A simplified time-series analysis for evaluating treatment interventions. Journal of

Applied Behavior Analysis, 15, 423–429. https://doi.org/10.1901/jaba.1982.15-423 PMID: 7142062

38. Wampold B. E., & Worsham N. L. (1986). Randomization tests for multiple-baseline designs. Behavioral

Assessment, 8, 135–143.

39. Marascuilo L.A. & Busk P.L. (1988). Combining statistics for multiple- baseline AB and replicated ABAB

designs across subjects. Behavioral Assessment, 10, 1–28.

40. Koehler M. J., & Levin J. R. (1998). Regulated randomization: A potentially sharper analytical tool for

the multiple-baseline design. Psychological Methods, 3, 206–217.

41. Ferron J., & Sentovich C. (2002). Statistical power of randomization tests used with multiple-baseline

designs. Journal of Experimental Education, 70, 165–178. https://doi.org/10.1080/

00220970209599504

42. Good P. I. (1994). Permutation tests: A practical guide to resampling methods for testing hypotheses.

New York: Springer-Verlag.

Power in a single case multiple baseline design

PLOS ONE | https://doi.org/10.1371/journal.pone.0228355 February 6, 2020 20 / 21

https://doi.org/10.1002/jcad.12039
https://doi.org/10.1080/09602011.2013.815636
https://doi.org/10.1080/09602011.2013.815636
http://www.ncbi.nlm.nih.gov/pubmed/23883189
https://doi.org/10.1017/BrImp.2017.16
https://doi.org/10.1901/jaba.1990.23-341
http://www.ncbi.nlm.nih.gov/pubmed/16795732
https://doi.org/10.1080/00273171.2014.973989
https://doi.org/10.1080/00273171.2014.973989
http://www.ncbi.nlm.nih.gov/pubmed/26609876
https://doi.org/10.1901/jaba.1979.12-573
http://www.ncbi.nlm.nih.gov/pubmed/16795617
https://doi.org/10.1002/jcad.12038
https://doi.org/10.1093/jpepsy/jst065
http://www.ncbi.nlm.nih.gov/pubmed/24003176
https://doi.org/10.1111/j.2044-8260.1991.tb00926.x
http://www.ncbi.nlm.nih.gov/pubmed/2059754
https://doi.org/10.1016/0010-468x(82)90062-9
http://www.ncbi.nlm.nih.gov/pubmed/6897213
https://doi.org/10.1037//0022-006x.61.6.966
http://www.ncbi.nlm.nih.gov/pubmed/8113497
https://doi.org/10.1901/jaba.1982.15-423
http://www.ncbi.nlm.nih.gov/pubmed/7142062
https://doi.org/10.1080/00220970209599504
https://doi.org/10.1080/00220970209599504
https://doi.org/10.1371/journal.pone.0228355


43. Good P. (2002). Extensions of the concept of exchangeability and their applications. Journal of Modern

Applied Statistical Methods, 1, 243–247.

44. Busk P. L., & Marascuilo L. A. (1988). Autocorrelation in single-subject research: A counterargument to

the myth of no autocorrelation. Behavioral Assessment, 10, 229–242.

45. Levin J.R., Marascuilo L.A., & Hubert L.J. (1978). N = Nonparametric randomization tests. In Kratochwill

T.R. (Ed.): Single-subject research: Strategies for evaluating change (pp. 167–196). New York: Aca-

demic Press.

46. Crosbie J. (1999). Statistical inference in behavior analysis: Useful friend. The Behavior analyst, 22(2),

105–108. https://doi.org/10.1007/bf03391987 PMID: 22478327

47. Esade V.S., Quera A.S.V. (2005). Randomization Tests for Systematic Single- Case Designs Are Not

Always Appropriate The Journal of Experimental Education, 73, 140–160.

48. Anderson M. J. (2001). Permutation tests for univariate or multivariate analyses of variance and regres-

sion. Canadian Journal of Fisheries and Aquatic Sciences, 58, 626–639.

49. Ferron J., Foster-Johnson L., & Kromrey J. (2003). Measurement, statistics, and research design–the

functioning of single-case randomization tests with and without random assignment. Journal of Experi-

mental Education, 71, 267–267.
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