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When Cheating is an Honest Mistake: A Critical 
Evaluation of the Matrix Task as a Measure of Dishonesty
Tom Heyman*,†, Hendrik Vankrunkelsven*, Wouter Voorspoels*, Anne White*, Gert Storms* 
and Steven Verheyen*,‡

Dishonesty is an intriguing phenomenon, studied extensively across various disciplines due to its impact 
on people’s lives as well as society in general. To examine dishonesty in a controlled setting, researchers 
have developed a number of experimental paradigms. One of the most popular approaches in this regard, 
is the matrix task, in which participants receive matrices wherein they have to find two numbers that 
sum to 10 (e.g., 4.81 and 5.19), under time pressure. In a next phase, participants need to report how 
many matrices they had solved correctly, allowing them the opportunity to cheat by exaggerating their 
performance in order to get a larger reward. Here, we argue, both on theoretical and empirical grounds, 
that the matrix task is ill-suited to study dishonest behavior, primarily because it conflates cheating with 
honest mistakes. We therefore recommend researchers to use different paradigms to examine dishonesty, 
and treat (previous) findings based on the matrix task with due caution.
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Somewhere between the honest truth and the 
deceptive lie is the deceptive truth and the honest 
lie (~Robert Brault).

Until recently, purely utilitarian views dominated 
theories on dishonesty, crucially hinging on the notion 
that people deliberately cheat after weighing the benefits 
of such behavior against the risks and costs associated with 
(potentially) being exposed as a cheater (Becker, 1968). 
Little over a decade ago, Mazar, Amir, and Ariely (2008) 
proposed an alternative theory, building on principles 
from social psychology, stating that people are guided by 
two conflicting forces: On the one hand, people are indeed 
tempted to maximize their comfort and profits, but on 
the other hand, their behavior is restrained by cultural 
norms and values that have been internalized through 
socialization. While people indeed want to reap the 
benefits from being dishonest, at the same time, they also 
want to maintain a positive self-concept. Put differently, 
people cheat, but only to the extent that they can still look 
at themselves in the mirror (see also Ariely, 2012).

In a series of studies, Dan Ariely, Francesca Gino, and 
colleagues have provided evidence to back this view on 
dishonest behavior. Among other things, they have shown 
empirically that circumstances which bring to mind 
internalized moral standards suppress the tendency to 

cheat, whereas providing or leaving open the possibility to 
come up with rationalizations of selfish choices have been 
demonstrated to increase dishonest acts (Ayal & Gino, 
2011; Gino, Ayal, & Ariely, 2009; Gino et al., 2013a; Gino, 
Schweitzer, Mead, & Ariely, 2011; Kouchaki & Gino, 2016; 
Shu, Gino, & Bazerman, 2011; Shu, Mazar, Gino, Ariely, & 
Bazerman, 2012).

Besides a theoretical framework, Mazar et al. (2008) 
also introduced a new paradigm to examine dishonest 
behavior, called the matrix task. Although there are 
different variants (see Gerlach, Teodorescu, & Hertwig, 
2019, for a review), the basic principle is that participants 
receive several matrices, typically 20, in which they have 
to find two numbers that sum to 10 (see Figure 1 for an 
example). Participants are told to find as many correct 
solutions as possible within a limited time frame 
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Figure 1: An example of the stimuli used in the matrix 
task (adapted from Mazar et al., 2008). Participants have 
to circle two numbers that sum to 10.
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(four minutes in Mazar et al.), knowing that their 
performance will be rewarded somehow (e.g., $0.5 per 
matrix solved). The short duration of the task ensures 
that only exceptionally gifted people would be able to 
complete all matrices. Critically, in one condition (i.e., the 
cheat condition), participants are given the opportunity 
to cheat by overstating their true performance. In the 
first study by Mazar et al., this was accomplished by 
providing a separate answer sheet on which participants 
needed to indicate how many matrices they had solved 
correctly. Participants kept the work sheet featuring the 
matrices, and handed in the answer sheet, thus allowing 
them to overclaim without risking to get caught. In 
contrast, participants in the control condition have their 
work sheet verified by an experimenter. The difference 
between the claimed performance in the cheat condition 
and the actual performance in the control condition (i.e., 
number of correctly solved matrices) is attributed to 
dishonest behavior. In other studies using the matrix task, 
the work sheets are (supposedly) discarded or destroyed 
(e.g., Gino et al., 2009; Zhong, Bohns, & Gino, 2010), 
again providing participants the opportunity to cheat. 
However, unbeknownst to them, the answer sheet they 
handed in can be linked to their work sheet via a hidden 
identifier. Consequently, someone’s claimed performance 
can be compared to his/her actual performance, and any 
overreporting is considered cheating.

The matrix task has been used in over 100 experiments 
since its introduction by Mazar and colleagues in 2008 
(see Gerlach et al., 2019), resulting in a substantial 
body of empirical evidence supporting contemporary 
theories on dishonest behavior. However, in the current 
paper, we argue that the matrix task provides an invalid 
measurement of dishonesty. The crux of our argument is 
that overreporting in the matrix task often arises as a result 
of honest mistakes. Due to this confound, most of the 
conclusions drawn from the paradigm need to be revisited. 
To build our case, we briefly discuss the rationale behind 
the task and point to a number of theoretical arguments 
and previous findings that undermine the validity of the 
matrix task as a method to examine dishonesty. Then, we 
describe a new empirical study that supports our assertion.

People can add, right?
According to Mazar et al. (2008), the matrix task is 
essentially a type of search task: Although it may take some 
time to locate the complementary numbers in each matrix 
(i.e., 4.81 and 5.19 in Figure 1), once found, it should be 
easy for participants to “unambiguously evaluate whether 
they had solved the question correctly (assuming that they 
could add two numbers to 10 without error), without the 
need for a solution sheet and the possibility of a hindsight 
bias” (p. 636).

Can people indeed add two numbers to 10 without 
error? It turns out that answering this question is not 
as straightforward as it seems. As with most things, it 
depends. For example, 7 + 3 versus 7.4379 + 2.5621 are 
obviously not equally trivial. Unsurprisingly, addition 
accuracy and response times have been shown to depend 
on problem size as well as the involvement of carry 
operations (i.e., when a 1 is transferred from one digit 

position to another as in, say, 27 + 35, where 7 + 5 gives 
12 from which the 1 is carried to the left; see e.g., Klein 
et al., 2010). The additions in the typical matrix task 
involve three digits and multiple carry operations, hence 
one should by no means expect a perfect performance, 
especially from individuals with limited mathematical 
abilities. To further complicate the matter, some matrices 
feature distractors: The example matrix (see Figure 1, 
adapted from Mazar et al., 2008) not only contains the 
correct solution (i.e., 4.81 + 5.19), but also a pair that 
sums to 10.1 (i.e., 5.82 + 4.28). The inclusion of such 
distractors conceivably increases the number of mistakes. 
Indeed, in a control condition similar to Mazar et al.’s 
(2008), Kajackaite (2018) found that “wrong reporting 
seems to be caused by honest mistakes (e.g., the most 
common mistake was 9.41 + 0.49 = 10)” (p. 197). If we 
also factor in time pressure, which leads to errors even 
in the most trivial tasks, it should not come as a surprise 
that participants would indeed make honest mistakes.

Of course, one has to evaluate these possible objections 
in the context of the matrix task in its totality. The idea 
is that participants, if given ample time, should be able 
to check their answers and correct any potential mistakes. 
Put differently, participants might initially make mistakes 
when filling in the work sheet, but they will review their 
responses, thus reporting only the number of correctly 
solved matrices on their answer sheet. However, to what 
extent this is communicated to participants is not always 
clear. Moreover, seeing that some people even fail to check 
whether they filled in all questions on an exam, should 
we then expect participants to verify their answers in the 
matrix task? After all, they have nothing to gain by checking 
(as opposed to the exam example), and some might not 
bother anyway as they consider the task a nuisance, or 
because they overestimate their ability. Ironically, the 
latter thought process is the very justification provided by 
Mazar et al. (2008) of why honest mistakes should never 
happen: everyone can count to 10, after all (so why would 
one need to review one’s answers). In other words, the 
matrix task lumps together potential cheating with math 
ability, negligence, laziness, annoyance, overconfidence, 
et cetera. The difference between reported performance 
and actual performance may reflect a deliberate act of 
dishonesty, or (a combination of) the other processes and 
motives listed above.

Small lies, honest mistakes?
To our knowledge, only one study, by Faravelli, Friesen, 
and Gangadharan (2015), explicitly acknowledged the 
possibility that many small lies in the matrix task are in 
reality honest mistakes. Faravelli and colleagues actually 
demonstrated the robustness of their findings (regarding 
the relation between competition and dishonesty) by also 
considering the possibility that small lies were in fact 
mistakes. Even more important for the present discussion 
is that they also provided three arguments against the 
notion that (most) small lies were really honest errors. First, 
Faravelli et al. presumed participants correct themselves 
(but see above). Second, they argued that honest mistakes 
should lead to some underreporting too, which only 
happened in two out of 119 participants. Critically, this 
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notion applies to the act of counting the number of solved 
matrices, not solving the matrices or reviewing the answers. 
Honest mistakes in the former process should indeed 
balance each other out, but, as already discussed, mistakes 
in the latter should bias the results in one direction. That is, 
participants who mistakenly identify 5.82 and 4.28 as the 
correct solution of the matrix in Figure 1, will overreport, 
not underreport. Third, Faravelli et al. reported observing 
only few errors in pilot sessions not further described (i.e., 
one out of 16 participants). This is a stronger argument, 
though the sample size was rather small, and the lack 
of a detailed description impedes further scrutiny. The 
finding does appear to be at odds with Kajackaite’s (2018) 
observation that 29 out of 100 participants overreported 
as a result of honest mistakes (see the quote referenced 
above), versus only six participants who underreported.

Taken together, there are strong theoretical and 
empirical reasons to believe that the difference between 
reported performance and actual number of correctly 
solved matrices is not exclusively due to dishonesty, yet 
a critical experiment putting the two hypotheses to the 
test is lacking. The current study seeks to fill this void in 
order to empirically establish whether and to what extent 
the matrix task conflates cheating with honest mistakes. 
In our experiment, participants were randomly assigned 
to one of two conditions. In both conditions, participants 
received a work sheet and a separate answer sheet. 
They were initially told to hand in the answer sheet and 
keep the work sheet, but, at the end of the experiment, 
all participants had to return their work sheet as well, 
which we could link to their answer sheet via a hidden 
identifier. Critically, in one condition, we projected the 
correct solutions to each matrix just before participants 
filled in their answer sheet, without allowing them 
the opportunity to edit their work sheet. The question 
was whether and to what degree this would reduce the 
difference between reported performance and actual 
performance, compared to the regular condition where 
participants had the opportunity to self-correct, though 
without the solutions being displayed. Crucially, based 
on the rationale behind the matrix task, providing the 
solutions should not matter, as participants accurately 
evaluate their answers anyway (Mazar et al., 2008; we will 
revisit this assertion in the discussion section).

Method
Participants
A total of 268 participants took part in the experiment 
(131 male, 134 female, three non-identifiable), which 
was framed as a live demonstration in an introductory 
psychology course for undergraduate economy students 
at KU Leuven (Belgium). As such, sample size was not 
determined a priori, but based on attendance. The 
experiment was carried out according to the principles 
expressed in the Declaration of Helsinki.

Materials
Besides an informed consent form, participants received a 
work sheet and an answer sheet, stapled together. The two 
sheets were later separated (see Procedure), but could be 
linked to one another via an identifier written in invisible 

ink on both sheets. After the experiment, corresponding 
sheets were matched using UV/Black light (see Rigdon & 
D’Esterre, 2015 for a similar approach).

The work sheet contained 20 4-by-3 matrices, and one 
such matrix with the correct solution already highlighted 
as an example. Each matrix element was a number 
between 0 and 10 with two digits after the decimal point 
(as in Figure 1). All 20 matrices were printed on a single 
page in four orderly columns. The sheet was modeled 
after the publically available materials of Verschuere 
et al. (2018), who conducted a large-scale replication 
study of Mazar et al.’s (2008) first experiment. However, 
we only included matrices that were solvable, whereas 
the latter studies comprised 10 unsolvable items (i.e., no 
set of numbers added up to 10). Furthermore, all of our 
matrices featured at least one distractor pair, which was 
defined as a set of numbers that summed to 9.9, 10.1, 
or 11.0. As such, our materials had three overlapping 
matrices with Verschuere et al. (2018)/Mazar et al. 
(2008), including the very first matrix participants saw, 
assuming they worked from left to right and top to 
bottom (i.e., the matrix displayed in Figure 1).

The answer sheet contained three questions: it asked 
for the number of correctly solved matrices (open-ended), 
their student number (open-ended), and whether they 
had read or heard about this type of study before (yes/no 
question). Note that the experiment’s purpose was not 
specified, nor was there any mention of dishonesty or 
cheating. So, it is possible that some participants who 
responded affirmatively to the latter question, actually 
mistook the task for a test of mathematical ability.

Procedure
Before testing took place, participants were divided into 
two groups based on their student number: odd numbers 
were instructed to come to one auditorium, even numbers 
were instructed to come to another auditorium at the 
same time. The procedure for both groups was identical, 
except for the critical manipulation mentioned at the end 
of this section.

The experimental materials (see above) were distributed 
evenly across the entire auditorium before the participants 
entered. Participants were spread out so they could not 
simply copy their neighbors’ results. An informed consent 
form was lying face up; the work and answer sheets 
were stapled together lying face down underneath the 
informed consent form. When participants were led into 
the auditorium, they were told to pick a spot, but not to 
inspect the materials yet. Once everyone was seated, an 
experimenter collectively went over the content of the 
informed consent, after which two other experimenters 
collected the signed forms. Next, the matrix task was 
introduced. The exact instructions were as follows (see the 
Materials component on OSF, https://osf.io/hpq9w/):

In each of the 20 boxes, you can find a set of num-
bers that sum up exactly to 10. For each box in 
which you found the set, circle the numbers that 
add up to 10. 2 students will be selected randomly 
and will receive €10 for each solution they found. 
You have 4 minutes to find as many sets as possible.

https://osf.io/hpq9w/
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A timer was projected so that participants could track 
their progress. After the four minutes were over, 
participants were instructed to put their pens down, 
count the number of correct solutions, and tear apart the 
work and answer sheets. They were told to put away the 
work sheets, with the cover story that the following class 
would touch upon it. When that was done, participants 
could use their pens again to fill in the answer sheet. 
Then, the experimenters collected all answer sheets, after 
which participants got the, for them surprising, directive 
to hand in their work sheet as well. Compliance with all 
instructions was verified by the experimenters.

Importantly, in one of the auditoria (i.e., the check 
condition), the correct solutions were projected on a 
screen, after participants had put their pens down. All 
matrices were shown one by one with the correct set of 
numbers highlighted. Participants were asked to compare 
their responses with the solutions, and count how many 
they had found. In the regular condition, participants 
were given ample time to count how many matrices 
they solved correctly, but no additional information was 
provided. Note that participants in both conditions had an 
equal opportunity to cheat by overclaiming the amount of 
matrices they had solved correctly.

Data processing and analysis
Participants who indicated having prior knowledge 
about this type of study (N = 22) as well as the ones not 
answering that question (N = 13) were excluded from the 
analyses. The resulting group sizes were very similar (i.e., 
N = 115 in the regular condition, N = 118 in the check 
condition).

Two researchers independently evaluated the work 
sheets, assigning a code to each matrix indicating whether 
it was solved correctly (i.e., the right set of numbers 
was encircled), left open, solved incorrectly because a 
distractor pair was encircled, or solved incorrectly for 
another reason. A third researcher compared the results, 
and solved any discrepancies. This gave rise to three 
variables: the number of matrices claimed to be solved 
as reported by the participants on their answer sheet 
(henceforth reported), the number of correctly solved 
matrices based on the work sheet (henceforth correct), 
and the number of matrices for which participants 
had provided an answer by encircling two numbers on 
their work sheet (henceforth circled). If participants 
make mistakes (i.e., Ncircled > Ncorrect), and correct them, 
as assumed by Mazar et al. (2008), then Nreported = Ncorrect, 
unless they are being dishonest (or miscount the number 
of correctly solved matrices). Consequently, providing the 
solutions, like in the check condition, should not matter, 
as participants should be able to unambiguously evaluate 
their answers anyway (Mazar et al., 2008). Put differently, 
one would expect the prevalence of overreporting (i.e., the 
percentage of participants for which Nreported > Ncorrect) to be 
constant across both conditions.1

Results
In the regular condition, 40.00% of the participants 
overreported (i.e., percentage of participants whose Nreported 
was greater than their Ncorrect), which is consistent with 

the average rate reported in the meta-analysis of Gerlach 
et al. (2019) (i.e., 39% when correcting for publication 
bias via a trim and fill procedure). In the check condition, 
this figure dropped to 16.10% (χ2(1, n = 233) = 16.54, 
p < .001, Cohen’s w = .27, BF10 = 614.952). Crucially, the 
percentage of participants whose Ncircled was greater than 
their Ncorrect did not differ between the conditions (i.e., 
47.83% in the regular condition, 50.00% in the check 
condition, χ2(1, n = 233) = 0.11, p = .740, Cohen’s w = .02, 
BF01 = 5.82). This is taken to mean that participants in 
both conditions made mistakes to a similar degree. 
However, when given the correct solutions, many more 
participants actually corrected their mistakes.

To further examine this, we subdivided our sample 
in two groups: participants who made no mistakes on 
their work sheet (i.e., their Ncircled was equal to Ncorrect, 119 
participants in total) versus those who did (i.e., Ncircled > Ncorrect, 
114 participants in total). When crossed with condition, 
we see that the former rarely overreported in general: 
13.56% in the check and 8.33% in the regular condition, 
respectively (χ2(1, n = 119) = 0.83, p = .361, Cohen’s w = .08, 
BF01 = 4.73). In contrast, participants who did make one or 
more mistakes on their work sheet, were much more likely 
to overreport in the regular condition compared to the 
check condition (i.e., 74.55% and 18.64%, respectively; χ2(1, 
n = 114) = 35.86, p < .001, Cohen’s w = .56, BF10 > 1,000).

Figure 2 shows the extent to which participants 
overreported in both conditions. In the regular condition, 
we observed a substantial number of overreporters, in 
addition to a few underreporting participants, and a 
large contingent of (presumably) honest participants. 
Consistent with results in other studies using the matrix 
task, most participants who overclaimed did so to a limited 
extent, typically only one or two matrices. According 
to Mazar et al. (2008), these participants are cheating, 
but only a little bit as to not impact their self-concept 
in a negative way. In the check condition, there were 
considerably fewer overreporters. It seems that most of 
the “small-time cheaters” actually made one or two honest 
mistakes, which got filtered out by providing the correct 

Figure 2: Distribution of Nreported – Ncorrect for the regular 
condition (light grey) and the check condition (dark 
grey). As can be seen, many of the small lies disappear 
in the check condition.
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solutions. In other words, the degree of overreporting was 
much more uniformly distributed in the check condition, 
though we still observed a disproportionate number of 
participants overclaiming by just one matrix. This pattern is 
qualitatively in line with Mazar and colleagues’ theoretical 
framework, but the prevalence of overreporting turned 
out to be much smaller once honest mistakes were taken 
into account.

Discussion
The matrix task is one of the most popular paradigms to 
examine dishonesty. It requires participants to report how 
well they performed on a set of math puzzles. Participants 
claiming to have solved more items than they actually 
solved, are considered cheaters, because everyone should 
be able to unambiguously evaluate whether they made 
any mistakes, and should engage in such a self-corrective 
effort. The present study raises serious questions about 
the validity of this assumption. It shows that participants’ 
tendency to overreport decreases substantially when given 
the solutions, suggesting that many of the supposedly 
small lies observed in the regular version of the matrix 
task, are in fact honest mistakes.

One might object that presenting participants with the 
solutions made them worry that they could not get away 
with cheating, or made it harder on them to justify cheating 
as people wish to maintain a positive self-concept. So, 
rather than removing honest mistakes, it just reduced the 
likelihood that participants would cheat. In this respect, 
it is worth pointing out that participants who made no 
mistakes (i.e., those with Ncircled = Ncorrect) did overreport 
at a similar rate, regardless of whether they received the 
solutions. If anything, they were more likely to overreport 
in the condition with the correct solutions, though the data 
were more in line with a null effect. Indeed, presenting the 
solutions only had a robust influence on participants who 
made one or more mistakes on their work sheet (i.e., those 
with Ncircled > Ncorrect). This would imply that worrying about 
getting caught or maintaining a positive self-concept 
solely manifests itself in the latter group of participants, 
which seems rather implausible.

Another point to consider is that all 20 matrices used 
in the current experiment contained distractors whereas 
the original materials of Mazar et al. (2008) featured 
only three such matrices (including the very first matrix 
participants see). Therefore, the number of participants 
misclassified as cheaters might differ across studies. 
Thus, the take-home message is that the matrix task is 
not well-equipped to separate honest mistakes from 
actual cheating, but we remain somewhat agnostic as to 
how many participants were wrongly considered liars in 
previous studies. Interestingly, Gerlach et al. (2019) briefly 
touch upon this issue in their review of the dishonesty 
literature, noting the following:

[P]articipants might falsely believe that they found 
the solution to a matrix although they did not, or 
they might miscount the total number of “solved” 
matrices. False reporting in the matrix task should 
therefore not always be equated with dishonest 
behavior. (p. 3)

Finally, one might argue that honest mistakes should 
occur in all conditions, so it is basically a wash. However, 
this rationale is flawed, because researchers typically 
compare reported performance with actual performance, 
either across participants (if there is a cheat and a control 
condition) or within participants (if their work sheet can 
be linked to their answer sheet). As we have demonstrated, 
taking the difference between reported and actual 
performance conflates cheating with honest mistakes: 
part of it is due to deliberate deception, but a substantial 
portion stems from undetected miscalculations. One 
could mitigate this issue by comparing the reported 
performance in the control condition with the reported 
performance in the cheat condition across participants, 
as did Verschuere et al. (2018). However, this approach 
is only valid if the rate of honest mistakes is the same in 
both conditions.

Taken together, all dependent variables derived from 
the matrix task capture unrelated factors to some degree. 
Hence, when any given manipulation (e.g., priming with the 
Ten Commandments) yields an effect, it could be because 
it targets cheating or because it affects the prevalence of 
honest mistakes (or both). For example, listing the Ten 
Commandments could prime the idea that someone is 
watching over one’s shoulder, causing participants to 
double check their calculations, which in turn would 
reduce (or eliminate) honest mistakes in that condition. 
The plausibility of the latter statement is irrelevant; it 
merely serves to illustrate that there are (many) alternative 
explanations for the same pattern of results, which have 
nothing to do with dishonesty whatsoever (the next 
section discusses a more realistic, theory-driven account). 
As internal validity is of critical importance in laboratory 
experiments, the matrix task is inherently flawed.

Implications
In light of the extended literature relying on the matrix 
task, our conclusion does beg the question of why 
various interventions proposed to foster or discourage 
ethical behavior showed an effect in previous studies 
(e.g., priming via the Ten Commandments, as in Mazar 
et al., 2008). Of course, any given manipulation might 
truly affect the cheating component that does get 
captured by the matrix task. However, it is impossible to 
unambiguously establish this, due to the lack of internal 
validity, unless a conceptual replication using a different 
paradigm provides converging evidence. Indeed, the coin-
flip and die-roll task, two popular alternative paradigms 
to examine dishonesty, do not suffer from the same issues 
(Bucciol & Piovesan, 2011; Fischbacher & Föllmi-Heusi, 
2013). In these tasks, participants privately flip a coin 
or roll a die (once or several times), and have to report 
the outcome. Critically, the payoff scheme is such that 
participants receive a greater reward for certain outcomes 
(e.g., heads, or higher dice numbers). One can compare the 
reported outcomes aggregated across participants against 
chance levels to gauge the amount of cheating in a certain 
condition (though it is not possible to determine whether 
an individual participant cheated). Using such paradigms to 
establish the effectiveness of honesty-inducing/reducing 
interventions can alleviate the concerns raised here.
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Moreover, certain effects could also turn out to be 
Type 1 errors. For example, there are serious question 
marks about the replicability of many so-called behavioral 
priming effects (Yong, 2012). In fact, the notion that 
listing the Ten Commandments would reduce cheating, 
as measured through the matrix task, did not receive any 
empirical support in a multi-lab, pre-registered replication 
study (Verschuere et al., 2018).

A third option is that (some) honesty-inducing/reduc- 
ing interventions actually affect the speed-accuracy trade-
off. By design, the matrix task puts participants under 
pressure, as most won’t be able to solve all matrices 
within the allotted time frame. Consequently, participants 
might adjust their decision criteria (just as in any other 
perceptual or cognitive task) meaning that less evidence 
is required to initiate a response. The latter is a key notion 
in sequential sampling models of decision making backed 
by much empirical evidence (see Heitz, 2014, for a review). 
In particular, lowering the response criteria results in 
faster, yet more error-prone decisions. So, if a certain 
manipulation puts relatively more emphasis on speed, one 
would expect more incorrect responses, thus increasing 
the number of reported matrices, without necessarily 
boosting the number of correct responses. In other words, 
one needs to carefully evaluate the instructions, because 
subtle cues might affect how participants weigh speed 
against accuracy.

This rationale does not only apply to honesty-
inducing/reducing interventions, though. Indeed, 
the very manipulation of giving participants the 
opportunity to cheat might influence how much they 
value speed versus accuracy. For instance, knowing that 
their solutions will be thrown away/recycled, might 
lead participants to believe that accuracy is not that 
important. Conversely, telling participants that their 
performance will be evaluated, suggests that accuracy 
is important, which might prompt them to adjust their 
response criteria accordingly, or increase the likelihood 
that they will check their responses retrospectively. 
Unfortunately, the precise instructions are not always 
available, so it is difficult to evaluate how many honesty-
inducing/reducing manipulations actually involved a 
straightforward shift in the speed-accuracy trade-off.

One might argue, though, that favoring speed over 
accuracy should be viewed as cheating in its own right. 
However, it is important to note that such lowering of 
response criteria is not necessarily a deliberate decision. 
Moreover, it would become a slippery slope as to which 
phenomena should be considered acts of cheating. What 
about errors in a Stroop task, or wrong answers to trivial 
questions under the (time) pressure of a game show 
(e.g., frog in response to “name an animal with three 
letters in its name”)? These behaviors are by no means 
comparable to the illustrious examples often listed to 
demonstrate the importance of research on dishonesty 
(e.g., taking prohibited substances to gain an edge in 
sports, or tax fraud).

More than anything, this discussion exemplifies the 
need for clear, testable theoretical frameworks. If we 
assume, for the sake of argument, that the matrix task 

is a valid instrument to measure cheating, then there is 
still the question of why participants are dishonest: for 
the (potential) monetary gain, or simply due to demand 
effects? With regard to the latter possibility, Gino et al. 
(2013b) explicitly mentioned that in the original matrix 
paradigm “participants might have interpreted the 
research context as one in which the researcher wanted 
some participants to misreport, thus providing the 
plausible impression that the researcher’s purpose might 
have benefitted from misreporting” (p. 2192–2193). 
Including ten unsolvable matrices, as did Mazar et al. 
(2008) as well as many follow-up studies, might have 
added fuel to the idea that participants were encouraged 
to cheat; after all, the experimenters are themselves 
being deceptive (or they at least violated the cooperative 
principle of communication, see Grice, 1975). Similarly, 
the procedure of solving matrices on one piece of paper, 
writing down the number of correctly solved items on 
another piece of paper, and then possibly having to throw 
away the original work sheet, might be considered bizarre 
to the extent that participants view it as a solicitation to 
cheat from the part of the experimenter.

In sum, the present study suggests, both on theoretical 
and empirical grounds, that the matrix task as a measure of 
dishonesty lacks internal validity. As such, we recommend 
researchers to use or create different paradigms, and treat 
outcomes based on the matrix task with due caution.

Data Accessibility Statement
The manuscript was written in R (R Core Team, 2016) using 
the packages papaja (Aust & Barth, 2017) and rmarkdown 
(Allaire et al., 2016). On the project’s page (https://osf.
io/sepkd/), one can find the .Rmd file, the materials, and 
the data.

Notes
	 1	 We report how we determined our sample size, all 

data exclusions, all manipulations, and all measures 
in the study (Simmons, Nelson, & Simonsohn, 2012). 
A detailed explanation of all variables can be found 
on the OSF project page (see the Data component, 
https://osf.io/576jw/).

	 2	 The statistical tests reported here and throughout 
this paper are a Pearson’s chi-squared test, and 
a Bayesian alternative, both evaluating the 
independence assumption. For the latter, we used the 
contingencyTableBF function from the BayesFactor 
package (Morey & Rouder, 2015) with default priors. 
The abbreviation BF, short for Bayes factor, has a 
subscript 10 indicating the relative plausibility of 
the data under the alternative hypothesis versus 
under the null hypothesis assuming independence. 
So, in this case, we have strong reasons to believe 
that the underlying probabilities are different across 
the two conditions (presuming that both hypotheses 
are equally likely a priori). Throughout the text, we 
will use the subscripts 10 or 01 to indicate which 
hypothesis is preferred over the other, as to facilitate 
the interpretation of the results. In addition, we also 
report Cohen’s w as a measure of effect size. Note that 
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a sensitivity power analysis for the chi-square test with 
the current sample size, an alpha of .05 and a power of 
.80 yields a Cohen’s w of .18.
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