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1  | INTRODUC TION

Sleep is a homeostatic process serving vital functions for the brain 
to support performance the next day. As adults age, they increas-
ingly experience sleep problems (Foley et al., 1995). Sleep problems 
have been hypothesized to impair brain health, as they are associ-
ated with developing stroke (Wu, Chen, Yu, Wang, & Guo, 2017) and 
dementia (Shi et al., 2018). It is therefore important that we increase 
our understanding how sleep, beyond its homeostatic, night-to-day 

effect, may impact brain health in the general middle-aged and el-
derly population.

How sleep affects the brain can be investigated well by studying 
brain functional connectivity. Brain functional connectivity can be 
studied non-invasively with functional magnetic resonance imaging 
(fMRI), which measures intrinsic neural activity indirectly through 
blood oxygenation. Applying fMRI when individuals are not engaged 
in a task (‘resting-state’ fMRI (rs-fMRI)) reveals how brain regions 
spontaneously communicate with each other in connected networks 
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Abstract
Sleep problems increase with ageing. Increasing evidence suggests that sleep prob-
lems are not only a consequence of age-related processes, but may independently 
contribute to developing vascular or neurodegenerative brain disease. Yet, it remains 
unclear what mechanisms underlie the impact sleep problems may have on brain 
health in the general middle-aged and elderly population. Here, we studied sleep's 
relation to brain functioning in 621 participants (median age 62 years, 55% women) 
from the population-based Rotterdam Study. We investigated cross-sectional associ-
ations of polysomnographic and subjectively measured aspects of sleep with intrinsic 
neural activity measured with resting-state functional magnetic resonance imaging 
on a different day. We investigated both functional connectivity between regions 
and brain activity (blood-oxygen-level-dependent signal amplitude) within regions, 
hierarchically towards smaller topographical levels. We found that longer polysom-
nographic total sleep time is associated with lower blood-oxygen-level-dependent 
signal amplitude in (pre)frontal regions. No objective or subjective sleep parameters 
were associated with functional connectivity between or within resting-state net-
works. The findings may indicate a pathway through which sleep, in a ‘real-life’ popu-
lation setting, impacts brain activity or regional brain activity determines total sleep 
time.
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(Biswal, Yetkin, Haughton, & Hyde, 1995). Intrinsic neural activity as 
measured with rs-fMRI can provide measures of activity between 
cortical regions, or within them. The organization of intrinsic neural 
activity in networks is remarkably robust and present across various 
conditions (Smith et al., 2009).

That sleep is relevant for waking rs-fMRI neural activity has 
been shown using various approaches. Experimental sleep depri-
vation studies showed immediate widespread changes in functional 
connectivity during subsequent wakefulness (Nilsonne, 2017; Yeo, 
Tandi, & Chee, 2015), including an increase of global fMRI-signal 
variability (Nilsonne et al., 2017), also known as signal amplitude. 
Importantly, observational studies that associated habitual sleep 
quality or duration, or a sleep disorder such as insomnia, with rs-
fMRI measures suggest that sleep may impact intrinsic neural ac-
tivity beyond the short term (Bijsterbosch et al., 2017; Khalsa et al., 
2016; Khazaie et al., 2017; Killgore et al., 2015; Stoffers et al., 2014; 
Van Essen et al., 2013). Yet, only a few studies measured sleep ob-
jectively to minimize misclassification or used large samples to in-
crease statistical power and decrease the chance that significant 
associations are overestimated. Findings from large-scale, popula-
tion-based studies are more equivocal, reporting no associations of 
sleep quality with connectivity between networks (Stephen et al., 
2016) or of self-reported sleep duration with signal amplitude in the 
often-studied ‘default mode’ network (Bijsterbosch et al., 2017).

It is therefore unclear if variations in sleep, including total sleep 
time and duration of individual sleep stages, are related to intrinsic 
neural activity during daytime, measured as functional connectivity 
between or neural activity within different brain regions, in the gen-
eral middle-aged and elderly population. We aimed to fill this knowl-
edge gap using sleep parameters measured with polysomnography 
and the Pittsburgh Sleep Quality Index, and rs-fMRI measures from 
the population-based Rotterdam Study cohort. We explored associ-
ations between sleep and intrinsic neural activity using a hierarchical 
approach from global to more spatially specific analyses, and subse-
quently examined associations of total sleep time more regionally 
based on initial findings.

2  | METHODS

2.1 | Study setting

The Rotterdam Study, starting in 1990, is a prospective population-
based cohort of inhabitants of a suburban district in Rotterdam aged 
45 years or over (Ikram et al., 2017). Participating inhabitants were 
interviewed at home and subsequently visited the research centre. 
These examination rounds were repeated every 4–5 years. The co-
hort was expanded twice, in 2000 with persons aged ≤55 and in 
2006 with persons aged ≤45. We studied individuals from all three 
inclusion rounds who participated in a polysomnography (PSG) study 
between January 2012 and September 2014, and also underwent 
a resting state fMRI (rs-fMRI) scan. Rs-fMRI has been implemented 
routinely since 2012 (Zonneveld et al., 2019).

The Rotterdam Study (RS) has been approved by the Medical 
Ethics Committee of the Erasmus MC (registration number MEC 
02.1015) and by the Dutch Ministry of Health, Welfare and 
Sport (Population Screening Act WBO, license number 1071272–
159521-PG). The RS has been entered into the Netherlands 
National Trial Register (NTR; www.trial​regis​ter.nl) and into the 
WHO International Clinical Trials Registry Platform (ICTRP; www.
who.int/ictrp/​netwo​rk/prima​ry/en/) under shared catalogue num-
ber NTR6831. The study was conducted in accordance with the 
guideline proposed in the World Medical Association Declaration 
of Helsinki. All participants provided written informed consent to 
participate in the study and to have their information obtained 
from treating physicians.

2.2 | Study sample

We invited 1,750 persons that visited the research centre for in-
home PSG; 928 consented. Invitees were deemed able to under-
stand the study purpose and instructions. Twenty-seven recordings 
failed or were of insufficient quality for sleep scoring. Of these, 724 
persons without MRI contraindications also underwent rs-fMRI. We 
excluded participants with poor quality (Zonneveld et al., 2019) rs-
fMRI data (n = 49), cortical brain infarcts (n = 20) or with prevalent 
dementia or missing dementia screening (n = 2). From the remaining 
653, we included in our main analyses 621 participants with a time 
interval between PSG and rs-fMRI of 1 year or less. From this pop-
ulation, we included 560 participants for analyses of PSG spectral 
power due to failure of critical EEG leads in 61 individuals. Similarly, 
we included 603 participants for analyses on global PSQI score due 
to missing data of more than one component (see ‘Sleep assess-
ments’ below).

2.3 | Sleep assessments

We recorded one night of PSG at home during weeknights. 
Polysomnography was applied by trained research assistants ac-
cording to the American Association of Sleep Medicine (AASM) 
criteria (Iber, 2007), including six electroencephalography (EEG) 
channels (F3/A2, F4/A1, C3/A2, C4/A1, O1/A2 and O2/A1), bilateral 
electro-oculography, chin electromyography, electrocardiography, 
respiratory belts on the chest and abdomen, oximetry, and a nasal 
pressure transducer and oronasal thermocouple. Participants were 
instructed to spend the night as normally as possible, without re-
strictions on bedtimes and use of alcohol, coffee or sleep medica-
tion. They pressed a button to signal when intending to go to sleep 
(“lights out”) and getting out of bed (“lights on”).

Sleep was scored (Iber, 2007) by a registered polysomnographic 
technologist to determine total sleep time (TST), sleep onset latency 
(SOL), wake after sleep onset (WASO), sleep efficiency (SE), and the 
duration of the sleep stages non-rapid eye movement (NREM) 1 (N1), 
N2, N3 and REM.

http://www.trialregister.nl
http://www.who.int/ictrp/network/primary/en/
http://www.who.int/ictrp/network/primary/en/
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We calculated spectral power and spindles in the C3/A2 deri-
vation using PRANA software (PhiTools). For spectral power, band-
pass filtering (0.125–128  Hz) and automated removal of artifacts 
were applied. Spectral analysis was performed using 4-s epochs with 
50% overlap, averaged over 30-s epochs. We calculated the absolute 
spectral power in the delta (0.75–4.00 Hz), beta (15.50–22.50 Hz) 
and gamma (22.50–40.00 Hz) frequency bands.

Apneas were defined as an airflow reduction of ≥90% of baseline 
for ≥10 s, and a hypopnea was defined as an airflow reduction of ≥30% 
of baseline for ≥10 s and a desaturation of ≥3% from baseline or an 
arousal(Iber, 2007). The apnea‒hypopnea index (AHI) was automatically 
calculated as the number of apneas and hypopneas per hour of sleep.

Subjective sleep quality during the past 4 weeks was measured 
with the PSQI during the home interview. The PSQI has good test‒
retest reliability and validity in a non-clinical sample of older adults 
(Mollayeva et al., 2016). Items, including self-reported sleep dura-
tion, were scored to provide a global PSQI score ranging from 0 to 
21. Higher scores indicate poorer sleep quality. We weighted the 
PSQI score for 36 out of 603 individuals with one component score 
missing, by multiplying scores by 7/6.

To validate our findings for polysomnography sleep measures 
and assess a possible first-night effect we used actigraphy (Van 
Den Berg et al., 2008). On the night of polysomnography, partic-
ipants also wore an actigraph (ActiWatch model AW4, Cambridge 
Technology Ltd), and were invited to wear it for 7 days and also keep 
a sleep diary. Of 621 participants, 428 completed at least four con-
secutive nights (recording duration, 153  ±  16  hr [median  =  144]). 
We used diary-derived times of ‘lights out’ and getting up the next 
morning to estimate time in bed. Within the time in bed, total sleep 
time was estimated using a validated algorithm with a threshold of 
20 activity counts, and was averaged over all available nights per 
participant to estimate habitual total sleep time.

2.4 | Neuroimaging

Brain imaging was performed with a 1.5-tesla MRI scanner (Signa 
Excite II, GE Healthcare) at the research centre. Resting state 
fMRI acquisition time was 7  min 44  s (repetition time  =  2,900  ms, 
echo time  =  60  ms, field of view  =  21 cm2, 31 axial slices, matrix 
size = 64 x 64, slice thickness = 3.3 mm, 165 volumes). Details of rs-
fMRI preprocessing and connectivity analyses are provided elsewhere 
(Zonneveld et al., 2019). In brief, participants were prompted before 
the start of the fMRI sequence to lie still, keep their eyes open and 
stay awake. Preprocessing of resting-state data was performed with 
the FMRIB Software Library FEAT package (Jenkinson, Beckmann, 
Behrens, Woolrich, & Smith, 2012). Subject-specific artifact removal 
was conducted using independent components, which were automat-
ically classified. We excluded scans showing absolute head displace-
ment >3 mm and/or mean relative framewise displacement >0.2 mm. 
Also, as mild ghosting artefacts were introduced during rs-fMRI ac-
quisition, we did not include scans with a ghost-to-signal ratio >0.1 
and added this ratio as a covariate in analyses (Zonneveld et al., 2019).

For functional connectivity analyses, we generated a study-spe-
cific functional parcellation using independent component anal-
ysis (Smith et al., 2015; Zonneveld et al., 2019), resulting in 50 

TA B L E  1   Characteristics of the study population

Characteristics (unit) Value

Covariates

Age (years) 62 (58; 66)

Female 340 (55%)

Time interval measurements (days) MRI–PSG 6 (−12; 22)

No. of participants <1 month 450 (72%)

MRI – PSQI 150 (104; 191)

No. of participants <6 months 438 (69%)

Habitual alcohol consumption (gr/day) 8 (4; 11)

Physical activity (MET, hr/week) 50 (24; 78)

Systolic blood pressure (mm Hg) 133 ± 18

Body mass index (kg/m2) 27 ± 4

History of diabetes mellitus 73 (12%)

Supratentorial grey matter volume (cm3) 538 ± 55

Intracranial volume (cm3) 1,141 ± 115

Depressive symptoms (CES-D score) 12 (10; 15)

Use antidepressant/hypnotic medication 
during PSG

29 (5%)

Self-reported sleep duration (min) 408 ± 73

Apnea‒hypopnea index (events/hr of sleep) 9 (5; 13)

Sleep parameters

Total sleep time (min) 380 ± 65

Sleep onset latency (min) 14 (8; 23)

Wake after sleep onset (min) 71 ± 48

Sleep efficiency (%) 81% ± 11

Sleep stage duration (min)

N1 49 ± 25

N2 203 ± 52

N3 48 ± 37

REM 79 ± 26

Absolute spectral power (µV2/Hz)

Delta (range: 0.75–4.50 Hz) 106 (72; 155)

Beta (range: 15.50–22.50 Hz) 2.5 (1.7; 3.7)

Gamma (range: 22.50–40.00 Hz) 1.9 (1.3; 2.9)

Missing 61 (10%)

Subjective sleep quality (PSQI score) 3 (1; 6)

Missing 18 (3%)

Note: Values are frequency (%) for categorical variables and 
mean ± standard deviation or median (first quartile; third quartile) for 
continuous variables, calculated over 621 participants unless specified 
otherwise. Values include imputed values for covariates.
Abbreviations: CES-D, Center for Epidemiological Studies – Depression 
Scale; MET, metabolic equivalent of task; MRI, magnetic resonance 
imaging; N, sample size; N[x], non-REM stage x; PSG, polysomnography; 
PSQI, Pittsburgh Sleep Quality Index; REM, rapid eye movement; TST, 
total sleep time.
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components of interest or functional nodes (hereafter: nodes). 
A node thus is a region where voxels show the same temporal 
blood-oxygen-level dependent (BOLD)-signal pattern. This template 
was used to derive node-level time series and obtain values for the 
full temporal correlations per subject for all nodes. Using hierarchical 
clustering of the group-level node correlations (Smith et al., 2015), 
we concatenated these nodes into nine large-scale networks, la-
belled anterior default mode, posterior default mode, frontoparietal, 
dorsal attention, ventral attention, sensorimotor, visual, subcorti-
cal and temporal networks (Zonneveld et al., 2019). Networks thus 
contain multiple nodes showing similar temporal patterns. Defining 
small nodes and clustering them into networks allowed studying in 
more detail the functional specialization within networks, as well as 
large-scale networks as a whole (Smith et al., 2013).

Using the functional parcellation of 50 nodes, we calculated func-
tional connectivity between node regions and brain activity within 
node regions. For functional connectivity, we calculated correlations 
between the BOLD-signal time series of each of the 50 nodes with 
all others. At the network level, we obtained between-network 
functional connectivity by averaging correlation values between all 
nodes from one network with all nodes from the other network, for 
9  x  9 networks. Within-network functional connectivity was thus 
defined by averaging correlations of node pairs within that network. 
We investigated brain activity within regions as the variability of 
that region's BOLD signal, by calculating the standard deviation (SD) 
of each node's time series (hereafter: signal amplitude). Analogous 
to functional connectivity, network-level signal amplitude was ob-
tained by averaging amplitudes across nodes within that network. 
Global signal amplitude was obtained by averaging over all 50 nodes 
(Table 1).

2.5 | Potential confounders

We adjusted for potential confounders selected based on relevant 
publications (Liu, 2013; Zonneveld et al., 2019): age, sex, mean 
framewise head displacement, ghost-to-signal ratio, time interval 
between sleep and rs-fMRI measurement, habitual alcohol con-
sumption, physical activity, systolic blood pressure, body mass index, 
history of diabetes mellitus, supratentorial grey matter volume and 
total intracranial volume.

The sensitivity analysis included additionally adjusting the main 
analyses for depressive symptoms and use of any antidepressant or 
hypnotic medication during PSG.

Details of measurements are provided in the Supplementary 
Text, Appendix S1.

2.6 | Statistical analyses

Details are described in the Supplementary Text, Appendix S1. We 
investigated cross-sectional associations of 12 sleep determinants 
(TST, WASO, SOL, SE, duration of stages N1, N2, N3, REM, spec-
tral delta, beta and gamma power, and global PSQI score) with both 
functional connectivity between regions (and within where possible) 
and signal amplitude within regions. We used non-parametric per-
mutation testing (n = 5,000) implemented in FSL's ‘randomise’, with 
family-wise error (FWE)-corrected p-values.

We hierarchically tested associations to examine regional het-
erogeneity if significant at a global level: we investigated associa-
tions with functional connectivity at the network level, and further 
analysed node-level associations if nominally significant. Similarly, 
we first investigated associations with mean signal amplitude on a 
global level, and further analysed the nominally significant associ-
ations on a network level. Furthermore, we investigated significant 
network-level associations on a node level.

As tests in ‘randomise’ are by default performed one-sided, we fur-
ther Bonferroni-corrected the alpha level of 0.05 to pFWE-corrected < .025 
(nominal significance level). As we tested multiple sleep determinants, 
we defined a more stringent threshold for significance at pFWE-cor-

rected < .00277 (number of effective independent tests = 9.23).
As a sensitivity analysis, we repeated the analyses in persons with 

a shorter time interval between imaging and sleep measurements 
(<1 month for PSG parameters; <6 months for PSQI score). Also, we 
additionally adjusted analyses for (a) depressive symptoms and use of 
any antidepressant or hypnotic medication during PSG and (b) AHI.

In post-hoc analyses based on initial findings for total sleep 
time, we (a) explored associations of separate sleep stages with 
amplitude on a node level, (b) assessed possible non-linearity by 
analysing five equal-sized categories (quintiles) of total sleep time 
and modelling a quadratic term, and (c) repeated analyses with 
actigraphy-estimated total sleep time in n = 428 with valid actig-
raphy data, and with self-reported sleep duration assessed in the 
PSQI (Figure 1; Table 2).

3  | RESULTS

We included 621 participants (median age  =  62  years [range 
52–95 years], 55% women). The median absolute time interval be-
tween PSG and rs-fMRI was 17 days. Excluded participants did not 
differ from included participants by age, sex, head motion param-
eters or duration of sleep stages. Correlations amongst sleep and 
fMRI parameters are provided in Table S1.

F I G U R E  1   Colours and sizes of blocks correspond to beta coefficients: red indicates positive and blue indicates negative associations. 
Values are obtained using linear regression, adjusted for age, sex, mean framewise head displacement, ghost-to-signal ratio, time interval 
between sleep and rs-fMRI measurement, habitual alcohol consumption, physical activity, systolic blood pressure, body mass index, history 
of diabetes mellitus, supratentorial grey matter volume and total intracranial volume. No associations were significant at the level of pFWE-

corrected <.025. Abbreviations: DAN, dorsal attention network; FPN, frontoparietal network; DMNa, anterior default mode network; DMNp, 
posterior default mode network; N[x], non-REM sleep stage x; PSQI, Pittsburgh Sleep Quality Index; REM, rapid eye movement; SMN, 
sensorimotor network; Subcort, subcortical network; Temp, temporal network; VAN, ventral attention network; Vis, visual network
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3.1 | Network connectivity

We found no associations of objective or subjective sleep param-
eters with functional connectivity between or within resting state 
networks (all pFWE-corrected > .025; Figure 1, Table 3).

3.2 | Signal amplitude

We observed an association of longer total sleep time with lower 
mean global signal amplitude (beta per SD increase, −0.025 [95% CI, 
−0.044, −0.006]; p = 5.0e-3; Table 2).

Investigating the regional heterogeneity of this association at a 
network level, we found it was present in the ventral attention, sen-
sorimotor, subcortical and temporal networks (Table 3). In the ven-
tral attention network, the association remained after correcting for 
testing multiple sleep parameters (−0.051 [95% CI −0.077, −0.024]; 
pFWE-corrected = 1.2e-3; Figure S1).

We further investigated associations of total sleep time with 
signal amplitude within aforementioned networks at the node 
level. We only observed associations of longer total sleep time 
with lower signal amplitude in nodes of the ventral attention net-
work, distributed mainly in (pre)frontal regions (Figure 2). The 
association in ‘node 32’ remained after correcting for multiple 
testing (−0.051 [95% CI −0.075, −0.027]; pFWE-corrected  =  1.6e-3). 
This node corresponds bilaterally to the anterior cingulate gyrus 
and the juxtapositional lobule cortex (formerly: supplementary 
motor cortex; Figure 2).

Other sleep parameters were not associated with mean global 
signal amplitude, yet direction of effect sizes was mostly congruent 
with indicating ‘poor’ sleep (e.g., sleep onset latency, beta spectral 
power) versus ‘good’ sleep (e.g., sleep efficiency).

3.3 | Sensitivity analysis

Restricting associations to persons with a shorter time interval be-
tween sleep and rs-fMRI measurement showed more pronounced 
effect sizes for the association of longer total sleep time with lower 
mean signal amplitude (n  =  450, Table S2). Associations remained 
statistically significant in ‘node 32’ (−0.063 [95% CI −0.091, −0.034]; 
pFWE-corrected = 1.0e-3) and ‘node 23’ (−0.080 [95% CI −0.120, −0.040]; 
pFWE-corrected = 2.0e-3), corresponding mainly to the frontal pole and 
the anterior cingulate gyrus (Figure 2). Longer stage N2 sleep was 
related to lower global mean signal amplitude, driven mostly by the 
ventral attention and temporal networks (Table S2), yet no node-
level associations survived correction for multiple testing.

In the total sample of n = 621, additional adjustment for depres-
sive symptoms and use of antidepressant and hypnotic medication 
during PSG did not change estimates on the global level (−0.025 [95% 
CI 0.044, −0.006]; p = 5.0e-3) or network level (ventral attention net-
work: −0.051 [95% CI −0.078, −0.025]; pFWE-corrected = 1.2e-3; other 
networks: all pFWE-corrected > 8.6e-3). Additionally adjusting analyses 
for AHI did not influence global and network-level associations (Table 
S3), and the association within ‘node 32’ remained highly similar 
(−0.051 [95% CI −0.075, −0.027]; pFWE-corrected = 1.2e-3; Figure 3).

3.4 | Post-hoc explorative analyses for total 
sleep time

We explored the contribution of individual sleep stages to the as-
sociation of total sleep time with mean signal amplitude found in 
four networks, at both the network and node level. As most of total 
sleep time was spent in stages REM and N2, these stages contrib-
uted most to the association (Figure 3), yet no association survived 
multiple testing correction.

Analysing categorized total sleep time did not suggest non-lin-
earity in the relation with signal amplitude at a global or network 
level (Table S4), which was supported by testing quadratic terms of 
total sleep time (global: p = .27; networks: all pFWE-corrected > .025).

TA B L E  2   Associations of sleep parameters with global mean 
signal amplitude

Sleep measures Beta (95% CI) p-value

Objective

Sleep continuity measures

Total sleep time −0.025 (−0.044; −0.006) 5.0e−3

Sleep onset latency 0.015 (−0.020; 0.049) .19

Wake after sleep onset −0.001 (−0.022; 0.019) .45

Sleep efficiency −0.014 (−0.038; 0.010) .14

Sleep stage duration

N1 −0.013 (−0.034; 0.007) .10

N2 −0.013 (−0.032; 0.005) .08

N3 −0.009 (−0.030; 0.013) .21

REM −0.015 (−0.034; 0.004) .05

Spectral power

Delta power 0.004 (−0.024; 0.032) .39

Beta power 0.013 (−0.013; 0.038) .16

Gamma power 0.003 (−0.023; 0.029) .41

Subjective

Sleep complaints (global 
PSQI score)

0.009 (−0.010; 0.028) .18

Note: Values represent difference (95% CI) in mean signal amplitude on 
a whole-brain level, per standard deviation increase in the determinant. 
Estimates are obtained using linear regression models adjusted for age, 
sex, mean framewise head displacement, ghost-to-signal ratio, time 
interval between sleep and rs-fMRI measurement, habitual alcohol 
consumption, physical activity, systolic blood pressure, body mass 
index, history of diabetes mellitus, supratentorial grey matter volume 
and total intracranial volume.
Bold values indicate statistical significance at p < .025. Please note that 
p-values were uncorrected as only the ‘global’ region was tested.
Abbreviations: PSQI, Pittsburgh Sleep Quality Index; Nx, non-REM 
sleep stage x; REM, rapid eye movement.
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Actigraphy-estimated longer total sleep time was also associated 
with lower mean signal amplitude at a global level, driven by similar 
networks to when derived from PSG (Table S5).

Self-reported sleep duration was not associated with mean signal 
amplitude on a global level (−0.011 [95% CI −0.028, 0.004]; p = .07), 
nor on a network level (all pFWE-corrected > .025).

4  | DISCUSSION

In this population-based study, we found that PSG-determined longer 
total sleep time was associated with a lower mean BOLD-signal am-
plitude during the daytime, primarily in the ventral attention network. 
In contrast, no objective or subjective sleep parameter was associated 
with functional connectivity between or within networks.

No study previously investigated the relation of objectively 
measured sleep with intrinsic neural activity measured at median 
17  days apart, using a population-based design. In a large-scale 
study using UK biobank data, self-reported total sleep time was 
negatively correlated with signal amplitude in networks labelled 
as sensory/motor, not attentional networks (Bijsterbosch et al., 
2017). We found no association for self-reported sleep duration 
assessed with the PSQI, but to the extent that PSG-derived total 
sleep time measured a similar construct, differences in study-spe-
cific parcellation, attributing the same functional node to different 
networks, may explain regional differences between studies.

Both sleep and rs-fMRI were not meaured within a 24-hr time-
frame, which makes the association more robust to biases due to 
variable recording conditions of PSG and rs-fMRI. The association 
was more pronounced in persons who underwent measurements 
within a shorter, 1-month time interval, suggesting that effects 
were short-lived. Yet, both sleep (De Gennaro, Ferrara, Vecchio, 
Curcio, & Bertini, 2005; Tafti, 2009) and resting-state measures 

(Finn et al., 2015; Xu et al., 2016) exhibit ‘trait’-like, time-stable 
properties, supporting that our association may extend beyond 
a night-to-day effect. Our findings were specific to BOLD-signal 
amplitude. Momentary increases in the BOLD signal may reflect 
local, task-triggered neural activity (Logothetis, Pauls, Augath, 
Trinath, & Oeltermann, 2001). This amplitude does not refer to 
momentary increases but to increased fluctuations over time. 
Although its correlates have not been well characterized, several 
observations suggest it is representative of a sleep-deprived state 
or lower vigilance (Chee & Zhou, 2019; Wong, Olafsson, Tal, & Liu, 
2013; Yeo et al., 2015). After sleep deprivation, increased lapses 
in maintenance of attention can be observed (Krause et al., 2017) 
and such lapses may be accompanied by repeated intrusions of 
sleep (Chee & Zhou, 2019).

Alternatively, the amount of wakefulness could equally well un-
derlie the association of total sleep time and signal amplitude as it 
was not driven by a specific sleep stage, and was also found when 
using actigraphy-estimated habitual total sleep time. Extended wake-
fulness increases synaptic potentiation (Vyazovskiy, Cirelli, Pfister-
Genskow, Faraguna, & Tononi, 2008) and low-frequency EEG power 
(Tinguely, Finelli, Landolt, Borbely, & Achermann, 2006), indicative of 
more synchronized activity. This power increase is most pronounced 
medio-frontally, as was our association. Also, high amplitude activity 
on EEG observed in deep sleep indicates more synchronized fluctua-
tions in membrane potential (Van Someren, Van Der Werf, Roelfsema, 
Mansvelder, & da Silva, 2011). Against this background, we speculate 
that the association with BOLD-signal amplitude may also result from 
more synchronized, infra-slow neural activity during wakefulness.

Although we could not assess temporality in our cross-sectional 
study, these potential mechanisms favour a temporal association 
from sleep, or wakefulness, to brain intrinsic neural activity. Yet, 
the topographical overlap of our findings to the regions involved in 
the generation and propagation of sleep itself (Murphy et al., 2009; 

Total sleep time Beta (95% CI) p-value pFWE-corrected

Networks

1: Default mode ‒ anterior −0.046 (−0.083; −0.010) 5.8e−3 .04

2: Default mode ‒ posterior −0.017 (−0.039; 0.006) .08 .30

3: Frontoparietal −0.013 (−0.040; 0.013) .16 .49

4: Dorsal attention −0.014 (−0.041; 0.013) .15 .48

5: Ventral attention −0.051 (−0.077; −0.024) 4.0e−4 1.2e−3

6: Sensorimotor −0.030 (−0.049; −0.010) 1.6e−3 8.8e−3

7: Visual −0.013 (−0.033; 0.008) .12 .39

8: Subcortical −0.021 (−0.036; −0.005) 4.2e−3 2.5e−2

9: Temporal −0.032 (−0.053; −0.011) 1.2e−3 8.4e−3

Note: Values represent difference (95% CI) in mean signal amplitude on a network level, per 
standard deviation increase in total sleep time. Estimates are obtained using linear regression 
models and permutation tests, adjusted for age, sex, mean framewise head displacement, ghost-to-
signal ratio, time interval between sleep and rs-fMRI measurement, habitual alcohol consumption, 
physical activity, systolic blood pressure, body mass index, history of diabetes mellitus, 
supratentorial grey matter volume and total intracranial volume.
Bold indicates statistical significance at p < .025.

TA B L E  3   Associations of total sleep 
time and mean signal amplitude in 
networks
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Saletin, van der Helm, & Walker, 2013) may also suggest that sig-
nal amplitude determines total sleep time in a population-based, 
‘non-laboratory’ setting. The temporality of the association of ob-
jectively estimated total sleep time and regional brain activity, or 
shared causes, should be studied further.

No sleep parameter was associated with network functional con-
nectivity, in line with previous findings for the PSQI score (Stephen 
et al., 2016). The findings differ from experimental sleep deprivation 
studies that show a consistent impact on subsequent (e.g., within-net-
work) connectivity of the default mode network (Nilsonne, 2017). 
Possibly, the effects of sleep deprivation may be too short-lived to be 
detected here. Furthermore, such effects inherently differ from our 
sleep measures, which are more indicative of chronic, stable aspects 
of sleep. Importantly, methodological heterogeneity in, for example, 

study design, imaging processing or modelling approaches, may also 
explain finding null results in contrast to other literature, as concluded 
recently for insomnia neuroimaging findings (Tahmasian et al., 2018). 
Also, bias due to lack of adequate control for potential confounders or 
use of seed-based approaches (Tahmasian et al., 2018) may have made 
previous studies more prone to finding false-positive results.

F I G U R E  2   Negative associations of total sleep time with signal 
amplitude are shown for all five nodes of the ventral attention 
network on inflated right and left hemispheres, from a lateral 
(top row) and medial (bottom row) perspective. Lighter colours 
correspond to larger negative effect sizes (beta coefficients). 
Asterisks denote statistical significance as: *pFWE-corrected <.025; 
**pFWE-corrected <.00277. Please note that significance levels differ 
from effect sizes. Values represent difference in signal amplitude 
in that node per standard deviation increase in total sleep time, 
and are obtained through linear regression and permutation 
testing. Coefficients are adjusted for age, sex, mean framewise 
head displacement, ghost-to-signal ratio, time interval between 
sleep and rs-fMRI measurement, habitual alcohol consumption, 
physical activity, systolic blood pressure, body mass index, history 
of diabetes mellitus, supratentorial grey matter volume and total 
intracranial volume. Nodes correspond to the following regions 
(labelled using the probabilistic Harvard-Oxford cortical atlas 
found at https​://fsl.fmrib.ox.ac.uk/fsl/fslwi​ki/Atlases; top three 
overlapping regions): node 14, parietal operculum (16%), posterior 
(16%) and anterior (16%) supramarginal cortex; node 36, superior 
temporal cortex (21%), temporal pole (9%), central opercular cortex 
(9%); node 25, frontal orbital cortex (28%), insular cortex (17%) 
and frontal pole (8%); node 23, frontal pole (29%), cingulate cortex 
- anterior division (9%), and paracingulate cortex (6%); node 32, 
cingulate cortex – anterior division (24%), juxtapositional lobule 
(formerly: supplementary motor cortex) (13%) and paracingulate 
cortex (5%). Threshold of node borders was set at z, 5.0

F I G U R E  3   Associations of total sleep time and sleep stages with 
(mean) signal amplitude are shown for the four networks with a 
statistically significant relation. Corresponding nodes are depicted 
in the axial plane (right = anatomical left) at the level of highest 
node intensity. Colours and sizes of blocks correspond to effect 
sizes (beta coefficients): red indicates positive and blue indicates 
negative associations. Values are obtained through linear regression 
and permutation testing. Coefficients represent difference in signal 
amplitude in that network or node per standard deviation increase 
in the sleep parameter, adjusted for age, sex, mean framewise 
head displacement, ghost-to-signal ratio, time interval between 
sleep and rs-fMRI measurement, habitual alcohol consumption, 
physical activity, systolic blood pressure, body mass index, history 
of diabetes mellitus, supratentorial grey matter volume and total 
intracranial volume. FWE-corrected P-values for networks were 
corrected over all nine networks, and for nodes were corrected for 
all 50 nodes. Symbols denote: +pFWE-corrected <.025; *pFWE-corrected 
<.00277. Please note that significance levels differ from effect 
sizes. Abbreviations: Nx, non-REM sleep stage x; REM, rapid eye 
movement

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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Several methodological considerations deserve mention. First, 
we did not monitor sleep during rs-fMRI acquisition and cannot rule 
out contamination of our measures by sleep (Tagliazucchi & van 
Someren, 2017). Even light sleep stages (Larson-Prior et al., 2009) 
involve increases in global signal amplitude, consistent over net-
works. Individuals with a short total sleep time may have been at 
increased likelihood of falling asleep in the scanner, which may have 
biased our estimates. However, several observations suggest that 
contamination is less likely to explain our findings: (a) we found no 
non-linearity in our associations for total sleep time, indicating that 
results were not driven by short sleepers only; (b) total sleep time 
was not correlated with head motion, which may indicate sleepiness 
in the scanner (Curtis, Williams, Jones, & Anderson, 2016); (c) even 
light stages of sleep involve substantially altered network connec-
tivity (Horovitz et al., 2008; Tagliazucchi & van Someren, 2017). This 
suggests that, if sleeping in the scanner drove our results for signal 
amplitude, one might expect to also find associations with functional 
connectivity between or within networks. Yet, we found none, in-
dicating that it is likely that few participants slept during rs-fMRI 
acquisition. We ensured, by addressing participants, that they were 
awake at the start of rs-fMRI acquisition. Further monitoring of vigi-
lance with concomitant EEG was not deemed necessary nor feasible 
due to the population-based nature of our study. Second, we could 
not assess the influence of sleep on the night preceding rs-fMRI 
acquisition. Third, performing fMRI at 1.5T instead of higher field 
strengths, and not controlling for variable conditions during rs-fMRI 
acquisition, may have reduced our sensitivity to detect associations. 
Similarly, retrospective assessment of sleep with the PSQI over the 
previous 4  weeks may have reduced chances to detect cross-sec-
tional associations for PSQI-derived measures. Third, we could not 
assess how local differences in grey matter influenced our estimates 
beyond global volume. Study strengths include using PSG to study 
sleep over a broad and ‘real-life’ spectrum in a population-based set-
ting, having substantial statistical power to detect small effect sizes 
and adjusting for multiple potential confounders.

We conclude that, in the general middle-aged and elderly popu-
lation, total sleep time affects the repertoire of (pre)frontal brain ac-
tivity, or vice versa, beyond a night-to-day effect. At the same time, 
our results suggest there is no clear association of objective and sub-
jective measures of sleep with functional connectivity between or 
within resting-state networks.
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