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Chapter 1

Introduction

1.1 Introduction

The identification and prediction of financial market crashes is very important to traders,

regulators of financial markets and risk management because a series of large negative price

movements during a short time interval can have severe consequences. For example, on

Black Monday, that is October 19, 1987, the S&P 500 index registered its worst daily per-

centage loss of 20.5%. During the recent credit crisis in 2008, the S&P 500 index declined

dramatically for numerous days, thereby suffering its worst yearly percentage loss of 38.5%.

Unfortunately, crashes are not easy to predict, and there is a need for tools to improve fore-

casts of the timing of a series of large negative price movements in financial markets.

To initiate the construction of a modeling framework for stock market crashes, it is im-

portant to understand what are potential causes of such crashes. Sornette (2003) summarizes

that computer trading, increased trading of derivative securities, illiquidity, trade and budget

deficits, and overvaluation, can provoke subsequent large negative price movements. More

importantly, Sornette points out that speculative bubbles leading to crashes are likely to re-

sult from the positive herding behavior of investors. This positive herding behavior causes

crashes to be locally self-enforcing. Hence, while bubbles can be triggered by an exogenous

factor, instability grows endogenously. A model for stock market crashes should therefore

be able to capture this self-excitation. Such a self-excitation can also be observed in seismic

behavior around earthquake sequences, where an earthquake usually generates aftershocks

which in turn can generate new aftershocks and so on. For many academics (and perhaps



2 Introduction

practitioners), earthquakes and stock returns therefore share characteristics observable as the

clustering of extremes and serial dependence.

This thesis focuses on the identification and prediction of crashes using Hawkes pro-

cesses (Chapter 2 en 4), on testing these Hawkes processes for correct specification (Chapter

3), and on the estimation of Hawkes processes using option prices in a non-affine continuous-

time setting (Chapter 5). Hawkes processes, first proposed by Hawkes (1971), match the

self-exciting behavior of stock returns around a financial market crash, which is similar to

the seismic activity around earthquakes. The jump rate of the Hawkes process increases

when a jump (or shock) arrives after which the rate decays as a function of the time passed

since the jump. As the probability of jumps increases after a jump has occurred, the Hawkes

process is thus called self-exciting. Hence, while events can be triggered by an exogenous

factor, for a Hawkes process the risk of events grows endogenously. Characteristics typically

observed in data that fit Hawkes models, are the clustering of events and serial dependence.

The Hawkes process was first applied in the so called Epidemic Type After Sequence

(ETAS) model, to model the occurrence rate of earthquakes above a certain threshold. This

model has been developed by Ogata (1988) and its use for earthquakes is widely investigated

by geophysicists.1 Thereafter the ETAS model has been exploited for crime rates (Mohler

et al., 2011) and the spread of red banana plants (Balderama et al., 2012). More interesting

is that the ETAS model (in the financial literature often referred to as Hawkes model) is

applied to financial data, for example to model arrival data of buy and sell trades (Hewlett,

2006), the duration between trades (Bauwens and Hautsch, 2009) and the returns on one

of more indices.2 This thesis focuses on the latter application of the Hawkes process. The

Hawkes modeling framework differs from Extreme Value models as the framework allows

for dependencies across arrival times and magnitudes of shocks. At the same time, the

framework differs from well known and commonly used volatility models, as it is capable

of generating highly insightful forecasts without stringent assumptions on the tail behavior

of error distributions. This makes the modelling framework rather easy to implement and

understand in practice.

1See amongst others: Ogata (1988), Helmstetter and Sornette (2002), Zhuang et al. (2002), Zhuang et al.
(2004), Saichev et al. (2005), Hardebeck et al. (2008), and Veen and Schoenberg (2008).

2See amongst others: Chavez-Demoulin et al. (2005), Herrera and Schipp (2009), Embrechts et al. (2011),
Grothe et al. (2014) and Aı̈t-Sahalia et al. (2015).
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Earthquakes exhibit clustering behaviour in space as well as in time. Like earthquake

sequences, financial shocks seem to cluster in a dimension other than the time dimension.3

Extreme stock returns across markets are found to be more correlated than small returns

(Bae et al., 2003). They occur more frequently at the same time than expected under the

assumption of a normal dependence structure (Mashal and Zeevi, 2002; Hartmann et al.,

2004; Sun et al., 2009). This suggests that different financial markets experience stress at

the same time. For example, volatility spillover effects between stock markets have been

detected in numerous studies.4 Interpreting volatility as a measure for the tension, these

findings indicate that stress from financial markets pours over to other financial markets.

The consequences of this cross-dependence between markets became more apparent dur-

ing the financial crisis of 2008, also mentioned in the first paragraph of this introduction. This

crisis demonstrated the overlap of periods in which financial markets are subject to tension

with extreme price movements as a result. For example, on September 29, October 15 and

December 1 in 2008 the S&P 500, the Dow Jones Industrial Average (DJI) and the NAS-

DAQ, all suffered top 20 percentage losses. Furthermore, on September 29 the euro/dollar

rate and the pound/dollar rate also dropped by a large amount, while the US bond market

boomed. On the 16th of October, just one day after the major US stock markets crashed, and

on the 1th of December both currencies fell again sharply. Moreover, 4 days after these dates

US bond prices shifted significantly upward.

In Chapter 3 and 4, we aim to model the dependence between financial markets. That

is, we extend the univariate Hawkes modelling framework to allow extreme events in one

financial market to trigger the occurrence and/or the magnitude of extreme events in other

markets. In these chapters, we assess whether incorporating cross-sectional dependence

improves in- and out-of-sample performance of Hawkes models. This way we confirm that

financial shocks exhibit clustering behaviour in the cross section on top of the clustering

behaviour in the time dimension.

As option prices reflect expected future stock returns, exploiting the information in option

prices can be used to estimate Hawkes models for stock returns more accurately. Even though

affine model specifications are far more popular as they provide closed-form derivative prices

3See amongst others: Eun and Shim (1989), Fischer and Palasvirta (1990), King and Wadhwani (1990), Lin
et al. (1994) and Connolly and Wang (2003).

4See amongst others: Hamao et al. (1990), Bae and Karolyi (1994), Koutmos and Booth (1995), Booth et al.
(1997) and Kanas (1998).



4 Introduction

which facilitates model calibration using option prices, non-affine specifications, seems to fit

and predict asset prices considerably better.5 However, it is very computationally demanding

to estimate such models when non-affine dynamics are assumed. In Chapter 5, a framework

is developed to estimate non-affine Hawkes models using MCMC and particle methods in a

learning setting with latent volatility and jump states as a by-product. Utilizing information

from option prices, the compensation investors receive for diffusive and jump risk can be

derived using this framework which can not be identified from stock prices alone (Andersen

et al., 2015b). Santa-Clara and Yan (2010), Bollerslev and Todorov (2011), Bollerslev et al.

(2015), Andersen et al. (2015b) and Boswijk et al. (2015) show that the compensation for the

risk of jumps, not attributable to volatility, explains to a large extent the equity and variance

risk premia, of which the last one can be seen an indication of the fear of investors. Therefore,

disentangling of volatility and jump components in risk premia using option prices provides

one with important information regarding the state and development of the financial market

with far-reaching implications for asset allocation, hedging, and risk management.

1.2 Outline

Chapter 2 is based on Gresnigt et al. (2015), in which we use the ETAS model as a tool to

create probability predictions for an upcoming crash (read: earthquake) in a financial market

on the medium term, like sometime in the next five days. A large literature in finance has

focused on predicting the risk of downward price movements one-step ahead with measures

like Value-at-Risk and Expected Shortfall. Our approach differs as we interpret financial

crashes as earthquakes in the financial market, which allows us to develop an Early Warning

System (EWS) for crash days within a given period. Testing our EWS on S&P 500 data

during the recent financial crisis, we find positive Hanssen-Kuiper Skill Scores. Further-

more, our modeling framework is capable of exploiting information in the returns series not

captured by well known and commonly used volatility models. EWS based on our models

outperform EWS based on the volatility models forecasting extreme price movements, while

forecasting is much less time-consuming.

5Chernov et al. (2003), Jones (2003), Christoffersen et al. (2010), Kaeck and Alexander (2012), Durham
(2013) and Ignatieva et al. (2015) find non-affine models should be preferred above affine models as they
are more flexible and better capable of modeling the tails of the heavy-tailed asset return distribution, while
remaining equally parsimonious.
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Of course, to accurately identify and predict the occurrence of extreme price movements

in financial markets using ETAS models, these models should be properly specified. Hence,

specification tests for Hawkes processes are essential. Chapter 3 is based on Gresnigt et al.

(2016a), in which we propose various specification tests for Hawkes models based on the

Lagrange Multiplier (LM) principle. Our testing focus is on extending a univariate model

to a multivariate model, that is, we examine whether there is a conditional dependence be-

tween series of extreme events in (different) markets. Thereby we fill the gap in the financial

literature which, despite efforts to detect dependence between series (Hartmann et al., 2004;

Gonzalo and Olmo, 2005; Hu, 2006), insufficiently describes how to adequately assess the

contribution of cross-sectional dependence in a point process framework with serial depen-

dence. LM based specification tests can also be used to test for omitted explanatory variables,

breaks in the model parameters, omitted impact of the sizes of events on the triggering of new

events and omitted predictability of event sizes. Simulations show that the test has good size

and power, in particular for sample sizes that are typically encountered in practice. More-

over, in contrast to de Likelihood Ratio test, the LM test does not require estimation under

the alternative hypothesis. As the LM test performs comparable to the LR test and is a lot

less time consuming, this test is to be preferred in our opinion. Applying the specification

test for dependence to US stocks, bonds and exchange rate data, we find strong evidence

for cross-excitation within segments as well as between segments, which cannot simply be

explained by volatility spillovers. Therefore, we recommend that univariate Hawkes models

be extended to account for the cross-triggering phenomenon.

Nowadays, a large literature focuses to the modeling of extremal dependence between

financial markets, though with an in-sample focus.6 Chapter 4 is based on Gresnigt et al.

(2016b), in which we extend these studies on contagion, as we examine whether incorpo-

rating this dependence improves forecasts. We follow the recommendation of Chapter 3

Gresnigt et al. (2016a), and utilize Hawkes models in which events are triggered through

self-excitation as well as cross-excitation to create our forecasts. The models are applied

to US stocks, bonds and dollar exchange rates. We predict the probability of crashes in the

series and the Value-at-Risk over a period that includes the financial crisis of 2008 using a

moving window. Out-of-sample, we find that the models that include cross-triggering effects

6See amongst others: Longin and Solnik (1995), Poon et al. (2003), Poon et al. (2004), Bekaert et al. (2010),
Grothe et al. (2014), and Aı̈t-Sahalia et al. (2015).
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forecast crashes and the Value-at-Risk significantly more accurately than the models without

these effects.

Chapter 5 contains a research proposol. In this Chapter a framework is proposed in which

option prices are used to estimate continous-time Hawkes models more accurately. The

framework is very general and allows for models to be of the non-affine type, in which asset

prices do not have an analytical characteristic function. Using learning methods, models

are efficiently estimated and assessed sequentially such that models can be updated quickly

when new information arrives. Within the framework, MCMC techniques (Lindsten et al.,

2014) and particle filtering methods (Pitt and Shephard, 1999; Johannes et al., 2009) are used

to derive the distribution of the model parameters and the latent volatility and jump process.

The estimation framework is very flexible and can be made fit to tailor the application at

hand. For example the technique can be extended to the multivariate case as it does not

require direct optimization of a multidimensional integral which is a problem in several clas-

sic estimation frameworks that consider option prices. This makes the estimation technique

very attractive for further investigation as Chapter 3 and 4 show jump intensities are mutu-

ally exciting. Furthermore, the framework allows information from options to be utilized at

a lower frequency than the information of asset prices to estimate models. Including option

prices in the estimation of models not only increases accuracy, also it allows one to derive

to derive the different compensations investors require for taking on diffusive and jump risk.

This provides insight in the state and development of the financial market with important

guidance for risk management.



Chapter 2

Interpreting financial market crashes as

earthquakes: A new early warning

system for medium term crashes

2.1 Introduction

This paper proposes a modeling framework that draws upon the self-exciting behavior of

stock returns around a financial market crash, which is similar to the seismic activity around

earthquakes.1 Incorporating the tendency for shocks to be followed by new shocks, our

framework is able to create probability predictions on a medium-term financial market crash.

A large literature in finance has focused on predicting the risk of downward price movements

one-step ahead with measures like Value-at-Risk and Expected Shortfall. Our approach dif-

fers however as we interpret financial crashes as earthquakes in the financial market, which

allows us to develop an Early Warning System (EWS) for crash days within a given period.

The EWS is tested on S&P 500 data during the recent financial crisis, starting from Septem-

ber 1, 2008. As will become apparent in later sections, our modeling framework differs

from Extreme Value models as we allow dependencies across arrival times and magnitudes

of shocks. At the same time, our framework differs from the conventional GARCH models

by generating highly insightful medium term forecasts, while not having to make stringent

1This Chapter is based on Gresnigt et al. (2015)
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assumptions on the tail behavior of error distributions. This makes our approach rather easy

to implement and understand in practice.

The identification and prediction of crashes is very important to traders, regulators of

financial markets and risk management because a series of large negative price movements

during a short time interval can have severe consequences. For example, on Black Monday,

that is October 19, 1987, the S&P 500 index registered its worst daily percentage loss of

20.5%. During the recent credit crisis, financial indices declined dramatically for numerous

days, thereby suffering its worst yearly percentage loss of 38.5 % in 2008. Unfortunately,

crashes are not easy to predict, and there still is a need for tools to accurately forecast the

timing of a series of large negative price movements in financial markets.

To initiate the construction of our modeling framework for stock market crashes, we first

focus on the potential causes of such crashes. Sornette (2003), summarizes that computer

trading, and the increased trading of derivative securities, illiquidity, and trade and bud-

get deficits and also overvaluation can provoke subsequent large negative price movements.

More importantly, Sornette (2003) points out that speculative bubbles leading to crashes

are likely to result from a positive herding behavior of investors. This positive herding be-

havior causes crashes to be locally self-enforcing. Hence, while bubbles can be triggered

by an exogenous factor, instability grows endogenously. A model for stock market crashes

should therefore be able to capture this self-excitation. Notably, such a self-excitation can

also be observed in seismic behavior around earthquake sequences, where an earthquake

usually generates aftershocks which in turn can generate new aftershocks and so on. For

many academics (and perhaps practitioners), earthquakes and stock returns therefore share

characteristics typically observable as the clustering of extremes and serial dependence.

Potential similarities across the behavior of stock returns around crashes and the dy-

namics of earthquake sequences have been noted in the so-called econophysics literature, in

which physics models are applied to economics.2 In contrast to the studies in the econo-

physics literature and also to related studies like Bowsher (2007) and Clements et al. (2013),

in our framework we do not model the (cumulative) returns but only the extreme returns. As

such, we most effectively exploit the information contained in the returns about the crash be-

havior. As Aı̈t-Sahalia et al. (2015) already show, only taking the jump dynamics of returns

2See amongst others: Sornette (2003), Weber et al. (2007), Petersen et al. (2010), Baldovin et al. (2011),
Baldovin et al. (2013), Baldovin et al. (2015), and Bormetti et al. (2015)
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into account to approximate the timing of crashes gives more accurate results than using the

full distribution of the returns. As is well known, the distribution of stock returns is more

heavy-tailed than the Gaussian distribution as extreme returns occur more often than can be

expected under normality. Furthermore, the distribution of stock returns is usually negatively

skewed. As risk in financial markets is predominantly related to extreme price movements,

we propose to model only extreme (negative) returns in order to improve predictions.

To model the extreme (negative) returns we use a particular model that is often used

for earthquake sequences, and which is the so-called Epidemic-type Aftershock Sequence

model (ETAS). This model has been developed by Ogata (1988) and its use for earthquakes

is widely investigated by geophysicists.3 In the ETAS model a Hawkes process, an inhomo-

geneous Poisson process, is used to model the occurrence rate of earthquakes above a certain

threshold. The jump rate of the Hawkes process increases when a jump (or shock) arrives

after which the rate decays as a function of the time passed since the jump. As the probability

of jumps increases after a jump has occurred, the Hawkes process is thus called self-exciting.

The ETAS model has been exploited for crime rates (Mohler et al., 2011) and for the spread

of red banana plants (Balderama et al., 2012). Interestingly, the ETAS model has also been

applied to financial data, for example to model arrival data of buy and sell trades (Hewlett,

2006), the duration between trades (Bauwens and Hautsch, 2009) or the returns on multiple

indices (Embrechts et al., 2011; Grothe et al., 2014; Aı̈t-Sahalia et al., 2015).

Our modeling framework entails that we use the ETAS model as a tool to warn for an

upcoming crash (read: earthquake) in a financial market. As Herrera and Schipp (2009),

Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill (2012), already showed

when deriving their Value-at-Risk and Expected Shortfall estimates, the ETAS model can

contribute to the modeling and prediction of risk in finance. However, in contrast to Her-

rera and Schipp (2009), Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill

(2012) who do not provide a practical tool like an Early Warning System or an easily inter-

pretable measure to quantify the risk of crashes, we provide a ready-to-use application of the

information from an estimated ETAS model by means of an EWS.

In somewhat more detail, we consider several specifications of the key triggering func-

tions. The parameters of the ETAS models are estimated by maximum likelihood. And, to

3See amongst others: Ogata (1988), Helmstetter and Sornette (2002), Zhuang et al. (2002), Zhuang et al.
(2004), Saichev et al. (2005), Hardebeck et al. (2008), and Veen and Schoenberg (2008)
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judge the fit of the different models, we compare the log-likelihoods and Akaike information

criterion (AIC) values. We also develop simulation procedures to graphically assess whether

data generated by the models can reproduce features of, for example, the S&P 500 data. The

correctness of the ETAS model specification is further evaluated by means of the residual

analysis methods as proposed in Ogata (1988). We review the performance of our Early

Warning System using the hit rate and the Hanssen-Kuiper Skill Score, and compare it to

EWS based on some commonly used and well known volatility models.

The estimation results confirm that crashes are self-enforcing. Furthermore we find that

on average larger events trigger more events than smaller events and that larger extremes are

observed after the occurrence of more and/or big events than after a tranquil period. Testing

our EWS on S&P 500 data during the recent financial crisis, we find positive Hanssen-

Kuiper Skill Scores. Thus as our modeling framework exploits the self-exciting behavior

of stock returns around financial market crashes, it is capable of creating crash probability

predictions on the medium term. Furthermore our modeling framework seems capable of

exploiting information in the returns series not captured by the volatility models.

Our paper is organized as follows. In Section 2 the model specifications are discussed,

as well as the estimation method. Estimation results are presented in Section 3. Section 4

contains an assessment of the models by means of simulations and residual analysis. The

Early Warning Systems are reviewed in Section 5 and compared to EWS based on volatility

models in Section 6. Section 7 concludes also with directions for further research.

2.2 Models

The Epidemic-Type Aftershock Sequence (ETAS) model is a branching model, in which

each event can trigger subsequent events, which in turn can trigger subsequent events of

their own. The ETAS model is based on the mutually self-exciting Hawkes point process

(Hawkes, 1971), which is an inhomogeneous Poisson process. For the Hawkes process, the

intensity at which events arrive at time t depends on the history of events prior to time t.

Consider an event process (t1,m1),...,(tn,mn) where ti defines the time and mi the mark

of event i. Let Ht = {(ti,mi) : ti < tg} represent the entire history of events up to time t.
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The conditional intensity of jump arrivals following a Hawkes process is given by

λ(t|θ;Ht) = µ+
∑
i:ti<t

g(t− ti,mi) (2.1)

where µ > 0 and g(s − ti,mi) > 0 whenever s > 0 and 0 elsewhere. The conditional

intensity consists of a constant term µ and a self-exciting function g(s), which depends on

the time passed since jumps that occurred before t and the size of these jumps. The rate

at which events take place is thus separated in a long-term background component and a

short-term clustering component describing the temporal distribution of aftershocks. The

conditional intensity uniquely determines the distribution of the process.

We consider the following specifications of event triggering functions

gpow(t− ti,mi) =
K0

(γ(t− ti) + 1)1+ω
c(mi) (2.2)

gexp(t− ti,mi) = K0e
−β(t−ti)c(mi) (2.3)

where K0 controls the maximum intensity of event triggering. Furthermore in (2.3) K0

covers the expected number of events directly triggered by an event in (2.3). In (2.2) the

expected number of direct descendants is covered by the parameter γ. The influence of the

sizes of past events on the intensity with which events are triggered in the future is given by

c(mi).

The possibility of an event triggering a subsequent event decays according to a power

law distribution for (2.2), while it decays according an exponential distribution for (2.3).

The parameters ω and β determine how fast the possibility of triggering events decays with

respectively the time passed since an event. When ω and β are larger, the possibility that an

event triggers another event dies out more quickly.

As shown in Herrera and Schipp (2009), Chavez-Demoulin et al. (2005) and Chavez-

Demoulin and McGill (2012), the sizes of excess magnitude events in our model follow a

Generalized Pareto Distribution, that is

Gξ,σ(t)(x) =

 1−
(

1 + ξ x
σ(t)

)−1/ξ

ξ 6= 0

1− e−
x
σ(t) ξ = 0
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where σ(t) = φ+η
∑

i:ti<t
g(t−ti,mi). We examine models with a constant scale parameter

(η = 0) and a history dependent scale parameter (η 6= 0). The hypothesis underlying the first

class of models states that the sizes of the events are unpredictable, whereas in the second

class of models the times and sizes of previous events affect the probability distribution of

the sizes of subsequent events. The larger η, the more pronounced is the influence of the

history of events on the size of subsequent events. The mean and variance of the distribution

of the sizes of excess magnitudes events scale with σ(t). Therefore when φ or η is larger, the

events modeled are on average larger and deviate more in size.

In the literature on Hawkes processes, the exponential function is frequently used to

capture the influence of the size of past events on the arrival rate of new events, also when

applied to financial data. Using the exponential form, referred to with the subscript ‘e’, the

impact of the magnitude of an event on the triggering intensity becomes

ce(mi) = eα(mi−M0) (2.4)

There are theoretical reasons to use this functional form for earthquakes; here also other

choices can be made. Therefore we examine two other impact functions. The first function,

referred to with a subscript ‘p’, is the power law function

cp(mi) = (mi/M0)α (2.5)

The second function is the impact function preferred by Grothe et al. (2014). They argue that

to accurately extract information from the magnitudes of events, the quantile of magnitude of

the event in the conditional distribution from which it is drawn should be considered. Their

function, referred to with a subscript ‘d’, has the following form

cd(mi) = 1− α log
(
1−Gξ,σ(t)(mi)

)
(2.6)

where Gξ,σ(t) is the Generalized Pareto Distribution of the sizes of excess magnitude events.

Using this impact function, the probability of an event i having a magnitude between M0

and mi, determines i’s influence on the triggering intensity. This influence depends on the

history of the event process, whenever the scale parameter of the GPD distribution of the

sizes of the excess magnitude events is not constant (η 6= 0).
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Table 2.1: Specification ETAS models

Triggering function Power law Exponential

Model A B C D
Influence event history η = 0 η 6= 0 η = 0 η 6= 0

Influence magnitude events n e p d n e p d n e p d n e p d
In the models indicated by the subscript ‘n’, the influence of the magnitude of events on the triggering subse-
quent events is restricted to zero. In the models referred to with the subscripts ‘e’, ‘p’ and ‘d’, the impact of
the sizes of events on the triggering of subsequent events is given by the impact functions (2.4), (2.5) and (2.6)
respectively. The influence of the event history on the magnitude of events is zero when η is restricted to 0.

When α 6= 0 the intensity at which subsequent events are triggered by a past event is in-

fluenced by the size of this past event. The minimum magnitude of an event is represented by

M0. How the size of an event affects the probability of triggering other events is determined

by α. Assuming that larger events trigger more events than smaller events, so that α > 0,

the probability of triggering events increases with the size past events (mi). The larger α, the

more pronounced is the influence of the size of events. When η > 0 the magnitude of events

is expected to be more extreme when the tension in the financial market is high. Using (2.6)

when η > 0 the impact of extreme events in turbulent periods is therefore smaller than in

tranquil periods, when the probability of having these events is lower.

We proceed to investigate several specifications of the ETAS model. We consider both

the power law triggering function (2.2) and the exponential triggering function (2.3) in com-

bination with different functions for the impact of the magnitude of previous events on the

triggering of events in the future as given in (2.4), (2.5) and (2.6). Furthermore in some

models the history of event process can affect the magnitude of events in the future while in

other models there is no such influence. In Table 2.1 we present the configurations of the

different models.

The process is stationary when the expected number of off springs of an event, that is the

branching ratio n, is smaller than 1. When n ≥ 1 the number of events arriving will grow

to infinity over time. The condition for stationarity of the Hawkes process with triggering
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function (2.2) and (2.3) can be stated as respectively

∫ ∞
0

gpow(t− ti,mi)dt =
K0

γω
< 1 (2.7)∫ ∞

0

gexp(t− ti,mi)dt =
K0

β
< 1 (2.8)

While Bacry et al. (2012) use a non-parametric kernel estimation technique for a sym-

metric Hawkes process on high frequency data, we prefer parametric kernel estimation to

make the model more interpretable. We can advocate this technique as the literature is not

consistent in which triggering function to use for financial data. A well known stylized fact

of the absolute returns is that they decay roughly according to a power law (Cont, 2001).

Selçuk and Gençay (2006), Weber et al. (2007) and Petersen et al. (2010) conclude that

the intraday volatility of stock returns above a certain threshold decays roughly according a

power-law, approximating the intraday volatility by the absolute returns. However while for

example Hardiman et al. (2013) find power law functions fit the S&P 500 data, Filimonov

and Sornette (2015) among others report the superior performance of exponential functions.

We consider both functions.

We estimate the parameters θ = {µ,K0, γ, ω, β, α, ξ, φ, η} of the models by maximum

likelihood. The log-likelihood of the model is given by

logL(θ) =
N∑
i=1

log λ(ti|θ;Ht)− log σ(t) +

(
1 +

1

ξ

)
log

(
1 + ξ

mi −M0

σ(t)

)
−
∫ T

0

λ(ti|θ;Ht)dt

(2.9)

where λ(ti|θ;Ht) is the conditional intensity and ti are the event arrival times in the interval

[0, T ]. We optimize the log-likelihood numerically using the Nelder-Mead simplex direct

search algorithm. The difficulty of accurately estimating the parameters of a Hawkes process

has been well recognized in the literature on Hawkes processes.4 After exploiting several

estimation methods and optimization algorithms and testing our procedure on simulated data

series, we found this approach most satisfactory. To check whether the obtained optima are

4See amongst others: Veen and Schoenberg (2008), Chavez-Demoulin and McGill (2012), Hardiman et al.
(2013), Rasmussen (2013), Aı̈t-Sahalia et al. (2015), Filimonov and Sornette (2015) and Bacry et al. (2012)
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not of a local nature, we estimate the models using different starting values. Furthermore we

use models to generate data and estimate the parameters of the models using this data.

The probability of the occurrence of an event following a Hawkes process with condi-

tional intensity λ(t|θ;Ht) between tn−1 and tn is given by

Pr (N(tn)−N(tn−1) > 0) = 1− Pr (N(tn)−N(tn−1) = 0)

= 1− F (t∗ > tn − tn−1)

= 1− exp

(
−
∫ tn

tn−1

λ(t|θ;Ht)dt

) (2.10)

Thus, using the conditional intensity (2.1) specified by the estimated parameters of the ETAS

models and the history of the stock returns, we are able to predict the probability of the

occurrence of an event during a given time period. These probability predictions form the

basis of our Early Warning system.

2.3 Application to Financial Data

We consider data of the S&P 500 index over a period from 2 January, 1957, to 1 September,

2008 to calibrate our models and 5 years thereafter for an out-of-sample evaluation of the

models. The dataset consists of daily returns Rt = pt−pt−1

pt−1
× 100, where pt denotes the value

of the index at t. Figure 2.1 shows the evolution of the S&P 500 index and also the returns

on this index. Severe drops in the price index and large negative returns corresponding to

these drops, are observed around famous crash periods, “Black Monday” (1987) and the

stock market downturn of 2002 after the “dot-com bubble” (1997–2000). Furthermore the

Figure illustrates the clustering of extreme returns, that is tranquil periods with small price

changes alternate with turbulent periods with large price changes. This clustering feature

can be related to the positive herding behavior of investors and the endogenous growth of

instability in the financial market.

We apply the ETAS models to the 95% quantile of extreme returns and the 95% quantile

of extreme negative returns referred to as extremes and crashes, respectively. The minimum

magnitude M0 of the events under consideration corresponding to the 95% quantile of ex-

treme (negative) returns is calculated over the estimation period, that is over a period from

2 January, 1957, to 1 September, 2008. Each quantile includes 687 events from the 13, 738
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trading days. The estimation of various model parameters are presented in Table 2.2 and

Table 2.3.

To give an interpretation to the parameter µ consider the following. Returns above the

95% threshold not triggered by previous extremes occur on average at a daily rate that ranges

from 0.0059 (model An) to 0.0082 (model Dp). Over the considered time period approxi-

mately 81–113 of the total of 687 events arrived spontaneously according to the models. This

means that about 84–88% of the events were triggered by prior events. For the crashes, the

mean background intensity of events ranges from 0.0077 (model An) to 0.0119 (model Dp),

so that about 76–85% of the events are triggered by other events according to the models.

Also the branching ratio (n), that is the expected number of direct descendants of an event,

lies in the interval [0.86, 0.89], [0.79, 0.86], for extremes and crashes respectively, in the

models where the magnitude of an event has no influence on the triggering of descendants

(α = 0). In the models where α is not restricted to zero, the branching ratio differs across

events as it depends on the magnitude of events. However as α > 0 and other parameter

estimates are similar, the expected number of descendants of an event tends to be at least as

high in these models as in the models with α = 0.

We can therefore state that many extreme movements in the S&P 500 index are triggered

by previous extreme movements in this index. This does not come as a surprise as the

clustering and serial dependence of extremes is a well known feature of stock returns. It

confirms our expectation that crashes are local self-enforcing and grow endogenously as

events provoke the occurrence of new events.

The ETAS models with a power law triggering function (models A and B) have a higher

log-likelihood and a lower AIC value, than their counterparts with an exponential triggering

function (models C and D) for both sets of returns. The decay of the triggering probability

seems slower than exponential for our data. When the estimate for ω is large or not signifi-

cant, this indicates that other distributions like the exponential or hyperbolic distribution can

be more appropriate.

The estimates for η in the models B and D, are positive and significant for both sets of

returns. The models score better in both log-likelihood and AIC value than the models A

and C. This suggests a model which incorporates the history of the event process to prospect

the sizes of subsequent events, matches the extreme (negative) returns closer than a model

which assumes the sizes of events are independent of the past. When η > 0, the mean and
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variance of the distribution of the excess magnitudes of the events scale with the value of the

cumulative triggering function, and thus the probability of the arrival of an event triggered by

another event. This means that on average larger extremes are observed after the occurrence

of more and/or big events than after a tranquil period.

Comparing the ETAS models in which the intensity does not depend on the sizes of

prior events, i.e. with the parameter restriction α = 0, to the ETAS models without this

restriction, the magnitude of an extreme has a significant positive influence on the probability

of triggering another extreme for both sets of returns. This means that on average larger

events trigger more events than smaller events. The models A, B, C and D with either the

subscript ‘e’, ‘p’ or ‘d’, have a higher ranking both in terms of log-likelihood as in AIC

value than their counterparts with α = 0, that is model An, Bn, Cn and Dn respectively.

Incorporating the size of the events into an ETAS model for the extreme (negative) returns

thus improves the model. Amongst the models with α 6= 0, the models with the exponential

function (2.4) perform the worst for the extreme returns as well as for the extreme negative

returns. Therefore, we can indeed conclude that there are no solid reasons to use this function

to describe the influence of the magnitude of events on the triggering intensity. For the

crashes, and the extremes whenever η is restricted to zero, the power law function (2.5) is

preferred over the other two impact specifications. For the extremes the impact function of

Grothe et al. (2014) (2.6) performs best when η 6= 0. In this model the impact of the sizes of

events is smaller in turbulent periods than in tranquil periods.

A likelihood ratio test shows that all the estimated parameters of the models are signifi-

cant at a 5% level. All together model B with a power law triggering function, and non-zero

influence of the size of the events on the triggering of subsequent events and predictable

event sizes, fits best according to the log-likelihoods and AIC values for both the extremes

and crashes. However for the extremes the impact function as specified in (2.6) is preferred,

while for the crashes the impact function (2.5) gives slightly better results.

Figure 2.2 presents the intensity with which extremes and crashes occur estimated with

respectively model Bd and Bp, over the estimation period, that is from 2 January, 1957, to

1 September, 2008. The estimated intensity shows large spikes around the famous crash

periods, “Black Monday” (1987) and the “stock market downturn of 2002” (2002) after the

“dot-com bubble” (1997-2000). As expected, the rate at which events arrive is high around

crashes, reflecting the increase in the triggering probability after the occurrence of events.



Figure 2.1: S&P 500 index

(a) Prices (b) Returns

Evolution of the S&P 500 index prices and returns over the period January 2, 1957, until September 1, 2008

Figure 2.2: Conditional intensity

(a) Extremes model Bd (b) Crashes model Bp

Estimated conditional intensity for the 95% quantile of daily extreme returns, extreme negative returns, over
the period January 2, 1957, until September 1, 2008, using respectively model Bd, Bp.
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2.4 Goodness-of-fit

2.4.1 Simulation

To check whether our estimated models can reproduce features of the extreme (negative)

returns we develop two different simulation procedures and compare their generated data

with the observed data. While in the first procedure the probability of occurrence of an event

is used to realize a series of events in discrete time, the second procedure is carried out in

continuous time employing the branching structure of the ETAS model. In the first procedure

events can occur at a daily frequency. In the second procedure event times are not integers

and multiple events can occur during one day. As the first procedure seems to resemble

the data generating process more closely, we only discuss results from this procedure. Both

procedures can be found in the appendix.

We generate 1000 data series from the models using the parameters estimates derived

from the extreme negative returns on the S&P 500 index (Table 2.3). We set the sample

period equal to the number of trading days over which we estimated the models for the

S&P 500 crashes. Estimation results for these series are shown in Table 2.4. One thing that

stands out is the estimation results of the ETAS models with a power law triggering function

(models A and B) are not so satisfactory. The maximum likelihood estimation does not

converge in a number of simulations. Furthermore the estimated ω̂ of the triggering functions

deviate much from the ω used to simulate the data and the standard deviations of the ω̂ are

much larger than the standard deviation of ω̂ derived from the crashes. The estimates for

ω derived from data series generated with a continuous time procedure are much closer to

values used to simulate the series. Also the standard deviations of these ω̂ are much smaller.

We have examined several methods to simulate and estimate the ETAS model with the

power law triggering function. When estimating the models, the Expectation-Maximization

procedure of Veen and Schoenberg (2008), the Bayesian procedure of Rasmussen (2013) and

gradient-based optimization algorithms give inferior results in terms of speed and robustness

for our kind of data. The estimated ETAS models with the exponential triggering function

(models C and D) appear more reliable.

In Figure 2.3 the S&P 500 crashes are compared to a series simulated with the discrete

time procedure from model Bp (power law triggering function) and Dp (exponential trigger-
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ing function). In these models the influence of the magnitude on the triggering of subsequent

events and the influence of the history of the event process on the sizes of subsequent events,

are both non-zero. For crashes, Model Bp has the highest log-likelihood and lowest AIC

value amongst the models. The simulated series share the major features characteristic to the

models and similar to the crashes like the clustering of events, heavy-tailed distributed event

sizes, and large events are especially observed after the occurrence of more and/or other big

events.

When looking at the figures the S&P 500 crashes are more similar to the events simulated

from model Bp. Histograms show that the data simulated with model Dp differ from the

S&P 500 data because many fewer event pairs are observed with a shorter inter event time.

Examining graphs of the logarithm of the cumulative number of events against the logarithm

of time, the events from model Dp seem to deviate more from the S&P 500 crashes than the

events from model Bp. Also the clustering feature in the magnitude-time plots, being more

pronounced for model Bp than for model Dp, indicates model Bp should be preferred above

model Dp to match the S&P data.

2.4.2 Residual analysis

We also assess the goodness-of-fit of our models using the residual analysis technique of

Ogata (1988). This method states that if the event process {ti} is generated by the conditional

intensity λ(t), the transformed times

τi =

∫ ti

0

λ(t)dt (2.11)

are distributed according a homogeneous Poisson process with intensity 1. Furthermore the

transformed interarrival times, that is

τi − τi−1 =

∫ ti

ti−1

λ(t)dt (2.12)

are independent exponential random variables with mean 1. If the models are correctly

specified, λ(t) can be approximated by λ(t|θ̂;Ht). The sequence {τi} is called the residual

process. In order to verify whether the residual process derived from the models is Poisson

with unit intensity, we perform the Kolmogorov-Smirnov (KS) test. The null hypothesis of
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Table 2.5: Kolmogorov-Smirnov tests

An Bn Cn Dn Ae Be Ce De Ap Bp Cp Dp Ad Bd Cd Dd

Crash 95 % 0.152 0.064 0.052 0.204 0.256 0.107 0.086 0.323 0.604 0.198 0.227 0.570 0.333 0.206 0.104 0.600

97 % 0.122 0.071 0.056 0.134 0.114 0.079 0.050 0.148 0.292 0.134 0.127 0.252 0.083 0.147 0.036 0.284

99 % 0.096 0.045 0.036 0.101 0.051 0.024 0.019 0.058 0.092 0.041 0.033 0.097 0.055 0.065 0.020 0.152

Extreme 95 % 0.200 0.154 0.104 0.235 0.343 0.274 0.177 0.410 0.621 0.551 0.432 0.748 0.174 0.539 0.085 0.732

97 % 0.185 0.110 0.076 0.222 0.178 0.119 0.075 0.234 0.493 0.268 0.211 0.522 0.064 0.313 0.022 0.607

99 % 0.142 0.077 0.060 0.159 0.036 0.022 0.014 0.046 0.053 0.031 0.020 0.066 0.018 0.039 0.006 0.088

The tests are performed on the transformed times {τi} specified by the models. The models are applied to the
95% to 99% quantile of the extreme (negative) returns on the S&P 500 index over the period January 2, 1957,
until September 1, 2008. The null hypothesis of the test is transformed times {τi} are distributed according to
a homogeneous Poisson process with intensity 1. In the Table the p-values of the Kolmogorov-Smirnov tests
for the 95%, 97% and 99% quantile are reported.

our test is that the distribution of the residual process and the unit Poisson distribution are

equal.

The KS tests are performed on the transformed times derived by applying the ETAS

models to the 95% to 99% quantile of the extreme (negative) returns. The p-values of the

tests for the 95%, 97% and 99% quantile are reported in Table 2.5. Figure 2.4 shows the

cumulative number of S&P 500 crashes for the 95% quantile against the transformed times

derived from models Bp and Dd. The 95% and 99% error bounds of the KS statistic are also

displayed in the Figure. The first model fits the data best according to the log-likelihood and

AIC scores, while the second model seems most appropriate when looking at the results of

the residual analysis.

The p-values and the Figure indicate that for all models extreme (negative) returns above

the 95% quantile do not deviate from an event process specified by the model at a 5% level.

At a 5% level the extreme (negative) returns above the 99% quantile are not correctly speci-

fied by many models. Furthermore, model C, the model with the exponential triggering func-

tion and unpredictable event sizes, gives low(er) p-values, such that it seems less appropriate

to model both extremes and crashes than the other models, especially in combination with

the impact function specified by Grothe et al. (2014) (2.6). The models without influence of

the magnitude of events on the triggering intensity and the models with an exponential im-

pact function have lower p-values than their counterparts with a power law impact function

for all sets of returns. Overall, model Dd, the model with the exponential triggering function

and predictable event sizes, in combination with (2.6) for the influence of the sizes of events

on the triggering intensity, seems to fit the data best.
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Figure 2.4: Residual analysis for the S&P 500 crashes 95% quantile

(a) Model Bp (b) Model Dd

Cumulative number of events against the transformed time {τi}. The red lines indicate the 95% and 99% error
bounds of the Kolmogorov-Smirnov statistic.

2.5 Forecasting

2.5.1 Early Warning System

The identification of financial market crashes is of great importance to traders, regulators of

financial markets and risk management. They can benefit from an Early Warning System

that sets an alarm when the probability of a crash becomes too high, urging the traders, reg-

ulators and risk managers to take action. We develop an Early Warning System for extremes

and crashes in the financial market within a certain time period using the conditional inten-

sity specified by the estimated parameters of the ETAS models and the history of the stock

returns. The probability of an extreme or a crash occurring between tn−1 and tn is given by

(4.7). The minimum magnitude M0 of the events under consideration corresponding to the

95–99% quantile of extreme (negative) returns is calculated over the estimation period, that

is over a period from 2 January, 1957, to 1 September, 2008. As we do not calculate the

threshold value for events over the out-of-sample period, there is no look-ahead bias.

To evaluate the performance of the EWS, we use measures reported in Candelon et al.

(2012). We do not compute the optimal threshold value for giving an alarm. Instead we set

the threshold at 0.5. Therefore an alarm is given when the models predict that it is more

likely that at least one event occurs than that no event occurs within a certain time period.

Here we consider the occurrence of events within a time period of 5 days during the last few
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years, that is from 1 September, 2008, to 1 January, 2013, and during the recent financial

crisis, that is from 1 September, 2008, to 1 January, 2010.

To compare the probability predictions made by the different models, we compute the

Quadratic Probability Score (QPS) and the Log Probability Score (LPS) for each model, that

is

QPS =
2

T

T∑
t=1

(p̂t − yt)2 (2.13)

LPS = − 1

T

T∑
t=1

[(1− yt) log (1− p̂t) + yt log (p̂t)] (2.14)

where t is a day and T is the total number of days. Here pt represents the predicted proba-

bility of crash in the 5 day period commencing day t and yt is an indicator function taking

the value one when a crash occurs within the 5 day period and the value zero otherwise, i.e

yt will be 1 on five days. The QPS and LPS range respectively from 0 to 1 and from 0 to∞,

with 0 indicating perfect accuracy.

When the QPS or the LPS are higher, the probability predictions deviate more from

a binary variable indicating the occurrence of events. The LPS punishes large deviations

heavier than small deviations. The QPS and the LPS for (negative) extremes above the 95%,

97% and 99% in sample quantile, are displayed in Table 2.6. Overall, the QPS and LPS

of the models with an event triggering probability dependent on the size of previous events

(α 6= 0) are slightly lower. For almost all sets of returns the QPS and LPS of the model with

an exponential triggering function and unpredictable event sizes in combination with the

impact function of Grothe et al. (2014) (2.6) (model Cd), is the lowest. Comparing different

versions of models with the same function for the impact of sizes of past events on the

intensity (e.g. Ae, Be, Ce and De), overall the model with an exponential triggering function

and predictable event sizes (model D), has a higher QPS and LPS than the other models

(A, B and C). Thus, while model Cd seems to be the worst choice for making probability

predictions when taking into account the results of the residual analysis, this model actually

delivers the most accurate probability predictions. In contrast, for model Dd it is the other

way around. The probability predictions for crashes seem somewhat less accurate than the

probability predictions for the extremes as the QPS and LPS of the models for crashes are

higher than the QPS and LPS of the models for extremes.
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Furthermore we check whether the probability predictions for the extreme (negative)

returns above the 95% in sample quantile made by some models, are significantly more ac-

curate than those made by other models. For nested models, we compute the adjusted Mean

Squared Prediction Error (adjusted MSPE) of Clark and West (2007) (Table 2.7). Nested

models are models with the same triggering function and the same function for the impact of

sizes of past events on the intensity (e.g. Ae versus Be), and models with the same triggering

function with and without influence of the sizes of events on the triggering intensity (e.g. An

versus Ae or Be). According to the adjusted MSPEs, the probability predictions based on

models with a size-dependent triggering probability (α 6= 0) are significantly more accurate

for extremes. For crashes this is also the case when considering the models with an expo-

nential triggering function and unpredictable events sizes (model C), over the period from

September 1, 2008, to January 1, 2013.

For the non-nested models, that is the models with a different triggering function or im-

pact function (e.g. An versus Cn, Ae versus Ad), we compute the statistic of Diebold and

Mariano (1995) (Table 2.8). According to the DM statistics the model with an exponential

triggering function, without influence of the sizes on the triggering intensity and with un-

predictable event sizes (model Cn), delivers significantly more accurate results for extremes

than the same model with a power law triggering function (model An), over the period from

September 1, 2008, to January 1, 2013. Also, models with an exponential impact function

predict the probability on extremes less accurately than models with the other two impact

functions.

The Tables 2.9 and 2.10 report the number of correct predictions, the number of false

predictions, the hit rate, the false alarm rate and the Hanssen-Kuiper Skill Score of the EWS

for (negative) extremes above the 95%, 97% and 99% in sample quantile. As a reference,

no events are correctly predicted by an EWS using a homogeneous Poisson model. Here

the intensity of the Poisson process is set equal to the number of events during the forecast

period divided by the length of the forecast period. The Hanssen-Kuiper Skill Score (KSS)

is computed as the hit rate minus the false alarm rate. The hit rate is the number of ‘correct

alarms’ divided by the number of periods that there should be an alarm. The false alarm

rate is the number of ‘false alarms’ divided by the number of periods that there should not

be an alarm. Therefore, the KSS accounts for both sorts of errors, that is, for the number of

periods there should be an alarm when there is none as well as for the number of periods there
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should not be an alarm when there is one. In the first case the hit rate decreases, whereas in

the second case the false alarm rate increases, both decreasing the KSS.

The KSS of all EWS are positive, meaning that the rate of correct predictions is higher

than the rate of false predictions, whereas KSS of the Poisson-EWS is zero. The KSS of the

models with predictable event sizes (η 6= 0) is in general lower than the the KSS of the same

models with unpredictable event sizes. The KSS of models with a size-dependent triggering

probability (α 6= 0) are higher, except for the 97% and 99% quantile of extreme returns over

the period from 1 September, 2008, to 1 January, 2013, and for the 95% quantile of extreme

negative returns over the crisis period. The models with the impact function (2.6) perform

best in terms of the KSS over the crisis period for both the crashes and the extremes. Over

the period from 1 September, 2008, to 1 January, 2013, the KSS of models with the impact

function (2.5) is higher for some sets of returns.

Figure 2.5 shows the predicted probability of a financial market crash occurring within 5

days based on the modelsAd andCd, from 1 September, 2008, to 1 January, 2013. The Figure

shows that during the financial crisis of 2008 the crash probability is exceptionally high.

The crash probability also becomes high when the stock market falls at the end of July/the

beginning of August, 2011. Comparing the crash probabilities based on the different models,

the model with the power law triggering function (model Ad) forecasts a higher probability

on a crash than the model with the exponential triggering function (model Cd). Furthermore

during the financial crisis of 2008, the risk of a crash decays more slowly according to model

Ad than to Cd.

2.6 Comparison volatility models

We are interested in whether our models are capable of getting information out of stock

market data on future crashes or extremes, not captured by commonly used and well known

volatility models. In order to assess whether this is the case, we compare the performance

of the Early Warning Systems based on the ETAS models with EWS based on GARCH-type

and ACD-type models. For the EWS we again consider the occurrence of events within a

time period of 5 days during the last few years, that is from 1 September, 2008, to 1 January,

2013.
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Figure 2.5: Crash probability predictions 95% quantile

(a) Model Ad (b) Model Cd

The probability of the occurrence of a crash within 5 days is predicted according to the modelsAd and Cd (blue
lines) from 1 September, 2008, to 1 January, 2013. When this probability is larger than 0.5 the background
is shaded. The green line corresponds to the predicted probability of the occurrence of a crash within 5 days
according to a homogeneous Poisson model with intensity equal to the number of crashes during the forecast
period divided by the length of the forecast period.

In General AutoRegressive Conditional Heteroscedasticity (GARCH) type models, the

variance of the current error term is a function of the error terms and innovations in previous

periods. The time-varying conditional variance enables the models to capture the volatil-

ity clustering feature of stock market returns. After evaluating the performance of several

GARCH-type models (GARCH, AGARCH, NAGARCH, GJR, EGARCH, and PGARCH)

and error distributions (Normal, Student-t, and Gumbel), we continue to consider two GARCH-

type models, that is the GARCH(1,1) model and the GJR(1,1) model, in combination with

a Student-t distribution for the error terms. The heavy-tailed Student-t distribution accounts

for the stylized fact that, even after correcting for volatility clustering, extreme returns oc-

cur more often than under normality (Cont, 2001). As shown by Hansen and Lunde (2005),

it is difficult to beat the GARCH(1,1) model when forecasting conditional volatility. The

GJR(1,1) model of Glosten et al. (1993) differs from the GARCH(1,1) model, as the model

allows for separate influences of positive and negative innovations on future volatility. This

asymmetric response to shocks, or so-called “leverage effect”, is in line with the observation

that measures of the volatility of assets tend to correlate negatively with the returns on those

assets (Cont, 2001). This can be of an advantage when modelling returns (Hua and Man-

zan, 2013). The conditional variance σ2
t of the stochastic error process εt, when conditioned

on the history of the process, in respectively the GARCH(1,1) and the GJR(1,1) model is
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specified as follows

σ2
t = ω + αε2t−1 + βσ2

t−1 (2.15)

σ2
t = ω +

(
αε2t−1 + γI [εt−1 < 0]

)
ε2t−1 + βσ2

t−1 (2.16)

Autoregressive Conditional Duration type models first proposed by Engle and Russell (1998),

focus on modeling the expected duration between events. As well as in the ETAS models,

the conditional intensity in these models is a function of the time between past events. Fur-

thermore the event process on which the models are based is self-exciting. Analogous to

GARCH-type and ETAS models, ACD-type models are therefore able to pick up the char-

acteristic clustering of extreme stock market returns. After evaluating the performance of

several ACD-type models and error distributions we consider two ACD-type models, that

is the ACD(1,1) model and the log-ACD(1,1) model, in combination with a Generalized

Gamma distribution. Like Bauwens et al. (2004) and Allen et al. (2009), we find other ACD-

type models much more costly to estimate and to evaluate, but not of superior performance,

while the use of the Generalized Gamma distribution instead of the exponential or Weibull

distribution does add to the performance of the models. A survey on ACD-type models is

provided by Pacurar (2008).

In the regular ACD model the expected duration is a linear function of past durations

and conditional durations. The logarithmic version of the ACD model implies a nonlinear

relation between the variables, which guarantees positive durations without imposing re-

strictions on the parameters. The duration in the ACD(1,1) and the log-ACD(1,1) model is

given by τt = θtzt, where the zt are independent and identically distributed according to the

Generalized Gamma distribution such that E[zt] = 1. In respectively the ACD(1,1) and the

log-ACD(1,1) model θt is specified as follows

θt = ω + ατt−1 + βθt−1 (2.17)

log(θt) = ω + α log(τt−1) + β log(θt−1) (2.18)

We apply the models again for daily return data on the S&P 500 index between 2 January,

1957, and 1 September, 2008. Like the ETAS models, the volatility models are estimated by

maximum likelihood in combination with the Nelder-Mead simplex direct search algorithm.
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Consulting Andersen et al. (2006) and Lau and McSharry (2010) for forecasting multi-step

ahead densities with GARCH-type models, we use Monte Carlo methods to derive the prob-

ability of the occurrence of no event within a certain period. For the ACD-type models

this probability follows easily from the model specification, by noticing it is equal to the

probability of the duration exceeding the time period.

2.6.1 In sample results

In order to evaluate the ability of ETAS models to exploit information in the returns series not

captured by GARCH-type models, we apply the ETAS models to the standardized residuals

from the GARCH-type models. The results of this exercise using ETAS models, with an

exponential triggering function and no influence of the sizes of events on the triggering

intensity, are reported in Table 2.11. We do not display the results for the models with

influence of the sizes of events on the triggering intensity, as likelihood ratio tests show that

the α parameter is not significant for all impact functions at a 5% level. However, all other

estimated parameters are significant. Therefore, our evidence for ETAS models is not simply

driven by volatility clustering. As the η parameter is significantly different from zero at a 5%

level, and the models with a non-zero η parameter have a higher log-likelihood and a lower

AIC value than their counterparts with η = 0, the size of future extreme residuals appears to

be affected by the history of the event process.

We check the goodness-of-fit of the ETAS models by means of residual analysis, and

verify whether the distribution of the transformed times is unit Poisson with the Kolmogorov-

Smirnov (KS) test. The p-values of the KS tests applied to the 95%, 97% and 99% quantile of

extreme (negative) standardized residuals, are reported in Table 2.12. For all sets of returns,

the standardized residuals do not deviate from an event process specified by an ETAS model

at a 5% level. Hence, we can conclude that the ETAS models are needed for modeling the

standardized residuals from the GARCH-type models as the GARCH-type models cannot

accommodate the self-exciting behavior of extremes.

2.6.2 Out-of-sample results

Table 2.13 reports the results of the EWS based on the GARCH-type, the ACD-type and

two ETAS models for the extreme (negative) returns above the 95–99% in sample quantile.
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Table 2.12: Kolmogorov-Smirnov tests

Extreme Crash

GARCH GJR GARCH GJR
Cn Dn Cn Dn Cn Dn Cn Dn

95% 0.174 0.280 0.189 0.316 0.182 0.154 0.181 0.146

97% 0.565 0.406 0.582 0.406 0.178 0.179 0.179 0.178

99% 0.583 0.121 0.583 0.122 0.050 0.204 0.050 0.204

The tests are performed on the transformed times {τi} specified by the models. The models are applied to
the 95% to 99% quantile of the extreme (negative) standardized residuals from the GARCH(1,1) and GJR(1,1)
model when estimated on the S&P returns over the period January 2, 1957, until September 1, 2008. The null
hypothesis of the test is transformed times {τi} are distributed according to a homogeneous Poisson process
with intensity 1. In the Table the p-values of the Kolmogorov-Smirnov tests for the 95%, 97% and 99% quantile
are reported.

It is immediately apparent from the tables that the ACD-type models do not perform well.

While the EWS based on the the ACD(1,1) model predicts the occurrence of an event almost

every period, the EWS based on the log-ACD(1,1) model predicts far too few events over the

out-of-sample period. This results in a KSS around zero (the KSS is even slightly negative

for some model-quantile combinations).

In constrast to the ACD-type models, both GARCH-type models are capable of deliver-

ing accurate warning signals. Overall the GJR(1,1) does slightly better than the GARCH(1,1)

in terms of their KSS. Compared to the ETAS models the KSS of the EWS for crashes are

slightly higher. However the EWS based on the ETAS model outperform the EWS based on

the GARCH-type models for extremes, especially at higher quantiles. Examining whether

using information on positive extreme returns improves forecasting the occurrence of nega-

tive extreme returns with ETAS models, our findings are in line with Embrechts et al. (2011).

Negative extremes do help to forecast positive ones, however this does not apply the other

way around.

However forecasting with the GARCH-type models is much more time consuming than

forecasting with the other models. Using these models, the probability distribution of the

occurrence of one or more events during an certain time period, has to be derived empirically

by means of a Monte Carlo procedure. Roughly about one to two hours are needed to execute

the Monte Carlo simulation and deduce alarm signals over the out-of-sample period (when
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using 10, 000 replications), while with EWS based on ETAS models, it takes no more than

half a second to compute forecasts.

2.7 Conclusion

This paper explores similarities between stock returns during a financial market crash and

earthquakes to make predictions of the probability of a crash in the financial market. We

provide a ready-to-use application of this information by means of an Early Warning System.

The basis of the models examined is the self-exciting Hawkes point process. The rate

at which events arrive is separated in a long-term background component and a short-term

clustering component describing the temporal distribution of triggered events.

The models are applied to the 95%–99% quantile of extreme (negative) returns on the

S&P 500 index over a period from 2 January, 1957, to 1 September, 2008. The estimation

results confirm that like earthquakes, crashes are reinforcing. The decay of the probability of

triggering events seems better modeled by the power law distribution than by the exponential

distribution. The sizes of events are history dependent, as on average larger extremes are

observed after the occurrence of more and/or big events than after a tranquil period. The

triggering probability is size-dependent, as larger events trigger on average more events than

smaller events. However, while the exponential function is commonly used to model the

impact of the sizes of events on the triggering of subsequent events, other impact functions

better fit the data considered.

Simulated series have the major features that are characteristic of the models and similar

to the extreme (negative) returns such as the clustering of events, heavy-tailed distributed

event sizes, and that the large events are especially observed after the occurrence of more

and/or other big events. Furthermore performing residual analysis, we find that the extreme

(negative) returns do not significantly deviate from an event process specified by Hawkes

models.

We develop an Early Warning System for events in the financial market based on the

probability of the occurrence of an event within a certain time period predicted by the models.

These are reviewed from 1 September, 2008, to 1 January, 2010, and from 1 September,

2008, to 1 January, 2013. Testing the EWS, the rate of correct predictions is higher than the

rate of false predictions. Thus as our modeling framework exploits the self-exciting behavior
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of stock returns around financial market crashes, it is capable of creating crash probability

predictions in the medium term. Over all sets of returns, models with unpredictable event

sizes and non-zero influence of the size of events on the triggering probability, perform best

according to the Hanssen-Kuiper Skill Score.

From 1 September, 2008, to 1 January, 2013, we also consider EWS based on some

commonly used and well known volatility models. While the ACD models do not perform

well, the GARCH models are, like our models, capable of delivering accurate warning sig-

nals. However our models outperform the GARCH models for extremes, especially at higher

quantiles. Moreover, forecasting with GARCH models is much more time consuming, taking

over a hour compared to less than half a second using our models.

In order to further evaluate the ability of our models to exploit information in the returns

series not captured by GARCH models, the models are applied to the standardized residuals

from the GARCH models. The significance of the parameters indicates that GARCH-models

do not completely capture the self-exciting behavior of crashes. Moreover, checking the

goodness-of-fit of the models by means of residual analysis, we find that our models are

appropriate for modeling the standardized residuals from the GARCH models.

We indicate four directions for further research. The first is the application of the models

to high-frequency stock market data. The second is a multivariate extension of the models

as events tend to occur simultaneously in financial markets. Furthermore, the models could

benefit from the addition of a time-varying exogenous component to the conditional intensity.

This allows the models to incorporate information of precursors of financial market crashes.

Lastly, models with a regime-switching conditional intensity could match the data more

closely.

2.A Simulation procedures

Discrete time procedure

1. Simulate the time till the first event from an exponential distribution with parameter µ.

As no other events are present yet the occurrence of the first event is Poisson distributed

with µ, the constant background rate. The time of the event t1 recorded is the end of

the interval in which the event occurs. Simulate the magnitude of the event from an

independent General Pareto Distribution.
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2. For tn after t1 calculate the probability of the occurrence of no event in the interval

[tn−1, tn], that is (4.7). Simulate a random number u from a uniform distribution on

the interval [0, 1]. When u > P (N(tn)−N(tn−1) = 0) record the time point tn as

the time of an event and simulate the magnitude of the event from a General Pareto

Distribution. When u < P (N(tn)−N(tn−1) = 0) do nothing.

3. Repeat for all time points after t1 till tn = T .

Continuous time procedure

1. Sample the background events

(a) Simulate the number of background events, Nback as Nback = µ× T .

(b) Simulate the times of the background events tback as random numbers between

zero and T . That is tback = u × T , where u is a (Nback × 1)-vector containing

random numbers from a uniform distribution on the interval [0, 1].

(c) Simulate the magnitudes of background events mback from an independent Gen-

eral Pareto Distribution.

2. Sample the triggered events

(a) Simulate the number of triggered events Noff from a Poisson distribution with

an intensity given by the mean number of children of a parent event following

that event in the given time window. The mean number of children of a parent is

equal to the integrated triggering function, that is

G(T − tparent,mparent) =
K0

γω

(
1− (γ(T − tparent) + 1)−ω

)
eα(mparent−M0)

(2.19)

G(T − tparent,mparent) =
K0

β

(
1− e−β(T−tparent)

)
eα(mparent−M0) (2.20)

for the power law triggering function and the exponential triggering function

respectively.
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(b) Simulate the times of these events toff from the following distribution

P (t∗ ≤ t0 + t|t∗ > t0, t
∗ < T ) =

F (t0 + t)− F (t0)

F (T )− F (t0)
=
S(t0)− S(t0 + t)

S(t0)− S(T )
(2.21)

where St is the survival function of the hazard model, that is S(t) = 1 − F (t).

The probability of no event in the interval [0, t] for events distributed according

a homogeneous Poisson process is given by P (N(t) = 0) = F (t∗ > t) =

(λt)0e−λt

0!
= e−λt. The Hawkes process is an inhomogeneous Poisson process,

where the intensity of the process between 0 and t is not constant, so that λt has

to replaced with G(t− ti,mi) = −
∫ t

0

∑
i:ti<t∗

g(t∗ − ti,mi)dt
∗.

(c) Simulate the magnitudes of these events moff from an independent General

Pareto Distribution.

(d) Repeat the simulation of triggered events till Noff = 0.





Chapter 3

Specification testing in Hawkes models

3.1 Introduction

Hawkes models are useful to model and to predict extreme events in financial markets.1 We

propose Lagrange Multiplier (LM) based specification tests for Hawkes models, where the

specific focus is the potential extension of a univariate model to a multivariate model.2 Even

though the Hawkes models have become increasingly popular recently, there does not seem

to be a general approach for testing different specifications of these models. Our main focus

in this paper is on testing for (conditional) dependence between series. However the LM

based specification tests can also be used to test for omitted explanatory variables, for breaks

in the model parameters, for omitted impact of the sizes of events on the triggering of new

events and for omitted predictability of event sizes. The performance of our LM tests is

evaluated in a simulation study. Applying the specification test for dependence to US stocks

and bonds data, we show that there are cross-excitation effects from one market to another.

The identification and prediction of crashes is important to traders, to regulators of finan-

cial markets and to risk management. A series of large negative price movements during a

short time interval can have severe consequences (see Kindleberger and Aliber, 2011, among

many others). Hawkes models can be well used to identify and predict large negative price

1See amongst others: Chavez-Demoulin et al. (2005), Hewlett (2006), Bowsher (2007), Bauwens and
Hautsch (2009), Herrera and Schipp (2009), Embrechts et al. (2011), Chavez-Demoulin and McGill (2012),
Aı̈t-Sahalia et al. (2014), Gourieroux et al. (2014), Grothe et al. (2014), Aı̈t-Sahalia et al. (2015), Bacry et al.
(2015), Bormetti et al. (2015) and Gresnigt et al. (2015)

2This Chapter is based on Gresnigt et al. (2016a)
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movements.3 Of course, the Hawkes process should be properly specified, and hence speci-

fication tests are useful.

The Hawkes process, first proposed by Hawkes (1971), is an inhomogeneous Poisson

process in which the event rate of the process increases with the arrival of an event and the

event rate decays as a function of the time passed since the event. As the probability of events

increases when an event occurs, the Hawkes process is called a self-exciting process. Hence,

while events can be triggered by an exogenous factor, for a Hawkes process risk of events

grows endogenously. Characteristics typically observed in data that fit Hawkes models are

the clustering of events and serial dependence.

The earthquake literature, which brought the Hawkes models (Ogata, 1988), describes

clustering behaviour of seismicity in time as well as in space, whereas financial series seem

to exhibit clustering behaviour in the cross section on top of the clustering behaviour in the

time-dimension. Hartmann et al. (2004), Gonzalo and Olmo (2005) and Hu (2006) conclude

that when stocks crash, bonds are more likely to co-crash or otherwise to boom. There

are efforts in the literature to detect dependence between series and to evaluate the fit of

specific models, but an adequate assessment of the contribution of including cross-sectional

dependence in a point process framework with serial dependence does not seem to exist. In

this paper we therefore focus on specification tests for contagion of extreme events across

series.

Our focal variable is the rate at which extreme events occur, and therefore we wish to

examine if there are exogenous variables that have explanatory power for this rate. When

modelling earthquakes it can be useful to consider precursors such as unusual animal be-

haviour and temperature changes which can signal upcoming disruptions between tectonical

plates (Rikitake, 1978; Cicerone et al., 2009). Using the resemblance of financial crashes and

earthquakes, as is done in Gresnigt et al. (2015), there may be precursors that are of interest

when modelling financial series. Variables one can think of are liquidity measures (Baker

and Stein, 2004), VIX options (Chung et al., 2011), inflation, industrial production, the three-

month T-bill rate, the 12-month treasury bond, the dividend yield and the price earnings ratio

(Longin and Solnik, 1995; Pesaran and Timmermann, 1995; Campbell and Thompson, 2008,

see amongst others). In this paper we design Lagrange Multiplier based tests that can de-

3See amongst others: Chavez-Demoulin et al. (2005), Bowsher (2007), Bauwens and Hautsch (2009),
Herrera and Schipp (2009), Embrechts et al. (2011), Chavez-Demoulin and McGill (2012), Grothe et al. (2014),
Aı̈t-Sahalia et al. (2015), Bacry et al. (2015), Bormetti et al. (2015) and Gresnigt et al. (2015)
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termine whether adding explanatory variables to Hawkes models is beneficial. As far as we

know, no such tests are available yet.

The LM principle can also be used to construct specification tests for the omitted impact

of the sizes of events on the triggering of new events and for the omitted predictability of

event sizes. The relevance of these tests is shown by Chavez-Demoulin et al. (2005), Herrera

and Schipp (2009), and Gresnigt et al. (2015). They find that the probability that an extreme

return on a stock market index triggers another extreme return, is larger when the initial event

is larger. Also they document that current tension in a financial market, when measured by

the history of the event process, has predictive value for the size of future events. Further-

more the LM tests can be used to investigate the presence or the timing of a structural break

in the model parameter even when one is unsure about the timing of the break. For example,

changing financial conditions could be reflected in the parameters of the Hawkes models

when they are applied to financial series and calibrated over a longer time period.4

We use the Lagrange Multiplier principle (see Breusch and Pagan, 1980; Engle, 1982;

Rogers, 1986; Hamilton, 1996, amongst many others) to design specification tests to assess

the validity of different specifications of Hawkes models. An attractive feature of the LM

test is that the models do not have to be estimated under the alternative hypothesis. We

show that test statistics of a variety of Hawkes models can be computed from the estimation

of the simplest Hawkes model. The LM test principle is particularly relevant as estimating

the parameters of Hawkes models is quite difficult and time demanding, especially under

extensive specifications. Like Hamilton (1996), for Markov-switching models, we provide

expressions for the score in Hawkes models, where the score is defined as the derivative of

the conditional log-likelihood of the n-th observation with respect to the parameter under

investigation. When we test for dependence between series, we compare the results of the

LM test with the regression method of Van Oordt and Zhou (2012) and the orthogonality test

discussed by Lando and Nielsen (2010).

When we evaluate the size and power of the tests, by means of a Monte Carlo analysis,

we find that the LM tests outperform the regression method and the orthogonality test in

detecting cross-triggering effects. Over longer time periods, the power of the LM test is high

and the LM test is properly sized. When the time period considered is shorter, the quality of

4See amongst others: Koutmos and Booth (1995), Lynch and Mendenhall (1996), Poon et al. (2004), Beine
et al. (2010)
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the LM test falls only a little. When we compare the LM test to the computationally more

demanding LR test, we find that the performance of the LR test is only a bit superior to the

performance of the LM test. As the LR test is a lot more time consuming and as the LM test

performs very well, we recommend to use the LM test in empirical analysis.

We illustrate the use of the LM test by examining the cross-sectional dependence between

3 US stock indices, a US bond index and 3 exchange rates. Between markets, we find that

crashes in the stock markets provoke extremes in the other markets occur where the triggering

effect from the equity indices to the US bond market is the strongest. We do not find spillover

effects from the bond and exchange rate markets to the stock market. We detect both stock-

bond contagion and the flight-to-quality phenomenon, that is the outflow of capital from

stock markets to bond markets when the first is facing crises periods. Furthermore, with the

LM test we discover that booms in the US bond market trigger booms in the euro/$-rate.

Within the stock market and exchange rate market segments, we also find strong evidence of

cross-excitation. Moreover, filtering the series for volatility, we conclude that the extremal

dependence found between the series cannot simply be explained by volatility spillovers.

Our paper is organized as follows. In Section 2 we go over some preliminaries on Hawkes

models. Section 3 provides LM based specification tests for a variety of possible departures

of Hawkes models, where the main focus is on dependence across events. Also other tests

for dependence across extremes are discussed. Section 4 contains a simulations-based as-

sessment of the empirical performance of various test statistics. In section 5 we illustrate the

LM test for US stocks, bonds and exchange rate data. Section 6 summarizes.

3.2 Hawkes models

The Hawkes model is a branching model, in which each event can trigger subsequent events,

which in turn can trigger subsequent events of their own. The model is based on the mutually

self-exciting Hawkes point process, which is an inhomogeneous Poisson process. For the

Hawkes process, the intensity at which events arrive at time t depends on the history of

events prior to time t.

Consider an event process (t1,m1),...,(tN ,mN) where tn defines the time and mn the

mark of event n. Let Ht = {(tn,mn) : tn < t} represent the entire history of events up to
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time t. The conditional intensity of jump arrivals following a Hawkes process is given by

λ(t|θ;Ht) = µ+ γ
∑
n:tn<t

g(t− tn,mn) (3.1)

where µ, γ > 0 and g(s,m) > 0 whenever s,m > 0 and 0 elsewhere. The parameter γ

controls maximum triggering intensity and the expected number of events directly triggered

by an event. The conditional intensity consists of a constant term µ and a self-exciting

function γg(s,m), which depends on the time passed since jumps that occurred before t

and the size of these jumps. Thus the rate at which events arrive is separated into a long-

term background component and a short-term clustering component describing the temporal

distribution of aftershocks. The conditional intensity uniquely determines the distribution of

the process.

As frequently done in the literature on Hawkes processes,5 we specify the triggering

function as suggested by Hawkes (1971), that is

g(s,m) = e−βsc(m) (3.2)

where β determines how fast the possibility of triggering events decays depending on the

time passed since an event. The influence of the sizes of past events on the intensity is given

by c(m).6

To make our tests most suitable for financial series, we choose a Generalized Pareto

Distribution for the sizes of the events above the threshold u following the literature on

5See amongst others: Hewlett (2006), Bowsher (2007), Herrera and Schipp (2009), Embrechts et al. (2011),
Aı̈t-Sahalia et al. (2014), Grothe et al. (2014), Gourieroux et al. (2014), Aı̈t-Sahalia et al. (2015), Bormetti et al.
(2015) and Gresnigt et al. (2015)

6We acknowledge that some papers use power-law kernels when modelling financial time series with
Hawkes processes. Choosing the exponential decay function and making the additional assumption that the
decay speeds among multiple series are the same, Hawkes processes become Markov processes. This facil-
itates simulation and estimation of the models numerically. Moreover the conditions for stationarity of mul-
tivariate Hawkes processes of Liniger (2009) and Embrechts et al. (2011), are not satisfied for multivariate
models with the power-law triggering function such that stationarity of these models cannot easily be guaran-
teed. Furthermore the exponential specification enables one to derive the covariance density of the Hawkes
process analytically (Hawkes, 1971).
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extremes in finance,7 that is

F (M ≤ m|θ;Ht) = 1−
(

1 + ξ
m− u
σ(t)

)−1/ξ

(3.3)

where σ(t) = φ + η
∑

n:tn<t
g(t − tn,mn) and ξ 6= 0. In case η = 0 the sizes of the events

are unpredictable, whereas in case η 6= 0 the times and sizes of previous events affect the

probability distribution of the sizes of subsequent events. The mean and variance of the

distribution of the sizes of excess magnitudes events scale with σ(t). Thus when η > 0 the

magnitude of events is expected to be more extreme when the conditional intensity is high.

The larger positive η is, the more pronounced is the influence of the history of events on the

size of subsequent events.

For the influence of the sizes of past events on triggering of future events c(m), we con-

sider the specification proposed by Grothe et al. (2014). They use the probability that an

event has a magnitude smaller than or equal to its’ magnitude, F (m), to the extract infor-

mation from the magnitudes of events. The impact of events of size m on the triggering

intensity is constructed as

c(m) = 1−G←(F (m)) (3.4)

where G← is the inverse of the distribution function G of some continuous positive random

variable with mean α. Combining (3.4) with conditional distribution (4.4) for the sizes of

events, is particularly convenient, as stationarity conditions for the Hawkes process can be

derived even when the sizes of events are not independent and identically distributed (IID)

(Grothe et al., 2014, Appendix A).8 Following Grothe et al. (2014) we choose for G the

exponential distribution function such that using (4.4), (3.4) takes the form

c(m) = 1 +
α

ξ
log

(
1 + ξ

m− u
σ(t)

)
(3.5)

where α determines how the size of an event affects the probability of triggering other events.

When α > 0, larger events trigger more events than smaller events as the probability of

7See amongst others: Chavez-Demoulin et al. (2005), Poon et al. (2004), Herrera and Schipp (2009),
Chavez-Demoulin and McGill (2012), Grothe et al. (2014) and Gresnigt et al. (2015)

8While the exponential form c(m) = eα(m−u) is commonly used to define the influence of the sizes of
events on the triggering intensity (Chavez-Demoulin et al., 2005; Herrera and Schipp, 2009; Chavez-Demoulin
and McGill, 2012) this form does not guarantee stationarity of the Hawkes process when the sizes of events
follow the Generalized Pareto Distribution (4.4).
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triggering events increases with the size of the events (m). The larger positive α is, the more

pronounced is the influence of the sizes of events. Whenever η > 0 the impact of the events’

sizes depends on the history of the event process, such that when the conditional intensity is

low and the sizes of events are expected to be less extreme, the impact of events of the same

magnitude is higher.

The Hawkes process is stationary when the average number of descendants triggered by

an event, that is the branching ratio n, is smaller than 1. When n ≥ 1 the rate at which events

arrive will grow to infinity over time, moreover, the number of events arriving within a finite

time interval could go to infinity. This is an important issue, as our tests are only useful

for stationary Hawkes processes.9 In contrast to Hawkes processes in which the sizes of

events have no impact or/and the sizes of events are IID, stationarity conditions for Hawkes

process in which the sizes of events do influence the conditional intensity and the sizes of

events are not IID, such as the Hawkes process defined above, are not easily derived. The

sufficient condition for stationarity of the Hawkes process given by Daley and Vere-Jones

(2005) requires that the expectation of the conditional intensity is constant. This ensures that

the conditional intensity does not grow to infinity over time as the conditional intensity is

mean reverting. From this condition it can be proven that the Hawkes model with triggering

function (5.5) and impact function (4.3) is stationary when

(1 + α)γ

β
< 1 (3.6)

For the proof we refer to Grothe et al. (2014) (Appendix A).

The log-likelihood of the Hawkes model, specified in the conditional intensity and the

probability distribution of the sizes of the events f(m|θ;Ht) (the derivative of (4.4)), is given

by

logL(θ) =
N∑
n=1

log λ(tn|θ;Ht)−
∫ T

0

λ(t|θ;Ht)dt+
N∑
n=1

log f(mn|θ;Ht) (3.7)

where tn are the event arrival times in the interval [0, T ]. The Hawkes models are estimated

by maximizing the likelihood (5.30). Both in the simulation and estimation procedure we

assume that at t = 0 no events have occurred yet, such that the Hawkes process starts at 0.

9We thank an anonymous referee for bringing this issue to our attention.
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The probability of the occurrence of an event following a Hawkes process with condi-

tional intensity λ(t|θ;Ht) between tn−1 and tn is given by

Pr (N(tn)−N(tn−1) > 0) = 1− Pr (N(tn)−N(tn−1) = 0)

= 1− exp

(
−
∫ tn

tn−1

λ(t|θ;Ht)dt

) (3.8)

The tests proposed here can be easily modified when one is interested in specification

testing in Hawkes models with a different triggering function, impact function or distribution

for the sizes of events.

3.3 LM specification tests

3.3.1 The LM test statistic

We propose a series of specification tests of Hawkes models. We use the approach of Hamil-

ton (1996), who provides specification tests for Markov-switching models. First we develop

a general framework for the specification tests. Next, we provide the specifics required to

test for omitted explanatory variables, omitted influence of the size of past events on the

intensity with which new events are triggered, omitted influence of the history of the event

process on the sizes of future events and omitted structural breaks. In each case we derive

the score from the extensive version of the model. Then we perform a Lagrange Multiplier

test on the null hypothesis that the score is equal to zero. If the null hypothesis is rejected,

we should use the full version of the model. Otherwise the more parsimonious version of the

model, in which the parameters under study are set equal to zero, should be selected.

Suppose we want to estimate a (r × 1) vector of parameters θ by Maximum Likelihood

based on a series of N events yn = {tn,mn}. Consider the distribution of yn conditional on

the values of y for n − 1, . . . , 1 and on the realizations of a vector of observable exogenous

variables xt, that is

p(yn|θ;Ht) (3.9)

where Ht = {xt, . . . ,x1, yn−1, . . . , y1}. Our goal is to choose θ such that the summation of

logarithm of (3.9) over all events 1, . . . , N , which is equal to (5.30), is maximized.
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As we deal with a count process we define the score in event numbers and not in time

points. The score of the n-th event is defined as the derivative of the logarithm of the condi-

tional likelihood (3.9) with respect to the parameter vector θ,

gn(θ̄) =
∂ log p(yn|θ;Ht)

∂θ

∣∣∣∣
θ=θ̄

(3.10)

which can be evaluated at the true parameter value θ̄ = θ0 and at the Maximum Likelihood

estimate θ̄ = θ̂.

As (3.9) is a density, it integrates to unity, such that using integration by parts we have

E[gn(θ)|Ht] =

∫
∂ log p(yn|θ;Ht)

∂θ
p(yn|θ;Ht)dyn = 0 (3.11)

Therefore the score of an event n is impossible to predict on the basis of the information

available at tn−1, if the Hawkes model is correctly specified.

Suppose now the (r × 1) vector of parameters θ is estimated subject to the constraint

that the first q elements of this vector are zero resulting in θ̃. The standard errors of θ̃ are

constructed as the diagonal elements of the inverse of the information matrix, which can

be approximated by the inverse of the average outer product of the score (Davidson and

MacKinnon, 2004),

W̃ =

[
1

N

N∑
n=1

gn(θ̃)gn(θ̃)′

]−1

(3.12)

Using (3.12)
√
N
(
θ̃ − θ0

)
is approximately distributed as N

(
0,W̃

)
.

The validity of the constraints can be assessed by evaluating how much the expected

score of events (3.11) increases when the constraints are relaxed. Let g̃ = 1√
N

∑N
n=1 gn(θ̃).

The LM test is based on the following asymptotic relation,

g̃′W̃g̃→ χ2(q) (3.13)

The LM test statistic can be calculated easily as N times the regression of the constant unity

on gn(θ̃) (Davidson and MacKinnon, 2004).

When performing the LM test against a one-sided alternative, the test can be modified

such that the test in contrast to Karush-Kuhn-Tucker test, still only requires estimation under

the null hypothesis and the distribution of the test statistic is not affected. Let Iq|j denote
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the (q × q) identity matrix in which the (i, i)-th elements are zero if i is in the j-th subset

of the 2q subsets of the constrained parameters {1, . . . , q} of which at least one parameter θi

is tested against the alternative hypothesis that θi > 0. Furthermore let Ṽ =
(
W̃[1:q;1:q]

)−1

denote the inverse of the (q × q) submatrix of (r × r) matrix given in (3.12). Given that

R̃j =
(
Iq − Iq|j

)
Ṽ − Iq|j

C̃j =
{
x ∈ Rq|x = R̃jy, y ∈ Rq

++

}
Z̃ =

[
Iq ṼW̃[1:q;q+1:r]]

]
B̃j =

Ṽ −
(

Iq|jW̃[1:q;1:q]Iq|j
)+

0q×(r−q)

0(r−q)×q 0(r−q)×(r−q)


where (.)+ represents the Moore-Penrose inverse, the LM test statistic is computed as follows

(Rogers, 1986)

g̃′W̃B̃jW̃g̃→ χ2(q) Z̃g̃ ∈ C̃j (3.14)

Comparing the LM statistic for one-sided alternatives (3.14) to the LM statistic for two-

sided alternatives (3.13), the only difference is that evidence of parameters falling outside

the bounded parameter space, that is evidence of parameters being smaller than zero while

under the alternative they are assumed to be larger than zero, does not increase the LM

statistic.

The expected score (3.11) is zero in the parameters on which no constraints are imposed.

This is particularly convenient when the constraints do not affect part of the conditional

distribution (3.9). In this case the corresponding part in the score can be neglected. In the

remainder let θc and θm denote the vectors with parameters that only affect the conditional

intensity or the distribution of the event sizes. For the Hawkes model discussed in section 2,

θc = {µ, γ, β, α} and θm = {ξ, φ} in case η = 0 and θm = {ξ, φ, η, β, α} in case η 6= 0.

We examine models in which an extensive version of the conditional intensity, (4.1), or

the distribution of the event sizes, (4.4), is under investigation. In the first class of models,

the relevant part of the score can be computed from the derivative of the conditional intensity

and the integrated conditional intensity as follows

gn(θ̃c) = −
∂
∫ tn
tn−1

λ(t|θc;Ht)dt

∂θc
+

1

λ(tn|θc;Ht)

∂λ(tn|θc;Ht)

∂θc

∣∣∣∣
θc=θ̃c

(3.15)
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The score (3.15) consists of a term which reflects the change in the probability distribution of

the time between two consecutive events and a term which reflects the relative change in the

rate at which events occur when θ̃c is shifted by a infinitesimal amount. By calculating (3.13)

or (3.14) we test whether the probability to observe a process of events with event occurrence

times {t1, . . . , tN}, is significantly lower compared to when the conditional intensity is not

constrained. In the case parameters are restricted to zero, we assess the added value of these

parameters to the model in terms of their contribution to the prediction of the occurrence

times of events tn.

In the models in which an extensive version of the distribution of the event sizes is under

investigation, (4.4), the relevant part of the score is equal to the derivative of the logarithm

of the probability distribution of the event sizes f(m|θ;Ht),

gn(θ̃m) =
∂ log f(mn|θm;Ht)

∂θm

∣∣∣∣
θm=θ̃m

(3.16)

The score (3.16) reflects the change in probability to observe an event of a certain magnitude

when θ̃m is shifted by a infinitesimal amount. With the LM test we evaluate the difference

in probability between the occurrence of the event process with magnitudes {m1, . . . ,mN}

under the constrained size distribution and the unconstrained size distribution. An LM test on

a constrained parameter vector in which parameters are restricted to zero, indicates whether

the zero-restricted parameters provide any information on the magnitude of future events mn

In our simulations we compare the performance of the LM test to the performance of the

Likelihood Ratio test. The LR test statistic for testing H0 : θ = θ̃ against the alternative

hypothesis HA : θ = θ̂, in which the r0 restrictions are not imposed upon the parameter

vector θ, is given by

LR(θ) = −2
(

logL(θ̃)− logL(θ̂)
)

(3.17)

Like the LM test statistic, the LR test statistic (3.17) has a χ2(r0)-distribution.

Applying the LR test has as a disadvantage that the Hawkes model has to be estimated

under the null and the alternative hypotheses. Estimation of the Hawkes model under the

alternative is in general computationally quite demanding.
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Omitted explanatory variables

Suppose we want to test the Hawkes model (4.1) against an alternative in which exogenous

variables can help to predict occurrence times of events. When the conditional rate at which

events arrive scales with variables, such that the variables affect the unconditional intensity

regardless of the history of the event process, the conditional intensity has the form

λ(t|θ;Ht) = µ+ x′tδ +
∑
k:tk<t

g(t− tk,mk) (3.18)

where δ denotes the effect of the explanatory variables xt or transformations of these vari-

ables on the conditional intensity λ(t|θ;Ht).

The former section describes how to implement the LM test for the alternative hypothesis

(3.18) against the null hypothesis (4.1), in which δ equals zero. The expected score requires

the computation of the following equations for the derivative of the conditional intensity and

the integrated conditional intensity

∂λ(tn|θ;Ht)

∂δ
=xtn (3.19)

∂
∫ tn
tn−1

λ(t|θ;Ht)dt

∂δ
=

tn∑
tn−1

xt (3.20)

Omitted predictability of event sizes

When we observe events that are more extreme in magnitude when the event rate is high,

this leads to the suspicion that the sizes of events are predictable. In case we want to test this

hypothesis in the Hawkes framework (4.1), where the event sizes follow the General Pareto

Distribution (4.4), this corresponds to testing whether η is larger than zero.

When we define

λ̃(t|θ;Ht) =
λ(t|θ;Ht)− µ

γ
=
∑
k:tk<t

e−β(t−tk)c(mk) (3.21)

we can express the probability distribution of the event sizes as

f(m|θ;Ht) =
1

φ+ ηλ̃(t|θ;Ht)

(
1 +

ξ(m− u)

φ+ ηλ̃(t|θ;Ht)

)− 1
ξ
−1

(3.22)
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In case the sizes of events do not influence the conditional intensity(α = 0), the expected

score for the predictability of event sizes equals the derivative of the probability distribution

of the event sizes (3.22) with respect to η for η = 0, that is

∂ log f(mn|θ;Ht)

∂η

∣∣∣∣
η=0

=
λ̃η ((m− u)− φ)

φ (φ+ ξ(mn − u))
(3.23)

where λ̃η = λ̃(t|θ;Ht)
∣∣
η=0

, that is (3.21) in which η is set to zero.

In case the sizes of events do influence the conditional intensity(α = 0), one has to

account for the effect of the history of the event process on the impact that the sizes of events

have on the conditional intensity. This causes that the score of η given by (3.23) has to be

extended with (3.15) in which θc = η, which can be derived from

∂λ(tn|θ;Ht)

∂η

∣∣∣∣
η=0

=−
∑

k:tk<tn

γαe−β(tn−tk) λ̃η(m− u)

φ (φ+ ξ(mn − u))
(3.24)

∂
∫ tn
tn−1

λ(t|θ;Ht)dt

∂η

∣∣∣∣
η=0

=−
∑

k:tk<tn

γα

β
e−β(tn−tk)

(
eβ(tn−tn−1) − 1

) λ̃η(m− u)

φ (φ+ ξ(mn − u))

(3.25)

Omitted impact of sizes events

The sizes of events influence the conditional intensity of the Hawkes process (4.1), when

larger events trigger more events than smaller events. Under the assumption of (4.3) for the

impact of the sizes of events on the event rate, this implies a α-parameter larger than zero.

When the sizes of events are unpredictable (η = 0), the expected score for α can be

computed using following equations for the derivative of the conditional intensity and the

integrated conditional intensity

∂λ(tn|θ;Ht)

∂α

∣∣∣∣
α=0

=
∑

k:tk<tn

γ

ξ
e−β(tn−tk) log

(
1 + ξ

mn − u
φ

)
(3.26)

∂
∫ tn
tn−1

λ(t|θ;Ht)dt

∂α

∣∣∣∣
α=0

=
∑

k:tk<tn

γ

βξ
e−β(tn−tk)

(
eβ(tn−tn−1) − 1

)
log

(
1 + ξ

mn − u
φ

)
(3.27)

When the sizes of events are predictable (η 6= 0) one has to account for the impact the

sizes of past events have on the probability distribution of the sizes of future events. Another
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term has to be added to the score (3.15) of α. This term, given by (3.16), equals the derivative

of (3.22) with respect to α,

∂ log f(mn|θ;Ht)

∂α

∣∣∣∣
α=0

=
η
(

(m− u)− (φ+ ηλ̃α)
)

γ(φ+ ηλ̃α)
(

(φ+ ηλ̃α + ξ(mn − u)
) ∂λ(tn|θ;Ht)

∂α
(3.28)

where λα = λ̃(t|θ;Ht)
∣∣
α=0

with λ̃(t|θ;Ht) given in (3.21).

Omitted structural break

Suppose we want to test the Hawkes model (4.1) for a structural change in the constant

unconditional intensity when we do know the time of this change. For this purpose we can

use of the methods of Andrews (1993). In Section 3.1.1 on omitted explanatory variables,

let xt in (3.18) be a scalar that is equal to zero for t < τ and equal to unity when t ≥ τ . The

constructed LM statistic (3.13) tests the null hypothesis that the data is accurately modeled

by the simple version of the Hawkes model (4.1) against the alternative that there is a shift

in the long-term background component of the intensity, µ, at date τ not captured by the

simple model. One can calculate the LM statistic for all τ , however usually only values

between 0.15N and 0.85N are considered. Here N corresponds to the number of events in

the data under study. The asymptotic distribution of the value of τ that produces the largest

LM statistic, has critical values corresponding to the π0, p = 1 entry in Table 1 of Andrews

(1993).

3.3.2 Tests for dependence between series

LM test

In this subsection we describe the LM test of our focal intent.

In case events across series tend to arrive around the same time, the occurrence of an

event in one series could be increasing the probability that an event in another series arrives.

A Hawkes model in which the conditional intensity of a series i is affected by the history of

the event process of another series j is given by

λi(t|θ;Ht) = µ+ γi
∑
k:tk<t

g(t− tk,mk) + γj
∑
l:tl<t

h(t− tl,ml) (3.29)
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where γjh(t − tl,ml) presents the effect of an event in series j on the intensity at time t in

series i.

Equation (4.8) can easily be extended to include possible cross-triggering effects of more

than one series, j = {1, . . . , d},

λi(t|θ;Ht) = µ+ Γii
∑
k:tik<t

gi(t− tik,mik) +
d∑

j=1,j 6=i

Γij
∑
k:tjk<t

hj(t− tjk,mjk) (3.30)

where Γijhj(t − tjk,mjk) presents the effect of an event k in series j at time tjk on the

intensity at time t in series i. Given that ci, fi, represent respectively the impact of the event

sizes on the triggering intensity and the probability distribution of the event sizes for a series

i, we have

1

1 + αi

∫ ∞
ui

ci(m)fi(m)dm = 1 (3.31)

βi

∫ ∞
0

e−βitdt = 1 (3.32)

where ui is the threshold above which events are considered and αi, βi, are parameters of the

model indicating respectively the strength of the influence of the event sizes on the triggering

intensity and the decay speed for the series i. Given (3.31) and (3.32), stationarity for the

multivariate Hawkes model can be proven whenever the (sufficient) conditions indicated by

Liniger (2009) and Embrechts et al. (2011), are satisfied, that is whenever

Spr(Q) < 1 (3.33)

βi

∫ ∞
0

te−βitdt <∞ (3.34)

Here Spr(Q) represents the spectral radius of the branching matrix Q, which consists of the

elements (1+αj)Γij
βj

.

Specification (3.30) enables one to separately test for amplification effects from each of

the series of j = {1, . . . , d} to the conditional intensity of a series i in one go. This attractive

feature of the LM test originates from the fact that to compute the LM test no estimation

under the alternative hypothesis is required. Let xj(t) =
∑

k:tjk<t
hj(t−tjk,mjk), denote the

additional tension caused by all events k in a series j before time t. To test whether the cross-
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triggering effects are significant for a series i, we perform the LM test on the coefficients of

the explanatory variables xj(t) designed in the former section. First we estimate the Hawkes

model under the null hypothesis of no cross-triggering effects, that is Γi,−i = Γi \ Γii = 0,

against the alternative hypothesis of cross-excitation Γi,−i > 0. Hereafter we use (3.15) to

compute the expected score from the derivative of the conditional intensity and the integrated

conditional intensity

∂λ(tn|θ;Ht)

∂Γi,−i
=x(t) (3.35)

∂
∫ tn
tn−1

λ(t|θ;Ht)dt

∂Γi,−i
=

∫ tn

tn−1

x(t)dt (3.36)

When there are d ≥ 1 series involved, the LM test (3.14) is asymptotically χ2(d− 1) under

the null of no cross-triggering effects for a series i.

The cross-triggering functions can be specified in various ways. For example

hj(s,m) = e−βjs (3.37)

Using cross-triggering functions of the form (3.37) extreme events in the series i can have a

longer-lasting effect on triggering of subsequent events than extreme events in other series

have on the triggering of events in i. However as the βj-parameters are unidentified under

the null hypothesis H0 : Γi,−i = 0, the regular critical values of the χ2-distribution cannot

be used. This problem is recognized by Bowsher (2007). In Bowsher (2002) a solution is

given to overcome this problem. The test statistic T (m)(θ) is minimized with respect to the

parameters θ. When

T (m) = min
θ∈Θ

T (m)(θ) (3.38)

exceeds the (1−α)-quantile of the null distribution T (m)(θ0), where θ0 is the true parameter

value, the null hypothesis is rejected. The probability of falsely rejecting the null hypothesis

bounded by α as T (m) ≤ T (m)(θ0). As the approach does not depend on regularly conditions

and it is valid when θ0 is on the boundary of the parameter space, the procedure is suitable to

use for testing in Hawkes models. Other methods (Hansen, 1996; Andrews, 2001) can also

be considered.
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One could also restrict the decay rate of the effect of past events in all series to be the

same. The cross-triggering functions are in this case specified as

hj(s,m) = e−βis (3.39)

where the parameter βi is equal to the β-parameter in the triggering function by which the

effect of past events on subsequent events in the same series is described, g(s,m). As under

the null hypothesis H0 : Γi,−i = 0, βi still determines the decay rate of the triggering

effect of events that occurred in the series i, we do not encounter the problem of unidentified

nuisance parameters.

Aı̈t-Sahalia et al. (2014) and Aı̈t-Sahalia et al. (2015) define the intensity of new jumps

(Ji,t) in series i at time t recursively as

dλi,t = β(λi,∞ − λi,t)dt+
d∑
j=1

ΓijdJj,t (3.40)

where λi,t is mean reverting to λ∞. As in (3.30) the intensity at which events occur in series

i is amplified when an event in one of the series arrives. The amplification effect decays at

rate β. Testing this specification for the presence of cross-excitation comes down to testing

the former specification (3.30) with (3.39) for the presence of cross-excitation.

It is also possible to employ one of the following cross-triggering functions

hj(s,m) = e−βjsc(m) (3.41)

hj(s,m) = e−βisc(m) (3.42)

where c(m) represents the impact of the sizes of past events in the series j on the intensity

with which future events are triggered a series i. Using (3.41) or (3.42), the effect of event

occurrences in other series on the event rate in the series i depends on their magnitude. The

impact of past events on the triggering of future events in series i differs across series when

the parameters of the impact function are not treated as equal across series. In that case there

are additional αj , ξj , φj and ηj parameters unidentified under the null hypotheses.
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Regression method

Van Oordt and Zhou (2012) propose a regression method for testing cross-sectional depen-

dence. Their method consists of regressing the indicators of the occurrences of extreme

events in the different time series at time t on lagged (products) of indicators of extreme

events in these series. When considering one lag and d time series, the regression can be

expressed as follows

It,i =
d∑
j=1

βjIt−1,j +
∑
k>j

βj,kIt−1,jIt−1,k +
∑
l>j,k

βj,k,lIt−1,jIt−1,kIt−1,l + . . .+
d∏

x=1

β1,...,dIt−1,x

(3.43)

where It,i is the indicator function, which is one when an event arrives in market i at time t

and zero otherwise. Equation (3.43) can easily be modified to include more lagged terms or

indicators that identify the occurrence of events over a period of time in the past.

The β-coefficients and their standard deviations are easily estimated by Ordinary Least

Squares (OLS). By performing a Student’s t-test on the β coefficients, one can deduct

whether the occurrence of extreme events in one or more series in the past contains ‘sig-

nificant information’ on the occurrence of extreme events in another series in the future.

The focus is on detecting whether or not event occurrences in other series have explana-

tory power for the unconditional event rate in a series i. The aim of the Hawkes models is to

model the conditional event rate in a series i, possibly using the event occurrences in other

series as explanatory variables. In the Hawkes models events have the effect on the event

rate that decays as a function of time, while the regression (3.43) describes a stepwise decay.

Therefore the method of Van Oordt and Zhou (2012) does not fit into the Hawkes framework.

However the method of Van Oordt and Zhou (2012) is meaningful in the Hawkes framework

if the conditional and unconditional event rate are approximately equal. This is the case

when the self-exciting part of the event rate is small relative to the constant part of the event

rate, that is when the parameters µ and/or β are high and/or the parameter γi is low relative

to the other parameters.

Orthogonality test

Testing for orthogonality means testing for cross-sectional dependence between the occur-

rence of extreme events at time t conditional on the information set Ht−1, that is, the entire
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history of the event process up to time t. When event processes are orthogonal their event

rates at time t can be related through events that occurred in the past, however innovations to

these event rates are not related. Therefore, the occurrence of multiple events at time t+ 1 is

as likely as if the processes would be independent.

In some multivariate Hawkes models the event processes are not orthogonal. For example

Grothe et al. (2014) combine the intensities, with which events in the margins arrive, in a

copula function to derive the joint intensity with which in at least one margin an event arrives.

As the joint intensity is smaller than the sum of the marginal intensities, the probability of

events occurring simultaneously is larger than zero. Bormetti et al. (2015) let the marginal

intensities at time t dependent on the intensity of a latent factor at time t. The intensities

differ as their sensitivity to the intensity of this latent factor at time t differs. However the

intensities share similar dynamics, which makes the occurrence of events at the same time

more likely than in a model in which event processes are orthogonal.

Let
{
t̃1, . . . , t̃N

}
denote the combined event process which indicates the occurrence of

one or more events. The orthogonality test described in Lando and Nielsen (2010) is based

on the fact that in case of orthogonality, the process,
{
t̃1, . . . , t̃N

}
, is generated by the sum

of the univariate conditional intensities λi(t|θi;Hi,t), i ∈ {1, . . . , d}. The test prescribes to

use residual analysis technique of Ogata (1988) on the marginal intensities as if they were

independent, to compute the transformed times {τ̃n}, 1, . . . , N ,

τ̃n =

∫ t̃n

0

d∑
i=1

λi(t|θi;Hi,t)dt =
d∑
i=1

∫ t̃n

0

λi(t|θi;Hi,t)dt (3.44)

The test states that if the event processes are orthogonal the transformed times are distributed

according to a homogeneous Poisson process with intensity 1. Also the transformed interar-

rival times,

τ̃n − τ̃n−1 =

∫ t̃n

t̃n−1

d∑
i=1

λi(t|θi;Hi,t)dt =
d∑
i=1

∫ t̃n

t̃n−1

λi(t|θi;Hi,t)dt (3.45)

are independent exponential random variables with mean 1. In order to verify whether {τ̃n}

is Poisson with unit intensity, we perform the Kolmogorov-Smirnov (KS) test.

When the probability of an extreme event arriving in one time series is influenced by

extreme events that occurred in another series in the past, this time series is conditionally
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dependent on the other series. When event processes are conditionally dependent, it is pos-

sible that the probability of events occurring simultaneously, is still zero. These processes

are independent of each other when conditioned on all past information and thus orthogonal.

Therefore, if event processes are orthogonal, this does not imply that these processes are

conditionally independent. Examples of multivariate Hawkes processes that are orthogonal

but not conditionally independent can be found in Bowsher (2007), Embrechts et al. (2011),

Aı̈t-Sahalia et al. (2014) and Aı̈t-Sahalia et al. (2015).

3.4 Monte Carlo analysis of tests

Here we review the quality of the tests for detecting the dependence between series that

follow a Hawkes process. We evaluate the power and size of the LM test, the LR test,

the regression method and the orthogonality test, by means of a Monte Carlo analysis. We

simulate from the Hawkes models under the null hypothesis of zero cross-excitation and

under the alternative hypothesis, where we assume that at the beginning no events are present

yet. Under the alternative hypothesis the occurrence of events in one series amplifies the

probability that events arrive in another series. A Monte Carlo analysis of the tests for the

omitted predictability of event sizes and the omitted impact of the sizes of past events on the

probability that events arrive in the future, is attached in the appendix.

The considered Hawkes models differ as the parameters α and/or η are restricted to zero

in some of the models, while in other models these parameters can take values different from

zero. When α = 0 the sizes of former events do not influence the conditional intensity of

new event arrivals, while when α 6= 0 the probability that events are triggered is affected

by the sizes of previous events. When η = 0 the history of the event process does not have

information on the sizes of events in the future, while when η 6= 0 the sizes of events can be

predicted from the past.

For the simulation exercise we use parameter values derived from estimating the Hawkes

models under the null and the alternative hypothesis using the data of Grothe et al. (2014).

Grothe et al. (2014) consider extreme negative returns in European and US financial markets,

which are approximated by daily log-returns of the MSCI-USA and MSCI-EU indices over

the period January 1, 1990 to January 12, 2012. To estimate the models the threshold is set
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at the 97.7% quantile of the empirical distributions of the stock market returns. Models are

estimated by numerically maximizing their log-likelihood using the interior-point algorithm.

Table 3.1 presents the parameter estimates under the null of zero cross-excitation and

the alternative which incorporates spillover effects between series. The parameter Γ12 (Γ21)

controls the cross-triggering of events in the US (EU) by the occurrence of events in the EU

(US). Amongst the multivariate Hawkes models the instantaneous effect of the occurrence

of events in the EU on the event rate in the US (Γ12), is between 0.68 and 0.98 times as large

as the effect of events in the series itself (Γ11) in the Hawkes models in which the sizes of

events do not influence the event rate. For the EU, the ratio between the instantaneous cross-

excitation and self-excitation effects, ranges between 0.47 and 0.74. In the Hawkes models

in which the event sizes do affect the event rate the same ranges of ratios are found when the

effect of events of the minimum magnitude is examined. Furthermore the standard errors of

the parameters that control the cross-excitation effects (Γ12 and Γ21) are comparable in size

to those of the self-exciting parameters (Γ11 and Γ22). Therefore it seems that the impact of

events in a series on the event rate in another series is quite substantial and should not be

ignored. The parameters that control the self-excitation effects and the constant part of the

event rate are higher when the models are estimated under the null. Hence, the impact of

events on the event rate of the series itself and the number of spontaneously occurring events

seem overestimated in the univariate models, accounting for self-excitation as well as the

back and forth cross-excitation between series.

To quantify the effect of crashes in one market to another market, we examine the branch-

ing ratio of crashes in the markets. The branching ratio is the expected number of events

triggered by an event. We compute the ratio by integrating the self-exciting part of the event

rate from zero to infinity over time and size dimension. In the univariate case the branching

ratio is given by (3.6). Amongst the Hawkes models, a US crash triggers on average 0.38 to

0.46 EU crashes, which is approximately equal to range of the average number of crashes

provoked by EU crashes themselves (0.36, 0.46). When the EU market crashes, this leads on

average to 0.21 to 0.28 US crashes amongst the Hawkes models, while the expected number

of US crashes generated by a US crash varies between 0.46 to 0.56 in the Hawkes models.

Thus, crashes in the US market have a substantial effect on the occurrence of crashes in the

EU market. The effect is approximately as large as the effect of crashes in the EU market.

The effect of crashes in the EU market on the occurrence of crashes in the US market not
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so large as the cross-triggering effect vice versa. However, this cross-triggering effect seems

also quite substantial as one US crash is expected after the occurrence of about 3 tot 5 EU

crashes.

Comparing the Hawkes models with the parameter restriction α = 0 to the Hawkes mod-

els without this restriction, the magnitude of an extreme has a significant positive influence

on the probability of triggering another extreme for both sets of returns. This means that on

average larger events trigger more events than smaller events. Also the estimates for η are

positive and significant for both sets of returns. This suggests a model which incorporates the

history of the event process to prospect the sizes of subsequent events, matches the crashes

closer than a model which assumes the sizes of events are independent of the past. When

η > 0, the mean and variance of the distribution of the excess magnitudes of the events scale

with the value of the cumulative triggering function, and thus the probability of the arrival of

an event triggered by another event. This means that on average larger extremes are observed

after the occurrence of more and/or big events than after a tranquil period.

We test for the existence of cross-dependence among the simulated series. The Fig-

ures 3.1 and 3.2 display Hawkes processes simulated from respectively models under the

null hypothesis of no cross-excitation and models under the alternative hypothesis of cross-

excitation. The magnitude-time plots show that the simulated series share the major feature

characteristic of the Hawkes models, that is the clustering of events over time. However,

looking at Figure 3.1, different series simulated from a model in which the occurrence of

events in one series has no influence on the occurrence of events in another series, do not

necessarily exhibit clustering behavior at the same time. This is further illustrated by the

intensity plots as the event rates of the series do not spike at the same time. In the case of

spillover effects between series, events cluster not only through time but also in the cross

section. Therefore one can see that the derived conditional intensities of the different series

get high and low simultaneously.

We simulate 1, 000 series from the Hawkes models under the null hypothesis of zero

cross-excitation and the alternative over a period of 5, 000 and of 10, 000 days. The number

of generated events differs among the simulated series, but in expectation it is equal to 2.3%

of the number of days over which we simulate. The simulation procedure can be found in

the appendix. In the following the parameters Γ12 and Γ21 control the cross-triggering effects

from one series to another. In the case the occurrence of an event in series 1 (2) amplifies



Table 3.1: Parameter estimates used in simulation

Zero cross-excitation Cross-excitation

α = 0 α 6= 0 α = 0 α 6= 0

η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0

Γ11 0.0290 0.0333 0.0205 0.0164 0.0198 0.0216 0.0139 0.0115

(0.0076) (0.0074) (0.0177) (0.0117) (0.0071) (0.0071) (0.0056) (0.0083)
Γ12 0.0135 0.0212 0.0099 0.0104

(0.0058) (0.0085) (0.0046) (0.0077)
Γ21 0.0188 0.0265 0.0143 0.0072

(0.0090) (0.0097) (0.0080) (0.0090)
Γ22 0.0447 0.0455 0.0321 0.0167 0.0400 0.0360 0.0283 0.0109

(0.0089) (0.0080) (0.0196) (0.0045) (0.0123) (0.0124) (0.0119) (0.0305)
ξ1 0.2886 0.1614 0.2884 0.1670 0.2886 0.1302 0.2894 0.1465

(0.0559) (0.1074) (0.1372) (0.0435) (0.1345) (0.1053) (0.1378) (0.1332)
ξ2 0.2364 0.1635 0.2455 0.1868 0.2364 0.1293 0.2496 0.1625

(0.1248) (0.0817) (0.4475) (0.0985) (0.1973) (0.0818) (0.1095) (0.3077)
φ1 0.8501 0.4599 0.8503 0.4701 0.8501 0.3908 0.8495 0.4075

(0.0387) (0.1024) (0.0281) (1.2899) (0.1387) (0.0776) (0.2117) (0.1320)
φ2 0.8867 0.4479 0.8787 0.4293 0.8867 0.4078 0.8750 0.3936

(0.0543) (0.2405) (1.4997) (0.1091) (0.1498) (0.1082) (0.2363) (0.5246)
µ1 0.0059 0.0063 0.0065 0.0063 0.0053 0.0061 0.0056 0.0057

(0.0015) (0.0015) (0.0037) (0.0067) (0.0015) (0.0015) (0.0017) (0.0113)
µ2 0.0055 0.0055 0.0057 0.0057 0.0038 0.0041 0.0041 0.0039

(0.0013) (0.0012) (0.0178) (0.0013) (0.0012) (0.0012) (0.0013) (0.0115)
β1 0.0389 0.0458 0.0411 0.0403 0.0357 0.0463 0.0338 0.0359

(0.0087) (0.0105) (0.0346) (0.1528) (0.0117) (0.0116) (0.0122) (0.0294)
β2 0.0582 0.0594 0.0600 0.0579 0.0871 0.0979 0.0970 0.0987

(0.0134) (0.0105) (0.1916) (0.0134) (0.0421) (0.0255) (0.0292) (0.0411)
α1 0.4416 0.7921 0.3024 0.5626

(0.4722) (1.4302) (0.2123) (1.0501)
α2 0.4107 1.6228 0.5103 2.4323

(0.3305) (0.3405) (0.1638) (5.2226)
η1 0.2597 0.1146 0.1979 0.0914

(0.0803) (0.1080) (0.0671) (0.0372)
η2 0.3164 0.1051 0.2582 0.0712

(0.0947) (0.0374) (0.0944) (0.0843)

The parameters estimates are derived applying the Hawkes models to daily log-returns of the MSCI-USA and
MSCI-EU indices over the period January 1, 1990 to January 12, 2012. In the Hawkes models that enable
cross-excitation, the parameters Γ12 and Γ21 control the cross-triggering effect from the EU to the US and the
cross-triggering effect from the US to the EU. In the Hawkes models with the parameter restriction α = 0, the
magnitude of events have no influence on the triggering of subsequent events. In the Hawkes models with the
parameter restriction η = 0, the history of the events has no influence on the magnitude of subsequent events.
Standard deviations are shown in between parentheses.



Figure 3.1: Simulation Hawkes models without cross-excitation
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(a) α = 0, η = 0
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(b) α = 0, η = 0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Trading day

0

5

10

15

M
ag

ni
tu

de
 e

ve
nt

(c) α 6= 0, η 6= 0
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(d) α 6= 0, η 6= 0

Simulation in discrete time of genuine multivariate Hawkes models without cross-excitation. Param-
eters and the minimum magnitude of events under consideration are set on the models estimated from
the data set of Grothe et al. (2014). In Hawkes models with the parameter restriction α = 0, the
magnitude of events have no influence on the triggering of subsequent events. In the Hawkes models
with the parameter restriction η = 0, the history of the events has no influence on the magnitude
of subsequent events. Magnitudes and times of the events and plots of the conditional intensity are
presented for the two series. The blue solid lines and circles correspond with the first series, the green
dashed lines and stars correspond with the second.
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(d) α 6= 0, η 6= 0

Simulation in discrete time of genuine multivariate Hawkes models with cross-excitation. Parameters
and the minimum magnitude of events under consideration are set on the models estimated from
the data set of Grothe et al. (2014). In Hawkes models with the parameter restriction α = 0, the
magnitude of events have no influence on the triggering of subsequent events. In the Hawkes models
with the parameter restriction η = 0, the history of the events has no influence on the magnitude
of subsequent events. Magnitudes and times of the events and plots of the conditional intensity are
presented for the two series. The blue solid lines and circles correspond with the first series, the green
dashed lines and stars correspond with the second.
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the probability that an event arrives in series 2 (1), this is indicated by a parameter Γ12 (Γ21),

that is different from zero.

Table 3.2 reports the percentage rejections of the null hypothesis of zero cross-excitation

at a 5% level when performing the LM test. Under the alternative hypothesis, the events in

one series affect the conditional intensity in another series as specified by cross-triggering

function (3.39). Using (3.39), the impact of event occurrences among series on the condi-

tional intensity of one series decays at the same rate. Reviewing the size and power of the

LM test we conclude the LM test is quite accurate. For T = 10, 000 the LM test is slightly

undersized with percentage rejections that vary between 2.2% and 4.6% over the different

Hawkes models. Also the power of the test is high as in 95.0% to 100.0% cases the Hawkes

model with zero cross-excitation is rightly rejected. When the time period over which the

Hawkes models are simulated and estimated is short, the quality of the LM test falls only a

little bit. This can be explained by the small number of events generated, such that the distri-

bution of the LM test statistic has not entirely converged to the asymptotic χ2(1)-distribution.

For T = 5, 000, the test is less undersized as the test does not reject the null in 3.4% to 5.6%

of the cases. Although the power of the test is a little lower compared to when the LM test is

reviewed over the longer time period of T = 10, 000, the power is still high with percentage

rejections that range from 75.1% to 99.0%.

Table 3.2 presents the results of the LM test in which the information matrix is approxi-

mated by the average outer product of the score as outlined in the previous section. Results

of the LM test in which the information matrix is approximated by the Hessian matrix, that

is the negative of the matrix with as elements the average second-order partial derivatives,

are presented in the appendix. We prefer to use the average outer product of the score as

the LM test in this form does not require the derivation of second derivatives. Also the test,

although less undersized, has more power for the Hawkes models than the LM test in which

the Hessian is used.

We compare the LM test to the computationally more demanding LR test. The LR test is

supposed to outperform the LM test, as the LR test uses information on the likelihood under

both the null and the alternative hypothesis, while for the LM test only the first is needed.

Table 3.3 reports the percentage rejections of the null hypothesis of zero cross-excitation at

a 5% level when carrying out the LR test. The LR test is more undersized than the LM test.

Percentage rejections of the null when performing the LR test on simulations from Hawkes
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Table 3.2: Size and power LM tests

T=5,000 T=10,000

α = 0 α 6= 0 α = 0 α 6= 0

η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0

Size Γ12 4.5 3.4 4.0 5.6 2.2 3.0 4.6 2.6

Γ21 3.8 4.0 3.9 4.5 2.5 2.2 2.8 2.5

Power Γ12 75.1 87.9 74.5 79.2 95.0 99.0 96.1 96.2

Γ21 96.5 99.0 94.8 98.6 99.9 100.0 100.0 100.0

Percentage rejections of the null hypothesis of zero cross-excitation, when performing the LM test on 1, 000
simulations from Hawkes models over a time period of 5, 000 and 10, 000 time instances using 5% critical
values. For the power of the tests the models are simulated under the alternative, while for the size the models
are simulated under the null. The parameters and the minimum magnitude of events are set on values estimated
from the data set of Grothe et al. (2014). The parameters Γ12 and Γ21 control respectively the cross-triggering
effect from series 2 to series 1 and the cross-triggering effect from series 1 to series 2 (3.30). In the Hawkes
models with the parameter restriction α = 0, the magnitude of events have no influence on the triggering of
subsequent events. In the Hawkes models with the parameter restriction η = 0, the history of the events has no
influence on the magnitude of subsequent events.

models under the null, vary between 1.3% and 3.4%. The LR test is somewhat more powerful

than the LM test. When the Hawkes models are simulated under the alternative over 5, 000

days, this results in rejection percentages between 80.6% and 99.4%, when simulated over

10, 000 days rejection percentages range from 96.7% to 100.0%. The rejection percentages

of the LR test are not so different from the percentages found when carrying out the LM test,

such that we conclude the performance of the LR test is only a bit superior to the performance

of the LM test. As the LR test is a much more time consuming and as the LM test performs

very well, we prefer to use the LM test.

Table 3.4 reports the percentage rejections of the null hypothesis of zero cross-excitation

when applying the regression method on 1, 000 simulations from Hawkes models under the

null and the alternative. The regression method is described in Section 3.2.2. Table 3.4

reveals that the regression method cannot be used to detect dependence between series as the

method indicates presence of cross-excitation while there is no cross-excitation in at least

49% of the cases amongst models and simulation periods. Section 3.2.2 already mentioned

that the method of Van Oordt and Zhou (2012) does not fit into the Hawkes framework

as it focuses on the unconditional event rate using a stepwise decay function for the effect

of events on the conditional intensity, while in Hawkes models the effect of events on the

conditional intensity decays smoothly as a function of time. Here we conclude indeed that
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Table 3.3: Size and power LR tests

T=5,000 T=10,000

α = 0 α 6= 0 α = 0 α 6= 0

η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0

Size Γ12 1.5 1.6 2.3 3.1 1.3 2.2 2.9 2.1

Γ21 2.0 3.4 2.2 1.7 2.0 1.9 2.2 2.2

Power Γ12 81.9 91.7 80.6 83.7 96.7 99.5 98.2 98.0

Γ21 97.7 99.4 95.7 99.0 99.9 100.0 100.0 100.0
Percentage rejections of the null hypothesis of zero cross-excitation, when performing the LR test on 1000
simulations from Hawkes models over a time period of 5, 000 and 10, 000 time instances using 5% critical
values. The parameters and the minimum magnitude of events are set on values estimated from the data set of
Grothe et al. (2014). The parameters Γ12 and Γ21 control respectively the cross-triggering effect from series
2 to series 1 and the cross-triggering effect from series 1 to series 2 (3.30). In the Hawkes models with the
parameter restriction α = 0, the magnitude of events have no influence on the triggering of subsequent events.
In the Hawkes models with the parameter restriction η = 0, the history of the events has no influence on the
magnitude of subsequent events.

the regression method is a bad approach to examine the presence of spillovers in a Hawkes

framework.

Table 3.5 shows the results of the orthogonality test on 1, 000 simulations from Hawkes

models under the null and the alternative. The Table reports the percentage rejections of the

null hypothesis of zero cross-excitation applying a Kolmogorov-Smirnov test on the trans-

formed times (3.44). A description of the orthogonality test can be found in Section 3.2.3.

As explained in Section 3.2.3, the tests are not able to capture conditional dependence such

that the power of the orthogonality tests is low.

3.5 Application to Financial Data

To illustrate the convenient use of the LM test for dependence when more than 2 series are

involved, we apply the test to 3 stock market indices, a bond market index and 3 exchange

rate markets. Hartmann et al. (2004) report that the stock-bond contagion is approximately as

frequent as the flight-to-quality phenomenon, where the latter is the outflow of capital from

stock markets to bond markets when the first are facing crises periods. Therefore we examine

the spillover effects between extreme negative price movements in the equity indices and

extreme negative price movements as well as extreme positive price movements in the bond



Table 3.4: Size and power regression method

T=5,000 T=10,000

α = 0 α 6= 0 α = 0 α 6= 0

η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0

Size Margin 1 β1 80.9 79.9 80.5 78.4 95.7 97.4 96.7 94.8

β2 54.1 51.5 52.0 52.3 80.9 81.2 82.8 80.3

β1,2 45.5 47.8 47.0 45.0 68.9 73.3 72.4 70.3

Margin 2 β1 50.8 51.8 51.0 49.3 80.6 80.1 81.9 77.4

β2 82.0 80.6 80.2 78.9 95.7 97.4 96.8 94.8

β1,2 57.6 58.6 59.1 57.8 79.5 80.5 80.1 79.0

Power Margin 1 β1 92.1 94.0 92.4 93.1 99.3 99.8 99.4 99.9

β2 93.6 96.1 94.0 95.0 99.8 99.9 99.3 100.0

β1,2 75.3 75.3 74.7 75.7 79.2 79.2 77.1 75.8

Margin 2 β1 92.8 95.7 93.4 93.9 99.6 99.6 99.6 99.9

β2 95.2 96.7 95.0 95.4 99.8 99.9 99.6 100.0

β1,2 76.4 78.6 74.9 78.6 76.9 76.0 75.2 75.8

Percentage rejections of the null hypothesis of zero cross-excitation, when applying the regression method on
1, 000 simulations from Hawkes models over a time period of 5, 000 and 10, 000 time instances using 5%
critical values. The parameters and the minimum magnitude of events are set on values estimated from the data
set of Grothe et al. (2014). In the Hawkes models with the parameter restriction α = 0, the magnitude of events
have no influence on the triggering of subsequent events. In the Hawkes models with the parameter restriction
η = 0, the history of the events has no influence on the magnitude of subsequent events.

Table 3.5: Size and power orthogonality tests

T=5,000 T=10,000

α = 0 α 6= 0 α = 0 α 6= 0

η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0

Size 2.2 1.1 1.0 2.0 1.5 1.8 2.1 1.9

Power 12.2 14.1 14.8 14.2 18.2 19.5 21.3 19.8

Percentage rejections of the null hypothesis of zero cross-excitation, when performing Kolmogorov-Smirnov
test on the transformed times (3.44) of 1, 000 simulations from Hawkes models over a time period of 5, 000
and 10, 000 time instances using 5% critical values. The parameters and the minimum magnitude of events are
set on values estimated from the data set of Grothe et al. (2014). In the Hawkes models with the parameter
restriction α = 0, the magnitude of events have no influence on the triggering of subsequent events. In the
Hawkes models with the parameter restriction η = 0, the history of the events has no influence on the magnitude
of subsequent events.



74 Specification testing

index. As Gonzalo and Olmo (2005) find for the Dow Jones Stock Price Index and Dow

Jones Corporate Bonds Indices that causality of extremes seems to depend on the maturity

of the bonds, and hence to identify dependence between different stock and bond extremes,

testing is necessary. Also, we investigate the cross-dependence between the stock and bond

markets on one hand and exchange rate markets on the other hand. For the bond market

we include series of both positive and negative exchange rate extremes in our application.

Furthermore we test for dependence within the segment of stock markets and the segment of

exchange rate markets.

With the LM test we are able to separately test for cross-excitation to one series from all

the other series at once because no estimation under the alternative hypothesis is required.

In contrast to the LR test for n series, n × (n + 1) models need to be estimated instead of

n, which is quite time-consuming in our case as it includes 11 series. The equity indices we

consider are the S&P index, the NASDAQ and the Dow Jones Industrial index. For the bond

index we take the US aggregate government bond series. The exchange rates we look at are

the $/e-rate, the $/£-rate and the $/U-rate. Our data consists of daily prices between January

1, 1990, and July 1, 2015. The Hawkes models are applied to extreme price movements

above the 95% and the 97.5% quantile.

Table 3.6 reports the LM test statistics for dependence between extremes in the equity,

the bond and the exchange rate series. Here the element (i, j) corresponds to the cross-

triggering effect to the series in row i from the series in column j. Here we only present the

results for the simplest Hawkes models, in which event sizes are unpredictable and the sizes

of past events do not affect the probability of triggering new events. Results for the other

models are similar.

Between markets, we find that crashes in the stock markets amplify the probability that

extremes in the other markets occur. However, according to the LM test, there is a lack of

spillover effects the other way around. The LM test detects both stock-bond contagion as the

flight-to-quality phenomenon. Moreover, Table 3.6 shows that the effects from the equity

indices to the US bond market are strongest, as the LM test statistics for the triggering of

crashes in the US bond market range from 14.45 to 26.95 and the LM test statistics for the

triggering of booms in the US bond market by crashes in the S&P500 index and the DJI

index range from 13.96 to 17.27 among the equity indices and thresholds. Crashes in all the

equity indices also provoke both crashes and booms in the $/e-rate and crashes in $/U-rate
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using both thresholds, while only the LM statistics for spillover effects from the S&P 500

index and the DJI index to the $/£-rate are consistently high and significant. The rate at

which booms in the $/U-rate occur, seems to be unaffected by the occurrence of extremes

in the other markets. Furthermore with the LM test we discover that, using both thresholds,

crashes in the $/e-rate and the $/Urate trigger crashes in the US bond market and that booms

in the US bond market trigger booms in the $/e-rate.

Within the stock market segment, we find, using both thresholds, highly significant LM

test statistics indicating that crashes in the NASDAQ provoke crashes in the S&P 500 index,

and that crashes in both the S&P 500 index and the NASDAQ increase the probability of a

crash in the DJI index. We do not encounter evidence of cross-excitation from the DJI index

to the other indices. Therefore, we conclude that crashes in the NASDAQ have the largest

influence among the stock market indices. Within the exchange rate segment, the LM test

points out that the occurrences of crashes in the $/e-rate and the $/£-rate are strongly related.

Also, booms in $/U-rate trigger booms in the $/e-rate. However, as the LM test suggests,

extremes in the $/U-rate and the $/£-rate are independent of each other, and spillover effects

from other two exchange rates to the $/U-rate are absent. Hence the $/U-rate seems to behave

differently from the other two exchange rates.

Comparing the the LM test statistics for extremes above the 95% and the 97.5% quan-

tile, most statistics are quite close or only barely significant. The most striking differences

occur for the spillover effects to booms in the US bond market. Apparently US bond booms

further in the tail behave differently from smaller US bond booms. Furthermore the highly

significant LM test statistic for the spillover effect from crashes in the $/e-rate to crashes

in the $/£-rate disappears when extremes above the 97.5% threshold are studied instead of

extremes above the 95% threshold.

All in all we conclude that there is substantial cross-dependence of extreme events in

financial markets, both within and between segments. To account for the cross-triggering

phenomenon, we therefore recommend that univariate Hawkes models be extended.

3.5.1 Comparision to GARCH

We are interested in whether the indicated cross dependence between extremes in the stock,

bond and exchange rate series modeled by Hawkes models is a sign of extremal dependence



Table 3.6: LM test dependence stock, bond and exchange markets

S&P NDQ DJI BND(-) $/e(-) $/£(-) $/U(-) BND(+) $/e(+) $/£(+) $/U(+)

95% S&P 7.97 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08
NDQ 3.82 2.28 0.00 0.00 0.00 0.00 4.27 0.29 0.34 1.14
DJI 13.44 12.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.20
BND(-) 26.95 14.45 21.58 5.63 0.74 4.48
$/e(-) 5.21 6.43 5.89 0.25 11.51 0.33
$/£(-) 5.79 1.96 9.36 0.07 14.36 0.00
$/U(-) 12.43 7.09 14.03 0.38 0.00 1.05
BND(+) 16.23 8.38 13.96 1.80 0.04 3.22
$/e(+) 8.99 6.98 13.08 5.83 1.65 6.13
$/£(+) 3.88 0.84 8.05 2.87 3.62 1.52
$/U(+) 0.00 0.00 0.13 0.27 0.00 0.00

97.5% S&P 10.39 1.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.84
NDQ 4.03 3.56 0.02 0.00 0.00 0.00 2.68 0.00 0.00 2.51
DJI 7.89 11.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.79
BND(-) 23.21 15.65 21.06 6.09 3.94 1.73
$/e(-) 3.89 7.06 4.06 0.00 8.57 2.09
$/£(-) 6.58 0.07 6.52 0.15 1.91 1.07
$/U(-) 7.66 8.41 10.18 0.74 0.78 3.47
BND(+) 15.34 1.95 17.27 5.26 0.36 11.24
$/e(+) 11.16 15.79 11.68 1.81 2.92 7.43
$/£(+) 10.71 4.01 8.46 4.97 2.43 3.31
$/U(+) 0.00 0.00 0.00 0.00 0.00 0.00

LM test statistics based on extreme negative price movements in the equity indices, the S&P 500 index, the
NASDAQ and the Dow Jones Industrial index, and extreme negative as well as extreme positive price move-
ments in the US bond index and the exchange rates, that is the $/e-rate, the $/£-rate and the $/U-rate. The
element (i, j) corresponds to the cross-triggering effect to the series in row i from the series in column j. The
tests are applied to extreme price movements above the 95% and the 97.5% quantile over a period that starts at
January 1, 1990 and ends at July 1, 2015. The boldface numbers indicate significant cross-triggering at a 5%
level.
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not explained by volatility spillovers between the series. In order to assess whether this is

the case we use an approach similar to Gresnigt et al. (2015). That is, we remove potential

volatility effects by first estimating GARCH models that account for spillovers on the series,

after which we proceed as before using the residuals.

In the General AutoRegressive Conditional Heteroscedasticity (GARCH) models, the

variance of the current error term is a function of the innovations and the variance of the

error terms in previous periods. In particular, in GARCH models that allow volatility from

other series to spillover (Hamao et al., 1990, see for example), in addition to innovations in

the series itself, also innovations in another series affect the conditional variance. The time-

varying conditional variance enables the models to capture the volatility clustering feature

observed in and across financial series. In the bivariate GARCH(1,1) model, the conditional

variances σ2
i,t, σ

2
j,t, of the stochastic error processes εi,t, εj,t, when conditioned on the history

of the processes, are specified as follows

σ2
i,t = ωi + αiiε

2
i,t−1 + αijε

2
j,t−1 + βiσ

2
i,t−1 (3.46)

σ2
j,t = ωj + αjiε

2
i,t−1 + αjjε

2
j,t−1 + βjσ

2
j,t−1 (3.47)

To account for the stylized fact that, even after correcting for volatility clustering, extreme

returns occur more often than under normality, the heavy-tailed Student-t distribution is used

for the error terms.

We evaluate whether extremal dependence between the stock, bond and exchange rate

series found in the previous section cannot be explained by volatility spillovers between the

series as follows. First we estimate a bivariate GARCH(1,1) model on each couple of the

series. Next we apply the Hawkes models without cross-excitation to the extreme standard-

ized residuals from the GARCH models, after which perform the LM test for dependence on

these residuals. The results of this exercise for extremes above the 95% and the 97.5% quan-

tile in the S&P 500 index, the NASDAQ, the DJI index, the US bond market, the $/e-rate,

the $/£-rate and the $/U-rate using the simplest Hawkes models as in the previous section,

are presented in Table 3.10.

Comparing Table 3.10 with Table 3.6, which contains the LM test statistics for the un-

filtered series, we find that extremal dependence is not found in 14 − 15 cases when we

first remove the volatility spillovers by taking the standardized residuals from the bivari-
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Table 3.7: LM test dependence residuals bivariate GARCH

S&P NDQ DJI BND(-) $/e(-) $/£(-) $/U(-) BND(+) $/e(+) $/£(+) $/U(+)

95% S&P 7.58 5.55 14.04 2.53 0.00 10.71 0.08 0.16 0.55 0.00
NDQ 0.00 0.57 9.01 0.77 0.00 1.93 0.00 0.00 0.00 0.00
DJI 1.38 9.56 7.20 1.55 0.00 4.62 0.00 0.00 0.35 0.00
BND(-) 2.45 2.45 2.07 0.32 0.00 3.26
$/e(-) 7.03 6.05 8.87 8.06 8.88 6.72
$/£(-) 2.88 2.15 4.58 7.35 13.07 6.87
$/U(-) 0.00 0.00 0.01 2.73 1.34 0.35
BND(+) 16.41 25.89 27.83 3.15 0.32 2.40
$/e(+) 3.56 8.55 6.42 6.54 15.62 5.79
$/£(+) 3.89 2.30 2.06 3.41 2.78 0.23
$/U(+) 14.13 15.90 7.14 1.75 1.82 0.87

97.5% S&P 16.42 0.00 12.98 1.54 0.17 8.20 2.93 0.96 0.61 1.51
NDQ 0.00 0.00 8.21 0.06 0.00 0.57 0.15 0.00 0.00 0.00
DJI 13.17 21.14 1.87 1.78 1.20 0.00 3.39 0.04 0.00 0.00
BND(-) 8.94 7.20 7.91 0.83 0.55 9.71
$/e(-) 8.64 5.34 3.80 15.43 7.17 3.92
$/£(-) 4.17 5.00 2.59 17.98 11.41 8.36
$/U(-) 0.00 0.12 0.00 0.00 0.00 0.99
BND(+) 24.01 20.53 10.88 0.01 0.00 2.19
$/e(+) 7.24 8.25 2.78 5.58 8.38 0.12
$/£(+) 5.41 2.34 0.56 1.04 3.50 1.88
$/U(+) 3.59 0.64 0.00 0.00 0.00 0.00

LM test statistics based on extreme standardized residuals above the 95% and the 97.5% quantile from the
bivariate GARCH(1,1) models, estimated on every couple of series over a period that starts at January 1, 1990
and ends at July 1, 2015. The element (i, j) corresponds to the cross-triggering effect to the series in row i
from the series in column j. The boldface numbers indicate significant cross-triggering at a 5% level.

ate GARCH models. However removing volatility effects, extremes in other series seem to

cross-excite each other while no significant evidence of cross triggering was found before

in 13 − 14 cases. In 28 cases the LM test statistics give the same result for the unfiltered

and the filtered series. We also performed the LM test for dependence on the standardized

residuals from estimating an univariate GARCH(1,1) model on the individual series, which

corresponds (3.46) with αij and αji set to zero. Results can be found in the appendix. Again,

while the LM test indicated cross-excitation between the unfiltered series, we do not discover

extremal dependence with the LM test in at least 14 cases. Moreover, in a number of cases it

is the other way around. Therefore we conclude that the GARCH residuals show a different

kind of dependence and that the extremal dependence found between the unfiltered series

cannot simply be explained by volatility spillovers.
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3.6 Conclusion

We proposed Lagrange Multiplier (LM) based specification tests for univariate Hawkes mod-

els, where the specific focus is on tests for contagion of extreme events across series. Thereby

we provided a general approach for testing different specifications of Hawkes models as well

as an adequate assessment of the contribution of including cross-sectional dependence in a

point process framework with serial dependence.

The models examined are based on the self-exciting Hawkes point process. The univari-

ate Hawkes process is characterized by an event rate that increases when an event arrives, af-

ter which it decays as a function of the time passed since the event. In case of cross-triggering

effects between series, the event rate also amplifies when an event occurs in another series

such that series exhibit clustering of events through time within series as well as clustering

of events among series.

The LM principle can be used to test for omitted explanatory variables, which includes

spillover effects caused by the occurrence of events in other series, for omitted impact of the

sizes of events on the triggering of new events, for omitted predictability of event sizes, and

for breaks in the model parameters. When an extensive version of the conditional intensity

is under investigation, we notice that the score consists of a term which reflects the change

in the probability distribution of the time between two consecutive events and a term which

reflects the relative change in the rate at which events occur. In case the distribution of the

event sizes is extended, the score reflects the change in probability to observe an event of a

certain magnitude. The LM test constructed from the scores, enables us to verify whether

the extension contributes to the prediction of occurrence times or the magnitude of future

events.

Reviewing the quality of the LM test for cross-triggering effects by means of a Monte

Carlo analysis, we conclude the LM test outperforms the regression method of Van Oordt

and Zhou (2012) and the orthogonality test discussed by Lando and Nielsen (2010). Over

longer time periods, the power of the LM test is high and the LM test is seems properly sized.

When the time period considered is shorter, the quality of the LM test falls only a little. We

also compare the LM test to the computationally more demanding LR test. The LR test is

supposed to outperform the LM test, as the LR test uses information on the likelihood under

both the null and the alternative hypothesis, while for the LM test only the first is needed.
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The LM test facilitates to separately test for amplification effects from multiple series to the

conditional intensity of a series in one go. Therefore, in contrast to the LR test that requires

the estimation of n(n + 1) models, only n models have to be estimated when n series are

involved. The LR test is more undersized but somewhat more powerful than the LM test. All

in all, as the LR test is a lot more time consuming and as the LM test performs very well, we

recommend to use the LM test in empirical analysis.

We illustrated the use of the LM test by examining the cross-sectional dependence be-

tween 3 US stock indices, a US bond index and 3 exchange rates between January 1, 1990,

and April 10, 2015. Between markets, we conclude that crashes in the stock markets provoke

extremes in the other markets while the other way around spillover effects seem absent. The

triggering effect from the equity indices to the US bond market seems to be the strongest,

where the LM test detects both stock-bond contagion and the flight-to-quality phenomenon.

Furthermore, with the LM test we discovered that crashes in the the $/e-rate trigger crashes

in the US bond market and that booms in the US bond market trigger booms in the $/e-rate.

Within the stock market and exchange rate market segments, we also found strong evidence

of cross-excitation. Therefore, we conclude that cross-dependence of extreme events in fi-

nancial markets is high and that univariate Hawkes models better be extended to account

such a cross-triggering phenomenon.

We evaluate whether the indicated cross dependence between extremes in the stock, bond

and exchange rate series modeled by Hawkes models is a sign of extremal dependence not

explained by volatility spillovers between the series. Therefore we remove potential volatil-

ity effects by first estimating GARCH models that do and do not account for spillovers on the

series, and apply the LM test for dependence to the extreme standardized residuals from this

estimation. For the GARCH models that account for spillovers, the LM test statistics become

insignificant and significant in about the same number of cases, while for the GARCH mod-

els that do not account for spillovers at least as many LM test statistics become insignificant.

Hence, we conclude that the GARCH residuals show a different kind of dependence and that

the extremal dependence found between the unfiltered series cannot simply be explained by

volatility spillovers.



3.A Simulation procedures 81

3.A Simulation procedures

3.A.1 Univariate procedure

In the simulation procedures we do not use a burn-in period, as we assume no events occurred

before t = 0.

1. When no other events are present yet, the event process is equal to a homogeneous

Poison process with µ, the constant background rate. Simulate the time till the first

event from an exponential distribution with parameter µ. The time of the event t1

recorded is the end of the interval in which the event occurs. Simulate the magnitude

of the event from an independent General Pareto Distribution.

2. For tn after t1 calculate the probability of the occurrence of no event in the interval

[tn−1, tn] using (4.7). Simulate a random number r from a uniform distribution on

the interval [0, 1]. When r > Pr (N(tn)−N(tn−1) = 0) record the time point tn as

the time of an event and simulate the magnitude of the event from a General Pareto

Distribution. When r < P (N(tn)−N(tn−1) = 0) do nothing.

3. Repeat for all time points after t1 till tn = T .

3.A.2 Multivariate procedure

1. When no other events are present yet, the event process is equal to a homogeneous

Poison process with µi, the constant background rate of series i. Obtain the time till

the first event by simulating from exponential distributions with the parameters µi,

where i ranges from 1 to the number of simulated series d, and selecting the lowest

value among the simulated values. The time of the first event t1 recorded is the end of

the interval in which this event occurs. Simulate the magnitude of this event from an

independent General Pareto Distribution with parameters that are characteristic for the

size distribution of events in the market in which the first event occurs.

2. For every series i ∈ {2, . . . , d}, for tn after t1 calculate the probability of the occur-

rence of no event in the interval [tn−1, tn] in the series using (4.7). Simulate d random

numbers r1, . . . , rd from a uniform distribution on the interval [0, 1]. For every series
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i ∈ {2, . . . , d}, when ri > Pri (N(tn)−N(tn−1) = 0) record the time point tn as the

time of an event in series i and simulate the magnitude of the event from a General

Pareto Distribution with parameters that are characteristic for the size distribution of

events in series i. When ri < Pri (N(tn)−N(tn−1) = 0) do nothing.

3. Repeat for all time points after t1 till tn = T .

At every step in the simulation procedure we have to be able to recover the entire history

of the Hawkes process as the history of the process incorporated in the conditional distri-

bution of the sizes of events and therefore needed to simulate the event sizes. Using the

branching structure of the Hawkes process to simulate events, we are not able to retrieve the

entire history of the event process at the branches (there could be events triggered in other

branches with occurrence times prior to the occurrence time of some event in a certain branch

in a later stage of the simulation procedure). Therefore the simulation procedure cannot be

based on the branching structure of the Hawkes process and “events have to be simulated

over time”. An alternative procedure to generate events is the modified thinning algorithm

of Ogata (1981).

3.B Simulation results tests omitted predictability of event

sizes

3.C Simulation results tests omitted impact of sizes events

3.D Simulation results LM test for dependence between se-

ries using the Hessian matrix

3.E Results LM test for dependence residuals univariate

GARCH



Table 3.8: Size and power LM and LR tests for the omitted predictability of event sizes

LM LR
T=5,000 T=10,000 T=5,000 T=10,000

α = 0 α 6= 0 α = 0 α 6= 0 α = 0 α 6= 0 α = 0 α 6= 0

Size 3.9 3.4 3.1 2.2 3.5 3.1 2.6 2.4

Power 91.5 89.8 97.6 95.7 92 90.1 98.4 96.4

Percentage rejections of the null hypothesis of no influence of the history of the event process on the sizes
of subsequent events (η = 0), when performing the LM and the LR test on 1, 000 simulations from Hawkes
models over a time period of 5, 000 and 10, 000 time instances using 5% critical values. For the power of the
tests the models are simulated under the alternative, while for the size the models are simulated under the null.
The parameters and the minimum magnitude of events are set on values estimated from the data set of Grothe
et al. (2014). In the Hawkes models with the parameter restriction α = 0, the magnitude of events have no
influence on the triggering of subsequent events.

LM LR
T=5,000 T=10,000 T=5,000 T=10,000

η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0

Size 4.3 4.0 3.2 2.4 2.3 3.2 1.8 2.0

Power 37.2 57.2 49.5 77.2 31.6 53.8 44.8 76.5

Percentage rejections of the null hypothesis of no impact of the sizes of events on the rate at which subsequent
events arrive (α = 0), when performing the LM and the LR test on 1, 000 simulations from Hawkes models
over a time period of 5, 000 and 10, 000 time instances using 5% critical values. For the power of the tests
the models are simulated under the alternative, while for the size the models are simulated under the null. The
parameters and the minimum magnitude of events are set on values estimated from the data set of Grothe et al.
(2014). In the Hawkes models with the parameter restriction η = 0, the history of the events has no influence
on the magnitude of subsequent events.



Table 3.9: Size and power LM tests using the Hessian matrix

T=5,000 T=10,000

α = 0 α 6= 0 α = 0 α 6= 0

η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0 η = 0 η 6= 0

Size Γ12 0.8 1.3 0.8 0.1 0.5 0.7 1.3 0.0

Γ21 0.7 1.2 1.3 0.6 1.1 0.7 0.7 0.1

Power Γ12 61.8 77.7 63.9 58.9 91.7 97.9 93.3 92.5

Γ21 89.9 94.9 89.2 89.0 99.3 98.7 99.5 99.9

Percentage rejections of the null hypothesis of zero cross-excitation, when performing the LM test on 1, 000
simulations from Hawkes models over a time period of 5, 000 and 10, 000 time instances using 5% critical
values. In the tests the information matrix is approximated by the negative of the Hessian matrix instead of the
average outer product of the score. For the power of the tests the models are simulated under the alternative,
while for the size the models are simulated under the null. The parameters and the minimum magnitude of
events are set on values estimated from the data set of Grothe et al. (2014). The parameters Γ12 and Γ21 control
respectively the cross-triggering effect from series 2 to series 1 and the cross-triggering effect from series 1 to
series 2 (3.30). In the Hawkes models with the parameter restriction α = 0, the magnitude of events have no
influence on the triggering of subsequent events. In the Hawkes models with the parameter restriction η = 0,
the history of the events has no influence on the magnitude of subsequent events.



Table 3.10: LM test dependence residuals univariate GARCH

S&P NDQ DJI BND(-) $/e(-) $/£(-) $/U(-) BND(+) $/e(+) $/£(+) $/U(+)

95% S&P 6.57 2.34 5.31 0.00 0.00 6.07 0.00 0.00 0.00 0.00
NDQ 0.00 0.00 0.44 0.00 0.00 0.21 0.00 0.00 0.00 0.00
DJI 1.08 4.09 3.20 0.00 0.00 1.93 0.00 0.00 0.00 0.00
BND(-) 4.51 2.19 6.19 0.11 0.00 1.54
$/e(-) 4.85 2.15 6.46 2.70 1.08 4.26
$/£(-) 3.48 1.32 3.17 2.33 7.00 3.75
$/U(-) 0.00 0.00 0.00 1.20 0.00 0.01
BND(+) 15.19 20.59 26.13 1.30 0.15 1.68
$/e(+) 4.77 7.95 4.58 2.70 3.88 4.72
$/£(+) 1.67 0.91 0.57 1.74 0.16 0.00
$/U(+) 14.43 15.55 7.90 0.95 0.04 0.34

97.5% S&P 8.45 0.49 2.48 0.04 0.00 2.34 0.00 0.00 0.00 0.00
NDQ 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DJI 2.84 17.39 2.36 0.92 0.00 0.78 0.00 0.00 0.00 0.00
BND(-) 0.89 0.64 1.99 1.54 1.02 7.08
$/e(-) 2.52 4.07 1.16 8.39 5.81 4.98
$/£(-) 3.11 3.53 2.17 8.66 5.31 4.28
$/U(-) 0.00 0.00 0.00 0.00 0.00 0.33
BND(+) 14.74 7.23 5.67 0.00 0.00 0.03
$/e(+) 7.17 8.62 2.08 0.80 4.36 0.00
$/£(+) 4.03 1.96 0.40 0.13 0.87 0.00
$/U(+) 0.00 0.00 0.00 0.00 0.00 0.00

LM test statistics based on extreme standardized residuals above the 95% and the 97.5% quantile from the
univariate GARCH(1,1) models, estimated on every series over a period that starts at January 1, 1990 and ends
at July 1, 2015. The element (i, j) corresponds to the cross-triggering effect to the series in row i from the
series in column j. The boldface numbers indicate significant cross-triggering at a 5% level.





Chapter 4

Exploiting spillovers to forecast crashes

4.1 Introduction

We develop Hawkes models in which events are triggered through self as well as cross-

excitement.1 Exploiting the cross-sectional dependence between financial series, we aim to

improve the forecasts of extremes and their sizes. It has already been shown that Hawkes

models contribute to the identification and prediction of extreme events in financial markets.2

Currently, research in finance pays much attention to the modeling of extremal dependence

between financial markets, though with an in-sample focus. We extend these studies on con-

tagion, as we examine whether incorporating this dependence improves forecasts. For a wide

range of assets, we find that Hawkes models with spillover effects forecast the probability of

crashes and the Value-at-Risk significantly more accurately than models without.

Traders, regulators of financial markets and risk management benefit greatly from the

accurate forecasts of extreme price movements in financial markets. Nowadays, a large

literature focuses on modeling extremal dependence between financial markets.3 This topic

gained interest since the financial crisis of 2008 as this crisis demonstrated the consequences

of the cohesion between the behavior of the prices in the financial markets. For example on

September 29, October 15 and December 1 in 2008 the S&P 500, the Dow Jones Industrial

1This Chapter is based on Gresnigt et al. (2016b)
2See amongst others: Chavez-Demoulin et al. (2005), Hewlett (2006), Bowsher (2007), Bauwens and

Hautsch (2009), Herrera and Schipp (2009), Embrechts et al. (2011), Chavez-Demoulin and McGill (2012),
Aı̈t-Sahalia et al. (2014), Gourieroux et al. (2014), Grothe et al. (2014), Aı̈t-Sahalia et al. (2015), Bacry et al.
(2015), Bormetti et al. (2015), Gresnigt et al. (2015) and Gresnigt et al. (2016a)

3See amongst others: Longin and Solnik (1995), Poon et al. (2003), Poon et al. (2004), Bekaert et al. (2010),
Grothe et al. (2014), and Aı̈t-Sahalia et al. (2015)
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Average (DJI) and the NASDAQ, all suffered top 20 percentage losses. Furthermore on

September 29 the euro/dollar rate and the pound/dollar rate also dropped by a large amount,

while the US bond market boomed. On the 16th of October, just one day after the major

US stock markets crashed, and on the 1th of December both currencies fell again sharply.

Moreover 4 days after these dates US bond prices shifted significantly. These joint extremes

demonstrate the overlap of periods in which financial markets are subject to tension with

extreme price movements as a result.

A Hawkes model uses an inhomogeneous Poisson process to model the occurrence of

events above a certain threshold. The event rate increases with the arrival of a new event

whereas the event rate decays with the time passed since an event. As the probability of

events increases when an event occurs, the Hawkes process (Hawkes, 1971) is called a self-

exciting process. Characteristics typically observed in processes that fit Hawkes models are

the clustering of extremes and serial dependence.

Earthquakes, for which the Hawkes models were originally designed, exhibit clustering

behaviour in space as well as in time (Ogata, 1998). Similarities between the behavior of

stock market returns around crashes and the dynamics of earthquake sequences have been

noted in the so-called econophysics literature, in which physics models are applied to eco-

nomics.4 This literature indicates that it is likely that speculative bubbles which lead to

crashes in the stock market, whether or not triggered by an exogenous factor, are caused by

the positive herding behavior of investors. As the positive herding behavior of investors is

locally self-enforcing, instability in the financial markets grows endogenously. Such a self-

excitation can also be observed in seismic behavior around earthquake sequences, where an

earthquake usually generates aftershocks which in turn can generate new aftershocks and so

on. Earthquakes and stock returns therefore share characteristics typically observable as the

clustering of extremes.

Like earthquake sequences, financial series seem to cluster in a dimension other than the

time dimension.5 Extreme stock returns across markets are found to be more correlated than

small returns (Bae et al., 2003). They occur more frequently at the same time than expected

under the assumption of a normal dependence structure (Mashal and Zeevi, 2002; Hartmann

4See amongst others: Sornette (2003), Weber et al. (2007), Petersen et al. (2010), Baldovin et al. (2011),
Baldovin et al. (2013), Baldovin et al. (2015), and Bormetti et al. (2015)

5See amongst others: Eun and Shim (1989), Fischer and Palasvirta (1990), King and Wadhwani (1990), Lin
et al. (1994) and Connolly and Wang (2003)
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et al., 2004; Sun et al., 2009). This suggests that financial markets experience stress at the

same time. For example, using the multivariate GARCH framework, volatility spillover ef-

fects between stock markets have been detected in numerous studies.6 Interpreting volatility

as a measure for the tension, these findings indicate that stress from financial markets pours

over to other financial markets.

In this paper we extend Hawkes models to include contagion in financial markets. In

the models we allow extreme events in one financial market to trigger both the occurrence

and the magnitude of extreme events in other markets. Studies on Hawkes models for fi-

nancial series in a multivariate setting include Bormetti et al. (2015), Grothe et al. (2014)

and Aı̈t-Sahalia et al. (2015). Different from these and other in-sample studies on financial

contagion, we explicitly examine the effects of cross-excitation on out-of-sample forecasts.

We assess its added value for the probability forecast of an extreme event and for Value-at-

Risk. Thereby we extend Chavez-Demoulin et al. (2005), Herrera and Schipp (2009), and

Gresnigt et al. (2015), who showed using Value-at-Risk and Expected Shortfall that univari-

ate Hawkes models contribute to the modeling and prediction of risk in finance. Moreover

Byström (2004) finds that conditional models based on Extreme Value Theory give particu-

larly accurate VaR measures, which are superior to traditional approaches such as GARCH

for both standard and more extreme VaR quantiles.

In somewhat more detail, we use the Lagrange Multiplier principle (see Breusch and

Pagan, 1980; Engle, 1982; Hamilton, 1996) as in Gresnigt et al. (2016a) to test whether the

spillovers contribute to the model fit. The correctness of the model specifications is further

evaluated by means of the residual analysis methods as proposed in (Ogata, 1988). We

assess the quality of the probability forecasts by the Quadratic and Log Probability Scores

and the test of Diebold and Mariano (1995) (DM test) with an asymmetric loss function

as proposed by Dijk and Franses (2003). For the evaluation of the VaR forecasts we use

the unconditional coverage, independence and conditional coverage test of Christoffersen

(1998), a Dynamic Quantile test in the line of Engle and Manganelli (2004) and the DM test

based on the asymmetric loss function of Giacomini and Komunjer (2005).

We apply the models to extreme losses in three stock markets and to extreme losses

and gains in the US bond market and two exchange rates. Hence, for the stock market

6See amongst others: Hamao et al. (1990), Bae and Karolyi (1994), Koutmos and Booth (1995), Booth et al.
(1997) and Kanas (1998)
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our analysis focuses on long positions, whereas we consider both long and short positions

for bond and FX markets. We forecast the probability of crashes and the Value-at-Risk

over a period that includes the financial crisis of 2008 using a moving window. Estimating

the models, we find that on average the LM tests reject the absence of cross-excitation.

Performing residual analysis, the fit of the models for the various series is good. Out-of-

sample, models with spillover effects provide significantly more accurate forecasts of the

occurrence of an extreme return and of the Value-at-Risk than the models without spillover

effects for almost all series. We conclude that including cross-sectional dependence improves

the forecasts of crashes, and hence cross-sectional dependence should not be ignored.

The rest of our paper is organized as follows. In Section 2 we give a brief introduction

on Hawkes models. Furthermore we propose an extension of the univariate Hawkes model

which incorporates cross-excitation and we discuss a Lagrange Multiplier test for depen-

dence across series. In section 3 we apply the models and the LM test to US stocks, bonds

and exchange rate data. Section 4 contains an in-sample assessment of the models by means

of a residual analysis. The models are evaluated out-of-sample on the basis of the prediction

of the probability of an extreme and the Value-at-Risk in Section 5. Section 6 concludes.

4.2 Hawkes models

4.2.1 Univariate model

The Hawkes model is a branching model. Each event can trigger subsequent events, and

these can again trigger subsequent events. The model is based on the mutually self-exciting

Hawkes point process, which is an inhomogeneous Poisson process. For the Hawkes process,

the intensity at which events arrive at time t depends on the history of events prior to time t.

Consider an event process (t1,m1),...,(tN ,mN) where ti defines the time andmi the mark

of event i. Let Ht = {(ti,mi) : ti < t} represent the entire history of events up to time t.

The conditional intensity of jump arrivals following a Hawkes process is represented by

λ(t|θ;Ht) = µ+ γ1

∑
i:ti<t

g(t− ti,mi), (4.1)



4.2 Hawkes models 91

where µ > 0, γ0 > 0 and g(s,m) > 0 whenever s,m > 0 and 0 elsewhere. The parameter γ1

controls the maximum triggering intensity and the expected number of events directly trig-

gered by an event. The conditional intensity consists of a constant term µ and a self-exciting

function γ1g(s,m), the latter function depends on the time passed since the jumps which oc-

curred before t and the size of these jumps. Thus the rate at which events arrive is separated

in a long-term background component and a short-term clustering component describing

the temporal distribution of aftershocks. The conditional intensity uniquely determines the

distribution of the process.

It is usual to specify the triggering function as

g(s,m) = e−βsc(m) (4.2)

where β determines how fast the possibility of triggering events decays depending on the

time passed since an event. The influence of the sizes of past events on the intensity is given

by c(m).

For the influence of the sizes of past events on triggering of future events, c(m), it is

common to use the exponential form

c(m) = eα(m−u)/u, (4.3)

where u represents the minimum magnitude of an event and α determines how the size of

an event affects the probability of triggering other events. When α > 0, larger events trigger

more events than smaller events, because the probability of triggering events increases with

the size of past events (m). The larger positive α is, the more pronounced is the influence of

the size of events.

To enable an application to financial data, we choose a Generalized Pareto Distribution

for the sizes of the events7

Pr (m ≤M |m ≥ u;θ;Ht) = 1−
(

1 + ξ
m− u
σ(t)

)−1/ξ

, (4.4)

7See amongst others: Chavez-Demoulin et al. (2005), Poon et al. (2004), Herrera and Schipp (2009),
Chavez-Demoulin and McGill (2012), Grothe et al. (2014), Gresnigt et al. (2015) and Gresnigt et al. (2016a)
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where σ(t) = φ + η
γ1

(λ(t|θ;Ht) − µ) and ξ 6= 0. In case η = 0 the size of an event is

unpredictable, whereas in case η > 0 the arrival times and sizes of previous events affect

the distribution of the sizes of subsequent events. We scale the mean and variance of the

distribution of the sizes of events with σ(t). When η > 0 the magnitude of events is expected

to be more extreme, when the conditional intensity is high. The larger positive η is, the more

pronounced is the influence of the history of events on the size of subsequent events.

The expected number of off-spring of an event, is given by the branching ratio. Using

(5.5) the branching ratio is equal to

γ1

∫ ∞
0

g(s,m)ds =
γ1

β
c(m). (4.5)

A Hawkes process is stationary when the branching ratio is smaller than 1. When the ratio

exceeds 1, the rate at which events arrive will grow to infinity over time.

The log-likelihood of the Hawkes model, specified in the conditional intensity and the

probability distribution of the sizes of the events, is given by

logL(θ) =
N∑
i=1

log λ(ti|θ;Ht)−
∫ T

0

λ(s|θ;Hs)ds+
N∑
i=1

log f(mi|θ;Ht) (4.6)

where ti are the event arrival times in the interval [0, T ].

The probability of the occurrence of an event following a Hawkes process with condi-

tional intensity λ(t|θ;Ht) between t− δt and t is now given by

Pr (N(t)−N(t− δt) > 0|θ;Ht) = 1− Pr (N(t)−N(t− δt) = 0|θ;Ht)

= 1− F (t∗ > δt|θ;Ht)

= 1− exp

(
−
∫ t

t−δt
λ(s|θ;Hs)ds

) (4.7)

4.2.2 Spillover model

When events across series tend to arrive around the same time, the occurrence of an event in

one series could increase the probability that an event in another series arrives. A Hawkes

model in which the conditional intensity of a series i is affected by the history of the event
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process of another series j is represented as

λ(t|θ;Ht) = µ+ γ1

∑
i:ti<t

g(t− ti,mi) + γ2

∑
j:tj<t

h(t− tj,mj), (4.8)

where γ2h(t − tj,mj) presents the effect of an event in series j on the intensity at time

t in series i. The cross-exciting function h(s,m) can be specified in various ways. Here,

we set h(s,m) = g(s,m) to keep the model parsimonious and model parameters identified

when there are no spillovers, γ2 = 0. The events in the series j also affect the probability

distributions of the sizes of events in series i through (4.4) when η 6= 0.

We perform a Lagrange Multiplier test on the null-hypothesis that γ2 = 0 against the

alternative hypothesis that γ2 > 0 Gresnigt et al. (2016a). As we deal with a count process

we define the score used for the LM test in event numbers and not in time points. The score

of the n-th event is defined as the derivative of the logarithm of the conditional likelihood

(5.30) with respect to the parameter vector θ,

gi(θ̄) =
∂ log p(yi|θ;Ht)

∂θ

∣∣∣∣
θ=θ̄

, (4.9)

which can be derived to be equal to

gi(θ̃) = −
∂
∫ ti
ti−1

λ(s|θ;Hs)ds

∂θ
+

1

λ(ti|θ;Ht)

∂λ(ti|θ;Ht)

∂θ

∣∣∣∣
θ=θ̃

+
∂ log f(mi|θ;Ht)

∂θ

∣∣∣∣
θ=θ̃

.

(4.10)

The score (4.10) consists of three terms that respectively reflect the change in the probability

distribution of the time between two consecutive events, the relative change in the rate at

which events occur and the change in probability to observe an event of a certain magnitude,

when θ̃ is shifted by a infinitesimal amount. We assess the added value of the parameters

to the model in terms of their contribution to the prediction of the occurrence times and

magnitudes of events ti and mi.

Let x(t) =
∑

j:tj<t
h(t − tj,mj) denote the additional tension caused by all events in a

series j before time t. To test whether the cross-triggering effects are significant for a series i,

we first estimate the Hawkes model under the null-hypothesis of no cross-excitation, γ2 = 0.

Next, we use (4.10) to compute the expected score from the derivative of the conditional

intensity, the integrated conditional intensity and the probability distribution of event sizes,
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given by

∂λ(ti|θ;Ht)

∂γ2

=x(ti) (4.11)

∂
∫ ti
ti−1

λ(s|θ;Hs)ds

∂γ2

=

∫ ti

ti−1

x(s)ds (4.12)

∂ log f(mi|θ;Ht)

∂γ2

=
ηx(ti)

γ1σ(ti)

(
(mi − ui)− σ(ti)

σ(ti) + ξ(mi − ui)

)
. (4.13)

The LM test is asymptotically χ2(1) under the null of no cross-excitation.

4.3 Application to Financial Data

We consider daily returns of three US stock market indices, the S&P 500 (S&P), the NAS-

DAQ (NDQ) and the Dow Jones Industrial Average (DJI), and furthermore the US bond

index (BND), and two exchange rates, the euro/dollar rate (e/$) and the pound/dollar rate

(£/$) over the period from 1 January, 1990, to 1 July, 2015. We construct discrete returns as

Rt = (pt/pt−1− 1) · 100, where pt denotes the value of a series at t. The Hawkes models are

used to forecast the probability of crashes and the Value-at-Risk from 1 January, 2008, to 1

July, 2015, such that it includes the interesting period in which many crashes occurred. We

use a moving window of 4, 000 trading days before we make our predictions to estimate the

Hawkes models and we update our estimates every 40 trading days. Figure 4.1 displays the

evolution of the prices of the stock market indices, the bond market index and the exchange

rates from 1 January, 1990, to 1 July, 2015.

We apply the Hawkes models to negative extremes in the stock market indices and to

negative and positive extremes in the US bond index and the exchange rates beyond the 95%

and the 97.5% quantile. We set the thresholds for each series at the value that corresponds to

the quantiles of their empirical distributions in the moving window.

The estimated Hawkes models differ as the parameters α, η and/or γ2 are restricted to

zero in some of the models, while in other models these parameters are unrestricted. When

α = 0 the sizes of former events do not influence the conditional intensity of new event

arrivals, whereas they do so when α > 0. When η = 0 the history of the event process does

not influence the sizes of future events, while when η > 0 the sizes of events can be predicted

from the past.
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This Figure displays the values of the S&P 500 index, the NASDAQ, the Dow Jones Industrial Average, the
US bond market, the euro/dollar rate and the pound/dollar from 1 January, 1990, to 1 July, 2015.



96 Exploiting spillovers

Our specific focus is on comparing the models in which γ2 = 0 to the models in which

γ2 > 0. When γ2 = 0, events in series i and their sizes are not effected by events in series

j. When γ2 > 0, the arrival rate of events in series i is amplified by the arrival of events

in series j. The effect scales with the size of the events in the series j whenever α > 0.

Moreover, in case η > 0 the occurrence of events in the series j influences the distribution

of the sizes of events in the series i. For illustrative purposes, in this paper we examine

the impact of crashes in the S&P 500 index on extremes in the other series. We choose to

investigate the spillovers from the S&P 500 index as the index is one of the most commonly

followed equity indices and considered as one of the best representations of the US stock

market. Furthermore we investigate whether crashes in the NASDAQ provoke crashes in the

S&P 500 index. The NASDAQ is very well suited to serve as a proxy for spillover effects

to the S&P 500 index from other stock market indices as the NASDAQ is the second-largest

exchange in the world by market capitalization.

Tables 4.1 and 4.2 present the mean of parameter estimates across the estimation win-

dows for the Hawkes model in which γ2 > 0, η > 0 and α > 0 when applied to extremes

beyond the 95% and 97.5% quantiles. As γ2 > 0, crashes in the S&P 500 index can provoke

extremes in the other series, while crashes in the S&P 500 index can be triggered by crashes

in the NASDAQ. Due to space constraints we only display the parameter estimates for this

model.

The relatively large estimates for α for crashes in the S&P 500, the DJI index, and crashes

and booms in the e/$-rate and the £/$-rate, indicate that a model in which the triggering

intensity depends on the size of past events, matches the extremes closer than a model in

which all events have the same impact on the triggering intensity. In the model where α > 0,

larger events trigger on average more events than smaller events.

The relatively large estimates for η for the S&P 500, the NASDAQ, the e/$-rate and

the £/$-rate, provide evidence that the history of the event process influences the size of

subsequent events. As η > 0, the size distribution has a higher mean and variance when

the conditional intensity is high such that the magnitude of events is expected to be more

extreme in that case. This means that, on average, larger events are observed in turbulent

periods in which more events occur than in tranquil periods.

The parameter γ2 in the bottom row of Tables 4.1 and 4.2 controls for the cross-triggering

of events. For most series, the estimated parameters are relatively large compared to their
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4.3 Application to Financial Data 99

standard errors. The ratio between the instantaneous cross-excitation and the self-excitation

effect is, except for the S&P 500 index and the NASDAQ, larger than 0.3 and 0.4, for the

95% and 97.5% thresholds. The instantaneous effect of crashes in the S&P 500 index on the

rate at which crashes in the DJI index occur is on average even larger than the instantaneous

effect of crashes in the series itself. Comparing the parameter estimates for the different

thresholds, it seems that larger events are triggered more frequently by events in another

series than smaller events.

To quantify the effects that extremes in one market have on another market, we exam-

ine the branching ratio of extremes of the minimum magnitude in the markets, see (4.5).

Amongst series and thresholds, an event triggers on average 0.07 to 0.48 events in another

series, where the smallest amount of crashes is provoked between the NASDAQ and the S&P

500 index. The expected number of DJI crashes following a S&P 500 crash is the highest.

The percentage of events induced by events in another series ranges between 11% and 90%.

Figure 4.2 shows the estimates of the spillover parameter γ2 of the Hawkes models with

and without a size-dependent triggering effect and predictable event sizes for the different

series over time. It illustrates that for most series the estimates increase during crisis periods,

and in particular during the financial crisis of 2008. The γ2 estimates for the S&P 500 index

are an exception, the estimates decrease during the 2008 crisis and increase quite steadily

after 2011. While the γ2 parameter for the other series mostly stays at a higher or equal level

after the financial crisis, the γ2 parameter for the NASDAQ deviates quite a bit and reaches

the level estimated before the financial crisis.

Looking at the parameter estimates, the impact of crashes in the S&P 500 index on ex-

tremes in other series and the impact of crashes in the NASDAQ on crashes in the S&P 500

index, seems quite substantial and hence should not be ignored. We perform an LM test to

confirm the indicated cross-excitation.

Table 4.3 reports the mean, the minimum and the maximum of LM statistics for testing

the null hypothesis of no cross-excitation (γ2 = 0) across the estimation windows. In accor-

dance with the parameter estimates, we find that crashes in the S&P 500 index amplify the

probability that crashes as well as booms in the bond market and the exchange rate series

occur. Thus, the LM test detects both stock-bond contagion as the flight-to-quality phe-

nomenon, that is, the outflow of capital from stock markets to bond markets when the first

are facing crisis periods. The evidence for the effect of crashes in the S&P 500 to extremes
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Table 4.3: LM statistics dependence test

α = 0 α 6= 0

η = 0 η 6= 0 η = 0 η 6= 0

95% S&P 7.12 [ 2.79 , 14.43] 10.15 [ 4.88 , 15.1 ] 6.45 [ 2.83 , 13.04] 5.01 [ 0.78 , 10.23]
NDQ 4.34 [ 1.06 , 10.02] 4.01 [ 0.75 , 8.63] 4.15 [ 0.87 , 10.00] 3.27 [ 0.60 , 13.33]
DJI 9.03 [ 5.61 , 17.43] 9.05 [ 5.82 , 17.55] 9.12 [ 5.84 , 17.70] 6.07 [ 2.86 , 12.65]
BND(-) 24.29 [13.13 , 31.73] 23.84 [15.84 , 31.05] 7.99 [ 2.00 , 19.88] 6.89 [ 2.25 , 15.22]
e/$(-) 9.42 [ 2.58 , 18.80] 7.98 [ 1.81 , 16.37] 6.48 [ 2.27 , 16.35] 7.68 [ 0.93 , 12.78]
£/$(-) 8.13 [ 0.03 , 14.79] 6.51 [ 0.00 , 11.99] 6.86 [ 0.68 , 11.13] 2.08 [ 0.13 , 3.94]
BND(+) 13.57 [ 7.12 , 19.51] 11.80 [ 0.00 , 17.07] 13.59 [ 7.80 , 18.54] 7.53 [ 2.60 , 13.83]
e/$(+) 11.04 [ 0.79 , 16.40] 8.74 [ 0.78 , 13.37] 9.88 [ 0.63 , 16.3 ] 5.97 [ 0.94 , 9.56]
£/$(+) 5.63 [ 0.00 , 9.39] 5.13 [ 0.00 , 8.44] 1.51 [ 0.00 , 3.41] 4.72 [ 0.02 , 9.28]

97.5% S&P 3.15 [ 0.75 , 4.79] 3.13 [ 0.85 , 4.73] 2.50 [ 0.32 , 4.12] 2.28 [ 0.31 , 3.86]
NDQ 4.76 [ 0.81 , 9.09] 4.81 [ 1.16 , 8.49] 4.51 [ 1.80 , 8.99] 4.14 [ 1.31 , 7.7 ]
DJI 7.67 [ 5.22 , 11.25] 7.65 [ 5.49 , 11.19] 7.90 [ 5.06 , 11.35] 7.97 [ 5.59 , 10.53]
BND(-) 16.64 [12.81 , 19.07] 16.27 [12.31 , 18.96] 10.24 [ 5.57 , 16.14] 10.00 [ 4.95 , 15.96]
e/$(-) 8.00 [ 1.53 , 12.45] 6.93 [ 0.73 , 10.94] 8.21 [ 2.08 , 18.27] 8.57 [ 1.52 , 11.21]
£/$(-) 7.10 [ 2.05 , 13.3 ] 7.73 [ 1.14 , 18.88] 7.69 [ 4.48 , 11.98] 7.75 [ 1.41 , 16.8 ]
BND(+) 15.24 [ 5.05 , 22.98] 12.03 [ 4.33 , 23.18] 14.55 [ 5.07 , 21.48] 5.66 [ 2.00 , 10.63]
e/$(+) 14.48 [ 3.37 , 19.00] 12.67 [ 3.32 , 17.29] 9.13 [ 5.05 , 12.65] 7.27 [ 4.18 , 10.69]
£/$(+) 10.87 [ 0.00 , 16.64] 11.81 [ 0.00 , 18.26] 4.39 [ 0.14 , 7.37] 6.02 [ 0.26 , 9.36]

LM statistics for testing the null-hypothesis of no spillover effects from the NASDAQ to the S&P 500 index
and from the S&P 500 index to the NASDAQ, the DJI index, the US bond index, the euro/dollar rate and the
pound/dollar rate. The models are applied to extremes beyond the 95% and the 97.5% quantile to forecast
over a period that starts at 1 January, 2008, and ends at 1 July, 2015, using a moving window of 4, 000 trading
days that is updated every 40 trading days. In the Hawkes models with the parameter restriction α = 0, the
magnitude of events have no influence on the triggering subsequent events. In the Hawkes models with the
parameter restriction η = 0, the history of the events has no influence on the magnitude of subsequent events.
The Table presents the mean of the LM statistics across the estimation windows. The minimum and maximum
of the statistics are shown in between brackets. The critical value corresponding to a 5% significance level is
equal to 3.84.
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in the US bond market is the most pronounced as the LM test statistics are the highest among

these series.

The LM test indicates that, on average, spillover effects are significant, except for the

spillover effects from the NASDAQ to the S&P 500 index when events beyond the 97.5%

quantile are studied. Moreover, the spillover effects from the S&P 500 index to the DJI index

and the US bond market are significant across all estimation windows. Looking at the LM

statistics, the cross-excitation effects between the S&P 500 index and the NASDAQ seem

the least powerful. Both findings are reflected in the parameter estimates in Tables 4.1 and

4.2.

From the parameter estimates and the LM tests, we conclude that, in-sample, the impact

of the occurrence of crashes in the NASDAQ on the occurrence of crashes in the S&P 500

index and the impact of the occurrence of crashes in the S&P 500 index on the occurrence

of extremes in other financial series is sizeable and important. We may thus expect that

the Hawkes models that account for the cross-triggering phenomenon perform better out-of-

sample than the Hawkes models that ignore it.

4.4 Residual analysis

We assess the goodness-of-fit of our models using the residual analysis technique of Ogata

(1988). If the event process {ti} is generated by the conditional intensity λ(t), the trans-

formed times

τi =

∫ ti

0

λ(s)ds (4.14)

are distributed according to a homogeneous Poisson process with intensity 1. Furthermore

the transformed interarrival times

τi − τi−1 =

∫ ti

ti−1

λ(s)ds (4.15)

are independent exponential random variables with mean 1. If the models are correctly

specified, λ(t) can be approximated by λ(t|θ̂;Ht). The sequence {τi} is called the residual

process. In order to verify whether the residual process derived from the models is Poisson

with unit intensity, we perform the Kolmogorov-Smirnov (KS) test. The null-hypothesis of
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our test is that the distribution of the residual process and the unit Poisson distribution are

equal.

The KS tests are performed on the transformed times by applying the models to the

extremes. The p-values of the tests are reported in Table 4.4. The p-values indicate that, on

average, the extremes do not deviate from an event process specified by the models at a 5%

level. Though some p-values are higher for the models without cross-excitation, they cannot

be interpreted as a preference for these models.

4.5 Forecasting

4.5.1 Probability predictions

Traders, risk managers and regulators of financial markets can benefit from the accurate

forecast of a crash. The probability of an extreme event occurring between t − δt and t is

given by (4.7). We evaluate the probability forecast of an extreme event beyond the 95%

and the 97.5% quantile during the next day in stock, bond and FX markets from 1 January,

2008, to 1 July, 2015, using a moving window of 4, 000 trading days that is updated every

40 trading days. We estimate the thresholds and parameters within the moving window and

start forecasting thereafter to prevent any look-ahead bias.

Figure 4.3 shows the predictions of the probability of extremes above the 95% threshold

for the different series over time. It seems that the probability predictions produced by mod-

els with and without a size-dependent triggering effect and predictable event sizes deviate

quite a bit, especially during crisis periods in which predictions of the extensive models are

the highest. Comparing the models with and without spillover effects, the models that allow

for series to cross-excite each other deliver the highest probability predictions during crisis

periods.

To compare the probability forecasts, we compute the Quadratic Probability Score (QPS)

and the Log Probability Score (LPS) for each model, that is

QPS =
2

T

T∑
t=1

(p̂(t)− I(r(t) > u))2 (4.16)

LPS = − 1

T

T∑
t=1

[(1− I(r(t) > u)) log (1− p̂(t)) + I(r(t) > u) log (p̂(t))], (4.17)



Table 4.4: Results residual analysis

α = 0 α > 0

η = 0 η > 0 η = 0 η > 0

γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0

95% S&P 0.68 0.49 0.76 0.44 0.46 0.77 0.48 0.84

NDQ 0.43 0.17 0.49 0.22 0.43 0.17 0.50 0.21

DJI 0.69 0.56 0.70 0.70 0.66 0.48 0.70 0.60

BND(-) 0.72 0.66 0.57 0.44 0.67 0.60 0.65 0.66

e/$(-) 0.64 0.83 0.63 0.82 0.79 0.74 0.77 0.53

£/$(-) 0.26 0.22 0.23 0.12 0.46 0.29 0.36 0.17

BND(+) 0.60 0.60 0.56 0.50 0.65 0.60 0.64 0.57

e/$(+) 0.61 0.78 0.60 0.73 0.77 0.70 0.77 0.57

£/$(+) 0.28 0.22 0.25 0.13 0.43 0.36 0.39 0.20

97.5% S&P 0.39 0.37 0.39 0.27 0.55 0.54 0.56 0.49

NDQ 0.53 0.18 0.58 0.26 0.64 0.21 0.67 0.29

DJI 0.40 0.42 0.39 0.42 0.47 0.50 0.47 0.57

BND(-) 0.72 0.33 0.72 0.28 0.65 0.34 0.65 0.34

e/$(-) 0.59 0.82 0.59 0.77 0.69 0.65 0.69 0.48

£/$(-) 0.31 0.35 0.30 0.24 0.49 0.38 0.48 0.29

BND(+) 0.40 0.62 0.40 0.62 0.46 0.62 0.48 0.62

e/$(+) 0.56 0.33 0.58 0.25 0.63 0.24 0.65 0.18

£/$(+) 0.27 0.51 0.26 0.38 0.85 0.85 0.87 0.72

The p-values of the Kolmogorov-Smirnov tests performed on the transformed times {τi} specified by the
models. The null-hypothesis of the test states that the transformed times {τi} are distributed according to a
homogeneous Poisson process with intensity 1. The models are applied to extremes beyond the 95% and the
97.5% quantile to forecast over a period that starts at 1 January, 2008, and ends at 1 July, 2015, using a moving
window of 4, 000 trading days that is updated every 40 trading days. The Table presents the mean of the p-
values across the estimation windows. For the S&P 500 index, γ2 controls the spillover effect from crashes
in the NASDAQ, while for the DJI index, the US bond index, the euro/dollar rate and the pound/dollar this
parameter controls the spillover effect from crashes in the S&P 500. In the Hawkes models with the parameter
restriction α = 0, the magnitude of events have no influence on the triggering subsequent events. In the Hawkes
models with the parameter restriction η = 0, the history of the events has no influence on the magnitude of
subsequent events.
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Table 4.5: Probability scores 95%

α = 0 α > 0

η = 0 η > 0 η = 0 η > 0

γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0

S&P QPS 0.1108 0.1108 0.1106 0.1107 0.1098 0.1100 0.1098 0.1099

LPS 0.2059 0.2062 0.2052 0.2056 0.2040 0.2046 0.2032 0.2038

NDQ QPS 0.0615 0.0616 0.0611 0.0611 0.0614 0.0615 0.0609 0.0611

LPS 0.1213 0.1207 0.1204 0.1196 0.1210 0.1202 0.1198 0.1191

DJI QPS 0.1057 0.1059 0.1055 0.1057 0.1052 0.1053 0.1050 0.1051

LPS 0.1982 0.1982 0.1979 0.1978 0.1971 0.1970 0.1965 0.1964

BND(-) QPS 0.0922 0.0917 0.0925 0.0921 0.0920 0.0925 0.0919 0.0931

LPS 0.1861 0.1841 0.1886 0.1879 0.1855 0.1851 0.1853 0.1854

e/$(-) QPS 0.1278 0.1275 0.1278 0.1275 0.1268 0.1269 0.1268 0.1280

LPS 0.2443 0.2438 0.2441 0.2438 0.2420 0.2423 0.2418 0.2435

£/$(-) QPS 0.1263 0.1259 0.1263 0.1259 0.1286 0.1283 0.1288 0.1286

LPS 0.2387 0.2381 0.2391 0.2383 0.2397 0.2393 0.2402 0.2402

BND(+) QPS 0.0878 0.0874 0.0878 0.0883 0.0879 0.0885 0.0881 0.0889

LPS 0.1795 0.1779 0.1794 0.1829 0.1797 0.1793 0.1800 0.1797

e/$(+) QPS 0.1134 0.1130 0.1133 0.1129 0.1136 0.1129 0.1137 0.1129

LPS 0.2223 0.2213 0.2223 0.2214 0.2224 0.2211 0.2225 0.2215

£/$(+) QPS 0.1194 0.1191 0.1195 0.1191 0.1309 0.1321 0.1313 0.1322

LPS 0.2271 0.2262 0.2272 0.2263 0.2456 0.2524 0.2475 0.2521

QPS and LPS of the probability predictions of crashes the next day in the S&P 500 index, the NASDAQ and
the Dow Jones Industrial Average, and crashes and booms in the US bond index, the euro/dollar rate and the
pond/dollar rate beyond the 95% quantile from 1 January, 2008, to 1 July, 2015. The QPS and LPS are given in
(4.16) and (4.17). The QPS and LPS range respectively from 0 to 1 and from 0 to∞, with 0 indicating perfect
accuracy.

where t is a day and T is the total number of days. Here pt represents the probability forecast

of an extreme on day t, and I(r(t) > u) is an indicator function taking the value 1 when the

return at time t exceeds the threshold and the value 0 otherwise. The QPS and LPS range

respectively from 0 to 1 and from 0 to ∞, with 0 indicating perfect accuracy. When the

QPS or the LPS are higher, the probability forecasts deviate more from a binary variable

indicating the occurrence of events. The LPS punishes large deviations heavier than small

deviations.

The QPS and the LPS of the probability predictions of extremes above the 95% and the

97.5% threshold made by the various Hawkes models, are displayed in Table 4.5 and Table

4.6, respectively. When models are employed in which the impact of events on the rate at

which new events arrive is not size-dependent (α = 0), we observe that the QPS and LPS

are lower when spillover effects are included in the models for most series. When models

are employed in which the impact of events is size-dependent, the QPS and the LPS of the



Table 4.6: Probability scores 97.5%

α = 0 α > 0

η = 0 η > 0 η = 0 η > 0

γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0

S&P QPS 0.0634 0.0634 0.0633 0.0633 0.0635 0.0636 0.0634 0.0635

LPS 0.1219 0.1217 0.1219 0.1218 0.1217 0.1219 0.1217 0.1218

NDQ QPS 0.0357 0.0357 0.0354 0.0354 0.0357 0.0358 0.0354 0.0353

LPS 0.0733 0.0720 0.0724 0.0712 0.0732 0.0718 0.0723 0.0709

DJI QPS 0.0602 0.0597 0.0601 0.0597 0.0599 0.0590 0.0597 0.0588

LPS 0.1161 0.1138 0.1161 0.1137 0.1152 0.1126 0.1150 0.1123

BND(-) QPS 0.0462 0.0460 0.0462 0.0462 0.0461 0.0463 0.0461 0.0463

LPS 0.1060 0.1032 0.1060 0.1075 0.1054 0.1037 0.1054 0.1037

e/$(-) QPS 0.0731 0.0729 0.0732 0.0729 0.0726 0.0724 0.0724 0.0728

LPS 0.1555 0.1549 0.1556 0.1553 0.1545 0.1539 0.1540 0.1545

£/$(-) QPS 0.0730 0.0725 0.0730 0.0725 0.0733 0.0752 0.0737 0.0750

LPS 0.1493 0.1479 0.1495 0.1481 0.1478 0.1493 0.1484 0.1495

BND(+) QPS 0.0452 0.0447 0.0452 0.0447 0.0458 0.0449 0.0460 0.0452

LPS 0.1041 0.1015 0.1039 0.1015 0.1057 0.1017 0.1068 0.1025

e/$(+) QPS 0.0614 0.0609 0.0614 0.0609 0.0617 0.0618 0.0617 0.0619

LPS 0.1368 0.1342 0.1368 0.1343 0.1365 0.1354 0.1365 0.1357

£/$(+) QPS 0.0635 0.0631 0.0635 0.0631 0.0656 0.0646 0.0657 0.0646

LPS 0.1362 0.1341 0.1362 0.1339 0.1360 0.1342 0.1360 0.1350

QPS and LPS of the probability predictions of crashes the next day in the S&P 500 index, the NASDAQ and
the Dow Jones Industrial Average, and crashes and booms in the US bond index, the euro/dollar rate and the
pond/dollar rate beyond the 97.5% quantile from 1 January, 2008, to 1 July, 2015. The QPS and LPS are given
in (4.16) and (4.17). The QPS and LPS range respectively from 0 to 1 and from 0 to ∞, with 0 indicating
perfect accuracy.
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models are closer, and most of the QPS and LPS of models with predictable events increase

when allowing for cross-excitation.

The QPS and LPS of the models, in which the size of events and the conditional intensity

affect the one and/or the other, are lower for crashes in the stock markets and e/$-rate.

For the other series, the QPS and LPS increase when one allows the size of past events to

influence the rate at which new events arrive.

Following the approach of Dijk and Franses (2003), we use the test of Diebold and Mar-

iano (1995) (DM test) based on an average weighted loss differential to check whether the

probability forecasts of models are significantly more accurate than the probability forecasts

of other models. We modify the DM test statistic using the weight function w(t) = (I(r(t) <

u)− q), where q is the threshold quantile, such that the loss function becomes

L(ekq(t)) = (I(r(t) < u)− q)ekq(t) (4.18)

where ekq(t) = (p̂(t) − I(r(t) > u))2. The loss function (4.18) rewards correct probability

forecasts of extreme observations more heavily than it penalizes false signals. The use of the

quadratic loss function ekq(t) is particularly convenient, as the test does not have to be ad-

justed to account for parameter uncertainty arising from the models, which contain unknown

parameters that have to be estimated before forecasts can be constructed. Furthermore, as

we use a moving window to estimate the parameters of the model, the models are estimated

over a finite sample period, such that the asymptotic normal distribution remains valid for

nested models (Giacomini and White, 2006).

The DM statistics comparing probability predictions of models with and without cross-

excitation are given in Table 4.7. The DM statistics comparing probability predictions of

models with and without influence of the event sizes on the conditional intensity, and models

with and without influence of the history of the event process on the event sizes are given in

Table 4.8.

From Table 4.7 we conclude that the probability predictions of models with spillovers

are significantly more accurate for the extremes examined at a 5% level, except for the S&P

500 index. The choice of models matters for the DJI index and for booms in the bond market

and the exchange rates.
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Table 4.7: DM statistics testing cross-excitation probability predictions

95% 97.5%

α = 0 α > 0 α = 0 α > 0

η = 0 η > 0 η = 0 η > 0 η = 0 η > 0 η = 0 η > 0

S&P −7.63 −7.61 −9.31 −9.03 −3.98 −3.48 −6.69 −6.73

NDQ 6.75 6.48 5.94 5.94 5.36 5.35 4.84 4.79

DJI 0.81 0.66 4.23 3.41 3.70 3.59 5.41 5.26

BND(-) 5.07 5.04 4.81 4.45 4.02 4.06 4.03 4.03

e/$(-) 3.65 2.89 2.75 2.14 3.38 2.85 2.44 2.02

£/$(-) 4.55 4.16 2.48 2.10 5.38 5.00 3.64 3.23

BND(+) 5.64 1.35 3.76 3.65 3.96 3.69 3.30 3.34

e/$(+) 2.78 2.03 1.36 1.76 3.47 3.24 1.85 2.23

£/$(+) 2.67 −0.08 1.40 −2.16 3.67 2.51 −0.22 −1.86

DM statistics based on the weighted loss function (4.18) comparing probability predictions of models with and
without cross-excitation. The models predict the probability of crashes the next day in the S&P 500 index, the
NASDAQ and the Dow Jones Industrial Average, and crashes and booms in the US bond index, the euro/dollar
rate and the pond/dollar rate beyond the 97.5% quantile from 1 January, 2008, to 1 July, 2015. The critical
value corresponding to a 5% significance level is equal to ±1.96 (asymptotic N (0, 1)-distribution).

According to the the DM statistics in Table 4.8, the probability predictions of models

with predictable event sizes are significantly more accurate for the extremes examined at

a 5% level. The DM statistics show that, overall, the incorporation of a triggering effect

that depends on the size of events (α > 0) leads to more accurate probability predictions.

For the incorporation of a distribution of the event sizes that depends on the history of the

event process (η > 0), the results are mixed. Only for the NASDAQ, we find convincing

evidence that the predictability of event sizes adds to the models’ performance forecasting

the probability of crashes in the series.

Our main result in this section is that, all in all, the Hawkes models that account for cross-

triggering effects deliver more accurate forecasts of the occurrence of extremes in financial

markets than the Hawkes models that ignore the existence of spillovers.

4.5.2 Value-at-Risk

To avoid large losses due to price changes and to meet regulatory requirements that limit

exposure to risk, investors in financial markets use Value-at-Risk to quantify the maximum



Table 4.8: DM statistics testing the influence on/of sizes probability predictions

η (α = 0) α (η = 0) η (α > 0) α (η > 0)
γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0

95% S&P −1.38 0.19 5.59 5.58 3.31 3.97 5.25 5.09

NDQ 2.58 2.79 4.29 4.72 3.30 3.13 4.25 4.61

DJI −1.21 −1.28 4.42 4.97 1.90 −0.39 4.58 4.75

BND(-) 2.29 2.03 −0.90 2.21 0.19 1.58 −1.78 1.36

e/$(-) 1.71 −2.48 4.21 4.56 3.82 2.49 4.15 4.05

£/$(-) −4.40 −2.90 4.85 4.94 −2.01 −0.40 4.84 4.87

BND(+) 1.13 −3.04 3.41 2.96 0.97 1.55 2.15 3.68

e/$(+) 2.99 −0.93 3.46 3.85 2.53 2.35 3.44 3.75

£/$(+) −5.15 −5.25 3.04 3.11 −2.85 −6.58 3.00 2.54

97.5% S&P −1.71 −1.70 4.34 4.08 3.06 2.91 4.39 4.32

NDQ 3.25 2.99 3.12 3.90 2.96 0.93 3.48 3.88

DJI −0.79 −0.68 3.72 4.69 1.69 2.66 3.84 4.59

BND(-) −2.11 0.47 −1.04 2.30 −1.33 2.04 −1.04 2.22

e/$(-) −0.59 −1.66 3.24 3.93 3.68 2.38 3.44 3.59

£/$(-) −3.28 −3.06 4.66 4.65 2.99 −5.26 4.63 4.68

BND(+) 1.79 −1.29 2.39 2.25 −1.46 2.14 0.18 2.24

e/$(+) 2.31 −0.09 3.45 3.37 1.40 3.38 3.45 3.62

£/$(+) 1.26 −2.79 3.17 3.13 2.92 −2.28 3.27 3.06

DM statistics based on the weighted loss function (4.18) comparing probability predictions of models with
and without influence of the the history of the events on the magnitude of subsequent events (η) and models
with and without influence of the magnitude of events triggering subsequent events (α). of crashes the next
day in the S&P 500 index, the NASDAQ and the Dow Jones Industrial Average, and crashes and booms in
the US bond index, the euro/dollar rate and the pond/dollar rate beyond the 97.5% quantile from 1 January,
2008, to 1 July, 2015. The critical value corresponding to a 5% significance level is equal to±1.96 (asymptotic
N (0, 1)-distribution).
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of returns associated with a certain confidence level. The V aRα(t) is defined as the α-th

quantile of a distribution at time t which is the solution to Pr (m ≥ q|θ;Ht) = 1 − α. As

Pr (m ≥ q|Ht) = Pr (N(t)−N(t− δt) > 0|θ;Ht) × Pr (m ≥ q|m ≥ u;θ;Ht) which are

given in (4.7) and (4.4), we have that

V aRα(t) = u+
σ(t)

ξ


 1− α

1− exp
(
−
∫ t
t−δt λ(s|θ;Hs)ds

)
−ξ − 1

 , (4.19)

where σ(t) = φ+ η
γ1

(λ(t|θ;Ht)− µ) and λ(t|θ;Ht) is given by (4.8).

Figure 4.4 shows the VaR predictions for the 95% confidence level from 1 January, 2008,

to 1 July, 2015. Like the probability predictions, the models with a size-dependent triggering

effect and predictable event sizes produce higher VaR predictions during crisis periods than

models without. Also, in accordance with the probability predictions, the models that allow

for series to cross-excite each other, deliver the highest VaR predictions during crisis periods.

We evaluate the VaR forecasts (4.19) by comparing the estimated conditional VaR for

a one-day horizon, that is δt = 1, for the confidence levels α = {0.95, 0.975} with the

actual returns. To quantify the quality of the VaR forecasts we use the unconditional cov-

erage (LRuc) test, the independence (LRind) test and the conditional coverage (LRcc) test

of Christoffersen (1998) and a Dynamic Quantile (DQ) test in the line of Engle and Man-

ganelli (2004). Furthermore, to compare the VaR forecasts of different models, we define

an asymmetric loss function as Giacomini and Komunjer (2005) and test whether the loss

differentials are significant using the test of Diebold and Mariano (1995).

With the unconditional coverage (LRuc) test we check whether the actual fraction of

VaR violations equals the theoretical proportion of 1 − α. We let xα(t) denote an indicator

function taking the value 1 when the extreme is larger than the V aRα(t) and the value 0

otherwise. If the models are correct E[xα(t)] = 1 − α. The independence (LRind) test

concerns independence among the VaR violations such that a violation today has no influence

on the probability of a violation tomorrow. A combination of the LRuc and LRind is given

by the conditional coverage (LRcc) test. The LRuc, LRind and LRcc test statistics for the

confidence levels 95% and 97.5% are given in Table 4.9 and Table 4.10.

Tables 4.9 and 4.10 show that at the 95% and 97.5% confidence levels, the unconditional

and thereby conditional coverage of the VaR predictions for investors with long positions in
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Table 4.9: LRuc, LRind and LRcc test statistics V aR0.95

α = 0 α > 0

η = 0 η > 0 η = 0 η > 0

γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0

S&P LRuc 38.37 51.18 0.18 3.00 30.07 46.34 0.09 3.00

LRind 1.58 1.48 0.54 0.77 0.27 2.03 0.70 0.24

LRcc 39.95 52.66 0.73 3.77 30.34 48.37 0.79 3.25

NDQ LRuc 231.48 398.43 1.86 1.86 224.71 376.44 2.50 2.50

LRind 28.04 64.20 1.01 0.15 26.44 56.72 0.84 0.84

LRcc 259.51 462.63 2.86 2.01 251.15 433.15 3.34 3.34

DJI LRuc 8.39 12.67 0.87 0.26 8.39 8.39 1.86 0.38

LRind 0.08 0.08 0.23 0.05 0.08 0.23 0.15 1.69

LRcc 8.47 12.75 1.10 0.30 8.47 8.62 2.01 2.07

BND(-) LRuc 0.11 0.04 2.50 6.09 0.40 0.16 0.68 2.50

LRind 0.01 0.12 0.07 0.32 2.08 0.07 0.81 0.07

LRcc 0.12 0.16 2.56 6.41 2.48 0.23 1.50 2.56

e/$(-) LRuc 4.52 7.32 2.36 2.67 4.11 4.94 0.11 1.07

LRind 0.45 1.18 0.96 1.68 0.52 2.85 0.62 2.60

LRcc 4.97 8.49 3.31 4.35 4.63 7.79 0.73 3.67

£/$(-) LRuc 8.39 10.74 1.29 0.18 7.32 7.32 0.00 0.01

LRind 6.77 4.30 6.91 2.40 4.34 5.77 1.84 1.70

LRcc 15.16 15.04 8.20 2.58 11.65 13.08 1.84 1.72

BND(+) LRuc 0.01 0.26 2.50 0.26 0.00 0.26 1.57 2.50

LRind 0.30 1.43 0.60 0.56 0.88 1.43 0.39 1.60

LRcc 0.31 1.69 3.10 0.82 0.88 1.69 1.97 4.09

e/$(+) LRuc 2.06 2.06 0.40 0.11 1.07 1.07 0.01 0.01

LRind 0.03 0.03 0.04 0.62 0.00 0.18 0.21 0.30

LRcc 2.09 2.09 0.44 0.73 1.07 1.26 0.22 0.31

£/$(+) LRuc 3.00 4.11 0.40 0.11 2.06 3.35 0.28 0.40

LRind 0.56 0.21 0.52 0.34 1.16 0.63 3.10 3.25

LRcc 3.57 4.32 0.92 0.45 3.22 3.99 3.38 3.65

Statistics for the unconditional coverage, independence and conditional coverage tests on the VaR predictions at
a 95% confidence level produced by the different Hawkes models. The models predict the maximum of negative
returns associated with a 95% confidence level the next day in the stock market, bond and exchange rate series
and the maximum of positive returns associated with 95% confidence level in the bond market and exchange
rate series from 1 January, 2008, to 1 July, 2015. The critical value corresponding to a 5% significance level
is equal to 3.84 for the unconditional coverage test and the independence test (asymptotic χ2(1)-distribution)
and 5.99 for the conditional coverage test (asymptotic χ2(2)-distribution).



Table 4.10: LRuc, LRind and LRcc test statistics V aR0.975

α = 0 α > 0

η = 0 η > 0 η = 0 η > 0

γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0

S&P LRuc 32.35 51.48 1.63 4.92 29.73 40.73 1.30 2.00

LRind 2.63 0.89 0.84 0.31 0.73 1.70 0.32 0.43

LRcc 34.98 52.38 2.47 5.23 30.45 42.44 1.62 2.43

NDQ LRuc 91.38 258.59 2.22 1.06 85.43 235.56 2.22 1.78

LRind 1.61 82.98 1.59 1.05 1.18 89.43 1.59 1.28

LRcc 92.99 341.56 3.80 2.10 86.61 324.98 3.80 3.06

DJI LRuc 39.28 45.22 3.31 2.00 28.45 31.03 3.31 1.00

LRind 0.25 0.09 0.00 0.03 0.81 0.64 0.00 0.28

LRcc 39.53 45.31 3.31 2.03 29.27 31.67 3.31 1.28

BND(-) LRuc 2.40 66.73 2.40 8.99 3.81 66.73 3.81 66.73

LRind 0.66 17.75 0.66 24.64 0.44 20.38 0.44 20.38

LRcc 3.06 84.48 3.06 33.62 4.25 87.12 4.25 87.12

e/$(-) LRuc 9.77 16.03 2.84 2.84 11.42 18.07 1.30 3.81

LRind 1.81 0.21 3.80 0.58 3.04 0.77 2.56 0.44

LRcc 11.58 16.24 6.64 3.42 14.46 18.84 3.86 4.25

£/$(-) LRuc 40.73 75.86 6.82 4.92 24.77 49.89 1.63 2.00

LRind 6.12 2.85 4.32 1.36 5.59 0.34 0.84 2.22

LRcc 46.85 78.71 11.14 6.28 30.37 50.23 2.47 4.21

BND(+) LRuc 1.00 0.34 0.33 1.78 0.52 0.09 0.77 2.71

LRind 0.10 0.21 0.00 0.04 0.17 0.31 0.94 0.09

LRcc 1.10 0.55 0.33 1.82 0.69 0.40 1.71 2.79

e/$(+) LRuc 2.40 2.00 2.00 1.30 3.81 2.84 3.31 1.63

LRind 0.49 0.43 0.43 0.32 0.68 0.55 0.61 0.05

LRcc 2.89 2.43 2.43 1.62 4.49 3.38 3.92 1.68

£/$(+) LRuc 2.40 4.92 1.30 1.30 2.40 2.84 0.74 1.00

LRind 0.66 1.36 0.94 0.07 0.01 0.58 0.23 0.28

LRcc 3.06 6.28 2.23 1.37 2.42 3.42 0.98 1.28

Statistics for the unconditional coverage, independence and conditional coverage tests on the VaR predictions
at a 97.5% confidence level produced by the different Hawkes models. The models predict the maximum of
negative returns associated with a 95% confidence level the next day in the stock market, bond and exchange
rate series and the maximum of positive returns associated with 95% confidence level in the bond market
and exchange rate series from 1 January, 2008, to 1 July, 2015. The critical value corresponding to a 5%
significance level is equal to 3.84 for the unconditional coverage test and the independence test (asymptotic
χ2(1)-distribution) and 5.99 for the conditional coverage test (asymptotic χ2(2)-distribution).
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the stock markets and the exchange rates, are a problem whenever the influence of the history

of the event process on the sizes of subsequent events is omitted (η = 0). The unconditional

and conditional coverage test statistics are particularly high for the stock market indices

and the NASDAQ. The models that include the predictability of event sizes (η > 0) lead

to lower statistics, which with a few exceptions are insignificant at a 5% level. In case

η = 0, the Hawkes models also do not pass the independence test at a 5% level for crashes

in the NASDAQ and the £/$-rate. At the the 95% confidence level, the VaR violations are

independent for all other series. At the 97.5% confidence level, also the VaR predictions for

investors with a long position in the US bond market, are dependent.

Both the effect of cross-excitation (the parameter γ2) and the effect of the size of events

on the triggering intensity (the parameter α), are inconclusive for most series. However, for

investors with a long position in the US bond market, the incorporation of cross-excitation

in the models leads to VaR forecasts, at a 97.5% confidence level, that are of lower quality,

failing the tests of Christoffersen (1998) at a 5% significance level.

Besides the independence test of Christoffersen (1998), we use the Dynamic Quantile

(DQ) test of Engle and Manganelli (2004) to verify whether VaR violations are predictable

from the history of the event process. If the models are correct, VaR violations before time t

should have no explanatory power for a VaR violation at t. The DQ test is implemented as

in Berkowitz et al. (2011), that is the errors ε(t) from the regression

xα(t) = β0 + β1xα(t− 1) + ε(t) (4.20)

follow a logistic distribution. In this way we account for heteroscedasticity due to the binary

nature of the variable xα(t). The null hypothesis that β1 = 0 is tested with a Likelihood

Ratio test.

The DQ test statistics for the VaR predictions at the confidence levels 95% and 97.5%

are given in Table 4.11. Almost all test statistics are insignificant. In accordance with the

independence test of Christoffersen (1998), the DQ test indicates that the models in which

event sizes are unpredictable fail to employ all information in the history of the event process

to produce VaR predictions for investors with a long position in the NASDAQ and the £/$-

rate. Also, again, the models that allow for cross-excitation produce auto-correlated forecasts



Table 4.11: DQ test statistics

α = 0 α > 0

η = 0 η > 0 η = 0 η > 0

γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0

95% S&P 1.58 1.48 0.54 0.77 0.27 2.03 0.70 0.24

NDQ 28.04 64.20 1.01 0.15 26.44 56.72 0.84 0.84

DJI 0.08 0.08 0.23 0.05 0.08 0.23 0.15 1.69

BND(-) 0.01 0.12 0.07 0.32 2.08 0.07 0.81 0.07

e/$(-) 0.45 1.18 0.96 1.68 0.52 2.85 0.62 2.60

£/$(-) 6.77 4.30 6.91 2.40 4.34 5.77 1.84 1.70

BND(+) 0.30 1.43 0.60 0.56 0.88 1.43 0.39 1.60

e/$(+) 0.03 0.03 0.04 0.62 0.00 0.18 0.21 0.30

£/$(+) 0.56 0.21 0.52 0.34 1.16 0.63 3.10 3.25

97.5% S&P 2.63 0.89 0.84 0.31 0.73 1.70 0.32 0.43

NDQ 1.61 82.98 1.59 1.05 1.18 89.43 1.59 1.28

DJI 0.25 0.09 0.00 0.03 0.81 0.64 0.00 0.28

BND(-) 0.66 17.75 0.66 24.64 0.44 20.38 0.44 20.38

e/$(-) 1.81 0.21 3.80 0.58 3.04 0.77 2.56 0.44

£/$(-) 6.12 2.85 4.32 1.36 5.59 0.34 0.84 2.22

BND(+) 0.10 0.21 0.00 0.04 0.17 0.31 0.94 0.09

e/$(+) 0.49 0.43 0.43 0.32 0.68 0.55 0.61 0.05

£/$(+) 0.66 1.36 0.94 0.07 0.01 0.58 0.23 0.28

Statistics for the Dynamic Quantile test on the VaR predictions at a 95% and 97.5% confidence level produced
by the different Hawkes models. The models predict the maximum of negative returns associated with a 95%
confidence level the next day in the stock market, bond and exchange rate series and the maximum of positive
returns associated with 95% confidence level in the bond market and exchange rate series from 1 January,
2008, to 1 July, 2015. The critical value corresponding to a 5% significance level is equal to±1.96 (asymptotic
N (0, 1)-distribution).
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Table 4.12: DM statistics testing cross-excitation VaR predictions

95% 97.5%

α = 0 α > 0 α = 0 α > 0

η = 0 η > 0 η = 0 η > 0 η = 0 η > 0 η = 0 η > 0

S&P 66.52 76.87 75.30 64.66 81.39 48.84 88.39 54.47

NDQ -1.91 −1.16 −3.51 −5.87 7.67 8.56 5.00 1.69

DJI 1.77 7.71 −1.51 1.78 −1.69 4.24 −5.78 −4.97

BND(-) -2.46 −14.66 −8.69 −10.01 13.15 −15.63 7.22 7.51

e/$(-) 15.58 3.15 7.28 −3.11 20.34 3.01 16.12 −1.70

£/$(-) 19.50 0.54 15.85 −0.87 18.36 −4.57 15.19 1.25

BND(+) -9.95 −4.72 −10.50 −3.15 −7.46 1.73 −2.29 1.45

e/$(+) 4.92 −0.15 4.30 −0.65 5.65 3.83 3.04 0.74

£/$(+) 22.03 4.78 8.01 5.69 16.74 7.13 12.35 5.71

DM statistics comparing VaR predictions at a 95% and 97.5% confidence level of models with and without
cross-excitation. The models predict the maximum of negative returns associated with a 95% confidence level
the next day in the stock market, bond and exchange rate series and the maximum of positive returns associated
with 95% confidence level in the bond market and exchange rate series from 1 January, 2008, to 1 July, 2015.
The critical value corresponding to a 5% significance level is equal to±1.96 (asymptoticN (0, 1)-distribution).

of the Value-at-Risk at the 97.5% confidence level for investors with a long position in the

US bond market.

To compare the VaR predictions made by the different models we use the DM test based

on the asymmetric tick loss function of Giacomini and Komunjer (2005)

L(ekα(t)) = (α− I(ekα(t) < 0))ekα(t) (4.21)

where ekα(t) = r(t) − (−V aRk
α(t)) is the difference between the actual return and the pre-

dicted VaR at confidence level α and I(ekα(t) < 0) is an indicator function which takes the

value 1 when the negative of the return at time t is larger than the predicted VaR at confidence

level α and the value 0 otherwise. As the loss function (4.21) is asymmetric, realized returns

below the negative of V aRk
α(t) lead to larger losses.

The DM statistics comparing VaR predictions of models with and without cross-excitation

at the confidence levels 95% and 97.5% are given in Table 4.12. From the DM tests we con-

clude that, at the 95% confidence level, the models with cross-excitation, deliver significantly

more accurate VaR predictions for investors with a long position in the S&P 500 index, the

DJI index and for investors in the exchange rates. Investors with a long position in the S&P

500 index, NASDAQ and the e/$-rate and investors with a short position in the exchange
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Table 4.13: DM statistics testing the influence on/of sizes VaR predictions

η (α = 0) α (η = 0) η (α > 0) α (η > 0)
γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0 γ2 = 0 γ2 > 0

95% S&P −35.72 −35.87 −3.54 −3.58 −22.91 −22.37 −3.58 −5.59

NDQ −49.02 −46.28 −1.05 −4.02 −49.26 −43.86 −4.02 −7.47

DJI −39.64 −37.22 3.25 −4.65 −30.19 −25.85 −4.65 −4.52

BND(-) −32.93 −35.92 14.11 −0.65 −36.98 −18.51 −0.65 27.84

e/$(-) −28.82 −25.90 −4.48 −12.06 −14.93 −12.87 −12.06 −6.54

£/$(-) −24.91 −23.28 −2.60 −4.11 −12.99 −11.67 −4.11 −8.20

BND(+) −35.86 −22.65 −8.42 −8.31 −32.10 −21.07 −8.31 −5.80

e/$(+) −35.41 −24.96 −5.62 −7.12 −20.32 −16.77 −7.12 −7.60

£/$(+) −33.11 −27.79 −4.58 −6.85 −8.19 −7.86 −6.85 −5.61

97.5% S&P −38.86 −39.10 −6.63 −10.36 −24.02 −24.92 −5.86 −6.35

NDQ −63.79 −53.83 0.78 −9.79 −65.14 −49.54 −2.67 −7.50

DJI −32.94 −33.57 −4.91 −9.77 −25.01 −21.25 −0.16 −4.83

BND(-) −4.42 −23.45 16.45 −5.27 −15.86 −3.84 14.44 22.63

e/$(-) −27.29 −23.20 0.47 −6.53 −15.87 −13.82 −5.15 −6.24

£/$(-) −28.83 −29.86 −3.72 −7.12 −13.62 −14.73 −8.32 −7.75

BND(+) −48.96 −39.87 −9.11 −7.23 −22.53 −17.46 −7.16 −7.54

e/$(+) −22.51 −20.74 −2.14 −4.76 −12.98 −14.73 −4.64 −7.88

£/$(+) −33.90 −28.27 −3.36 −9.37 −17.67 −17.84 −7.10 −9.23

DM statistics based on the asymmetric tick loss function (4.21) comparing VaR predictions at the 95-99%
confidence level of models with and without influence of the the history of the events on the magnitude of
subsequent events (η) and models with and without influence of the magnitude of events triggering subsequent
events (α). The models predict the maximum of negative returns associated with a 95% confidence level the
next day in the stock market, bond and exchange rate series and the maximum of positive returns associated
with 95% confidence level in the bond market and exchange rate series from 1 January, 2008, to 1 July, 2015.
The critical value corresponding to a 5% significance level is equal to±1.96 (asymptoticN (0, 1)-distribution).

rates should also employ the models with cross-excitation for their VaR predictions at the

97.5% confidence level. Moreover, the models with cross-excitation in which the event sizes

are unpredictable and/or the sizes of events influence the rate at which events are triggered,

produce significantly more accurate VaR predictions at the 97.5% confidence level than the

models without cross-excitation for investors with a long position in the US bond market and

the £/$-rate. Investors with a short position in the US bond market should employ models

without cross-excitation to forecast their Value-at-Risk.

The DM statistics comparing probability predictions of models with and without influ-

ence of the event sizes on the conditional intensity and models with and without influence of

the history of the event process on the event sizes, at the confidence levels 95% and 99% are

given in Table 4.13. According to the DM tests, using models with influence of the history
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of the event process on the event sizes and/or influence of the event sizes on the conditional

intensity, leads to significantly less accurate VaR predictions in almost all cases.

Our key finding is that, all in all, the models that account for cross-triggering provide bet-

ter VaR predictions. This is not surprising as these models are also ranked the highest in case

the predictions of the probability of an extreme are evaluated. Therefore we conclude that

traders, regulators of financial markets and risk management should incorporate spillovers

in their models when they are employing Hawkes models to forecast extremes in financial

markets.

4.6 Conclusion

We extend Hawkes models to account for cross-excitation between financial markets. We

assess the contribution of including cross-excitation for forecasting extreme events and the

Value-at-Risk. We apply the models to extreme negative returns in the S&P 500 index,

the NASDAQ and the Dow Jones Industrial Average, and to extreme negative and positive

returns in the US bond index, the euro/dollar rate and the pond/dollar rate to forecast the

probability of extremes and the Value-at-Risk from 1 January, 2008, to 1 July, 2015. The

forecast period includes the financial crisis of 2008. in which many crashes occurred. Our

specific focus is on comparing models with and without spillover effects from the S&P 500

index, while for the S&P 500 index we investigate whether crashes in the index are provoked

by crashes in the NASDAQ. On average, a Lagrange Multiplier test rejects the absence of

cross-excitation except for the cross-excitation to the NASDAQ. Residual analysis confirms

the adequacy of the models.

We evaluate the forecasts of the probability of an extreme and the Value-at-Risk forecasts

at the 95% and 97.5% confidence level. The test of Diebold and Mariano (1995) shows that

the Hawkes models with spillover effects and triggering effect that depends on the size of

past event provide the most accurate forecasts of the probability of an extreme event for all

series except for crashes in the S&P 500 index. The predictability of event sizes does not

necessarily lead to more accurate probability predictions. The results for the VaR forecasts

also indicate the added value of allowing for cross-excitation.

Our results suggest that extreme events in financial markets should not be modelled

or predicted in isolation but in joint models. Although our attention is restricted to cross-
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excitation from one process to another, our results provide an incentive for further research

into multivariate Hawkes models.



Chapter 5

Estimation of non-affine models

containing jumps using option prices

5.1 Introduction

In this Chapter I propose a framework for efficiently estimating stochastic volatility models

with self-exciting jumps on stock and option prices that is very general and can easily be

tailored to fit the application at hand.1 The framework admits to analyze models with non-

affine dynamics and compare both nested as non-nested models. Moreover, as my methods

fit into a learning setting, models can be estimated and assessed sequentially such that models

can be updated quickly when new information arrives. Within my framework, I use MCMC

techniques and particle filtering methods to derive the distribution of the model parameters

and the latent volatility and jump process. Utilizing the information in option prices, which

can be done at a frequency different from the frequency of asset prices, I am able to derive

the fractions of the equity and variance risk premium attributable to diffusive or jump risk.

I pin down the sizes of the risk premia with the aid of high-frequency asset price data. The

diffusive risk premium and, in particular, the jump risk premium, provide insight in the state

and development of the financial market with important guidance for risk management.

The model of my main focus contains a self-exciting jump component on top of a stochas-

tic volatility component, to accommodate the repetition of stock market crashes in a short

time period, such as the ongoing sizable drops during the financial crisis of 2008. Nowadays

1The Chapter contains a research proposal for which the next step is to properly carry out a Monte Carlo
analysis and data application.
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stochastic volatility models are adapted to account for large changes in asset prices by the

introduction of a jump component in the asset price and/or the volatility.2 However many

of these models cannot account for the tendency of large negative asset price movements to

cluster over time. As jumps are rare events, the clustering of crashes is very unrealistic in

models that prescribe jumps to arrive independently. Also model implied surfaces of option

prices differ from observed surfaces if jumps have no impact on relative option prices (Er-

aker, 2004). Similar to Aı̈t-Sahalia et al. (2015) and Boswijk et al. (2015), I propose a model

in which the probability of a crash in the near future rises sharply after a large negative price

drop as I let the jump intensity follow a self-exciting Hawkes process (Hawkes, 1971). There

are quite a few studies showing that time-variation in the jump intensity, such that the jump

intensity is higher in case of crises and lower during tranquil periods, improves the fit of asset

and option prices.3 Moreover, it seems that the fit of models that allow the jump intensity

to suddenly increase, is superior to the fit of models in which the jump intensity can only

increase gradually (Fulop et al., 2014; Aı̈t-Sahalia et al., 2015; Boswijk et al., 2015). In con-

trast to studies in which the intensity is a function of the volatility,4 I let the jump intensity

change independently of the volatility over time. Therefore increments in the intensity do

not have to be preceded by a increase in the volatility. Moreover, a high volatility does not

necessarily imply more jumps. This is supported by the finding that innovations in volatility

and the jumps intensity are not strongly correlated (Santa-Clara and Yan, 2010).

Using option prices to estimate my models, I am able to derive the different compensa-

tions investors require for taking on diffusive and jump risk. This is especially of interest

as the vastly increased trading of derivatives indicates the trade-off investors face control-

ling their exposure to diffusive and jump risk. Santa-Clara and Yan (2010), Bollerslev and

Todorov (2011), Bollerslev et al. (2015), Andersen et al. (2015b) and Boswijk et al. (2015)

show that the compensation for the risk of disasters, not attributable to volatility, explains

to a large extent the equity and variance risk premia, of which the last one can be seen an

indication of the fear of investors. All acknowledge that the compensation for disaster risk,

2See among others Merton (1976), Heston (1993), Bakshi et al. (1997), Bates (2000), Chib et al. (2002),
Andersen et al. (2002), Pan (2002), Chernov et al. (2003), Eraker et al. (2003), Eraker (2004), Bates (2006),
Broadie et al. (2007), Li et al. (2008), Santa-Clara and Yan (2010), Kaeck and Alexander (2012), Durham
(2013), Fulop et al. (2014), Aı̈t-Sahalia et al. (2015), Boswijk et al. (2015) and Ignatieva et al. (2015)

3See for example Pan (2002), Eraker (2004), Bates (2006), Santa-Clara and Yan (2010), Fulop et al. (2014),
Aı̈t-Sahalia et al. (2015) and Boswijk et al. (2015)

4Bates (2000), Andersen et al. (2002), Pan (2002), Eraker (2004) and Bates (2006) examine jump-diffusion
models in which the jump intensity is a function of the volatility of the diffusion.



5.1 Introduction 123

and thereby the fear of investors, changes quite strongly over time. This justifies sharp mar-

ket valuations. Moreover, while Santa-Clara and Yan (2010) and Bollerslev et al. (2015)

find that the time-variation in the risk premia helps predict future market returns, Andersen

et al. (2015b) find that options contain information about future market risk premia, which

can not be identified from stock prices alone. Therefore, disentangling of volatility and jump

components in risk premia using option prices provides one with important information re-

garding the state and development of the financial market with far-reaching implications for

asset allocation, hedging, and risk management. As Andersen et al. (2015b), Bollerslev and

Todorov (2011) and Bollerslev et al. (2015), I exploit the information contained in high-

frequency asset prices to pin down risk premia more accurately.

I estimate my jump-diffusion model using Bayesian techniques. Bayesian analysis pro-

vides interpretable answers, a way to deal with missing data, tractable computations, and

inferences that do not rely on asymptotic approximation and are exact conditional on the

data. Despite the advantages of MCMC techniques, studies of models in which the jump in-

tensity is a state variable and evolves independently from the volatility, have solely been done

within the classical framework with the exception of Fulop et al. (2014). Moreover, the pop-

ular Hawkes model framework has only been estimated in continuous time with techniques

that match moments in the data with moments implied by the model (Errais et al., 2010;

Aı̈t-Sahalia et al., 2014, 2015; Boswijk et al., 2015; Fan et al., 2015) or maximum likelihood

(Bowsher, 2007). Before discussing my estimation procedure, I point out the three main ad-

vantages of my procedure, that is generality, flexibility and insightfullness. When discussing

my procedure, it becomes clear that my methods are efficient and easy to implement.

First my framework is very general, that is I do not have to make on a lot of assumptions

on both the models as well as the data. Regarding the model assumptions, my estimation

framework only requires one to be able to evaluate the likeliness of the latent states given

the option prices, which can be done using approximations or the integrated variance. As I

do not rely on the existence of an analytical characteristic function for the price, I am able

to investigate both affine as non-affine models. Even though affine model specifications are

far more popular as they provide closed-form derivative prices which facilitates model cal-

ibration using option prices,5 non-affine specifications, seems to fit and predict asset prices

5See for exampleMerton (1976), Heston (1993), Bakshi et al. (1997), Bates (2000), Pan (2002), Bates
(2006), Broadie et al. (2007), Errais et al. (2010), Santa-Clara and Yan (2010), Aı̈t-Sahalia et al. (2014), Fulop
et al. (2014) and Boswijk et al. (2015)
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considerably better.6 Moreover, both Kaeck and Alexander (2012) and Durham (2013) show

that non-affine models perform superior in fitting option prices compared to affine models,

whether or not jumps are included in the models. Durham (2013) employs Monte Carlo

simulation to invert the implied volatility from panels of option prices, after which he per-

forms maximum likelihood estimation to estimate the parameters of the model under the risk

neutral probability measure. A drawback of their method is that the parameters of the model

under the physical probability measure are not estimated in the same estimation procedure.

In contrast to Durham (2013), I estimate all parameters in one framework such that I do not

have to rely on parameters derived in earlier studies. Kaeck and Alexander (2012) use the

term structure of the VIX index to infer the transition from the physical to the risk neutral

probability measure. I opt to estimate models from the asset prices and option prices only

such that no additional measurement errors are introduced. Therefore my method is applica-

ble to other series in addition to the index, whose risk neutral dynamics may differ from the

dynamics implied by the VIX. Moreover, different from Kaeck and Alexander (2012) and

Durham (2013), I do consider time-variation in the jump intensity.

Regarding the data assumptions, I accept that options are observed with error and that the

information of options is utilized at a lower frequency than the information of asset prices

to estimate models. Moreover, the framework allows me to exploit the intra-day information

in asset prices such that I can estimate latent volatility and jump intensity states with greater

precision. This improves the accuracy of the risk premia estimates. Boswijk et al. (2015)

estimate a model similar to the model in this Chapter, assuming options can be observed

without error. However, bid-ask spreads of options are relatively large, and therefore non-

trivial. As one can solely conclude that true option values (if one believes in the existence

of such), lie somewhere within the spreads, these values do not coincide with proxies of the

option values such as mid-quotes (Andersen et al., 2015a). Furthermore as true option values

cannot be inferred, option implied states contain errors as well. Although observed option

prices contain large observation errors and my models can be estimated without, options

are still very informative and bring estimation errors down even when taken in at a lower

frequency than asset prices (Johannes et al., 2009).

6Chernov et al. (2003), Jones (2003), Christoffersen et al. (2010), Kaeck and Alexander (2012), Durham
(2013) and Ignatieva et al. (2015) find non-affine models should be preferred above affine models as they
are more flexible and better capable of modeling the tails of the heavy-tailed asset return distribution, while
remaining equally parsimonious.
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Secondly, my estimation technique is very flexible and can easily be tailored to other

model specifications to fit the application at hand. For example, the jump intensity can be

driven by a Brownian motion, the volatility process can contain jumps or the long-run level

of the volatility can be made time-varying. Thus, it is allowed to let the dynamics under

the real world measure to differ entirely from the dynamics under the risk neutral measure.

Moreover, the technique can be extended to the multivariate case as it does not require direct

optimization of a multidimensional integral which is a problem in several classic estimation

frameworks that consider option prices. This makes the estimation technique very attractive

for further investigation as jump intensities are believed to be mutually exciting (Aı̈t-Sahalia

et al., 2015; Fan et al., 2015).

Third, during my estimation procedure, I obtain statistics that give insight in the data

and model fit, as a by-product. As I combine MCMC with particle filtering techniques, I

am able to approximate the posterior of both the latent states and estimate parameters of the

model in one framework. Furthermore, through the application of data augmentation, the

distributions of the jumps and the jump sizes arise naturally from the estimation procedure.

This allows me to identify the source of asset price shocks (Aı̈t-Sahalia, 2004) and compare

the models’ fit of the diffusive and jump component separately. Moreover, as particle filters

produce approximations of the marginal likelihood as a by product, I am able to compare

models with Bayes Factors and Information Criteria.

Hereafter I explain the Bayesian estimation procedure, which is based on a Gibbs sam-

pling algorithm. The estimation procedure consists of two steps: First a volatility, intensity

and jump path is drawn given the model parameters (1). Hereafter the parameters of the

models are drawn given this path (2). More specifically, I combine auxiliary particle filtering

with particle Gibbs with anchestor sampling in a new estimation procedure, auxiliary particle

Gibbs with anchestor sampling (APGAS). The APGAS procedure enables one to derive the

latent variables, decompose unexpected shocks into diffusive and jump components, com-

pare models with Bayes Factors and Information Criteria, and make predictions of both the

latent variables as the stock and option prices. The basic auxiliary particle filter of Pitt and

Shephard (1999) prescribes to incorporate the knowledge of the observations into the pro-

posal distribution of the latent states such that particles are not moved into regions which

are very unlikely given the observations. To prevent sample impoverishment even more, this

APF is extended by transmitting information contained in the observations about jumps and
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their sizes into the particle trajectories (Johannes et al., 2009). The steps of the APF are

performed within the particle Gibbs with anchestor sampling (PGAS) method of Lindsten

et al. (2014), which approximates an ideal Gibbs sampler. The PGAS method is used to es-

timate the invariant distribution of the latent variables and the model parameters conditional

on each other. In the PGAS method as well as in the Particle Gibbs method of Andrieu

et al. (2010), a reference trajectory, that is the previously sampled trajectory of the latent

states, serves as a guidance through the state space. However, different from the PG method,

the ancestor of the reference path is resampled. Although the particle marginal Metropolis-

Hastings (PMMH) sampler of Andrieu et al. (2010) is theoretically preferred over the PGAS

method, approximating an ideal marginal sampler for the parameters, the PMMH sampler is

often too time-consuming to use in practice as a high number of particles and Monte Carlo

iterations are required to give a somewhat accurate picture of joint distribution of the latent

variables and the parameters of the model. On the contrary, in the PGAS method fast mixing

is obtained with only few particles by resampling of the ancestor of a reference trajectory.

Besides, with the PGAS method one samples the latent variables and parameters in separate

stages of the iterative Gibbs sampling procedure, which improves mixing even further.

On top of auxiliary particle filtering and particle Gibbs with anchestor sampling, I pro-

pose to use the learning methods of Chopin et al. (2013) and Fulop and Li (2013). Using a

sequential approach, new information can be processed quickly and used to update models as

parameters are estimated recursively. Classical batch estimation on the other hand requires to

redo the entire estimation procedure which can be time-consuming. Moreover, the methods

of Chopin et al. (2013) and Fulop and Li (2013) are efficient as resample steps take place

more frequently at the beginning when the data-sample is still short. I tailor in the methods

Chopin et al. (2013) and Fulop and Li (2013) to the proposed auxiliary particle filter fit for

jump-diffusion models, and apply particle Gibbs with anchestor sampler described above.

From the particle filter sequential marginal likelihood estimates are obtained as a by product.

These can be used to compute sequential Bayes factors. The sequential Bayes factor enables

me to assess the performance of different models over time, something that is impossible in

batch estimation.

The Chapter is organized as follows. In Section 2 the model specifications are discussed,

the Hawkes process, which plays a key element in the models my main focus, is introduced,

and the asset return dynamics under the physical and risk neutral measure are provided for
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several affine and non-affine models. Section 3 describes my estimation method, the APF and

the PGAS method are analyzed and an detailed Gibbs algorithm that includes APF and PGAS

steps is proposed. A sequential estimation method based on PGAS, is presented in Section

4. Finally, Section 5 proposes a data application for my estimation framework. To avoid

inconsistencies I recommend to estimate the models over a large time period (Pan, 2002;

Broadie et al., 2007) instead of over a large cross-sectional option panel. A Monte Carlo

analysis of the proposed framework has yet to be properly implemented. Also, applying the

framework to the suggested data in Section 5 and deriving diffusive and jump risk premia,

remains for further research.

5.2 Model

5.2.1 The Hawkes process

In my self-exciting jump models I use the Hawkes process (Hawkes, 1971) to describe the

jump dynamics in the model. The Hawkes process is a branching process, in which each

jump can trigger subsequent jumps, which in turn can trigger subsequent jumps of their

own. Jumps Nt arrive according to an inhomogeneous Poisson process with a stochastic

intensity λt. The Hawkes process is called self-exciting as the intensity gets amplified when

a jump arrives, increasing the probability of future jumps, after which the intensity decays

as a function of the time passed since the jump,

λ(t|θ;Ht) = θλ +

∫ t

−∞
g(t− s)dNs (5.1)

where θλ > 0 and g(t) > 0 whenever Nt > 0 and 0 elsewhere. The intensity λt at time

t can be determined by the history of jumps prior to time t contained in Ht, which makes

the Hawkes process a path-dependent point process. The instantaneous mean jump rate

conditional onHt is thus given by

Pr [Nt+δ −Nt = 0|Ht] = 1− λtδ + o(δ) (5.2)

Pr [Nt+δ −Nt = 1|Ht] = λtδ + o(δ) (5.3)

Pr [Nt+δ −Nt > 0|Ht] = o(δ) (5.4)
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As suggested by Hawkes (1971), I specify the triggering function g(.) such that the pair

(N, λ) is Markovian, and the instantaneous intensity λt with which jumpsNt at time t arrive,

can be determined by the intensity λt−1 and the number of jumps Nt−1 at time t− 1,

g(t) = γλe
−κλt (5.5)

where κλ, γλ > 0. Interpreting (5.5) in combination with (5.1), the conditional intensity

consists of a long-term background component given by the constant term and a short-term

clustering component describing the temporal distribution of triggered jumps. The parameter

θλ controls the steady state level to which the conditional intensity mean reverts. The impact

of a jump on the conditional intensity is measured by γλe−κλt, where γλ defines the maximum

triggering intensity and the expected number of jumps directly triggered by a jump and κλ

defines the exponential rate with which the impact of a jump decays depending on the time

passed since a jump. Together, the parameters γλ and κλ determine the branching ratio of

the Hawkes process n, that is the expected number of jumps triggered by a jump,

n =

∫ ∞
0

γλe
−κλsds =

γλ
κλ

(5.6)

When n ≥ 1, the conditional intensity, and thus the number of events arriving within a finite

time interval, could grow to infinity over time. Restricting γλ < κλ, the branching ratio n is

smaller than 1, which ensures stationarity of the Hawkes process. The compensated process

Nt −
∫ t
−∞ λsds is a local martingale. The intensity process (5.1,5.5), can be verified to have

the following differential form

dλt = κλ(θλ − λt)dt+ γλdNt (5.7)

The mean reversion to the steady state level is generated by the drift term κλ(θλ − λt),

whereas γλdNt covers the self-excitation of the Hawkes process.

5.2.2 Asset return dynamics in continuous-time

Similar to the model of Bates (2000), all models consist of the following key elements for

the dynamics of the log returns on assets st = logSt; the level of the stochastic volatility vt,
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the number of jumps Nt, the sizes of the jumps Zt and the intensity with which these jumps

arrive λt (which can be taken to be constant). The asset return dynamics of the models under

the physical probability measure P are covered by the following differential equation

dst = µP
t dt+

√
vtdW

s,P
t + ZP

t dNt (5.8)

where W s,P
t represents a standard Brownian motion under P. We consider models in which

the asset return dynamics are affine (A), and the variance follows the square-root process of

Heston (1993),

dvt = κv (θv − vt) dt+ σv
√
vtdW

v,P
t (5.9)

and models in which the asset return dynamics are non-affine (NA) with the following dy-

namics for the log variance ht = log vt,

dht = κv (θv − ht) dt+ σvdW
v,P
t (5.10)

The variance in (5.9) is bounded below by zero as we impose the Feller condition, 2κvθv ≥

σ2
v ≥ 0. In both models the stochastic volatility vt is mean reverting towards a long-run mean

v̄ specified by θv (A) or exp (θv + 1
2
σ2
v) (NA). However in the affine specification the speed

of the mean reversion, given by κv for the affine models, is slower than in the non-affine

specification. Furthermore the immediate impact of the shocks on the volatility is larger in

the non-affine models. Therefore the volatility moves more violently in these models than in

the affine models. I expressW s,P
t asW s,P

t = ρW v,P
t +

√
1− ρ2W

s\v,P
t , such that the standard

Brownian motions in (5.8) and (5.9) or (5.10) are correlated with correlation coefficient ρ,

−1 ≥ ρ ≥ 1, capturing the leverage effect reported by Black (1976).

All models considered have a jump component ZP
t dNt in the asset return dynamics (5.8)

causing the stock price St to jump to St− exp (ZP
t ) whenever a jump arrives indicated by

Nt. I assume that the jump component is independent of the Brownian motions W s,P
t ,W v,P

t .

Furthermore, I assume the jump sizes, ZP
t , and the process indicating the arrival of jumps

Nt, are mutually independent. The jump sizes ZP
t follow a normally distribution with mean

µP
z and standard deviation σz independently of previous jump sizes. From this it follows that,

on average, the relative size of stock price jumps under the physical probability measure P is

equal to µP
j = E

[
exp (ZP

t )− 1
]

= exp (µP
z + 1

2
σ2
z)− 1.
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The timing of the jumps is determined by the Poisson process Nt which has intensity λt.

In the models denoted by (C), λt is constant, implying jumps should be more or less evenly

distributed over the period examined. Inspired by Andersen et al. (2002), Pan (2002), Eraker

(2004) and Bates (2006), I also look at models that have a state-dependent intensity, that is

λt = α+βvt. These models, denoted by (S), are able to explain alternating periods in which

more or less jumps occur as the intensity of jumps is able to gradually adjust in line with the

volatility whenever a turmoil period with fierce stock price movements, or a tranquil period

without such movements, dawns.

In the models of my main focus, the Hawkes models (H), the jump intensity λt follows

the self-exciting Hawkes process specified in (5.7) such that the occurrence of jumps induces

a higher probability of jumps in the near future. Similar to the volatility, the Hawkes jump in-

tensity exhibits mean revering behavior to its long-run mean, λ̄ = θlκl
κl−γl

, with mean reversion

speed κl. Benefits of adopting a self-exciting jump intensity compared of a state-dependent

intensity, are that information within jumps and feedback effects (due to algorithmic trading,

illiquidity, trade and budget deficits etc.) can be incorporated in the model.

I do not consider models with jumps in the volatility process. Models that contain jumps

solely in the volatility process cannot capture the jumps observed in the price dynamics of

financial assets, whereas models that contain jumps in both price as volatility dynamics are

less parsimonious and not identifiable with the jump dynamics of the Hawkes process (5.7).

Moreover, in the non-affine models, the log variance dynamics already allow the volatility to

rapidly increase and decrease in response to shocks.

In my models contain jump size risk in addition to diffusive, volatility and jump time risk.

In this setting the market is incomplete with respect to underlying stock, a money market

account and a finite number of option contracts. The pricing kernel is therefore not unique.

Analogous to Boswijk et al. (2015), I assume in the absence of arbitrage, the following price

and volatility dynamics under an equivalent risk neutral measure Q
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y : dst =µQ
t dt+

√
vtdW

s,Q
t + ZQ

t dNt (5.11)

v : dvt =κv (θv − vt) dt+ σv
√
vtdW

v,Q
t (A) (5.12)

h : ht = log vt (NA) (5.13)

h : dht=κv (θv − ht) dt+ σvdW
v,Q
t (NA) (5.14)

λ : λt =λ (C) (5.15)

λ : λt =α + βvt (S) (5.16)

λ : dλt=κλ(θλ − λt)dt+ γλdNt (H) (5.17)

where W s,Q
t can be expressed as W s,Q

t = ρW v,Q
t +

√
1− ρ2W

s\v,Q
t which induces correla-

tion between the standard Brownian motions in the price and volatility dynamics under the

risk neutral measure Q. I assume that the timing of the jumps dNt is the same under the

P as under Q such that the jump intensity is unaffected by the measure change. The jump

sizes ZQ
t follow a normally distribution with mean µQ

z and standard deviation σz indepen-

dently of previous jump sizes, the jump process Nt and the Brownian motions W s,Q
t ,W v,Q

t .

Conditionally up to arrival of a jump, the mean relative size of a jump under the risk neu-

tral probability measure is given by µQ
j = E

[
exp (ZQ

t )− 1
]

= exp (µQ
z + 1

2
σ2
z) − 1. The

risk neutral dynamics differ slightly from the dynamics defined by other studies as I follow

Boswijk et al. (2015), who opt set to the market price of volatility risk to zero since there is

no clear empirical evidence for a diffusive volatility risk premium.

5.2.3 Options

To fully employ the information in option prices to estimate our models, I adopt the following

specification for the drift term of the price process (5.8) under P, and Q,

µP
t = (η − 1

2
)vt +

(
µP
j − µ

Q
j

)
λt − µP

jλt (5.18)

µQ
t = −1

2
vt − µQ

j λt (5.19)

Defining (5.18) enables me to separately derive the market price of diffusive and jump risk.

When I estimate the models solely using asset prices, I set µ = µP
t . Adopting a rich speci-
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fication for the drift of the price process like (5.18) would leave the models underidentified.

Therefore, without options, I am not able to determine the different compensations investors’

require for the different risk types. Using option prices, the market price of diffusive risk per

unit time is equal to ηvt. The time-variation in the diffusive risk premium arises from the

stochastic time-variation in the volatility, which induce changes in investors’ risk and the

price investors require for bearing this risk by investing in the asset. The average level of the

risk premium is determined by η. As I restrict the jump process Nt and its’ intensity λt to

be the same under the physical and risk neutral probability measures, the jump risk premium

is not related to the timing of the jumps. The premium emerges entirely from perceived dif-

ferences in jump size distribution under P and Q. Moreover, as σj is the same under both

measures, the deviation of the mean of the jump size distribution under Q from its mean

under P solely induces the premium investors require for bearing jump risk. The jump risk

premium is equal to
(
µP
j − µ

Q
j

)
λt, which makes the premium time-varying whenever λt is

time-varying. This makes the probability of a price jump and thus investors’ risk, change

over time.

For the affine models (A), in which the variance dynamics are given by (5.9), I am able

to derive the conditional characteristic function of the models’ stochastic states using the

methods of Duffie et al. (2000). Having specified this conditional characteristic function, I

apply the Fourier inversion techniques based on Fourier-cosines series expansions (Fang and

Oosterlee, 2008), to price options.

5.3 Estimation

To estimate the models defined in the previous section, I employ Bayesian techniques. Al-

though Gibbs sampling schemes have been used before to estimate jump-diffusion models,7

the estimation of a jump-diffusion model in which the the jump intensity follows a Hawkes

process has only been done within the classical framework. My Bayesian estimation method

offers several advantages. For one thing the distribution of the volatility, the self-exciting

jump intensity, jumps times and sizes, and the model parameters can be estimated in one

framework without some commonly used, but improbable, assumptions. For example, the

7See for example Chib et al. (2002), Eraker et al. (2003), Eraker (2004), Li et al. (2008), Kaeck and Alexan-
der (2012) and Ignatieva et al. (2015)
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estimation procedure is not based on the compliance of our models with the terms of Black-

Scholes (Black and Scholes, 1973) nor on the ability to observe options without error. More-

over, as my estimation framework does not rely on the existence of an analytic characteristic

function for the price of an asset, non-affine models can be estimated using my methods.

Lastly, I do not require asset and option prices to be available at the same frequency to utilize

all available information.

In my Gibbs sampling procedure I first draw a volatility, intensity and jump path condi-

tional on the model parameters, after which I draw the model parameters given the sampled

paths. For the first step I combine auxiliary particle filtering methods with the Particle Gibbs

with anchestor sampling in a new algorithm, the auxiliary particle Gibbs with anchestor

sampling algorithm (APGAS). The APGAS estimation procedure enables one to derive the

latent variables of the models, disentangle stochastic volatility and jumps, compute Bayes

Factors and Information Criteria, and make predictions of both the latent variables as the

stock and option prices. Particle filtering techniques have been widely applied to infer latent

states from observed data in state space models. Compared to the well-known sequential

importance resampling (SIR) technique, the auxiliary particle filter (APF) is more capable

of handling the degeneracy problem experienced with particle methods. The APF filter in-

corporates the information about the latent states contained in observations into the particle

trajectories. This prevents particles from moving into regions that are very unlikely given the

observations. Inspired by Johannes et al. (2009), I extend the basic APF of Pitt and Shephard

(1999) to filter out both the latent states as the jump times and sizes from asset prices, and if

available for estimation, option prices. To derive the invariant distribution of both the latent

states and the model parameters conditional on each other, I make some adjustments to the

filtering scheme. Using particle Gibbs with anchestor sampling (PGAS) of Lindsten et al.

(2014), I am able approximate the conditional distribution of the latent states without the

use of a large number of particles. This makes the method attractive in terms of computa-

tion time compared to other filtering estimation procedures such as the particle Gibbs (PG)

sampler and the particle marginal Metropolis-Hastings (PMMH) sampler of Andrieu et al.

(2010). Conditional on the latent states, the model parameters are drawn from conjugate

posterior distributions derived in earlier studies described in Li et al. (2008), or using the

Metropolis-Hastings Algorithm.
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In this section I discuss my estimation methods in more detail. First I make the models

suitable for my inference procedure by deriving their discrete version. Hereafter I discuss the

extended version of APF and the steps of the PGAS algorithm separately. The full sampling

algorithm is provided in the last subsection.

5.3.1 Asset return dynamics in discrete time

To solve the equations (5.7), (5.8), (5.9) and (5.10) at the frequency associated with the

observed data, I employ the Euler scheme to derive a discrete time version of my continuous-

time models. That is

y : rt =µP
t +
√
vtε

s
t + ZP

t Nt (5.20)

v : vt+1 =vt + κv (θv − vt) + σv
√
vtε

v
t+1 (A) (5.21)

h : ht+1= log vt+1 (NA) (5.22)

h : ht+1=ht + κv (θv − ht) + σvε
v
t+1 (NA) (5.23)

λ : λt+1=λ (C) (5.24)

λ : λt+1=α + βvt (S) (5.25)

λ : λt+1=λt + κl (θl − λt) + γlNt (H) (5.26)

where rt denotes the continuously compounded log return, that is rt = st+1 − st, Nt,j is

a Poisson distributed random variable with intensity λt,j , and εst and εvt , are standard nor-

mally distributed random variables. Like Johannes et al. (2009), it is possible to use a finer

discretization scheme which enables one to filter volatility, jumps and jump sizes more ac-

curately from the prices of assets and/or options. However, deriving the parameters of this

model specification will be a very difficult task since there is no analytic form for the joint

distribution of the log returns and the volatilities (Hull and White, 1987). Moreover, in case

prices are available at a daily frequency, refinement of the discretization scheme seems not

too important, as the discretization bias at this frequency is negligible (Eraker et al., 2003).
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5.3.2 Auxiliary particle filter

The goal of a particle filter is to approximate the nonlinear and non-analytical density func-

tion p(xt|y1:t) for each time period t, where y1:t = {y1, . . . ,yt} and xt represent respectively

the observations and the unobserved latent variables. The density p(xt|y1:t) is approximated

through a discrete distribution of N points or particles, denoted by p̂N(xt|y1:t). Each par-

ticle xit, i ∈ {1, . . . , N}, has a certain probability mass πit associated with the likeliness of

values of the latent variables xit given the observed data y1:t. Under mild regularity condi-

tions, p̂N(xt|y1:t) converges to p(xt|y1:t) as N increases (Del Moral, 2004). Particle filters

are designed for hidden Markov models in which the observations are related to the hidden

Markov states with some functional form. This funtional form specifies the conditional like-

lihood p(yt|xt) and the transition density of the latent Markov states p(xt+1|xt). Within this

model class, particle filters have as a great advantage that they are highly adaptive and can

easily be tailored to derive p(xt|y1:t) in the application at hand.

The original auxiliary particle filter (APF) of Pitt and Shephard (1999) is build on the idea

that observations contain information on the latent states, which can be processed in the pro-

posal distribution for the latent states. In the well-known sequential importance resampling

(SIR) technique, particles xit+1 are sampled from their transition density p(xt+1|xit) after

which the particles are resampled with replacement according to their likeliness p(yt+1|xit+1).

The APF modifies the SIR algorithm by first sampling an auxiliary variable, the particle in-

dex z(i), for each particle xit, given the compatibility of the particle with the next observation

p(yt+1|xit) =

∫
p(yt+1|xt+1)p(xt+1|xit)dxt+1 (5.27)

Through the resampling step information is transmitted from the observation yt+1 into the

distribution for the particles p(xt+1|xz(i)t ) such that xit+1 ∼ p(xt+1|xit,yt+1). In case of

outliers or rare events, the information in observations is especially valuable. As particle

trajectories are preselected based on their predictive likelihood, only the particles trajecto-

ries with a high likelihood survive. This is of great importance as states are generally very

persistent, and thereby circumvents sample impoverishment. Density (5.27) is generally not

available in closed form and approximated by p̂(yt+1|x̂it+1), where x̂it+1 is a value with high

probability given p(xt+1|xit) such as its mean or mode. Hereafter the particle histories xi1:t,

i = 1, . . . , N , are set to x
z(i)
1:t . Whenever the predictive density (5.27) cannot be derived
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exactly, the particles are reweighted in a last step according to

wit+1 ∝
p(yt+1|xit+1)

p̂(yt+1|x̂it+1)
i = 1, . . . , N (5.28)

In case of full adaption, that is the predictive density (5.27) can be derived in closed form,

wit+1 is equal to 1.

Setting wit|t+1 = p̂(yt+1|x̂it+1) an estimator of the likelihood of observation yt+1 condi-

tional on y1:t is given by

p̂N(yt+1|y1:t) =

{
1

N

N∑
i=1

wit+1

}{
N∑
i=1

wit|t+1

}
(5.29)

Using (5.29) the following estimator of the likelihood can be constructed

p̂N(y1:t) = p̂N(y1)
T−1∏
t=1

p̂N(yt+1|y1:t) (5.30)

Del Moral (2004) and Pitt et al. (2012) show the likelihood estimator (5.30) is unbiased with

respect to all random quantities used in the particle filter.

The extended APF of Johannes et al. (2009) transmits the knowledge observations have

on the latent variables also into the distribution of the non-persistent latent jump variables.

This affects the proposal distribution of the persistent latent Markov states, which can be

inferred more accurately than with the basic APF. Given that the jump times are conditionally

Poisson and jump sizes are normally distributed, the non-persistent latent variables pertaining

the jump component in the models can be integrated from the predictive density (5.27). To

integrate out the persistent latent states, these states are, as in the original APF, replaced by

some function x̂it+1 of xit with high probability p(x̂it+1|xit).

Similar to Johannes et al. (2009), I let yt consist of the continuously compounded log-

returns on a stock price rt = St+1 − St, and, depending on the timing of the observation,

rt can also contain the price of an option Ct. The volatility vt, the jump time Nt and jump

size Zt are latent variables in my models. Different from Johannes et al. (2009), my obser-

vations also include high frequency measures of the daily integrated diffusive volatility IVt.

Moreover, I substitute the persistent latent jump intensities on top of the volatilities. That is

xt also contains the jump intensity λt besides the volatility vt, in models in which the jump
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intensity is a state variable. I make another adjustment to the filtering scheme of Johannes

et al. (2009) as I follow Creal (2012) and Pitt et al. (2012), and combine the second stage

weights of the previous time period with the first stage weights to select the relevant particles

more efficiently.

Furthermore I follow Yu (2005) by modeling the leverage effect through a contemporane-

ous dependence between return and volatility innovations. That is corr(εst , ε
v
t+1) = ρ, instead

of the inter-temporal dependence corr(εst , ε
v
t ) = ρ modeled by Johannes et al. (2009). Yu

(2005) find that the contemporaneous specification is superior to the inter-temporal specifica-

tion from both theoretical and empirical perspectives. Most importantly, stochastic volatility

models with inter-temporal dependence between the return and volatility innovations do not

constitute a martingale difference series. The implication is that these models are not con-

sistent with the efficient market hypothesis.

Similar to the basic APF, the extended APF prescribes to sample the auxiliary particle in-

dices z(i) according to the compatibility of the particles with the coming observation (5.27).

Assuming the occurrence of jumps is rare such that the probability of more than K̄ jumps is

negligible, the predictive density (5.27) can be approximated as

p̂(yt+1|x̂it+1) ∝p(Ct+1|St+1, v̂
i
t+1, λ̂

i
t+1)p(IVt+1|v̂it+1)

K̄∑
k=0

φ(rt+1|µ̂i,Pt+1 + kµz, v̂
i
t+1 + kσ2

z)P(k|λit)
(5.31)

where φ(·|µ, σ2) andP(·|λ) denote respectively, the normal probability density function with

mean µ and variance σ2, and the Poisson density function with rate λ. As Creal (2012) and

Pitt et al. (2012), I combine predictive density, wit|t+1 = p̂(yt+1|x̂it+1, Jt+1, Zt+1), with the

likelihood of the particle trajectories xi1:t till time t given all past information y1:t, wit, to

select the particles that are most congruent with both the coming observation and the past

observations. That is I resample z(i) according to

wit:t+1 ∝ πtp̂(yt+1|x̂it+1) (5.32)

Hereafter the particle trajectories {xi1:t,J
i
1:t,Z

i
1:t}, i = 1, . . . , N , are set to their resampled

counterparts
{

x
z(i)
1:t ,J

z(i)
1:t ,Z

z(i)
1:t

}
. In the extended APF the information in yt+1 is exploited to

sample the number of jumps J it+1 and the jump sizes Zi
t+1 for each particle i as follows. The
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number of jumps J it+1, which is allowed to range from 0 to K̄, is simulated using weights

p̂(yt+1|x̂it, k) ∝ φ(rt+1|µ̂i,Pt+1 + kµz, v̂
i
t+1 + kσ2

z)P(k|λit) (5.33)

whereas the jump sizes Zi
t+1 are be sampled from a normal distribution with mean and vari-

ance

µiz|r = J it+1µz +
J it+1σ

2
z

v̂it+1 + J it+1σ
2
z

(
rt+1 − µ̂i,Pt+1 − J it+1µz

)
(5.34)

σ2,i
z|r = J it+1σ

2
z

(
1−

J it+1σ
2
z

v̂it+1 + J it+1σ
2
z

)
(5.35)

Thereby we assume the distribution of the returns and the jump sizes is bivariate normal

conditional on the number of jumps and the proxies of the persistent states. I proceed drawing

the persistent states from p(xt+1|xit, Jt+1, Zt+1, yt+1). As a last step I compute the normalized

weight of the particle trajectories till time t, πt+1 =
wit+1∑N
i=1 w

i
t+1

, where wit+1 is equal to

wit+1 ∝
p(yt+1|xit+1, J

i
t+1, Z

i
t+1)P(J it+1|λit)φ(Zi

t+1|J it+1µz, J
i
t+1σ

2
z)

p̂(yt+1|x̂it+1)p̂(yt+1|x̂it+1, J
i
t+1)φ(Zi

t+1|µiz|r, σ
2,i
z|r)

i = 1, . . . , N

(5.36)

5.3.3 Particle Gibbs with anchestor sampling

Particle Gibbs with anchestor sampling (PGAS) (Lindsten et al., 2014) fits into the Particle

Markov chain Monte Carlo techniques (Andrieu et al., 2010) combining particle filtering and

Markov chain Monte Carlo. PMCMC samplers approximate the ideal Gibbs sampler using

particle filtering to efficiently construct high-dimensional MCMC kernels, which can be used

in inference strategies. The PGAS method is inspired by the Particle Gibbs sampling (PG)

method of Andrieu et al. (2010). In the PG method one of the particle trajectories is fixed in

advance, the reference trajectory. The reference trajectory serves as a guide for the particles

such that the particles remain in relevant section of the state space. After each evaluation of

the particle filter, a new particle path is drawn using the importance weights that are derived

in the filter. By setting of one of the particle trajectories equal to the reference trajectory

(given by the previously sampled particle path), the obtained Markov kernel does not affect

the target distribution regardless of the number of particles employed in the filter.
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A big disadvantage of the PG method is that the Markov kernel mixes very poorly when

the particle filter suffers from degeneracy. As in high-dimensional models degeneracy is

unavoidable, an extremely large number of particles is needed to utilize the PG method

to estimate these models. A solution to overcome this drawback of the PG sampler, is to

add a backward simulation step to the sampler. The backward simulation step improves

mixing of the Markov kernel. However, this step cannot be defined for non-Markovian

latent variable models. In contrast to PG with backward simulation, Particle Gibbs with

anchestor sampling averts the need of an explicit backward simulation step by the insertion

of an ancestor resampling step in the PG sampler. Therefore this method can be applied

to non-Markovian latent variable models. Moreover, the ancestor sampling step enables

movement around the reference trajectory, making the PGAS sampler less sticky than the

PG sampler.

As mentioned before, the PGAS method does not leave the reference trajectory x′1:T

intact through the particle filtering procedure. At time t, the history of part of the reference

trajectory x′t+1:T is reassigned in the ancestor resampling step. To link the partial reference

path to the particles, the probability that the path x′t+1:T is preceded by particle xi1:t for

i ∈ {1, . . . , N} is evaluated as

γit+1|T =
p(y1:T , (x

i
1:t,x

′
t+1:T ))

p(y1:t,xi1:t)
=

T∏
s=t+1

p(ys|xi1:t,x
′
t+1:s)p(x

′
s|xi1:t,x

′
t+1:s) (5.37)

where (xi1:t,x
′
t+1:T ) denotes the particle path formed when concatenating the two partial

paths xi1:t and x′t+1:T . The history of partial reference path x′t+1:T is resampled drawing a

particle index z′ from a distribution with weights given by the multiplication of the prob-

abilities (5.37) and the prior weights of the particle trajectories xi1:t. The reference path is

redefined thereafter as x′1:T = (xz
′

1:t,x
′
t+1:T ). For state space models the relevant part of the

resampling weight that indicates the likeliness the partial reference path x′t+1:T , is preceded

by particle xi1:t, reduces to p(x′t+1|xit).

Lindsten et al. (2014) prove that the target distribution remains invariant when the an-

cestor resampling step is used in the PG sampler to construct the MCMC kernel. Lindsten

et al. (2014) also prove uniform ergodicity of the PGAS method, under the condition that the

importance weights derived in the particle filter are bounded by some constant M , M <∞,

for all parameters θ ∈ Θ and time periods t ∈ {1, . . . , T}. Characterizing the support of the
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proposal and the target density γ̄θ,

Sθt =
{
x1:t ∈ xt : γ̄θ(y1:t,x1:t) > 0

}
(5.38)

Qθt =
{
x1:t ∈ xt : pθ (xt|x1:t−1) γ̄θ(y1:t−1,x1:t−1) > 0

}
(5.39)

somewhat weaker ergodicity results can be established for the PGAS method under the as-

sumption that Sθt ⊆ Qθt , θ ∈ Θ and t ∈ {1, . . . , T}. The proof is similar to that for the

ergodicity of the PG method (Andrieu et al., 2010) and requires that the number of iterations

grows to infinity.

As mentioned before, the PGAS method is very appropriate for inference in non-Markovian

latent variable models in contrast to the PG method with backward simulation. Although the

Hawkes model is Markovian given the specification of the intensity in (5.20), the Markovian

property of the model cannot be used to sample the intensity backwards. The reason is that

the intensity in combination with the parameters of the model can be expressed as a function

of the jump history N1:t, implying a certain jump path. Considering the number of jumps in-

stead of the intensity as a persistent latent state variable, the transition density depends on the

entire history of the latent process. Therefore the latent process is not conditional indepen-

dent anymore. However, particle Gibbs with the ancestor sampling can be used for inference

in this specification. Moreover, Lindsten et al. (2014) show that for non-Markovian models

the probability that the partial reference path x′t+1:T is preceded by particle xi1:t (5.37) can be

approximated by

γ̂it+1|T =
p(y1:T , (x

i
1:t,x

′
t+1:T ))

p(y1:t,xi1:t)
=

T∏
s=t+1

p(ys|xi1:t,x
′
t+1:s)p(x

′
s|xi1:t,x

′
t+1:s)

≈
p(y1:T , (x

i
1:t,x

′
t+1:t+l)

p(y1:t,xi1:t)
=

T∏
s=t+l

p(ys|xi1:t,x
′
t+1:s)p(x

′
s|xi1:t,x

′
t+1:s)

(5.40)

whenever the maximum of the ratios of the individual terms in the product of (5.37) is

bounded by some constant M , M <∞.

In contrast to the PGAS method, which approximates an ideal Gibbs sampler, parti-

cle marginal Metropolis-Hastings (Andrieu et al., 2010) approximates an ideal marginal

Metropolis-Hastings sampler. Although the PMMH sampler is theoretically preferred over

the PGAS method, the sampler is often too time-consuming to use in practice as a high
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number of particles and Monte Carlo iterations are required to give a somewhat accurate

picture of the joint distribution of the latent variables and the parameters of the model. On

the contrary, in the PGAS method fast mixing is obtained with only a few particles through

the ancestor resampling step. Moreover, with the PGAS method I sample the latent variables

and parameters in separate stages of our iterative Gibbs sampling procedure, which improves

mixing even further.

5.3.4 Auxiliary Particle Gibbs with anchestor sampling

Combining the auxiliary particle filter described in Subsection 5.3.2 with the particle Gibbs

with anchestor resampling method described in Subsection 5.3.3, the advantages of both

can be exploited to infer latent variables of nonlinear models containing non-analytical and

non-Markovian density functions. The auxiliary Particle Gibbs with anchestor sampling is

more capable of handling the degeneracy problem compared to PGAS, as information that

observations carry about the latent variables, is incorporated in their proposal distributions.

Integrating the APF into the PGAS algorithm instead of the Particle Gibbs or the particle

marginal Metropolis-Hastings sampler, the latent variables can be approximated without us-

ing a large number of particles saving computation time. The sampling procedure of the

APGAS algorithm is outlined in Algorithm 1.
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Algorithm 1: APGAS for non-Markovian latent variable models

Input: y1:T ,x
′
1:T ,θ

Output: p̂N(x1:T |y1:T ), p̂N(y1:T )

First-stage resampling

t = 1

1. Set xi0 = x̂i1 = E [xt], wi0:1 = 1
N

, and go to 7

t = 2, . . . , T − 1

2. Compute x̂it+1 = E [xt+1|xt], wit:t+1 = πitp̂(yt+1|x̂it+1)

3. For i 6= N sample z(i) ∝ wit:t+1

4. Compute w̃it:t+1 = πitγ̂
i
t+1:T where γ̂it+1:T is defined in (5.40)

5. Sample z(N) ∝ w̃it:t+1

6. Set xi1:t = x
z(i)
1:t

Particle propagation

7. For i 6= N sample xit+1 ∝ p(xt+1|xit,yt+1)

8. Set xNt+1 = x′t+1

Second-stage reweighting

9. Compute wit+1 as defined in (5.32) and πit+1 =
wit+1∑N
i=1 w

i
t+1

10. Compute p̂Nθ (yt+1|y1:t) =
{

1
N

∑N
i=1 w

i
t+1

}{∑N
i=1 w

i
t:t+1

}
, and if t < T go to 2

t = T

11. p̂N(x1:T |y1:T ) =
∑N

i=1 π
i
T δxi1:T

12. p̂N(y1:t) = p̂N(y1)
∏T−1

t=1 p̂
N(yt+1|y1:t)

Moreover, incorporating the extended auxiliary particle filter for jump-diffusion models in

the PGAS procedure, the information of the observations is also transfered into the proposal

distribution of the non-persistent jump times and sizes. This way the accuracy of the infer-

ence on the persistent latent variables is improved. In Algorithm 2 the particle propagation

step of Algorithm 1 is modified to account for the observational information about jumps.
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Algorithm 2: APGAS for non-Markovian latent variable models containing jumps

Input: y1:T ,x
′
1:T ,N

′
1:T ,Z

′
1:T ,θ

Output: p̂N(x1:T ,J1:T ,Z1:T |y1:T ), p̂N(y1:T )

First-stage resampling

t = 0

1. Set xi0 = x̂i1 = E [xt], wi0:1 = 1
N

, and go to 7

t = 1, . . . , T − 1

2. Compute x̂it+1 = E [xt+1|xt], wit:t+1 = πitp̂(yt+1|x̂it+1) using (5.31)

3. For i 6= N sample z(i) ∝ wit:t+1

4. Compute w̃it:t+1 = πitγ̂
i
t+1:T where γ̂it+1:T is defined in (5.40)

5. Sample z(N) ∝ w̃it:t+1

6. Set xi1:t = x
z(i)
1:t

Particle propagation

7. For i 6= N sample J it+1 ∝ p̂(yt+1|x̂it+1, k) using (5.33)

8. For i 6= N sample Zi
t+1 ∝ φ(µiz|r, σ

2,i
z|r) using (5.34)

9. For i 6= N sample xit+1 ∝ p(xt+1|xit, J it+1, Z
i
t+1,yt+1)

10. Set xNt+1 = x′t+1

Second-stage reweighting

11. Compute wit+1 as defined in (5.36) and πit+1 =
wit+1∑N
i=1 w

i
t+1

12. Compute p̂Nθ (yt+1|y1:t) =
{

1
N

∑N
i=1 w

i
t+1

}{∑N
i=1w

i
t:t+1

}
, and if t < T go to 2

t = T

13. p̂N({x1:T ,N1:T ,Z1:T} |y1:T ) =
∑N

i=1 π
i
T δ{xi1:T ,Ji1:T ,Zi1:T}

14. p̂N(y1:t) = p̂N(y1)
∏T−1

t=1 p̂
N(yt+1|y1:t)

In both algorithms γ̂it+1:T reduces to p(xNt+1|xit) in case of Markovian models.

5.3.5 Sampling of θ

Within the Gibbs sampling algorithm, the model parameters contained in the vector θ are

sampled conditional on the latent states.

In case models are estimated without options, parameters are drawn from their conjugate

posterior distributions derived in earlier studies (Li et al., 2008). If no conjugate distribution
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is available I employ a random walk Metropolis-Hastings algorithm to draw the parameters.

In this algorithm a normal proposal is used, of which the proposal variance is adapted during

the burn-in period of the Gibbs sampler (Roberts and Rosenthal, 2009).

When the models are estimated with options I employ the Adaptive Metropolis algorithm

of Haario et al. (2001) in combination with the Delayed Rejection sampling (Green and Mira,

2001; Haario et al., 2006) to efficiently draw all parameters in the vector θ at once.

The complete Gibbs algorithm in which the APGAS algorithm is used to infer the latent

variables is outlined below.

Algorithm 3: Approximating an ideal Gibbs sampler using APGAS

s = 0

1. Set θ[0] and x1:T [0]

s = 0 : S − 1

2. Draw θ(s+ 1) ∼ p(·|y1:T ,x1:T (s))

3. Draw x1:T (s+ 1) ∼ p̂Nθ(s+1)(·|y1:T ) by running Algorithm 1

The first reference trajectory can be obtained by carrying out step 3, in which the N -th par-

ticle trajectory is sampled in the same way as the trajectories of the other particles.

The APGAS algorithm can also be used to approximate the PMCMC sampler of Andrieu

et al. (2010) as follows.



5.3 Estimation 145

Algorithm 4: Approximating an ideal marginal MH sampler using APGAS

s = 0

1. Set θ(0), x1:T (0) and x′1:T = x1:T (−1) and run Algorithm 1 to obtain

p̂Nθ(0)(y1:T ), p̂Nθ(0)(·|y1:T ) given x′1:T

s = 1 : S − 1

2. Draw θ(∗) from q
(
θ|Hθ(s)

)
3. Obtain p̂Nθ(∗)(y1:T ) and p̂Nθ(∗)(·|y1:T ) by running Algorithm 1 given x′1:T

4. Sample u ∼ U [0, 1] and compute the acceptance probability

pa = min

{
p(θ(∗))p̂Nθ(∗)(y1:T )q

(
θ(s)|Hθ(s)

)
p(θ(s))p̂Nθ(s)(y1:T )q

(
θ(∗)|Hθ(s)

) , 1} (5.41)

5. If u ≤ pa draw x∗1:T ∼ p̂Nθ∗(·|y1:T ) and set x′1:T = x1:T (s− 1),{
θ(s+ 1),x1:T (s+ 1), p̂Nθ(s+1)(y1:T )

}
=
{
θ(∗),x1:T (∗), p̂Nθ(∗)(y1:T )

}
,

else set
{
θ(s+ 1),x1:T (s+ 1), p̂Nθ(s+1)(y1:T )

}
=
{
θ(s),x1:T (s), p̂Nθ(s)(y1:T )

}

The extension of Algorithm 3 and 4 to account for the information of observations about

jumps when estimating jump models, is straightforward.

5.3.6 Comparison with Bayes Factors and Deviance Information Crite-

ria

Particle filters are very suitable for model comparison as the marginal likelihood conditional

on the model parameters pθ(s)(y1:T ) is produced as a by product when filtering the latent

states from the observed data (Pitt et al., 2012). To derive the marginal likelihood of the

model (5.30), pθ(s)(y1:T ) has to be integrated over the parameter space Θ,

p(y1:T ) =

∫
Θ

pθ(s)(y1:T )p(θ)dθ (5.42)

To avoid the computation of this integral I utilize the proof of Gelfand and Dey (1994).

Gelfand and Dey (1994) who show that when using a proper function g(θ) the marginal
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likelihood can be consistently approximated by

p̂(y1:T ) =

{
1

S

S∑
s=1

g(θ(s))

pθ(s)(y1:T )p(θ(s))

}−1

(5.43)

Calculating the marginal likelihood from (5.43), I employ for g(θ) a truncated multivariate

normal distribution with mean and variance given by the first two sample moments of θ, θ

and Σ. The bounds of the distribution are given by

Θ =
{
θ :
(
θ(s)− θ

)′ (
Σ
)−1 (

θ(s)− θ
)
≤ χ2

α(d)
}

(5.44)

where d is the dimension of the parameter vector and α is the percentile of the χ2-distribution

with d degrees of freedom.

The marginal likelihood can be used to compute Bayes factors and the Deviance In-

formation Criterion (DIC) (Spiegelhalter et al., 2002). These goodness-of-fit measures are

particularly appropriate for this setting as not all of the models are nested and both nested

and non-nested models can be compared with the measures. The Bayes factor indicating the

relative evidence for modelMa against modelMb given the observed data, is specified as

BFab = p(y1:T |Ma)/p(y1:T |Mb). The DIC quantifies the ability of the posterior to predict

future data generated by the estimated model. Defining D(θ) = 1
S

∑S
s=1−2 log pθ(s)(y1:T )

andD(θ) = −2 log pθ(y1:T ), the DIC is computed as DIC = D(θ)+2(D(θ)−D(θ)). D(θ)

can be approximated running the APAS algorithm using the mean of the posterior parameter

draws θ. The DIC corrects for the complexity of models by the inclusion of the penalty term,

pD = D(θ)−D(θ).

5.4 Learning

In non-analytic latent variable models, the estimation of static parameters is not straightfor-

ward. In a batch context Andrieu et al. (2010) provide solutions to the estimation problem

using MCMC techniques, for which they prove convergence to the true posterior distribution

of the parameters. Lindsten et al. (2014) among many others, set forward on the work of

Andrieu et al. (2010) making their samplers more efficient and less vulnerable to sample

impoverishment. Chopin et al. (2013) and Fulop and Li (2013) show that the methods of
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Andrieu et al. (2010) can also be used in a sequential context. In applications, for example

in finance where new information needs to be processed quickly, it can be more appropriate

to estimate parameters recursively. In a sequential approach, information can be exploited to

update models while moving forward. On the contrary, batch estimation requires to redo the

entire estimation procedure, which can be very time-consuming.

Both Chopin et al. (2013) and Fulop and Li (2013) use a particle filter to marginalize

out the latent states and obtain an estimate of the likelihood for a given parameter vector.

Assuming the target distribution p(θ,x1:t|y1:t) at t can be represented by the following set

of weighted samples:
{
θj,
{
xi,jt , π

i,j
t

}
i=1,...,N

, p̂N
θj

(y1:t)
}

with weight sjt , j = 1, ...,M . The

target distribution p(θ,x1:t+1|y1:t+1) at time t+ 1 is computed using the following recursion

p(θ,x1:t+1|y1:t+1) ∝ pθ(yt+1|xt+1)pθ(xt+1|xt,yt+1)p(θ,x1:t|y1:t) (5.45)

As the target distribution is changing over time, the set of parameters has to be enriched.

Otherwise the weighted sample representation of the target will be less and less accurate. To

enrich the set of parameters a resample-move algorithm in the spirit of Gilks and Berzuini

(2001) is applied. The parameter vectors and the particle distribution associated with these

vectors are resampled using the weights, such that the weighted sample consists of high

likely particles. Hereafter the samples are passing through a Metropolis-Hastings kernel

that leaves the target distribution invariant. For any fixed number of state particles, N , the

methods of Chopin et al. (2013) and Fulop and Li (2013) produces a sample from the true

posterior distribution as the number of parameter particles, M , goes tot infinity.

The parameter learning methods of Chopin et al. (2013) and Fulop and Li (2013) are very

generic as they only require to tailor a particle filter to fit the model at hand. Moreover, as

particle filters are used, sequential marginal likelihood estimates are obtained as a by product.

Futhermore, the methods of Chopin et al. (2013) and Fulop and Li (2013) are efficient as the

resample-move steps take place more frequently at the beginning when only a short data

sample has to be explored.

Besides Chopin et al. (2013) and Fulop and Li (2013), Gilks and Berzuini (2001), Liu and

West (2001), Chopin (2002) and Carvalho et al. (2010) produced notable work in the area of

parameter learning in general latent variable models. However, the methods of Liu and West

(2001) and Carvalho et al. (2010) seem to be less accurate, while Gilks and Berzuini (2001)
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and Chopin (2002) are not easy to implement. Liu and West (2001) add uncertainty to the

posterior of the parameter by artificially exposing the parameters to stochastic evolution to

approximate their posterior. Carvalho et al. (2010) use sufficient statistics that describe the

dependence between the latent states and the parameters to approximate the distribution of

the parameters. As the path of the latent states does not have to be explored again, the algo-

rithm is fast but not so reliable when the sample size increases. Gilks and Berzuini (2001)

propose to reuse particles by sampling from MCMC kernels, that leave targeted distribution

of both parameters and particles unchanged. This requires to specify distribution of the pa-

rameters given the states and the other way around, which is not straightforward. To apply

the methods of Chopin (2002), both a closed-form likelihood function as well as the MCMC

kernels of the parameters given the states, need to be available.

To improve efficiency and reduce computation time I adjust the methods of Chopin et al.

(2013) and Fulop and Li (2013) as I obtain an estimate of the sequential marginal likelihood

applying the particle Gibbs methods of Lindsten et al. (2014). The following algorithm out-

lines how I incorporate anchestor resampling to estimate the parameter distribution over time.
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Algorithm 5: Parameter learning using APGAS

Augmentation

t = 0

1. Set θj ,
{
xi,j0 , π

i,j
0

}
i=1,...,N

, sj0, j = 1, . . . ,M , and use step 7 and 8 to set t∗, θ̂, x′1:t∗

t = 1 : T − 1

2. For each θj , j = 1, . . . ,M , obtain p̂N
θj

(yt+1|y1:t) and
{
xi,jt+1, π

i,j
t+1

}
i=1,...,N

by cycling

once through step 2 to step 12 of Algorithm 1 given yt+1, x′t+1,
{
xi,jt , π

i,j
t

}
i=1,...,N

Reweighting

3. Update the weights of the parameter particles and the likelihood

sjt+1 = sjt × p̂Nθj(yt+1|y1:t) (5.46)

p̂N
θj

(y1:t+1) = p̂N
θj

(y1:t)× p̂Nθj(yt+1|y1:t) (5.47)

4. Compute the effective sample size ESSt+1 = 1∑M
j=1(τ

j
t+1)

2 where τ jt+1 =
sjt+1∑M
j=1 s

j
t+1

Resample-move

5. If ESSt+1 > B1 go to step 8

else for each j = 1, . . . ,M sample the particle index z(j) ∝ τ jt and set sjt+1 = 1,{
θj,
{
xi,jt+1, π

i,j
t+1

}
i=1,...,N

, p̂N
θj

(y1:t+1)
}

=

{
θz(j),

{
x
i,z(j)
t+1 , π

i,z(j)
t+1

}
i=1,...,N

, p̂N
θz(j)

(y1:t+1)

}
6. If the number of unique particles is bigger than B2 go to step 8

else for each j = 1, . . . ,M

(a) Draw θ∗ from q (θ|Hθj)

(b) Obtain p̂Nθ∗(y1:t+1) and p̂Nθ∗(·|y1:t+1) by running Algorithm 1 given x′1:t+1

(c) Sample u ∼ U [0, 1] and compute the acceptance probability

pa = min

{
p(θ∗)p̂Nθ∗(y1:t+1)q

(
θj|Hθj

)
p(θj)p̂N

θj
(y1:t+1)q (θ∗|Hθj)

, 1

}
(5.48)

(d) If u ≤ pa set{
θj,
{
xi,jt+1, π

i,j
t+1

}
i=1,...,N

, p̂N
θj

(y1:t+1)
}

=
{
θ∗,
{
xi,∗t+1, π

i,∗
t+1

}
i=1,...,N

, p̂Nθ∗(y1:t+1)
}

7. Compute some high likely value of the parameter vector θ̂ such as the mean or median

of
{
θj
}
j=1,...,M

and set t∗ = t+ 1

8. If t + 1 = t∗ set t∗ = t + tupdate and update the reference trajectory x′1:t∗ given θ̂ by

running Algorithm 1, in which the N -th particle trajectory is sampled in the same way

as the trajectories of the other particles

9. If t+ 1 < T go to step 2



150 Estimation of non-affine models

The marginal likelihood of each new observation

p(yt+1|y1:t) =

∫
pθ(yt+1|y1:t)p(θ)dθ (5.49)

can be approximated by

p̂N,M(yt+1|y1:t) =
M∑
j=1

τ jt+1p̂
N
θj

(yt+1|y1:t) (5.50)

Using the marginal likelihood, the sequential Bayes factor of two models can be constructed

as follows

BF t+1 =
p(y1:t+1|M2)

p(y1:t+1|M1)
=
p(yt+1|y1:t,M2)

p(yt+1|y1:t,M1)
BF t (5.51)

The sequential Bayes factor enables us to assess the performance of different models over

time, something that is impossible in batch estimation.

5.5 Application

To avoid inconsistencies I recommend to estimate the models over a large time period

(Broadie et al., 2007) instead of over a large cross-sectional option panel. The cross-section

of option prices and changes in the volatility smirk over time seem to be well explained by

using just one option (Pan, 2002). I opt to apply my estimation methods to stock and option

data on the S&P 500 index from January 1, 2000, to December 31, 2015. Depending on the

method used, I suggests to take the first ten years, that is January 1, 2000, till December 31,

2010, as the in-sample period and the last 5 years, January 1, 2011, till December 31, 2015,

as the out-of-sample period. Daily stock market data and a high frequency measure of the

diffusive part of the daily quadratic variation, the Median Truncated Realized variance, can

be downloaded from Research Data Oxford.

An option dataset containing closing bid and ask prices of European style calls can be

downloaded from Option metrics. As it would be too computationally demanding to calcu-

late option prices at a daily frequency, I suggest to follow the literature and use weekly prices

for which to select Wednesday as the day of the week to include. Furthermore interest rate

and dividend yield data should be downloaded for each day options are sampled. The inter-

est rate dataset can be expanded by interpolating the yields for the maturities of the options
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traded on these days assuming the dividend yields to be the same across maturities. When

using the put-call parity to back out Forward prices, there is no need for dividend prices.

However, as both stock and option prices are modeled and the empirical relation between the

two is of interest, the risk-neutral density for calls should be derived. This density can differ

from the risk-neutral density implied by the put-call parity.

The option dataset should be filtered such that options prices that are not reliable as they

contain large errors, are removed. I suggest to delete options with a maturity shorter than 20

days and longer than 252 working days, an implied volatility above 70% and options of which

the implied volatility of the delta is missing. Furthermore, I suggest to use a minimum price

grid like 0.01 dollar below which to exclude options. Following Andersen et al. (2015a),

I recommend to consider out-of-the-money calls, as in-the-money options are less actively

traded and are therefore priced less accurately. For the same reason I recommend also to not

consider calls that are very deep out-of-the-money. This leaves one with a set options with

moneyness level above 0.85 and below 1.05.

Similar to Barone-Adesi et al. (2008) and Bollen and Whaley (2004), I opt to create a

representative set of options that spans the cross-section of different maturities and money-

ness levels of the options traded over the sample period. First, it is needed to divide the

options into groups based on maturity and moneyness separating options by the maturities of

a quarter and half a business year, and the moneyness levels of 0.9 and 0.95. This provides

one with 9 groups which contain a subset of the options traded on each sample day. For each

sample day and each group I recommend to select the option that is closest to the midpoint

of the group to be the representative of that group. If the group is empty, I recommend to

consider the option that is closest among all groups as a representitive.





Nederlandse Samenvatting

(Summary in Dutch)

Het identificeren en voorspellen van crashes op financiële markten is zeer belangrijk voor

handelaren, toezichthouders op financiële markten en risicomanagement. Een reeks sterke

prijsdalingen op de financiële markten gedurende een korte periode kan ernstige gevolgen

hebben. Op Black Monday (19 oktober 1987) registreerde de S&P 500-index bijvoorbeeld

zijn hoogste dagelijkse procentuele verlies van 20,5 %. Tijdens de recente kredietcrisis

(2008) is de S&P 500-index gedurende vele dagen dramatisch gedaald, waardoor het hoogste

jaarlijkse procentuele verlies van 38,5 % werd leden. Helaas zijn crashes niet eenvoudig te

voorspellen, en is er een grote behoefte aan een model dat hierin kan voorzien.

Om een model voor beurscrashes te ontwikkelen, is het belangrijk om te begrijpen wat

mogelijke oorzaken van dergelijke crashes zijn. Computerhandel, de toegenomen handel

in afgeleide effecten, illiquiditeit, handels- en begrotingstekorten en overwaardering kunnen

sterke opeenvolgende prijsdalingen veroorzaken. Belangrijker is te begrijpen dat specula-

tieve bubbels die leiden tot financiële crashes, het gevolg zijn van kuddegedrag van beleg-

gers. Wanneer een groep beleggers zijn aandelen verkoopt, zorgt dit ervoor dat ook andere

beleggers op dezelfde markt hun aandelen gaan verkopen. Zo zorgt het kuddegedrag van be-

leggers dat crashes zich lokaal versterken. Een model voor beurscrashes moet deze zelfexci-

tatie omvatten. Een dergelijke zelfexcitatie wordt ook waargenomen in het seismisch gedrag

rondom aardbevingsreeksen. Daarbij genereert een aardbeving meestal naschokken die op

hun beurt nieuwe naschokken kunnen genereren, enzovoort. Aardbevingen en aandelenren-

dementen hebben vergelijkbare kenmerken als de clustering van schokken in rendementen

dan wel seismische activiteit, en de afhankelijkheid van deze schokken in de tijd.
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Dit proefschrift richt zich op de identificatie en voorspelling van crashes op de financiële

markt met Hawkes processen (hoofdstuk 2 en 4), het toetsen van deze Hawkes processen

op correcte specificatie (hoofdstuk 3) en het schatten van niet-affiene Hawkes processen in

continue tijd met behulp van optieprijzen (hoofdstuk 5). Hawkes processen matchen het

zelfexciterend gedrag van aandelenrendementen rond een crash op een financiële markt. Dit

gedrag is vergelijkbaar met de seismische activiteit rond aardbevingen. In de processen

neemt de snelheid waarmee schokken optreden toe wanneer er net een schok heeft plaatsge-

vonden. Vervolgens daalt de frequentie waarmee schokken arriveren, als functie van de tijd

die is verstreken sinds de voorgaande schok. Omdat de kans op schokken toeneemt nadat

een schok heeft plaatsgevonden, worden Hawkes processen zelfexciterend genoemd.

Als eerder benoemd, vertonen schokken in seismische activiteit rondom aardbevingen

en aandelenrendementen clustergedrag in de tijd. Aardbevingen vinden daarbovenop in de

buurt van elkaar plaats, en vertonen zo clustergedrag in de ruimte. Ook financiële schok-

ken lijken te clusteren in een andere dimensie dan de tijdsdimensie. De financiële crisis

van 2008 (tevens genoemd in de eerste alinea van deze inleiding) laat bijvoorbeeld overlap-

pende periodes zien waarin financiële markten onderhevig zijn aan spanning met extreme

prijsbewegingen als gevolg. Zo leden de S&P 500, de Dow Jones Industrial Average (DJI)

en de NASDAQ allemaal top 20 procent verliezen op 29 september, 15 oktober en 1 de-

cember 2008. Bovendien daalden op 29 september zowel de koers van de euro/dollar als de

koers van het pond/dollar aanzienlijk, terwijl de Amerikaanse obligatiekoers fors steeg. Op

16 oktober, slechts een dag nadat de grote Amerikaanse aandelenmarkten crashten, en op

1 december daalden beide valuta’s opnieuw scherp. Bovendien vertoonde de Amerikaanse

obligatiekoers 4 dagen na deze data een opmerkelijke stijging. Om de afhankelijkheid tussen

financiële markten op het gebied van crashes te modelleren breiden we het univariate Haw-

kes modelleringskader uit. Op die manier zorgen we ervoor dat extreme prijsveranderingen

op de ene financiële markt het optreden en/of de omvang van extreme prijsveranderingen op

andere markten kan uitlokken.

Naast historische aandelenrendementen, bevatten ook optieprijzen informatie over toe-

komstige aandelenrendementen. De informatie in optieprijzen kan dan ook worden gebruikt

om Hawkes modellen voor aandelenrendementen nauwkeuriger te schatten. De zogenaamde

affiene modelspecificaties bevatten optieprijzen in gesloten vorm. Hoewel dit modelkali-

bratie vergemakkelijkt, lijken niet-affiene specificaties aandelenkoersen beter te beschrijven.
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Markov chain Monte Carlo, particle filtering en learning methoden bieden uitkomst bij het

schatten van dergelijke modellen. Gebruikmakend van informatie uit optieprijzen, kan de

compensatie die beleggers ontvangen voor volaliteit risico en het risico op schokken wor-

den afgeleid. De compensatie voor het risico op schokken, is tevens een indicatie is van

de angst van beleggers. Daarom biedt het berekenen van volaliteits- en schokcomponen-

ten in risicopremies met behulp van optieprijzen, belangrijke informatie over de toestand

en ontwikkeling van de financile markt met verstrekkende implicaties voor spreiding van

investering, afdekking en risicomanagement.

Hoofdstuk 2 is gebaseerd op Gresnigt et al. (2015). In dit hoofdstuk gebruiken we het

Hawkes modelleringskader om waarschijnlijkheidsvoorspellingen te maken voor een aanko-

mende crash op de financiële markt op de middellange termijn (bijvoorbeeld ergens binnen

de komende vijf dagen). Daarbij interpreteren we financiële crashes als aardbevingen op de

financiële markt. Dit stelt ons in staat een waarschuwingssyteem (Early Warning System)

voor crashdagen te ontwikkelen. Wanneer we dit waarschuwingssyteem toetsen op S&P 500

data tijdens de recente financiële crisis, vinden we dat het Hawkes model in staat is cras-

hes te voorspellen. Bovendien is het model in staat informatie uit de aandelenrendementen

te benutten die niet wordt gevat door bekende en veelgebruikte volatiliteitsmodellen. Het

waarschuwingssyteem op basis van Hawkes modellen overtreft het waarschuwingssysteem

op basis van de volatiliteitsmodellen die extreme prijsbewegingen voorspellen, terwijl voor-

spellen veel minder tijdrovend is.

Om nauwkeurig het optreden van extreme prijsbewegingen op financiële markten met

behulp van Hawkes modellen te identificeren en te voorspellen, is het nodig dat deze model-

len aantoonbaar correct gespecificeerd zijn. Hoofdstuk 3 voorziet hierin. In dit hoofdstuk,

gebaseerd op Gresnigt et al. (2016a), ontwikkelen we verschillende specificatietoetsen voor

Hawkes modellen op basis van het Lagrange Multiplier (LM) principe. De toetsfocus ligt

op het uitbreiden van een univariate model naar een multivariate model. We onderzoeken

zo of er een voorwaardelijke afhankelijkheid is tussen reeksen extreme prijsveranderingen in

(verschillende) financiële markten. Simulaties tonen aan dat de toetsen goed presteren voor

steekproefgroottes die in de praktijk meestal worden onderzocht. Door de specificatietoetsen

op Amerikaanse aandelen, obligaties en wisselkoersen toe te passen, vinden we sterk bewijs

voor de afhankelijkheid tussen de schokken op verschillende financiële markten. Daarom ra-
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den we aan met deze afhankelijkheid in de modelspecificatie van Hawkes modellen rekening

mee te houden.

Hoofdstuk 4 is gebaseerd op Gresnigt et al. (2016b). In dit hoofdstuk onderzoeken we

of het opnemen van de afhankelijkheid op het gebied van crashes tussen financiële markten,

voorspellingen van het optreden van deze crashes verbeteren. We volgen de aanbeveling

van hoofdstuk 3 (Gresnigt et al. (2016a)), en gebruiken Hawkes modellen waarin schokken

kunnen worden uitgelokt door zowel zelfexcitatie als crossexcitatie om onze voorspellingen

te maken. De modellen worden toegepast op Amerikaanse aandelen, obligaties en wissel-

koersen. Wanneer we crashes over de periode van de financiële crisis voorspellen, vinden we

dat de Hawkes modellen waarin crossexcitatie effecten zijn gevat, aanzienlijk nauwkeuriger

voorspelen dan modellen zonder deze effecten.

Hoofdstuk 5 bevat een onderzoeksvoorstel. Het hoofdstuk stelt een raamwerk voor

waarin optieprijzen worden gebruikt om Hawkes modelspecificaties voor aandelenrende-

menten in continue tijd, nauwkeuriger te schatten. Het gebruiken van optieprijzen bij de

schatting van Hawkes modellen verhoogt niet alleen de nauwkeurigheid, maar maakt het

ook mogelijk compensaties die beleggers verlangen voor het risico op volatiliteit en schok-

ken af te leiden. Dit biedt inzicht in de toestand en ontwikkeling van de financile markt

met belangrijke richtlijnen voor risicomanagement. Met het raamwerk is het mogelijk mo-

dellen te schatten waarin aandelenprijzen geen analytische karakteristieke functie hebben

(modellen van het niet-affiene type). Met Markov chain Monte Carlo, particle filtering en

learning methoden worden modellen efficint geschat en achtereenvolgens beoordeeld, zodat

modellen snel kunnen worden bijgewerkt wanneer nieuwe informatie binnenkomt. Inzicht-

gevende latente processen van volatiliteit en schokken worden geproduceerd als bijproduct

van de schattingsprocedure. Het schattingsraamwerk kan worden aangepast aan de betref-

fende applicatie. Het raamwerk kan bijvoorbeeld worden uitgebreid om multivariate Hawkes

modellen te schatten omdat dit in het raamwerk, anders dan in veel klassieke raamwerken,

geen directe optimalisatie van een multidimensionale integraal vereist. Aangezien hoofdstuk

3 en 4 laten zien dat sprongintensiteiten wederzijds opwindend zijn, maakt dit de schat-

tingsmethode zeer aantrekkelijk voor verder onderzoek. Bovendien maakt het raamwerk het

mogelijk om informatie uit opties op een lagere frequentie te gebruiken dan de informatie

uit aandelen.
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