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Chapter 1

Introduction

1.1 Introduction

The identification and prediction of financial market crashes is very important to traders,
regulators of financial markets and risk management because a series of large negative price
movements during a short time interval can have severe consequences. For example, on
Black Monday, that is October 19, 1987, the S&P 500 index registered its worst daily per-
centage loss of 20.5%. During the recent credit crisis in 2008, the S&P 500 index declined
dramatically for numerous days, thereby suffering its worst yearly percentage loss of 38.5%.
Unfortunately, crashes are not easy to predict, and there is a need for tools to improve fore-
casts of the timing of a series of large negative price movements in financial markets.

To initiate the construction of a modeling framework for stock market crashes, it is im-
portant to understand what are potential causes of such crashes. Sornette (2003) summarizes
that computer trading, increased trading of derivative securities, illiquidity, trade and budget
deficits, and overvaluation, can provoke subsequent large negative price movements. More
importantly, Sornette points out that speculative bubbles leading to crashes are likely to re-
sult from the positive herding behavior of investors. This positive herding behavior causes
crashes to be locally self-enforcing. Hence, while bubbles can be triggered by an exogenous
factor, instability grows endogenously. A model for stock market crashes should therefore
be able to capture this self-excitation. Such a self-excitation can also be observed in seismic
behavior around earthquake sequences, where an earthquake usually generates aftershocks

which in turn can generate new aftershocks and so on. For many academics (and perhaps



2 Introduction

practitioners), earthquakes and stock returns therefore share characteristics observable as the
clustering of extremes and serial dependence.

This thesis focuses on the identification and prediction of crashes using Hawkes pro-
cesses (Chapter 2 en 4), on testing these Hawkes processes for correct specification (Chapter
3), and on the estimation of Hawkes processes using option prices in a non-affine continuous-
time setting (Chapter 5). Hawkes processes, first proposed by Hawkes (1971), match the
self-exciting behavior of stock returns around a financial market crash, which is similar to
the seismic activity around earthquakes. The jump rate of the Hawkes process increases
when a jump (or shock) arrives after which the rate decays as a function of the time passed
since the jump. As the probability of jumps increases after a jump has occurred, the Hawkes
process is thus called self-exciting. Hence, while events can be triggered by an exogenous
factor, for a Hawkes process the risk of events grows endogenously. Characteristics typically
observed in data that fit Hawkes models, are the clustering of events and serial dependence.

The Hawkes process was first applied in the so called Epidemic Type After Sequence
(ETAS) model, to model the occurrence rate of earthquakes above a certain threshold. This
model has been developed by Ogata (1988) and its use for earthquakes is widely investigated
by geophysicists.! Thereafter the ETAS model has been exploited for crime rates (Mohler
et al., 2011) and the spread of red banana plants (Balderama et al., 2012). More interesting
is that the ETAS model (in the financial literature often referred to as Hawkes model) is
applied to financial data, for example to model arrival data of buy and sell trades (Hewlett,
2006), the duration between trades (Bauwens and Hautsch, 2009) and the returns on one
of more indices.” This thesis focuses on the latter application of the Hawkes process. The
Hawkes modeling framework differs from Extreme Value models as the framework allows
for dependencies across arrival times and magnitudes of shocks. At the same time, the
framework differs from well known and commonly used volatility models, as it is capable
of generating highly insightful forecasts without stringent assumptions on the tail behavior
of error distributions. This makes the modelling framework rather easy to implement and

understand in practice.

ISee amongst others: Ogata (1988), Helmstetter and Sornette (2002), Zhuang et al. (2002), Zhuang et al.
(2004), Saichev et al. (2005), Hardebeck et al. (2008), and Veen and Schoenberg (2008).

2See amongst others: Chavez-Demoulin et al. (2005), Herrera and Schipp (2009), Embrechts et al. (2011),
Grothe et al. (2014) and Ait-Sahalia et al. (2015).
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Earthquakes exhibit clustering behaviour in space as well as in time. Like earthquake
sequences, financial shocks seem to cluster in a dimension other than the time dimension.?
Extreme stock returns across markets are found to be more correlated than small returns
(Bae et al., 2003). They occur more frequently at the same time than expected under the
assumption of a normal dependence structure (Mashal and Zeevi, 2002; Hartmann et al.,
2004; Sun et al., 2009). This suggests that different financial markets experience stress at
the same time. For example, volatility spillover effects between stock markets have been
detected in numerous studies.* Interpreting volatility as a measure for the tension, these
findings indicate that stress from financial markets pours over to other financial markets.

The consequences of this cross-dependence between markets became more apparent dur-
ing the financial crisis of 2008, also mentioned in the first paragraph of this introduction. This
crisis demonstrated the overlap of periods in which financial markets are subject to tension
with extreme price movements as a result. For example, on September 29, October 15 and
December 1 in 2008 the S&P 500, the Dow Jones Industrial Average (DJI) and the NAS-
DAQ, all suffered top 20 percentage losses. Furthermore, on September 29 the euro/dollar
rate and the pound/dollar rate also dropped by a large amount, while the US bond market
boomed. On the 16th of October, just one day after the major US stock markets crashed, and
on the 1th of December both currencies fell again sharply. Moreover, 4 days after these dates
US bond prices shifted significantly upward.

In Chapter 3 and 4, we aim to model the dependence between financial markets. That
is, we extend the univariate Hawkes modelling framework to allow extreme events in one
financial market to trigger the occurrence and/or the magnitude of extreme events in other
markets. In these chapters, we assess whether incorporating cross-sectional dependence
improves in- and out-of-sample performance of Hawkes models. This way we confirm that
financial shocks exhibit clustering behaviour in the cross section on top of the clustering
behaviour in the time dimension.

As option prices reflect expected future stock returns, exploiting the information in option
prices can be used to estimate Hawkes models for stock returns more accurately. Even though

affine model specifications are far more popular as they provide closed-form derivative prices

3See amongst others: Eun and Shim (1989), Fischer and Palasvirta (1990), King and Wadhwani (1990), Lin
et al. (1994) and Connolly and Wang (2003).

“4See amongst others: Hamao et al. (1990), Bae and Karolyi (1994), Koutmos and Booth (1995), Booth et al.
(1997) and Kanas (1998).
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which facilitates model calibration using option prices, non-affine specifications, seems to fit
and predict asset prices considerably better.’ However, it is very computationally demanding
to estimate such models when non-affine dynamics are assumed. In Chapter 5, a framework
is developed to estimate non-affine Hawkes models using MCMC and particle methods in a
learning setting with latent volatility and jump states as a by-product. Utilizing information
from option prices, the compensation investors receive for diffusive and jump risk can be
derived using this framework which can not be identified from stock prices alone (Andersen
et al., 2015b). Santa-Clara and Yan (2010), Bollerslev and Todorov (2011), Bollerslev et al.
(2015), Andersen et al. (2015b) and Boswijk et al. (2015) show that the compensation for the
risk of jumps, not attributable to volatility, explains to a large extent the equity and variance
risk premia, of which the last one can be seen an indication of the fear of investors. Therefore,
disentangling of volatility and jump components in risk premia using option prices provides
one with important information regarding the state and development of the financial market

with far-reaching implications for asset allocation, hedging, and risk management.

1.2 Outline

Chapter 2 is based on Gresnigt et al. (2015), in which we use the ETAS model as a tool to
create probability predictions for an upcoming crash (read: earthquake) in a financial market
on the medium term, like sometime in the next five days. A large literature in finance has
focused on predicting the risk of downward price movements one-step ahead with measures
like Value-at-Risk and Expected Shortfall. Our approach differs as we interpret financial
crashes as earthquakes in the financial market, which allows us to develop an Early Warning
System (EWS) for crash days within a given period. Testing our EWS on S&P 500 data
during the recent financial crisis, we find positive Hanssen-Kuiper Skill Scores. Further-
more, our modeling framework is capable of exploiting information in the returns series not
captured by well known and commonly used volatility models. EWS based on our models
outperform EWS based on the volatility models forecasting extreme price movements, while

forecasting is much less time-consuming.

SChernov et al. (2003), Jones (2003), Christoffersen et al. (2010), Kaeck and Alexander (2012), Durham
(2013) and Ignatieva et al. (2015) find non-affine models should be preferred above affine models as they
are more flexible and better capable of modeling the tails of the heavy-tailed asset return distribution, while
remaining equally parsimonious.
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Of course, to accurately identify and predict the occurrence of extreme price movements
in financial markets using ETAS models, these models should be properly specified. Hence,
specification tests for Hawkes processes are essential. Chapter 3 is based on Gresnigt et al.
(2016a), in which we propose various specification tests for Hawkes models based on the
Lagrange Multiplier (LM) principle. Our testing focus is on extending a univariate model
to a multivariate model, that is, we examine whether there is a conditional dependence be-
tween series of extreme events in (different) markets. Thereby we fill the gap in the financial
literature which, despite efforts to detect dependence between series (Hartmann et al., 2004;
Gonzalo and Olmo, 2005; Hu, 2006), insufficiently describes how to adequately assess the
contribution of cross-sectional dependence in a point process framework with serial depen-
dence. LM based specification tests can also be used to test for omitted explanatory variables,
breaks in the model parameters, omitted impact of the sizes of events on the triggering of new
events and omitted predictability of event sizes. Simulations show that the test has good size
and power, in particular for sample sizes that are typically encountered in practice. More-
over, in contrast to de Likelihood Ratio test, the LM test does not require estimation under
the alternative hypothesis. As the LM test performs comparable to the LR test and is a lot
less time consuming, this test is to be preferred in our opinion. Applying the specification
test for dependence to US stocks, bonds and exchange rate data, we find strong evidence
for cross-excitation within segments as well as between segments, which cannot simply be
explained by volatility spillovers. Therefore, we recommend that univariate Hawkes models
be extended to account for the cross-triggering phenomenon.

Nowadays, a large literature focuses to the modeling of extremal dependence between
financial markets, though with an in-sample focus.® Chapter 4 is based on Gresnigt et al.
(2016b), in which we extend these studies on contagion, as we examine whether incorpo-
rating this dependence improves forecasts. We follow the recommendation of Chapter 3
Gresnigt et al. (2016a), and utilize Hawkes models in which events are triggered through
self-excitation as well as cross-excitation to create our forecasts. The models are applied
to US stocks, bonds and dollar exchange rates. We predict the probability of crashes in the
series and the Value-at-Risk over a period that includes the financial crisis of 2008 using a

moving window. Out-of-sample, we find that the models that include cross-triggering effects

6See amongst others: Longin and Solnik (1995), Poon et al. (2003), Poon et al. (2004), Bekaert et al. (2010),
Grothe et al. (2014), and Ait-Sahalia et al. (2015).
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forecast crashes and the Value-at-Risk significantly more accurately than the models without
these effects.

Chapter 5 contains a research proposol. In this Chapter a framework is proposed in which
option prices are used to estimate continous-time Hawkes models more accurately. The
framework is very general and allows for models to be of the non-affine type, in which asset
prices do not have an analytical characteristic function. Using learning methods, models
are efficiently estimated and assessed sequentially such that models can be updated quickly
when new information arrives. Within the framework, MCMC techniques (Lindsten et al.,
2014) and particle filtering methods (Pitt and Shephard, 1999; Johannes et al., 2009) are used
to derive the distribution of the model parameters and the latent volatility and jump process.
The estimation framework is very flexible and can be made fit to tailor the application at
hand. For example the technique can be extended to the multivariate case as it does not
require direct optimization of a multidimensional integral which is a problem in several clas-
sic estimation frameworks that consider option prices. This makes the estimation technique
very attractive for further investigation as Chapter 3 and 4 show jump intensities are mutu-
ally exciting. Furthermore, the framework allows information from options to be utilized at
a lower frequency than the information of asset prices to estimate models. Including option
prices in the estimation of models not only increases accuracy, also it allows one to derive
to derive the different compensations investors require for taking on diffusive and jump risk.
This provides insight in the state and development of the financial market with important

guidance for risk management.



Chapter 2

Interpreting financial market crashes as
earthquakes: A new early warning

system for medium term crashes

2.1 Introduction

This paper proposes a modeling framework that draws upon the self-exciting behavior of
stock returns around a financial market crash, which is similar to the seismic activity around

earthquakes.!

Incorporating the tendency for shocks to be followed by new shocks, our
framework is able to create probability predictions on a medium-term financial market crash.
A large literature in finance has focused on predicting the risk of downward price movements
one-step ahead with measures like Value-at-Risk and Expected Shortfall. Our approach dif-
fers however as we interpret financial crashes as earthquakes in the financial market, which
allows us to develop an Early Warning System (EWS) for crash days within a given period.
The EWS is tested on S&P 500 data during the recent financial crisis, starting from Septem-
ber 1, 2008. As will become apparent in later sections, our modeling framework differs
from Extreme Value models as we allow dependencies across arrival times and magnitudes

of shocks. At the same time, our framework differs from the conventional GARCH models

by generating highly insightful medium term forecasts, while not having to make stringent

IThis Chapter is based on Gresnigt et al. (2015)
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assumptions on the tail behavior of error distributions. This makes our approach rather easy
to implement and understand in practice.

The identification and prediction of crashes is very important to traders, regulators of
financial markets and risk management because a series of large negative price movements
during a short time interval can have severe consequences. For example, on Black Monday,
that is October 19, 1987, the S&P 500 index registered its worst daily percentage loss of
20.5%. During the recent credit crisis, financial indices declined dramatically for numerous
days, thereby suffering its worst yearly percentage loss of 38.5 % in 2008. Unfortunately,
crashes are not easy to predict, and there still is a need for tools to accurately forecast the
timing of a series of large negative price movements in financial markets.

To initiate the construction of our modeling framework for stock market crashes, we first
focus on the potential causes of such crashes. Sornette (2003), summarizes that computer
trading, and the increased trading of derivative securities, illiquidity, and trade and bud-
get deficits and also overvaluation can provoke subsequent large negative price movements.
More importantly, Sornette (2003) points out that speculative bubbles leading to crashes
are likely to result from a positive herding behavior of investors. This positive herding be-
havior causes crashes to be locally self-enforcing. Hence, while bubbles can be triggered
by an exogenous factor, instability grows endogenously. A model for stock market crashes
should therefore be able to capture this self-excitation. Notably, such a self-excitation can
also be observed in seismic behavior around earthquake sequences, where an earthquake
usually generates aftershocks which in turn can generate new aftershocks and so on. For
many academics (and perhaps practitioners), earthquakes and stock returns therefore share
characteristics typically observable as the clustering of extremes and serial dependence.

Potential similarities across the behavior of stock returns around crashes and the dy-
namics of earthquake sequences have been noted in the so-called econophysics literature, in
which physics models are applied to economics.> In contrast to the studies in the econo-
physics literature and also to related studies like Bowsher (2007) and Clements et al. (2013),
in our framework we do not model the (cumulative) returns but only the extreme returns. As
such, we most effectively exploit the information contained in the returns about the crash be-

havior. As Ait-Sahalia et al. (2015) already show, only taking the jump dynamics of returns

2See amongst others: Sornette (2003), Weber et al. (2007), Petersen et al. (2010), Baldovin et al. (2011),
Baldovin et al. (2013), Baldovin et al. (2015), and Bormetti et al. (2015)
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into account to approximate the timing of crashes gives more accurate results than using the
full distribution of the returns. As is well known, the distribution of stock returns is more
heavy-tailed than the Gaussian distribution as extreme returns occur more often than can be
expected under normality. Furthermore, the distribution of stock returns is usually negatively
skewed. As risk in financial markets is predominantly related to extreme price movements,
we propose to model only extreme (negative) returns in order to improve predictions.

To model the extreme (negative) returns we use a particular model that is often used
for earthquake sequences, and which is the so-called Epidemic-type Aftershock Sequence
model (ETAS). This model has been developed by Ogata (1988) and its use for earthquakes
is widely investigated by geophysicists.? In the ETAS model a Hawkes process, an inhomo-
geneous Poisson process, is used to model the occurrence rate of earthquakes above a certain
threshold. The jump rate of the Hawkes process increases when a jump (or shock) arrives
after which the rate decays as a function of the time passed since the jump. As the probability
of jumps increases after a jump has occurred, the Hawkes process is thus called self-exciting.
The ETAS model has been exploited for crime rates (Mohler et al., 2011) and for the spread
of red banana plants (Balderama et al., 2012). Interestingly, the ETAS model has also been
applied to financial data, for example to model arrival data of buy and sell trades (Hewlett,
2006), the duration between trades (Bauwens and Hautsch, 2009) or the returns on multiple
indices (Embrechts et al., 2011; Grothe et al., 2014; Ait-Sahalia et al., 2015).

Our modeling framework entails that we use the ETAS model as a tool to warn for an
upcoming crash (read: earthquake) in a financial market. As Herrera and Schipp (2009),
Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill (2012), already showed
when deriving their Value-at-Risk and Expected Shortfall estimates, the ETAS model can
contribute to the modeling and prediction of risk in finance. However, in contrast to Her-
rera and Schipp (2009), Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill
(2012) who do not provide a practical tool like an Early Warning System or an easily inter-
pretable measure to quantify the risk of crashes, we provide a ready-to-use application of the
information from an estimated ETAS model by means of an EWS.

In somewhat more detail, we consider several specifications of the key triggering func-

tions. The parameters of the ETAS models are estimated by maximum likelihood. And, to

3See amongst others: Ogata (1988), Helmstetter and Sornette (2002), Zhuang et al. (2002), Zhuang et al.
(2004), Saichev et al. (2005), Hardebeck et al. (2008), and Veen and Schoenberg (2008)
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judge the fit of the different models, we compare the log-likelihoods and Akaike information
criterion (AIC) values. We also develop simulation procedures to graphically assess whether
data generated by the models can reproduce features of, for example, the S&P 500 data. The
correctness of the ETAS model specification is further evaluated by means of the residual
analysis methods as proposed in Ogata (1988). We review the performance of our Early
Warning System using the hit rate and the Hanssen-Kuiper Skill Score, and compare it to
EWS based on some commonly used and well known volatility models.

The estimation results confirm that crashes are self-enforcing. Furthermore we find that
on average larger events trigger more events than smaller events and that larger extremes are
observed after the occurrence of more and/or big events than after a tranquil period. Testing
our EWS on S&P 500 data during the recent financial crisis, we find positive Hanssen-
Kuiper Skill Scores. Thus as our modeling framework exploits the self-exciting behavior
of stock returns around financial market crashes, it is capable of creating crash probability
predictions on the medium term. Furthermore our modeling framework seems capable of
exploiting information in the returns series not captured by the volatility models.

Our paper is organized as follows. In Section 2 the model specifications are discussed,
as well as the estimation method. Estimation results are presented in Section 3. Section 4
contains an assessment of the models by means of simulations and residual analysis. The
Early Warning Systems are reviewed in Section 5 and compared to EWS based on volatility

models in Section 6. Section 7 concludes also with directions for further research.

2.2 Models

The Epidemic-Type Aftershock Sequence (ETAS) model is a branching model, in which
each event can trigger subsequent events, which in turn can trigger subsequent events of
their own. The ETAS model is based on the mutually self-exciting Hawkes point process
(Hawkes, 1971), which is an inhomogeneous Poisson process. For the Hawkes process, the
intensity at which events arrive at time ¢ depends on the history of events prior to time ¢.
Consider an event process (t1, my1),...,(t,, m,) where t; defines the time and m,; the mark

of event i. Let H; = {(¢t;,m;) : t; < t,} represent the entire history of events up to time ¢.
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The conditional intensity of jump arrivals following a Hawkes process is given by

MO Hy) = p+ > gt — ti,my) 2.1)
ity <t

where 1 > 0 and g(s — ¢;,m;) > 0 whenever s > 0 and 0 elsewhere. The conditional
intensity consists of a constant term p and a self-exciting function g(s), which depends on
the time passed since jumps that occurred before ¢ and the size of these jumps. The rate
at which events take place is thus separated in a long-term background component and a
short-term clustering component describing the temporal distribution of aftershocks. The
conditional intensity uniquely determines the distribution of the process.

We consider the following specifications of event triggering functions

Ky
ow t— ti, i) — i 2.2
Ip ( m) (’Y(t—ti)—i-l)l"'wc(m) ( )
gezp(t — ti, mz) = Koe_ﬁ(t_ti)COTLi) (23)

where K controls the maximum intensity of event triggering. Furthermore in (2.3) K,
covers the expected number of events directly triggered by an event in (2.3). In (2.2) the
expected number of direct descendants is covered by the parameter . The influence of the
sizes of past events on the intensity with which events are triggered in the future is given by
c(m;).

The possibility of an event triggering a subsequent event decays according to a power
law distribution for (2.2), while it decays according an exponential distribution for (2.3).
The parameters w and [ determine how fast the possibility of triggering events decays with
respectively the time passed since an event. When w and [ are larger, the possibility that an
event triggers another event dies out more quickly.

As shown in Herrera and Schipp (2009), Chavez-Demoulin et al. (2005) and Chavez-
Demoulin and McGill (2012), the sizes of excess magnitude events in our model follow a

Generalized Pareto Distribution, that is

1= (1re) " c#0

Ge o) () = N
1—e «® E=0



12 A new early warning system

where o (t) = ¢+n )., ., 9(t—ti, m;). We examine models with a constant scale parameter
(n = 0) and a history dependent scale parameter () # 0). The hypothesis underlying the first
class of models states that the sizes of the events are unpredictable, whereas in the second
class of models the times and sizes of previous events affect the probability distribution of
the sizes of subsequent events. The larger 7, the more pronounced is the influence of the
history of events on the size of subsequent events. The mean and variance of the distribution
of the sizes of excess magnitudes events scale with o(t). Therefore when ¢ or 7 is larger, the
events modeled are on average larger and deviate more in size.

In the literature on Hawkes processes, the exponential function is frequently used to
capture the influence of the size of past events on the arrival rate of new events, also when
applied to financial data. Using the exponential form, referred to with the subscript ‘e’, the

impact of the magnitude of an event on the triggering intensity becomes
ce(m;) = e (mi—Mo) (2.4)

There are theoretical reasons to use this functional form for earthquakes; here also other
choices can be made. Therefore we examine two other impact functions. The first function,

referred to with a subscript ‘p’, is the power law function
¢p(ms) = (mi/Mo)* (2.5)

The second function is the impact function preferred by Grothe et al. (2014). They argue that
to accurately extract information from the magnitudes of events, the quantile of magnitude of
the event in the conditional distribution from which it is drawn should be considered. Their

function, referred to with a subscript ‘d’, has the following form
ca(m;) = 1 — alog (1 - Gg,o(t) (mz)) (2.6)

where G¢ (1) is the Generalized Pareto Distribution of the sizes of excess magnitude events.
Using this impact function, the probability of an event ¢ having a magnitude between M,
and m,;, determines ¢’s influence on the triggering intensity. This influence depends on the
history of the event process, whenever the scale parameter of the GPD distribution of the

sizes of the excess magnitude events is not constant (1 # 0).
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Table 2.1: Specification ETAS models

Triggering function Power law Exponential
Model A B C D
Influence event history n=20 n#0 n=20 n#0

Influence magnitudeevents n e p d n e p d n e p d n e p d

In the models indicated by the subscript ‘n’, the influence of the magnitude of events on the triggering subse-
quent events is restricted to zero. In the models referred to with the subscripts ‘e’, ‘p” and ‘d’, the impact of
the sizes of events on the triggering of subsequent events is given by the impact functions (2.4), (2.5) and (2.6)
respectively. The influence of the event history on the magnitude of events is zero when 7 is restricted to 0.

When «a # 0 the intensity at which subsequent events are triggered by a past event is in-
fluenced by the size of this past event. The minimum magnitude of an event is represented by
M,. How the size of an event affects the probability of triggering other events is determined
by a. Assuming that larger events trigger more events than smaller events, so that a > 0,
the probability of triggering events increases with the size past events (1m;). The larger «, the
more pronounced is the influence of the size of events. When 7 > 0 the magnitude of events
is expected to be more extreme when the tension in the financial market is high. Using (2.6)
when 1 > 0 the impact of extreme events in turbulent periods is therefore smaller than in
tranquil periods, when the probability of having these events is lower.

We proceed to investigate several specifications of the ETAS model. We consider both
the power law triggering function (2.2) and the exponential triggering function (2.3) in com-
bination with different functions for the impact of the magnitude of previous events on the
triggering of events in the future as given in (2.4), (2.5) and (2.6). Furthermore in some
models the history of event process can affect the magnitude of events in the future while in
other models there is no such influence. In Table 2.1 we present the configurations of the
different models.

The process is stationary when the expected number of off springs of an event, that is the
branching ratio n, is smaller than 1. When n > 1 the number of events arriving will grow

to infinity over time. The condition for stationarity of the Hawkes process with triggering



14 A new early warning system

function (2.2) and (2.3) can be stated as respectively

> K
/ gpow(t — 1, mz)dt = —0 <1 (27)
0 %
> K
/ gea:p(t - tia mz)dt = FO <1 (28)
0

While Bacry et al. (2012) use a non-parametric kernel estimation technique for a sym-
metric Hawkes process on high frequency data, we prefer parametric kernel estimation to
make the model more interpretable. We can advocate this technique as the literature is not
consistent in which triggering function to use for financial data. A well known stylized fact
of the absolute returns is that they decay roughly according to a power law (Cont, 2001).
Selcuk and Gencgay (2006), Weber et al. (2007) and Petersen et al. (2010) conclude that
the intraday volatility of stock returns above a certain threshold decays roughly according a
power-law, approximating the intraday volatility by the absolute returns. However while for
example Hardiman et al. (2013) find power law functions fit the S&P 500 data, Filimonov
and Sornette (2015) among others report the superior performance of exponential functions.
We consider both functions.

We estimate the parameters 8 = {u, Ko, v, w, 5, «, &, ¢,n} of the models by maximum
likelihood. The log-likelihood of the model is given by

N
log L() = log A(t;|6; Hy) — log o (t) + (1 i l) log (1 LM Mo)
- ¢ 7! (2.9)

T
—/ A(t;]0; Hy)dt
0

where \(t;|0; H;) is the conditional intensity and ¢; are the event arrival times in the interval
[0,7]. We optimize the log-likelihood numerically using the Nelder-Mead simplex direct
search algorithm. The difficulty of accurately estimating the parameters of a Hawkes process
has been well recognized in the literature on Hawkes processes.* After exploiting several
estimation methods and optimization algorithms and testing our procedure on simulated data

series, we found this approach most satisfactory. To check whether the obtained optima are

4See amongst others: Veen and Schoenberg (2008), Chavez-Demoulin and McGill (2012), Hardiman et al.
(2013), Rasmussen (2013), Ait-Sahalia et al. (2015), Filimonov and Sornette (2015) and Bacry et al. (2012)
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not of a local nature, we estimate the models using different starting values. Furthermore we
use models to generate data and estimate the parameters of the models using this data.
The probability of the occurrence of an event following a Hawkes process with condi-

tional intensity \(¢|@; H,;) between t,,_; and t,, is given by

Pr(N(t,) — N(ty_y) > 0) = 1 — Pr (N(t,) — N(t,_1) = 0)

=1—F({t">t,—t, 1) (2.10)

tn
=1—exp <—/ A(t!@;?—lﬁdt)
tn—1

Thus, using the conditional intensity (2.1) specified by the estimated parameters of the ETAS
models and the history of the stock returns, we are able to predict the probability of the
occurrence of an event during a given time period. These probability predictions form the

basis of our Early Warning system.

2.3 Application to Financial Data

We consider data of the S&P 500 index over a period from 2 January, 1957, to 1 September,
2008 to calibrate our models and 5 years thereafter for an out-of-sample evaluation of the
models. The dataset consists of daily returns R; = % x 100, where p, denotes the value
of the index at ¢. Figure 2.1 shows the evolution of the S&P 500 index and also the returns
on this index. Severe drops in the price index and large negative returns corresponding to
these drops, are observed around famous crash periods, “Black Monday” (1987) and the
stock market downturn of 2002 after the “dot-com bubble” (1997-2000). Furthermore the
Figure illustrates the clustering of extreme returns, that is tranquil periods with small price
changes alternate with turbulent periods with large price changes. This clustering feature
can be related to the positive herding behavior of investors and the endogenous growth of
instability in the financial market.

We apply the ETAS models to the 95% quantile of extreme returns and the 95% quantile
of extreme negative returns referred to as extremes and crashes, respectively. The minimum
magnitude M, of the events under consideration corresponding to the 95% quantile of ex-

treme (negative) returns is calculated over the estimation period, that is over a period from

2 January, 1957, to 1 September, 2008. Each quantile includes 687 events from the 13, 738
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trading days. The estimation of various model parameters are presented in Table 2.2 and
Table 2.3.

To give an interpretation to the parameter 1 consider the following. Returns above the
95% threshold not triggered by previous extremes occur on average at a daily rate that ranges
from 0.0059 (model A,) to 0.0082 (model D,). Over the considered time period approxi-
mately 81-113 of the total of 687 events arrived spontaneously according to the models. This
means that about 84-88% of the events were triggered by prior events. For the crashes, the
mean background intensity of events ranges from 0.0077 (model A,,) to 0.0119 (model D,),
so that about 76-85% of the events are triggered by other events according to the models.
Also the branching ratio (n), that is the expected number of direct descendants of an event,
lies in the interval [0.86,0.89], [0.79,0.86], for extremes and crashes respectively, in the
models where the magnitude of an event has no influence on the triggering of descendants
(v = 0). In the models where « is not restricted to zero, the branching ratio differs across
events as it depends on the magnitude of events. However as o > 0 and other parameter
estimates are similar, the expected number of descendants of an event tends to be at least as
high in these models as in the models with o = 0.

We can therefore state that many extreme movements in the S&P 500 index are triggered
by previous extreme movements in this index. This does not come as a surprise as the
clustering and serial dependence of extremes is a well known feature of stock returns. It
confirms our expectation that crashes are local self-enforcing and grow endogenously as
events provoke the occurrence of new events.

The ETAS models with a power law triggering function (models A and B) have a higher
log-likelihood and a lower AIC value, than their counterparts with an exponential triggering
function (models C and D) for both sets of returns. The decay of the triggering probability
seems slower than exponential for our data. When the estimate for w is large or not signifi-
cant, this indicates that other distributions like the exponential or hyperbolic distribution can
be more appropriate.

The estimates for 7 in the models B and D, are positive and significant for both sets of
returns. The models score better in both log-likelihood and AIC value than the models A
and C. This suggests a model which incorporates the history of the event process to prospect
the sizes of subsequent events, matches the extreme (negative) returns closer than a model

which assumes the sizes of events are independent of the past. When > 0, the mean and
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variance of the distribution of the excess magnitudes of the events scale with the value of the
cumulative triggering function, and thus the probability of the arrival of an event triggered by
another event. This means that on average larger extremes are observed after the occurrence
of more and/or big events than after a tranquil period.

Comparing the ETAS models in which the intensity does not depend on the sizes of
prior events, i.e. with the parameter restriction @ = 0, to the ETAS models without this
restriction, the magnitude of an extreme has a significant positive influence on the probability
of triggering another extreme for both sets of returns. This means that on average larger
events trigger more events than smaller events. The models A, B, C and D with either the
subscript ‘e’, ‘p’ or ‘d’, have a higher ranking both in terms of log-likelihood as in AIC
value than their counterparts with o« = 0, that is model A,, B,, C,, and D,, respectively.
Incorporating the size of the events into an ETAS model for the extreme (negative) returns
thus improves the model. Amongst the models with o # 0, the models with the exponential
function (2.4) perform the worst for the extreme returns as well as for the extreme negative
returns. Therefore, we can indeed conclude that there are no solid reasons to use this function
to describe the influence of the magnitude of events on the triggering intensity. For the
crashes, and the extremes whenever 7) is restricted to zero, the power law function (2.5) is
preferred over the other two impact specifications. For the extremes the impact function of
Grothe et al. (2014) (2.6) performs best when 7 # 0. In this model the impact of the sizes of
events is smaller in turbulent periods than in tranquil periods.

A likelihood ratio test shows that all the estimated parameters of the models are signifi-
cant at a 5% level. All together model B with a power law triggering function, and non-zero
influence of the size of the events on the triggering of subsequent events and predictable
event sizes, fits best according to the log-likelihoods and AIC values for both the extremes
and crashes. However for the extremes the impact function as specified in (2.6) is preferred,
while for the crashes the impact function (2.5) gives slightly better results.

Figure 2.2 presents the intensity with which extremes and crashes occur estimated with
respectively model B, and B, over the estimation period, that is from 2 January, 1957, to
1 September, 2008. The estimated intensity shows large spikes around the famous crash
periods, “Black Monday” (1987) and the “stock market downturn of 2002 (2002) after the
“dot-com bubble” (1997-2000). As expected, the rate at which events arrive is high around

crashes, reflecting the increase in the triggering probability after the occurrence of events.



Figure 2.1: S&P 500 index
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Table 2.3: Estimation results crashes

A, B, Y D, A, B. C, D. A, B, c, D, Ay By Cy Dy
" 0.0077 0.0084 0.0102 0.0105 0.0080 0.0087 0.0106 0.0112 0.0082 0.0093 0.0108 0.0119 0.0082 0.0077 0.0108 0.0107
(0.0020) (0.0019) (0.0015) (0.0015) (0.0020) (0.0020) (0.0016) (0.0015) (0.0020) (0.0020) (0.0016) (0.0016) (0.0020) (0.0020) (0.0016) (0.0015)
Ko 0.0337 0.0358 0.0280 0.0208 0.0309 0.0325 0.0258 0.0265 0.0289 0.0281 0.0242 0.0231 0.0284 0.0211 0.0240 0.0181
(0.0052) (0.0051) (0.0036) (0.0034) (0.0049) (0.0048) (0.0035) (0.0032) (0.0050) (0.0044) (0.0037) (0.0031) (0.0052) (0.0049) (0.0039) (0.0038)
~ 0.0257 0.0244 0.0270 0.0300 0.0282 0.0344 0.0284 0.0313
(0.0142) (0.0141) (0.0146) (0.0160) (0.0150) (0.0173) (0.0150) (0.0155)
w 1.5200 1.7428 1.4670 1.4645 1.4256 1.3355 1.4204 1.2934
(0.7537) (0.8974) (0.7061) (0.6949) (0.6752) (0.5985) (0.6686) (0.5748)
] 0.0351 0.0377 0.0354 0.0382 0.0359 0.0398 0.0360 0.0357
(0.0047) (0.0044) (0.0047) (0.0044) (0.0048) (0.0047) (0.0048) (0.0044)
o 0.0983 0.1302 0.0939 0.1249 0.4322 0.7351 0.3943 0.6828 0.2035 0.6499 0.1766 0.5544
(0.0341) (0.0205) (0.0348) (0.0211) (0.1840) (0.1324) (0.1837) (0.1329) (0.1209) (0.2671) (0.1114) (0.2284)
¢ 0.2885 0.1842 0.2885 0.1858 0.2885 0.1641 0.2885 0.1679 0.2885 0.1559 0.2885 0.1613 0.2884 0.1582 0.2881 0.1634
(0.0479) (0.0414) (0.0479) (0.0412) (0.0479) (0.0402) (0.0479) (0.0401) (0.0479) (0.0400) (0.0479) (0.0398) (0.0479) (0.0400) (0.0479) (0.0399)
¢ 0.5550 0.2374 0.5550 0.2463 0.5550 0.2483 0.5550 0.2585 0.5550 0.2555 0.5550 0.2656 0.5550 0.2487 0.5552 0.2596
(0.0334) (0.0289) (0.0334) (0.0283) (0.0334) (0.0293) (0.0334) (0.0286) (0.0334) (0.0295) (0.0334) (0.0288) (0.0334) (0.0308) (0.0334) (0.0297)
n 0.1459 0.1216 0.1289 0.1044 0.1095 0.0894 0.0830 0.0712
(0.0245) (0.0171) (0.0224) (0.0154) (0.0202) (0.0145) (0.0211) (0.0164)
log L(6) —2928.44 —2867.73 —2031.76 —2870.74 —2026.29 —2858.83 —2029.83 —2862.72 —2026.14 —2856.21 —2029.81 —2860.64 —2926.15 —2856.42 —2929.85 —2860.87
AIC 5868.88 5747.46 5877.53 5753.49 5866.59 5731.66 5875.65 5739.44 5866.27 5728.41 5871.62 5735.29 5866.31 5728.85 5871.69 5735.73

The models are applied to the 95% quantile of extreme negative returns on the S&P 500 index over the period January 2, 1957, until September 1, 2008. Model A and B
correspond to an ETAS model with a power law triggering function. Model C and D correspond to an ETAS model with an exponential triggering function. In model A
and C the history of the events has no influence on the magnitude of subsequent events, that is the parameter restriction 7 = 0 is imposed. In the models indicated by the
subscript ‘n’, the influence of the magnitude of events on the triggering subsequent events is restricted to zero. In the models referred to with the subscripts ‘e’, ‘p’ and ‘d’,
the impact of the sizes of events on the triggering of subsequent events is given by the impact functions (2.4), (2.5) and (2.6) respectively. Standard deviations are shown in

between parentheses.
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2.4 Goodness-of-fit

2.4.1 Simulation

To check whether our estimated models can reproduce features of the extreme (negative)
returns we develop two different simulation procedures and compare their generated data
with the observed data. While in the first procedure the probability of occurrence of an event
is used to realize a series of events in discrete time, the second procedure is carried out in
continuous time employing the branching structure of the ETAS model. In the first procedure
events can occur at a daily frequency. In the second procedure event times are not integers
and multiple events can occur during one day. As the first procedure seems to resemble
the data generating process more closely, we only discuss results from this procedure. Both
procedures can be found in the appendix.

We generate 1000 data series from the models using the parameters estimates derived
from the extreme negative returns on the S&P 500 index (Table 2.3). We set the sample
period equal to the number of trading days over which we estimated the models for the
S&P 500 crashes. Estimation results for these series are shown in Table 2.4. One thing that
stands out is the estimation results of the ETAS models with a power law triggering function
(models A and B) are not so satisfactory. The maximum likelihood estimation does not
converge in a number of simulations. Furthermore the estimated & of the triggering functions
deviate much from the w used to simulate the data and the standard deviations of the W are
much larger than the standard deviation of & derived from the crashes. The estimates for
w derived from data series generated with a continuous time procedure are much closer to
values used to simulate the series. Also the standard deviations of these w are much smaller.

We have examined several methods to simulate and estimate the ETAS model with the
power law triggering function. When estimating the models, the Expectation-Maximization
procedure of Veen and Schoenberg (2008), the Bayesian procedure of Rasmussen (2013) and
gradient-based optimization algorithms give inferior results in terms of speed and robustness
for our kind of data. The estimated ETAS models with the exponential triggering function
(models C and D) appear more reliable.

In Figure 2.3 the S&P 500 crashes are compared to a series simulated with the discrete

time procedure from model B), (power law triggering function) and D,, (exponential trigger-
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ing function). In these models the influence of the magnitude on the triggering of subsequent
events and the influence of the history of the event process on the sizes of subsequent events,
are both non-zero. For crashes, Model B, has the highest log-likelihood and lowest AIC
value amongst the models. The simulated series share the major features characteristic to the
models and similar to the crashes like the clustering of events, heavy-tailed distributed event
sizes, and large events are especially observed after the occurrence of more and/or other big
events.

When looking at the figures the S&P 500 crashes are more similar to the events simulated
from model B,. Histograms show that the data simulated with model D, differ from the
S&P 500 data because many fewer event pairs are observed with a shorter inter event time.
Examining graphs of the logarithm of the cumulative number of events against the logarithm
of time, the events from model D, seem to deviate more from the S&P 500 crashes than the
events from model B,. Also the clustering feature in the magnitude-time plots, being more
pronounced for model B, than for model D, indicates model B, should be preferred above

model D, to match the S&P data.

2.4.2 Residual analysis

We also assess the goodness-of-fit of our models using the residual analysis technique of
Ogata (1988). This method states that if the event process {;} is generated by the conditional

intensity A(t), the transformed times

t;
T = / A(t)dt 2.11)
0

are distributed according a homogeneous Poisson process with intensity 1. Furthermore the

transformed interarrival times, that is

t;
t

i—1

are independent exponential random variables with mean 1. If the models are correctly
specified, A(t) can be approximated by /\(t|§; H.). The sequence {r;} is called the residual
process. In order to verify whether the residual process derived from the models is Poisson

with unit intensity, we perform the Kolmogorov-Smirnov (KS) test. The null hypothesis of
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Figure 2.3: S&P 500 crashes and series simulated in discrete time
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The S&P 500 crashes are shown together with a data series from model B, and model D), generated with the discrete time procedure. Histograms of times between events,

plots of the logarithm of the cumulative number of events against the logarithm of time, and figures in which the magnitudes and times of the events are presented in this
Figure.
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Table 2.5: Kolmogorov-Smirnov tests

A B, G, D, A B ¢ D A B, G D, A By Ci Dy

Crash 95 % 0.152 0.064 0.052 0.204 0.256 0.107 0.086 0.323 0.604 0.198 0.227 0.570 0.333 0.206 0.104 0.600
97 % 0.122 0.071 0.056 0.134 0.114 0.079 0.050 0.148 0.292 0.134 0.127 0.252 0.083 0.147 0.036 0.284
99 % 0.096 0.045 0.036 0.101 0.051 0.024 0.019 0.058 0.092 0.041 0.033 0.097 0.055 0.065 0.020 0.152
Extreme 95 % 0.200 0.154 0.104 0.235 0.343 0.274 0.177 0.410 0.621 0.551 0.432 0.748 0.174 0.539 0.085 0.732
97 % 0.185 0.110 0.076 0.222 0.178 0.119 0.075 0.234 0.493 0.268 0.211 0.522 0.064 0.313 0.022 0.607
99 % 0.142 0.077 0.060 0.159 0.036 0.022 0.014 0.046 0.053 0.031 0.020 0.066 0.018 0.039 0.006 0.088

The tests are performed on the transformed times {;} specified by the models. The models are applied to the
95% to 99% quantile of the extreme (negative) returns on the S&P 500 index over the period January 2, 1957,
until September 1, 2008. The null hypothesis of the test is transformed times {7;} are distributed according to
a homogeneous Poisson process with intensity 1. In the Table the p-values of the Kolmogorov-Smirnov tests
for the 95%, 97% and 99% quantile are reported.

our test is that the distribution of the residual process and the unit Poisson distribution are
equal.

The KS tests are performed on the transformed times derived by applying the ETAS
models to the 95% to 99% quantile of the extreme (negative) returns. The p-values of the
tests for the 95%, 97% and 99% quantile are reported in Table 2.5. Figure 2.4 shows the
cumulative number of S&P 500 crashes for the 95% quantile against the transformed times
derived from models B, and Dy. The 95% and 99% error bounds of the KS statistic are also
displayed in the Figure. The first model fits the data best according to the log-likelihood and
AIC scores, while the second model seems most appropriate when looking at the results of
the residual analysis.

The p-values and the Figure indicate that for all models extreme (negative) returns above
the 95% quantile do not deviate from an event process specified by the model at a 5% level.
At a 5% level the extreme (negative) returns above the 99% quantile are not correctly speci-
fied by many models. Furthermore, model C, the model with the exponential triggering func-
tion and unpredictable event sizes, gives low(er) p-values, such that it seems less appropriate
to model both extremes and crashes than the other models, especially in combination with
the impact function specified by Grothe et al. (2014) (2.6). The models without influence of
the magnitude of events on the triggering intensity and the models with an exponential im-
pact function have lower p-values than their counterparts with a power law impact function
for all sets of returns. Overall, model D, the model with the exponential triggering function
and predictable event sizes, in combination with (2.6) for the influence of the sizes of events

on the triggering intensity, seems to fit the data best.
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Figure 2.4: Residual analysis for the S&P 500 crashes 95% quantile
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Cumulative number of events against the transformed time {7; }. The red lines indicate the 95% and 99% error
bounds of the Kolmogorov-Smirnov statistic.

2.5 Forecasting

2.5.1 Early Warning System

The identification of financial market crashes is of great importance to traders, regulators of
financial markets and risk management. They can benefit from an Early Warning System
that sets an alarm when the probability of a crash becomes too high, urging the traders, reg-
ulators and risk managers to take action. We develop an Early Warning System for extremes
and crashes in the financial market within a certain time period using the conditional inten-
sity specified by the estimated parameters of the ETAS models and the history of the stock
returns. The probability of an extreme or a crash occurring between ¢,,_; and ¢,, is given by
(4.7). The minimum magnitude M, of the events under consideration corresponding to the
95-99% quantile of extreme (negative) returns is calculated over the estimation period, that
is over a period from 2 January, 1957, to 1 September, 2008. As we do not calculate the
threshold value for events over the out-of-sample period, there is no look-ahead bias.

To evaluate the performance of the EWS, we use measures reporte