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A B S T R A C T

Gyrification of the cerebral cortex changes with aging and relates to development of cognitive function during
early life and midlife. Little is known about how gyrification relates to age and cognitive function later in life. We
investigated this in 4397 individuals (mean age: 63.5 years, range: 45.7 to 97.9) from the Rotterdam Study, a
population-based cohort. Global and local gyrification were assessed from T1-weighted images. A measure for
global cognition, the g-factor, was calculated from five cognitive tests. Older age was associated with lower
gyrification (mean difference per year ¼ �0.0021; 95% confidence interval ¼ �0.0025; �0.0017). Non-linear
terms did not improve the models. Age related to lower gyrification in the parietal, frontal, temporal and oc-
cipital regions, and higher gyrification in the medial prefrontal cortex. Higher levels of the g-factor were asso-
ciated with higher global gyrification (mean difference per g-factor unit ¼ 0.0044; 95% confidence interval ¼
0.0015; 0.0073). Age and the g-factor did not interact in relation to gyrification (p > 0.05). The g-factor bilat-
erally associated with gyrification in three distinct clusters. The first cluster encompassed the superior temporal
gyrus, the insular cortex and the postcentral gyrus, the second cluster the lingual gyrus and the precuneus, and the
third cluster the orbitofrontal cortex. These clusters largely remained statistically significant after correction for
cortical surface area. Overall, the results support the notion that gyrification varies with aging and cognition
during and after midlife, and suggest that gyrification is a potential marker for age-related brain and cognitive
decline beyond midlife.
1. Introduction

Gyrification is one of the most fundamental and distinguishing
properties of the human cerebral cortex. The folding patterns of the
cortex are highly heritable (Docherty et al., 2015), evolutionarily
conserved, and similar amongst closely related animal species (Zilles
et al., 2013). Abnormalities in gyrification, such as polymicrogyria and
pachygyria, lead to altered brain function, which can manifest as im-
pairments in speech and cognition. Similarly, both global and regional
abnormalities in gyrification have been found in patients with autism
(Duret et al., 2018; Blanken et al., 2015), schizophrenia (Matsuda and
Ohi, 2018; Cao et al., 2017), and bipolar disorder (Cao et al., 2017). A
deeper understanding of gyrification may therefore lead to better insight
into a broad range of diseases.

Gyrification changes with age and in turn affects cognitive function
(Cao et al., 2017; White et al., 2010; Gregory et al., 2016; Hogstrom et al.,
Adolescent Psychiatry, Erasmus M

uetzel).
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2013). The global degree of gyrification is often expressed as the Gyr-
ification Index (GI). The GI peaks during childhood, rapidly declines
during adolescence and the decline slows down as adulthood progresses
(Cao et al., 2017; White et al., 2010; Gregory et al., 2016). Regional
patterns of gyrification can be quantified with the Local Gyrification
Index (LGI) (Schaer et al., 2008). The regions surrounding the angular
gyrus, i.e. the parietal cortex, seem most prone to age-related decline in
the LGI (Hogstrom et al., 2013). The association between the LGI and
cognition has been studied in both pediatric and adult cohorts, and it
showed the strongest effect in the frontal and parietal regions as well as
the temporoparietal junction (Gregory et al., 2016). These findings
consolidate the relevance of gyrification in the normal development of
the brain.

Several knowledge gaps still remain. Limited work exists on cortical
gyrification during middle adulthood, i.e. 40–65 years of age, and late
adulthood, i.e. beyond 65 years of age. Other aspects of the cerebral
C University Medical Center Rotterdam, PO Box 2040, 3000, CA, Rotterdam, the
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cortex – such as cortical surface area – change significantly during middle
and late adulthood (Vinke et al., 2018). Furthermore, atrophy of the
cerebral cortex seems to accelerates towards the end of life (Battaglini
et al., 2019), and the rates of atrophy differ between brain regions (Vinke
et al., 2018). How gyrification changes during late life and how the
changes are distributed across the brain remains to be elucidated. Simi-
larly, cognitive function declines in aging, which in turn may affect if and
how cognition and gyrification relate. Finally, most previous studies were
performed in clinical samples or clinic-based settings, limiting the
external validity of the findings. The use of population-based studies
would allow for better generalization of the results.

The aim of the present study was to elucidate the associations of age
and cognition with gyrification during middle and late adulthood. The
study was performed using data from the Rotterdam Study cohort, a
prospective population-based cohort study of individuals aged 40 years
and higher. We hypothesized that age and the GI showed a non-linear
association across middle and late adulthood, where the rate of loss of
gyrification accelerates with age. Furthermore, based on previous volu-
metric work, we expected to find that the shape of the association be-
tween age and the LGI differed across the brain, with regions near the
angular gyrus showing the fastest decline towards the end of life. Finally,
we hypothesized that cognition positively associated with the GI, and
with the LGI in frontal and temporal regions.

2. Methods

2.1. Study population

The Rotterdam Study is a prospective cohort study based in the
Ommoord district of Rotterdam, the Netherlands, that has been ongoing
since 1989 (Ikram et al., 2017). The second recruitment wave started in
2000, and the third wave in 2006. All participants are re-invited for an
interview and in-person examinations every 4–6 years. The study has
included 14,926 participants 45 years of age and older. Neuroimaging
was introduced in 2005 (Ikram et al., 2015). The current study popula-
tion included individuals who were eligible to participate in a research
center visit between 2006 and 2015 with cognitive testing and neuro-
imaging (n ¼ 6647). Of these, 38 had no cognitive test battery data, 980
had incomplete data, 417 did not participate in the MRI study, in 462 the
image surface tesselation in FreeSurfer failed, and 145were excluded due
to poor quality of the T1-weighted images. We further excluded partic-
ipants with prevalent stroke (n ¼ 126) or prevalent dementia (n ¼ 82).
The final sample consisted of 4397 participants. A flow chart of the study
population is shown in Supplementary Fig. 1. The Rotterdam Study has
been approved by the Medical Ethics Committee of the Erasmus MC
(registration number MEC 02.1015). All participants provided written
informed consent.

2.2. Assessment of cognitive function

All participants underwent a cognitive test battery (Hoogendam et al.,
2014). The battery consisted of five tests, each assessing different
cognitive domains. The first test was the 15-word learning test (15WLT),
to assess verbal learning and verbal memory (Bleecker et al., 1988). The
15WLT consisted of three trials where 15 words were presented visually,
and after each trial participants had to name all words they could
remember (i.e. immediate recall). At least 10 min after the third trial,
participants were again asked to name all words that they could still
remember (i.e. delayed recall). We used the number of words in the
delayed condition as the measurement outcome. The second test was the
Stroop task (Houx et al., 1993), a task that assesses selective attention
and automaticity. Participants had to read aloud the names of colors (red,
green, blue, yellow) as fast and flawless as possible. The words were
printed on paper in mismatching colors (e.g. “blue” printed in the color
red) to interfere with the naming process. The time to read all words was
adjusted for the number of errors by calculating the time per word and
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adding one-and-a-half that time for each error. Thus, the Stroop task is
inversely coded compared to the other tests, where a higher score relates
worse performance. The total was then log transformed and used as the
outcome measure. The third test was the letter-digit substitution test
(LDST) (van der Elst et al., 2006), in which participants have to write
down the corresponding digits next to letters according to a dictionary
table. This assesses processing speed as well as executive function.
Fourth, a word fluency test (WFT) was administered to assess efficiency
of searching long term memory (Welsh et al., 1994). Participants had to
name as many animal species in a span of 1 min, with the total number of
unique species as the outcome. Finally, we administered the Purdue
pegboard test (PPB) (Tiffin and Asher, 1948), where participants had to
place small metal pins into holes across three trials: left hand only, right
hand only, and both hands. The sum of the number of pins over all trials
was used as a measure for fine motor dexterity and psychomotor ability.
To summarize all tests into a single score for global cognition, known as
the g-factor, we used principal component analysis and isolated the first
component (Deary, 2014). The g-factor explained 50.6% of the variance
amongst the cognitive tests which is in agreement with previous litera-
ture (Deary, 2012).

2.3. Image acquisition

Neuroimaging was performed on a 1.5T magnetic resonance imaging
(MRI) scanner with an eight-channel head coil (GE Signa Excite, General
Electric Healthcare, Milwaukee, USA). The imaging sequences have been
described extensively elsewhere (Ikram et al., 2015). Axial T1-weighted
images were collected using a 3D Spoiled Gradient Recalled sequence
(TR ¼ 13.8 ms, TE ¼ 2.8 ms, TI ¼ 400 ms, flip angle ¼ 20�, bandwidth ¼
12.5 kHz, voxel size ¼ 0.8 mm isotropic). The images were subsequently
stored in an extensible neuroimaging archive toolkit (XNAT) database
(Marcus et al., 2007).

2.4. Image processing

Images were processed using the FreeSurfer analysis suite (version
6.0) (Fischl, 2012). The standard reconstruction was conducted, where
non-brain tissue was removed, voxel intensities were corrected for B1
field inhomogeneities, voxels were segmented into white matter, gray
matter and cerebrospinal fluid, and surface-based models of gray and
white matter were generated. The GI was calculated as the ratio between
the outer contour of the cortex and the pial surface of the whole cere-
brum. The LGI was estimated at each vertex along the cortical ribbon
(Schaer et al., 2008, 2012), and each vertex was automatically assigned
an anatomical label according to a predefined atlas (Desikan et al., 2006).
All measures were co-registered to a standard stereotaxis space and
smoothed with a full-width half-max Gaussian kernel, 5 mm for the LGI
given inherent smoothness and 10 mm for all other measures.

A multistep procedure was used to identify datasets of insufficient
quality for analysis. First, we used an automated tool to obtain a quality
metric for each T1-weighted scan that assesses artifacts related to motion
(White et al., 2018). Next, we visually inspected FreeSurfer re-
constructions from 200 randomly selected scans. The visual ratings
consisted of inspecting segmented brain images in the coronal, sagittal
and axial directions, as well as 3D reconstructions of the pial surface. The
segmentation was rated as a fail if FreeSurfer did not succeed to consis-
tently trace the white and pial surfaces. Next, we established that the
automated quality metric value predicted strongly whether a test passed
or failed. We subsequently set a threshold above which all scans were of
sufficient quality, and all scans below the threshold were excluded.

2.5. Measurement of covariates

Hypertension was defined as a resting blood pressure exceeding 140/
90 mmHg or the use of blood pressure lowering medication. Blood
pressure was measured twice with a sphygmomanometer after 5 min of



Table 1
Baseline characteristics of the study population. The excluded sample (n ¼
2250) were all participants that were eligible for cognitive testing and the neu-
roimaging study, but did not end up in the final sample (see Supplementary
Fig. 1).

Characteristics Included
sample
N ¼ 4397

Excluded
sample
N ¼ 2250

p-
valueb

Age at MRI (years) 63.5 � 10.1 69.5 � 1.13 <.001
G-factor 0.00 � 1.00
Cohort (%) <.001
RS-I 15.3 33.9
RS-II 25.3 26.7
RS-III 59.4 39.5

Sex, female (%) 55.3 57.8 .278
Time between cognition and MRI
(years)

0.3 � 0.4 0.2 � 0.3 .847

Hypertensive (%)a 61.4 76.1 .053
Alcohol per day (grams)a 9.2 � 10.1 8.5 � 9.6 <.001
Body mass index (kg/m2)a 27.4 � 4.1 28.1 � 4.8 .003
Smoking status (%)a .406
Never 30.9 29.9
Past 49.1 49.4
Current 20.0 20.7

Education level (%)a .002
Primary 7.8 13.1
Low 37.7 41.0
Intermediate 30.3 28.4
High 24.2 17.5

Mean GI 2.55 � 0.08 2.52 � 0.09 <.001

MRI ¼ Magnetic resonance imaging.
GI ¼ Gyrification index.

a Missingness of data for all variables was below 1% except for alcohol con-
sumption (4.8%).

b Differences between inclusion and exclusion were tested through multiple
logistic regression.
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rest, and the average of the two measurements was used. Use of blood
pressure lowering medication was derived from information collected by
a physician at the research center. Alcohol use was assessed during home
interviews with questions based on beer, wine, liquor and other alcoholic
beverages such as sherry and port. Based on these data, an established
method was used to calculate alcohol in grams per day (Vliegenthart
et al., 2002). BMI was calculating using the height and weight obtained
during the research center visit. Smoking status was obtained during
home interviews and individuals were classified as never smokers, past
smokers or current smokers. Education level was assessed during the
home visit interview and classified into four categories according to the
United Nations Educational, Scientific and Cultural Organization classi-
fication: primary (no or primary education), low (unfinished secondary
and lower vocational), intermediate (secondary or intermediate voca-
tional) or high education (higher vocational or university).

2.6. Statistical analyses

All statistical analyses were performed in R 3.4.3 (R Core Team. R,
2016). To assess the relation of age and cognition with the GI we used
linear regression models. Surface-based LGI analyses were performed to
study the spatial distributions of these associations along the cortex. This
was done with vertex-wise analyses using the R package QDECR (https://
github.com/slamballais/QDECR). Resulting p-valuemaps were corrected
for multiple comparisons at the vertex level using Gaussian Monte Carlo
Simulations (Hagler et al., 2006). Surface-based analyses on cortical
thickness and similar measures may show non-Gaussian patterns of
spatial correlations, which would increase the false positive rate higher
than 0.0531. We therefore set the cluster forming threshold to p ¼ 0.001,
as this has shown high correspondence with actual permutation testing
across all surface measures (Greve and Fischl, 2018). We further applied
Bonferroni correction to account for analyzing both hemispheres sepa-
rately (i.e. p < 0.025 cluster-wise).

Age-related atrophy of the brain accelerates with age, which may also
affect cortical gyrification. We therefore studied three types of associa-
tions between age and cortical gyrification: (1) a linear age term, (2)
orthogonal linear and quadratic age terms, (3) a B-spline for age with two
or three degrees of freedom. The spline knot for the two-fold spline was
set at the median age, and the knots of the three-fold spline at the first
and second tertiles. The shape of the relationship between age and gyr-
ification was assessed in two steps by evaluating model fit. The linear and
non-linear model fits for the GI were compared by calculating the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC)
for each model. Next, we created a linear model for age and the LGI, and
additionally a non-linear model depending on the AIC and BIC for the GI
models.

Specific domains of cognition map to different functional regions of
the cerebral cortex (Taylor et al., 2015). Therefore, in addition to the
g-factor we also studied whether the scores from the individual cognitive
tests associated with GI and LGI. Furthermore, to inspect whether the
association between cognition and gyrification changes with age we
created a separate model with an interaction term for age and the
g-factor.

Models were adjusted for covariates to account for potential con-
founding. The age analyses were corrected for sex and for study cohort,
i.e. the first, second or third cohort of the Rotterdam Study. The cognition
analyses were adjusted in three separate models, which allows for the
impact of each set of new confounders on model estimates to be
described. Model 1 was adjusted for sex, cohort, age at cognitive testing
and age difference between cognitive testing and the MRI scan. The way
that age entered the model as a covariate – linear, quadratic or with
splines – was dependent on the results from the analyses on age and the
GI. Model 2 was additionally adjusted for hypertension, alcohol intake,
smoking status and BMI. Lastly, Model 3 was additionally adjusted for
education level. The p-values for the associations between the potential
confounders and the global gyrification index are shown in
3

Supplementary Table 1. To assess whether image quality could affect the
results we ran sensitivity analyses with the image quality metric for each
scan as a covariate.

Gyrification is calculated as the ratio of the pial surface and the outer
surface of the brain (Schaer et al., 2012). However, the cortical surface
area itself has also been shown to relate to cognitive function (Cox et al.,
2018). Any association between the LGI and cognition may therefore be
driven by cortical surface area, and potentially by cortical thickness as
well. To further assess this, we performed a sensitivity analysis per
cluster. In each model we defined cognition as the outcome, and both the
mean LGI and the mean cortical surface area or the mean cortical
thickness of each cluster as the determinants. The models were further
corrected for all covariates as used in Model 3. We then assessed whether
the association between cognition and LGI remained statistically signif-
icant, taking into account cortical surface area or thickness.

All covariates had less than 1% missing data except for alcohol use
(4.8%). In order to maximize power, missing covariate data were
imputed thirty times using multiple imputation by chained equations
(van Buuren and Groothuis-Oudshoorn, 2011). Imputed models were
subsequently pooled per vertex according to Rubin’s rules (Rubin, 1987).
We also performed a non-response analysis to examine whether the in-
dividuals who were not included into the final sample were in any way
different than those who were included (Table 1). This was done through
logistic regression, where inclusion was entered as the outcome and all
other variables were included as predictors.

Of note, in all models, we defined age or cognition as the de-
terminants (predictors) and gyrification as the outcome, as limitations in
vertex-wise analyses generally only allow for the vertex measure to be
modeled as the outcome. Thus, while cognition is generally considered a
consequence of brain structure, due to limitations in the vertex-wise
software it was defined as a determinant of gyrification in the models.
As a sensitivity analysis, we created models for each statistically

https://github.com/slamballais/QDECR
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significant LGI cluster where the cluster-wise mean LGI was defined as
the determinant and the g-factor as the outcome.

All reported results focus on the beta coefficients and the 95% con-
fidence intervals (CIs) rather than p-values. Confidence intervals give
insight into the range of values within which the true parameter will
likely be, whereas p-values do not (Greenland et al., 2016). Any reported
result that is stated as statistically significant will have a p-value below
the threshold of 0.05.

3. Results

Baseline characteristics of the study population (n ¼ 4397) are dis-
played in Table 1. The mean age of the participants was 63.5 years (SD:
10.1, range: 45.7 to 97.9) and 55.3% were female. We analyzed whether
any differences were present between individuals included in the
Fig. 1. Scatterplot of age (A) and cognition (B) with GI. For age, four models wer
not fully visible due to the extensive overlap. The plot for cognition only shows the

4

analysis and those who were eligible for MRI but did not end up in the
final sample (Supplementary Fig. 1). Excluded participants tended to be
older (mean ¼ 6.2 years), were more often from the first cohort of the
Rotterdam Study (33.9% versus 15.3%), were less likely to drink alcohol
(mean ¼ �0.7 g per day), had a higher BMI (mean ¼ 0.7 kg/m2), were
more likely to have only primary education (13.1% versus 7.8%) and had
a lower GI (mean ¼ �0.03).
3.1. Age and global gyrification

A scatterplot of age and the GI is shown in Fig. 1A, and the results of
the different models are shown in Table 2. In the linear model one year
increase in age associated with a �0.0021 (95% CI: -0.0025; �0.0017)
lower GI. For the 2nd polynomial model both the linear term (p < 0.001)
and the quadratic term (p ¼ 0.027) were also statistically significant. All
e plotted (linear, quadratic, and the two and three spline models). The lines are
linear model.



Table 2
The associations between age and GI.

Modela Type β 95% CI AIC BIC

Linear Linear �0.0021 �0.0025; �0.0017 �10252.60 �10214.27
Quadratic 1st polynomial �0.0053 �0.0081; �0.0024 �10255.47 �10210.75

2nd polynomial �0.000025 �0.000003; �0.000046
Spline (2) 1st spline �0.1235 �0.2376; �0.1020 �10256.33 �10211.61

2nd spline �0.0703 �0.0947; �0.0458
Spline (3) 1st spline �0.0552 �0.0384; �0.0718 �10203.46 �10254.57

2nd spline �0.1179 �0.0915; �0.1442
3rd spline �0.0826 �0.0550; �0.1102

GI ¼ Gyrification index.
CI ¼ Confidence interval.
AIC ¼ Akaike information criterion.
BIC ¼ Bayesian information criterion.

a The models were adjusted for study cohort and sex.
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spline coefficients were statistically significant for the natural cubic
splines with both two and three degrees of freedom. The AIC and BIC of
all models were highly similar, suggesting that the linear fit sufficiently
describes the association of age during mid and late adulthood with the
GI.

3.2. Cognition and global gyrification

A scatterplot of the g-factor and the GI is shown in Fig. 1B, and
regression coefficients for the g-factor and all separate cognitive tests are
shown in Table 3 for all three adjustment models. Higher levels of the g-
factor were associated with a higher GI, with similar results across Model
1 (β¼ 0.0045, 95% CI¼ 0.0018; 0.0073) to Model 3 (β¼ 0.0044, 95% CI
¼ 0.0015; 0.0073). We examined the individual cognitive tests to see
which cognitive tests drove most of the association. Three cognitive tests
yielded statistically significant results, namely the LDST (β ¼ 0.0005,
95% CI ¼ 0.0001; 0.0009), the WFT (β ¼ 0.0009, 95% CI ¼ 0.0005;
0.0013) and the Stroop task (β ¼ �0.0081, 95% CI ¼ �0.0164;
�0.0002). Of these, the Stroop task had the strongest association with
gyrification. Of note is that the association with the Stroop task was
negative due to the lower scores on the Stroop task reflecting higher
cognitive performance. Finally, the interaction term between age and
cognition did not reach statistical significance in any of the models (all
punadjusted > 0.05), thus the magnitude of the association between
cognition and the GI was stable during and after midlife.

3.3. Age and local gyrification

In order to determine the precise spatial extent of associations be-
tween age and gyrification, we performed surface-based vertex-wise
Table 3
The associations between cognition and the GI.

Domain GI (Model 1a) GI (Model

β 95% CI β

g-factor 0.0045 0.0018; 0.0073 0.0047
15WLT �0.0001 �0.0009; 0.0007 �0.0001
Stroop taskd �0.0090 �0.0171; �0.0010 �0.0090
LDST 0.0005 0.0001; 0.0009 0.0005
WFT 0.0009 0.0005; 0.0013 0.0009
PPB 0.0001 �0.0004; 0.0007 0.0002

WLT ¼ 15 Word learning test.
LDST ¼ Letter digit substitution test.
WFT ¼ Word fluency test.
PPB ¼ Purdue pegboard test.
CI ¼ Confidence interval.

a Adjusted for age at MRI scan (years), study cohort, sex and age difference betwee
b Additionally adjusted for hypertension (yes/no), alcohol intake (grams per day),
c Additionally adjusted for education level (primary/low/intermediate/high).
d The Stroop task is inversely coded compared to the other tests, where a higher sc
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analyses. Due to the similar fits between the models of age and the GI we
opted to further investigate the linear model and the two-fold spline
model with the LGI. Fig. 2 displays the vertex-wise associations between
age and the LGI. In the linear model the LGI decreased with age in the
parietal, temporal, occipital and frontal regions. The effect sizes were
generally larger than those found when examining the association be-
tween age and the GI. A second cluster arose in the frontal pole and
medial prefrontal cortex, where the LGI increased with age. The signifi-
cant clusters were similar across hemispheres in both size and strength.
The two-degree spline model differed from the linear model. The first
spline fold, i.e. ages between 45.7 and 61.6 years, associated negatively
with the LGI in the parietal, frontal, temporal and occipital regions.
Unlike the linear model, no cluster was present near the frontal pole or
the medial prefrontal pole. In the second spline fold, i.e. ages between
61.6 and 97.9 years, the negative associations were more restricted to the
temporal and parietal regions, and the lateral part of the frontal cortex. In
addition, a positive cluster was present in the medial prefrontal cortex
and the frontal pole, stronger than in the linear model. The age-
gyrification association shows a clear deviation in its shape in the
medial prefrontal gyrus compared to other regions (Supplementary
Fig. 2). The findings were robust upon further correction for the image
quality metric (Supplementary Fig. 3).

3.4. Cognition and local gyrification

Fig. 3 displays the vertex-wise associations of the g-factor with the
LGI for the three adjustment models. Associations between g-factor and
the LGI were mostly present in three clusters: (1) the superior temporal
gyrus, the insular cortex and the postcentral gyrus, (2) the lingual gyrus,
the precuneus and the pericalcarine cortex and (3) the orbitofrontal
2b) GI (Model 3c)

95% CI β 95% CI

0.0019; 0.0075 0.0044 0.0015; 0.0073
�0.0010; 0.0007 �0.0003 �0.0011; 0.0006
�0.0172; �0.0010 �0.0081 �0.0164; �0.0002
0.0002; 0.0009 0.0005 0.0001; 0.0009
0.0005; 0.0013 0.0009 0.0005; 0.0013
�0.0004; 0.0007 0.0002 �0.0004; 0.0007

n cognitive testing and MRI scan (years).
BMI and smoking status (never/past/current).

ore relates worse performance.



Fig. 2. Vertex-wise associations between age – the linear model and the two-fold spline model – and the local gyrification index (LGI). The color scale
represents the regression coefficients. The models were adjusted for study cohort and sex. L ¼ Lateral; M ¼ Medial; S ¼ Superior; I ¼ Inferior.

Fig. 3. Vertex-wise associations between the g-factor and the LGI. The color scale represents the regression coefficients. Model 1 was adjusted for age (linear
term), study cohort, sex and the time difference between the cognitive test battery and the MRI visit. Model 2 was additionally adjusted for hypertension status,
alcohol intake, BMI and smoking. Model 3 was additionally adjusted for education level. L ¼ Lateral; M ¼ Medial; S ¼ Superior; I ¼ Inferior.
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gyrus. These clusters roughly presented bilaterally. Similar patterns were
found for the associations between the individual cognitive tests and the
LGI (Fig. 4). The LGI of the cuneate gyrus, insular cortex and superior
temporal gyrus were all associated with the Stroop task, the LDST and the
6

WFT, although more so on the right than the left hemisphere. Addi-
tionally, the WFT also associated with the LGI in several additional re-
gions, namely the supramarginal gyrus on both hemispheres and the
lateral orbitofrontal cortex, the angular gyrus and the superior parietal



Fig. 4. Associations between the individual
cognitive tests and the LGI. The color scale repre-
sents the regression coefficients. The images show
the results for Adjustment Model 3. The Stroop task is
inversely coded compared to the other tests, where a
higher score relates worse performance. No statisti-
cally significant clusters were identified for the 15
word learning test or the Purdue pegboard test, thus
these are not displayed. LDST ¼ Letter digit substi-
tution test; WFT ¼ Word fluency test. L ¼ Lateral; M
¼ Medial; S ¼ Superior; I ¼ Inferior.
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gyrus on the right hemisphere. Further correction for the image quality
metric did not affect these findings (Supplementary Fig. 4). Finally, as
cognition was originally specified as the determinant, we constructed
cluster-wise models with the cluster-wise mean gyrification as the
determinant and cognition as the outcome. For the identified LGI clusters
the associations with cognition remained unattenuated (all clusters p <

0.00001).
Both vertex-wise cortical surface area and thickness associate with

age (Supplementary Fig. 5) and the g-factor (Supplementary Fig. 6). In
order to assess whether the associations between cognition and the LGI
were driven by cortical surface area or thickness, we created a newmodel
for each significant LGI cluster with the g-factor as the outcome and both
the mean LGI and the mean cortical thickness or surface area as de-
terminants. Associations remaining after concurrent adjustment for
cortical surface area or thickness suggest an independence between LGI
the other measures. The results are shown in Table 4 for surface area and
in Table 5 for cortical thickness. After adjustment for surface area, the
LGI remained associated with the g-factor in the left hemisphere in the
cluster near the cuneus (punadjusted ¼ .002) but not the clusters in the
orbitofrontal cortex (punadjusted ¼ .056) or the temporal cortex (punadjusted
¼ .115). In the right hemisphere the association between the LGI and
cognition was unaffected by surface area in both the orbitofrontal
(punadjusted ¼ .019) and the temporal clusters (punadjusted ¼ .004), but not
in the cluster in the cuneus (punadjusted¼ .094). In all clusters, the LGI was
unaffected by additional corrections for cortical thickness.

4. Discussion

We show in a large population-based setting that global gyrification
of the cerebral cortex decreases during middle and late adulthood. This
decline in gyrification is mainly driven by regions close to the Sylvian
fissure. A specific cluster within the medial prefrontal cortex showed
more gyrification with increasing age, particularly during late adulthood.
Furthermore, we also found that global cognition positively associates
with gyrification, in particular in the temporal regions, the lingual gyrus
and the cuneus.

The findings for age and gyrification are in line with previously
7

reported findings in smaller or younger age samples. A study from 2017
attempted to map the life course trajectory of the GI in a cross-sectional
sample of 881 participants (Cao et al., 2017). The authors found that the
GI trajectory can be described as a negative logarithmic function, with
the decline in gyrification slowing with age. However, their sample
included only about 30 participants above the age of 60. Another study
reported on the association of age and gyrification in 322 healthy adults
of whom 116 were aged 60 or older (Hogstrom et al., 2013). They found
that the LGI had non-linear associations with age in certain brain regions,
especially the orbitofrontal and dorsomedial prefrontal cortex. In
particular, LGI in these regions seemed to increase towards the end of
life. Our study builds upon these findings, with a much larger number of
participants beyond the age of 70 years, allowing us to more precisely
study how gyrification changes during late adulthood. We found that the
association is essentially linear, which matches a negative logarithmic
life course pattern (Cao et al., 2017). We also established non-linear
patterns in the regional surface-based patterns, albeit the increase in
LGI was only seen in the medial prefrontal cortex and only towards the
end of life. These findings further consolidate the global and local
dependence of gyrification on age.

Gyrification associates with cognition during and after midlife, and
this association does not change with age. Furthermore, in half of the
significant clusters we found that cortical surface area is likely driving the
associations. This is not surprising as loss of surface area leads to lower
folding thus lower gyrification within that region. Still, three out of six
LGI clusters remained associated with cognition after adjusting for sur-
face area, suggesting that gyrification harbors independent information.
Furthermore, the pattern of LGI clusters within our study was similar
amongst the individual cognitive tests, suggesting that the LGI captures a
more general aspect of cognitive function. Gyrification may therefore
play a unique role in cognitive function, which could prove useful in the
study of normal and abnormal cognitive aging. For example, other
cortical characteristics such as thickness and surface area have distinct
contributions to cognitive decline as seen in Alzheimer’s disease (Yang
et al., 2019; Ossenkoppele et al., 2019; Dickerson et al., 2009), yet any
such contributions from gyrification remain to be elucidated.

The temporal lobe has previously been linked to cognitive processes



Table 4
The associations of the mean LGI and mean surface area with g-factor per previously identified LGI cluster. Each model contained both LGI and surface area.
Both the LGI and surface area were standardized in order to be able to compare the magnitude of their effects. All models were adjusted for age at MRI scan (years), study
cohort, sex, age difference between cognitive testing and MRI scan (years), hypertension (yes/no), alcohol intake (grams per day), BMI (kg/m2), smoking status (never/
past/current), and education level (primary/low/intermediate/high).

Hemisphere # Location Standardized mean LGI standardized mean surface area

β 95% CI p β 95% CI p

Left 1 Temporal 0.025 [-0.006; 0.055] .115 0.056 [0.024; 0.088] .001
Left 2 Cuneus 0.047 [0.016; 0.077] .002 0.025 [-0.005; 0.056] .106
Left 3 Orbitofrontal 0.025 [-0.001; 0.050] .056 0.067 [0.038; 0.096] <.001
Right 1 Temporal 0.045 [0.014; 0.076] .004 0.041 [0.009; 0.073] .012
Right 2 Cuneus 0.028 [-0.005; 0.073] .094 0.029 [-0.004; 0.063] .085
Right 3 Orbitofrontal 0.030 [0.005; 0.054] .019 0.061 [0.034; 0.089] <.001

Table 5
The associations of the mean LGI and mean cortical thickness with g-factor per previously identified LGI cluster. Each model contained both LGI and cortical
thickness. Both the LGI and cortical thickness were standardized in order to be able to compare the magnitude of their effects. All models were adjusted for age at MRI
scan (years), study cohort, sex, age difference between cognitive testing and MRI scan (years), hypertension (yes/no), alcohol intake (grams per day), BMI (kg/m2),
smoking status (never/past/current), and education level (primary/low/intermediate/high).

Hemisphere # Location Standardized mean LGI standardized mean thickness

β 95% CI p β 95% CI p

Left 1 Temporal 0.063 [0.038; 0.088] <.001 0.062 [0.039; 0.085] <.001
Left 2 Cuneus 0.069 [0.045; 0.094] <.001 0.045 [0.022; 0.068] <.001
Left 3 Orbitofrontal 0.044 [0.020; 0.068] <.001 �0.025 [-0.049; �0.000] .047
Right 1 Temporal 0.075 [0.050; 0.100] <.001 0.061 [0.037; 0.085] <.001
Right 2 Cuneus 0.058 [0.034; 0.083] <.001 0.050 [0.027; 0.073] <.001
Right 3 Orbitofrontal 0.049 [0.026; 0.073] <.001 �0.003 [-0.027; 0.021] .790
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such as language (Price, 2012) and memory (Jeneson and Squire, 2012)
as well as psychiatric disorders like adulthood autism spectrum disorders
(Kohli et al., 2019) and schizophrenia (Palaniyappan and Liddle, 2012;
Nesvag et al., 2014; Madre et al., 2019). Interestingly, these disorders
have also been linked to abnormal gyrification (Duret et al., 2018;
Blanken et al., 2015; Matsuda and Ohi, 2018; Cao et al., 2017). Genetic
mechanisms underlying cognitive processes and neuropsychiatric disor-
ders may also affect cortical morphology in the temporal region, and in
particular gyrification. Previous studies have found links between genes
underlying cognition function and temporal lobe structure (Tan et al.,
2019; Ersland et al., 2012), although the results are inconsistent (van der
Lee et al., 2019). Thus further work is needed to elucidate the presence of
a genetic pleiotropic link between gyrification and function of the tem-
poral lobe.

Several mechanisms could explain how gyrification changes with age.
One explanation is that during brain development the cortical surface
buckles due to differential rates of growth of cortical layers (Richman
et al., 1975), and the opposite may occur during adulthood. The rate of
atrophy is higher in gray than white matter during early and mid
adulthood (Taki et al., 2011; Schippling et al., 2017). Gray matter atro-
phy is mostly through the reduction of surface area of the cortex, which
leads to more shallow sulci and consequently a lower GI. The rate of
atrophy of white matter starts to exceed the rate for gray matter during
late adulthood (Vinke et al., 2018), which could in turn lead to an in-
crease in gyrification with age. Interestingly, a previous study found that
after the age of 60 years the cingulate cortex thickens and that the rate of
thinning of the medial prefrontal cortex declines (Fjell et al., 2014),
which could explain the increased gyrification of the medial prefrontal
cortex in our study. Indeed, we see a similar thinning of the cingulate
cortex. However, our findings also suggest that gyrification overall keeps
decreasing during older adulthood, thus other mechanisms than the
different gray and white matter atrophy rates are also likely involved.

Another plausible explanation is the “axon tension” theory (Van
Essen, 1997), which states that axonal tension pulls the gyral walls in-
wards, thus folding the cortex. The axonal tension may depend on the
health status of the axon, and damage to axons could lead to reduced
tension and consequently decreased gyrification. White matter
8

microstructure decreases with age (Inano et al., 2011; Burzynska et al.,
2017) and white matter lesions accumulate frommid adulthood onwards
(Vinke et al., 2018), and could explain the decrease in gyrification.
However, further experimental work has discredited axonal tension as a
cause of cortical folding. For example, if axonal tension causes gyr-
ification then cutting the gyrus transaxially should unfold the gyrus, and
experiments have shown that this is not the case (Xu et al., 2010). Thus,
further work is needed to elucidate the causes of cortical (un)folding
during adulthood.

Gyrificationmay also associate with age due to more technical aspects
of the data collection itself. Head motion may affect the relation between
age and GI (Madan and Kensinger, 2017). The reasoning for this is that
older participants tend to move more with their head while in the MRI. A
previous study confirmed this and also found that head motion related to
LGI, although the association was not very strong (Madan, 2018). We
attempted to minimize the impact of head motion on the analyses by
conservatively excluding all raw images with suboptimal quality and
further by performing sensitivity analyses with the image quality metric
as a covariate.

The study has several limitations. First of all, we relied on a cross-
sectional study design to examine age effects on gyrification. Cross-
sectional estimation of age-related changes may yield inaccurate esti-
mates compared to longitudinal designs (Pfefferbaum and Sullivan,
2015). Second, changes in gyrification likely cause changes in cognition,
but the models were specified with cognition as the determinant and
gyrification as the outcome due to limitations in the vertex-wise analysis
modeling. Rerunning the models per cluster with proper specification did
show that the LGI clusters indeed associated with cognition, suggesting
that the models hold under proper specification. Third, the cognitive test
battery that was used does not cover all aspects of cognitive function. Due
to the emphasis on verbal tests we were not able to fully assess the scope
of cognition and gyrification. Fourth, in the case of cognition there may
be reverse causality, as higher intelligence tends to lead to a healthier
lifestyle and thus better brain health. We corrected for a number of
variables related to lifestyle and their effect on the association was
minimal. Despite this there could still be residual confounding by other
variables that we did not account for. Fifth, while we excluded those with
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prevalent stroke and dementia, there could be other medical conditions
and confounders that could bias the results. For example, traumatic brain
injury and substance abuse disorders are known to accelerate brain and
cognitive aging (Wood, 2017; Cole et al., 2015; Mende, 2019), and could
subsequently affect the association of age and cognition with gyr-
ification. Our study also had several strengths. First, this is the largest
sample size to date in a study of gyrification and age or cognition, leading
to sufficient statistical power to find associations, and unravel new
regional differences. Second, the individuals were sampled from a wide
age-range, thus enabling making accurate inferences about gyrification
even in the later phases of late adulthood. Third, the sample was drawn
from a population-based cohort, thus the findings can be generalized
beyond a clinical setting.

In conclusion, gyrification globally decreases linearly with age across
the entirety of adulthood, and gyrification in the medial prefrontal cortex
increases towards the end of life. Furthermore, gyrification increases
with higher levels of cognitive performance in some clusters irrespective
of surface area. These findings consolidate the importance of gyrification
in normal brain function. Whether gyrification is a viable marker for
abnormal brain aging and cognitive decline towards the end of life re-
mains to be elucidated.
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