
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

8-2019

Multi-authority attribute-based keyword search over encrypted Multi-authority attribute-based keyword search over encrypted

cloud data cloud data

Yibin MIAO

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Ximeng LIU

Kim-Kwang Raymond. CHOO

Hongjun WU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
MIAO, Yibin; DENG, Robert H.; LIU, Ximeng; CHOO, Kim-Kwang Raymond.; WU, Hongjun; and LI, Hongwei.
Multi-authority attribute-based keyword search over encrypted cloud data. (2019). IEEE Transactions on
Dependable and Secure Computing. 1-14. Research Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5063

This Journal Article is brought to you for free and open access by the School of Information Systems at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at Singapore
Management University. For more information, please email libIR@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/287750886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5063&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author Author
Yibin MIAO, Robert H. DENG, Ximeng LIU, Kim-Kwang Raymond. CHOO, Hongjun WU, and Hongwei LI

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5063

https://ink.library.smu.edu.sg/sis_research/5063

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Multi-authority Attribute-Based Keyword Search
over Encrypted Cloud Data

Yinbin Miao, Robert H. Deng, Fellow, IEEE , Ximeng Liu, Kim-Kwang Raymond Choo, Senior
Member, IEEE , Hongjun Wu, and Hongwei Li

Abstract—Searchable Encryption (SE) is an important technique to guarantee data security and usability in the cloud at the same time.
Leveraging Ciphertext-Policy Attribute-Based Encryption (CP-ABE), the Ciphertext-Policy Attribute-Based Keyword Search (CP-ABKS)
scheme can achieve keyword-based retrieval and fine-grained access control simultaneously. However, the single attribute authority in
existing CP-ABKS schemes is tasked with costly user certificate verification and secret key distribution. In addition, this results in a
single-point performance bottleneck in distributed cloud systems. Thus, in this paper, we present a secure Multi-authority CP-ABKS
(MABKS) system to address such limitations and minimize the computation and storage burden on resource-limited devices in cloud
systems. In addition, the MABKS system is extended to support malicious attribute authority tracing and attribute update. Our rigorous
security analysis shows that the MABKS system is selectively secure in both selective-matrix and selective-attribute models. Our
experimental results using real-world datasets demonstrate the efficiency and utility of the MABKS system in practical applications.

Index Terms—Searchable encryption, attribute-based encryption, multi-authority, selective-matrix model, selective-attribute model.

1 INTRODUCTION

W ITH the convergence of cloud computing and Inter-
net of Things (IoT) [1], cloud-assisted outsourcing

services [2], [3], [4], [5] are becoming more commonplace.
For example, outsourcing significant volume of data to
a third-party cloud server, resource-limited devices (e.g.,
mobile terminals, sensor nodes) can minimize local data
storage and computation requirements and facilitate the
sharing of data (e.g., health records in a healthcare con-
text) with other data users. However, privacy leakage is
an inherent risk in data outsourcing. Hence, one typically
deploys the encryption-before-outsourcing mechanism to
achieve both data security and privacy in the semi-trusted
or compromised cloud environment. This, however, restricts
retrieval/searching over encrypted cloud data. Hence, the
searchable encryption (SE) schemes [6], [7], [8], [9], [10],
[11] have gained in popularity, since SE schemes allow one
to securely search and selectively retrieve encrypted cloud
data of interest based on user-specified keywords.

• Y. Miao is with the School of Cyber Engineering, Xidian University, Xi’an
710071, China; State Key Laboratory of Cryptology, P.O.Box 5159, Beijing
100878, China; School of Physical and Mathematical Sciences, Nanyang
Technological University, 21 Nanyang Link 637371, Singapore. E-mail:
ybmiao@xidian.edu.cn

• R. H. Deng is with the Department of Information Systems and De-
partment of Electrical and Computer Engineering, Singapore Manage-
ment University, 80 Stamford Road 178902, Singapore. Email: robert-
deng@smu.edu.sg

• X. Liu is with the Key Laboratory of Information Security of Network Sys-
tems, College of Mathematics and Computer Science, Fuzhou University,
Fuzhou 350108, China. Email: snbnix@gmail.com

• K.-K. R. Choo is with the Department of Information Systems and Cyber
Security, University of Texas at San Antonio, San Antonio, TX 78249
USA. Email: raymond.choo@fulbrightmail.org

• H. Wu is with the School of Physical and Mathematical Sciences, Nanyang
Technological University, 21 Nanyang Link 637371, Singapore. Email:
wuhj@ntu.edu.sg

• H. Li is with the Department of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu
610051, China. Email: hongweili@uestc.edu.cn

Apart from the privacy-preserving information retrieval
functionality, the fine-grained access control is also an es-
sential functionality in cloud systems. Ciphertext-Policy
Attribute-Based Keyword Search (CP-ABKS) scheme, for
example, is a viable tool to achieve fine-grained access con-
trol and keyword-based ciphertexts retrieval simultaneous-
ly. Most existing CP-ABKS schemes [4], [5], [12], [13], [14] are
designed for single attribute authority scenarios, where the
single attribute authority needs to perform time-consuming
user certificate verification [15] and secret key distribution.
This also results in the single attribute authority being the
single-point performance bottleneck (e.g., poor robustness
and inefficiency) in large-scale distributed cloud systems.
Should this single attribute authority be compromised or
offline, then the cloud service will also be affected (e.g., be-
ing unavailable during that period). For example, data users
may be stuck in the waiting queue for a long time before
obtaining their corresponding secret keys. Such a single-
point performance bottleneck can potentially degrade secret
key generation performance, and affect CP-ABKS scheme
availability. Traditional multi-authority ABE schemes [16],
[17] in which each authority separately manages disjoint
attribute sets also incur the same issue. For example, in
multi-authority CP-ABE schemes, the DU’s attributes (i.e.,
job, skill, health, etc.) are managed by various attribute au-
thorities (i.e., talent market, authentication center, hospital,
etc.). However, the DU still suffers from the above issue if
one of the attribute authorities breaks down. Furthermore,
simply combining previous multi-authority schemes also
poses security concerns. For example, tracing a malicious
authority that has issued, intentionally or unintentionally,
incorrect secret keys for data users can be challenging.

The RAAC (Robust and Auditable Access Control)
scheme [18] with heterogeneous architecture allows multi-
ple Attribute Authorities (AAs) to independently conduct
user certificate verification and generate the intermediate

ppyeo
Typewritten Text
Advance online, 2019 Aug, DOI: 10.1109/TDSC.2019.2935044

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

secret keys for data users on behalf of the Central Author-
ity (CA). However, this scheme cannot support keyword-
based ciphertexts retrieval. The latter is an extremely useful
feature in information retrieval systems, to mitigate the
issue of systems returning many irrelevant search result-
s and resulting in bandwidth and computation resource
wastage. Besides, most of existing CP-ABKS schemes focus
on specifying expressive access structure, but the storage
and computation costs in these schemes almost linearly
increase with the number of system attributes rather than
user attributes. Hence, such schemes are not suitable for
resource-limited device deployments. Furthermore, the ma-
licious AAs provided by third-parties may conduct incorrect
operations (e.g., AAs may maliciously or incorrectly gener-
ate the intermediate secret key for the suspected data user,
as shown in Section 5.2), and malicious DUs may access
sensitive information by using outdated secret keys when
their attributes have been updated in dynamic applications.

Attribute authority

Certificate verification

Keys distribution

Data users

Central authority

Attribute authority
F

in
a
l k

ey
s

Data users

Final keys

Certificates

Existing schemes Proposed scheme

Certificates

Intermediate keys

Fig. 1: Differences between MABKS system and prior
schemes.

In light of these issues, we propose a Multi-authority
Attribute-Based Keyword Search (MABKS) scheme for
cloud systems to mitigate challenges due to single-point
performance bottleneck and high storage and computation
requirements (which are unrealistic for resource-limited de-
vices). Key differences between multi-authority architecture
in the MABKS system and single-authority architecture in
existing schemes are presented in Fig. 1. Specifically, each
AA in the MABKS system maintains the entire attribute set
and is responsible for verifying the validity of data users’
certificates and generating intermediate secret keys for data
users, and the CA outputs the final secret keys for DUs.
For example, the only fully-trusted department (that acts as
CA) in a large company can generate the whole secret keys
for staffs who are authorized to access important company
documents, but will be burdened with much computation
overhead when there are massive staffs, and even suffer
from single-point performance bottleneck if this department
is compromised or breaks down. The company can rent
multiple public servers (that act as AAs) provided by other
enterprises (i.e., Tencent, Amazon, Alibaba, etc.) to elim-
inate the fully-trusted department’s computation burden
(see Fig. 2) . However, these public servers may execute
malicious operations and then return incorrect intermediate
secret keys in order to save computation and bandwidth
resources, as these servers and the fully-trusted department

of this company are not in the same trusted domain. Fur-
thermore, we cannot deploy multiple fully-trusted AAs in
scheme constructions due to high communication overhead
caused by building security channels. Fortunately, the CA
in our MABKS system can trace the malicious AA. Howev-
er, the traditional multi-authority CP-ABE schemes cannot
achieve this goal, and even cannot avoid the possibility
of single-point performance bottleneck that also exists in
single-authority CP-ABE schemes. In summary, the main
contributions of the MABKS system are shown as follows:

Staffs Staffs

Avoid Single-point

performance bottleneck

Tencent

server

Amazon

server

Trusted department in a company

Final keys

Computation

burden

Intermediate keysCertificate verification Trace

S
in

g
le

-a
u

th
o

ri
ty

 s
et

ti
n

g

M
u

lt
i-

au
th

o
ri

ty
 s

et
ti

n
g

Fig. 2: An example for the multi-authority scenario.

• Multi-authority architecture. Different from the pre-
vious single-authority CP-ABKS schemes [13], [14]
(or traditional multi-authority CP-ABE schemes [16],
[17], [19]) that still cannot avoid the limitation of
single-point performance bottleneck, the hierarchical
structure in the MABKS system enables multiple
AAs to separately execute time-consuming user cer-
tificate verification and intermediate secret key gen-
eration on behalf of CA, which significantly reduces
CA’s computation requirements.

• File-level fine-grained keyword search. Most of the tra-
ditional CP-ABKS schemes [4], [5], [12] have inde-
pendent file key encryption and indexes building
processes, while the MABKS system will embed the
secret key chosen in file key encryption process in-
to the indexes building process. Thus, the MABKS
system not only allows data owners to specify the
file-level fine-grained access control over encrypted
cloud data but also enables cloud clients (e.g., data
owners, data users) to perform keyword-based ci-
phertexts retrieval.

• Malicious AAs tracing. The traditional traceable CP-
ABE schemes [20], [21], [22] mainly focus on the
malicious data users who may leak their secret keys
to unauthorized entities, while the extended MABKS
system focuses on tracing the malicious AAs that
incorrectly generate intermediate secret keys for data
users in two phases (i.e., secret key ownership con-
firming, malicious AAs tracing).

• Attribute update. The extended MABKS system im-
plements the attribute update so that malicious da-
ta users cannot access the sensitive cloud data by
exploiting old or outdated secret keys. Compared
with the attribute update mechanisms [23], [24] in
prior CP-ABE schemes that need to update the whole
ciphertexts, the extended MABKS just allows data
users and cloud server to update a fraction of secret
key components and indexes associated with the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

updated attributes by using two transformation keys,
respectively.

• Security and efficiency. The comprehensive security
analysis shows that the MABKS system is selec-
tively secure in both selective-matrix and selective-
attribute models. Experimental results using real-
world datasets demonstrate that the storage and
computation overhead increases with the number
of user attributes rather than system attributes [14].
In addition, the MABKS system has constant trap-
door size and ciphertexts retrieval overhead, which
reduces the storage and computation burden on
resource-limited data users and improves the user
search experience. Considering that the encryption
and decryption overhead still grows with the com-
plexities of access policies in traditional CP-ABKS
schemes [13], [14], the MABKS system can utilize
the online/offline encryption mechanism and out-
sourced decryption mechanism [25] to further de-
crease the data owner and data users’ computation
overhead, respectively.

The remainder of our paper is structured as follows.
Section 2 shows some prior work relating to the MABKS
system. Section 3 demonstrates the preliminaries required in
the understanding of the MABKS system. In Section 4, the
problem formulation (including system model, scheme def-
inition and security model) is presented. Then, we present
the detailed construction of the MABKS system and its
extensions in Section 5 and analyze the security and per-
formance of the MABKS system in Section 6. Finally, we
conclude this paper in Section 7.

2 RELATED WORK

In cloud storage systems, data owners may outsource a
large volume of security-critical and privacy-sensitive data
for economical and/or operational reasons (e.g., to further
reduce data storage and computation requirements). Al-
though encryption mechanism can protect cloud data se-
curity and privacy to some extent, the encrypted cloud data
retrieval becomes one of several key challenges faced by
data users. To provide keyword-based information retrieval
and fine-grained access control over encrypted cloud data,
this paper particularly relates to CP-ABE (Ciphertext-Policy
Attribute-Based Encryption) and SE schemes.

Since Boneh et al. [7] put forth the first Public-key
Encryption with Keyword Search (PEKS) scheme, which
enables cloud server to identify records containing user-
specified keyword, a large number of versatile SE schemes
have been presented (e.g., single keyword search [26], multi-
keyword search [12], [27], ranked keyword search [28], [29],
[30], verifiable keyword search [31], [32]). For example,
Yang et al. [27] formed a novel conjunctive keyword search
scheme with designated tester and timing enabled proxy re-
encryption function, which allows a data owner to delegate
his/her partial access rights to data users who are able to
execute search operation in a limited period. To retrieve
the most related files flexibly, Li et al. [29] gave a ranked
multi-keyword search scheme by using the relevance scores
and preference factors upon keywords, which supports the
complicated logic search. Considering that the semi-trusted

cloud server may execute a fraction of search tasks and
output some false results, Sun et al. [32] first presented a
verifiable conjunctive keyword search scheme, which can
efficiently check the authenticity of search results and con-
duct file update operations. Despite attractive advantages
(e.g., elastic accessibility, strong reliability, high availability)
in cloud data outsourcing services, encryption mechanism
on its own is not practical since data owners lose the direct
physical control of remote cloud data.

Compared with traditional access control solutions, CP-
ABE can achieve one-to-many encryption rather than one-
to-one and has been regarded as a promising way to achieve
fine-grained access control. Since Bethencourt et al. [33] pre-
sented the first CP-ABE scheme, which avoids storing the
entire user-list and verifies user access permissions, there
has been a number of extensions focusing on other prob-
lems, such as expressive access policies [24], [34], attribute
update [35], [36], hierarchical access policies [37], hidden
access policy [38] and verifiable outsourced decryption [39].
For instance, Balu et al. [34] proposed an expressive and
provable CP-ABE scheme by leveraging the linear inter
secret sharing technique, which significantly reduces the
secret sharing costs. Zhang et al. [36] proposed a practical
CP-ABE scheme, which offers user revocation and attribute
update. As the ciphertext size and decryption cost grow
with the complexities of access policies, Mao et al. [39]
gave the generic construction of CPA (Chosen-Plaintext
Attack)-secure CP-ABE scheme with verifiable outsourced
decryption. Despite the number of research efforts on this
topic, existing CP-ABE schemes have not entirely solved the
problem of keyword-based data retrieval.

To tackle this problem, Attribute-Based Encryption
(ABE) [33], [40] scheme has been extended to SE scheme.
Such an extension is also referred to as ABKS [14], [38],
[41] in the literature. Existing ABKS schemes are broad-
ly divided into two categories [13], namely Key-Policy
ABKS (KP-ABKS) [38], [41] and Ciphertext-Policy ABKS
(CP-ABKS) [14]. CP-ABKS scheme allows one to achieve
keyword-based ciphertexts retrieval and fine-grained ac-
cess control simultaneously. For example, Zheng et al. [13]
gave the first CP-ABKS scheme, which enables data owner
to delegate search capabilities to data users by enforcing
access control over encrypted cloud data. However, this
scheme just supports single keyword search in single-owner
scenarios and hence affects user’s search experience. After
that, Sun et al. [14] presented an authorized multi-keyword
search scheme in a challenging multi-owner scenario [42]
to achieve fine-grained owner-enforced search privileges.
Qiu et al. [43] gave a more secure CP-ABKS scheme to
guarantee access policy privacy and resist off-line keyword
guessing attack. However, these CP-ABKS schemes only
support single attribute-authority, which may incur single-
point performance bottleneck. This is because the single
AA (also referred as CA) in these schemes must issue
both user certificate verification and secret key generation.
Furthermore, existing CP-ABE schemes [16], [17] supporting
multi-authority cannot be directly extended to SE scheme
to mitigate the discussed concerns since each authority
separately keeps disjoint attribute subsets.

In practice, a preferred CP-ABKS scheme should be con-
structed without sacrificing efficiency while supporting both

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

TABLE 1: Functionalities in various schemes: A comparative
summary

Schemes F1 F2 F3 F4 F5 F6
[4] ! ! ! YES
[5] ! ! ! NO
[16] ! ! NO
[17] ! ! ! NO
[18] ! ! ! YES
[37] ! ! ! NO
[41] ! ! YES
[14] ! ! NO
[13] ! ! NO
[43] ! ! NO

MABKS ! ! ! ! ! YES

Notes. F1: Multi-authority; F2: Keyword-based retrieval;
F3: Fine-grained access control; F4: Attribute update;
F5: Malicious AA tracing; F6: High efficiency.

fine-grained access control and keyword search. The storage
and computation costs of existing CP-ABKS schemes linear-
ly increase with the number of system attributes instead of
user attributes; hence, such schemes are not practical for
deployment on resource-constrained devices. This is one of
the gaps we aim to solve in this paper. Specifically, our
proposed MABKS system has constant trapdoor size and
ciphertexts retrieval overhead based on RAAC scheme [18].
The extended MABKS system is also designed to support
malicious AAs tracing and attribute update. Compared with
existing schemes, the extended MABKS system has several
advantages (e.g., multi-authority, keyword-based retrieval,
fine-grained access control, attribute update, malicious AA
tracing, high efficiency1), as summarized in TABLE 1.

3 PRELIMINARIES

In this section, we review some cryptographic background
associated with the MABKS system. Assume that G,GT are
two multiplicative cyclic groups of prime order p and g
is the generator of G, the bilinear map e : G × G → GT

has several properties: (1) Bilinearlity. e(ga, gb) = e(g, g)ab,
∀a, b ∈ Zp; (2) Non-degeneracy: e(g, g) ̸= 1; (3) Computabil-
ity. There exists an efficient algorithm to compute e(g, g).
The symbol x ∈ X is defined as choosing an element x
uniformly at random from the setX , and [1, y] represents an
integer set {1, 2, ..., y}, where y is an integer. The symbols
used are shown in TABLE 2.

3.1 Access Structure

Let P = {P1, P2, · · · , Pn} be a set of parties (or attributes).
The collection A ⊆ 2{P1,P2,··· ,Pn} is monotonic when the
following condition holds: for two arbitrary party (or at-
tribute) sets B,C , C ∈ A holds on condition that B ∈ A,
B ⊆ C. An monotonic access structure [33] is a collection
A with non-empty subsets of P , (e.g., A ⊆ 2{P1,P2,··· ,Pn}\∅).
The sets in A are called authorized entities; otherwise, the
ones are called unauthorized entities. It should be noted that

1. The data users’ storage and computation costs of trapdoor gener-
ation or ciphertexts search (or decryption) are approximately constant,
or outsourced to other entities.

TABLE 2: Symbol definitions in preliminaries

Notations Descriptions Notations Descriptions
G,GT Cyclic groups g G’s generator

e : G×G → GT Bilinear map [1, y] Integer set
P = {P1, P2, · · · , Pn} Parties (attributes) A Access structure

B,C Arbitrary party set M LSSS matrix
ρ(·) Mapping function s Shared secret

v = {s, r2, · · · , rn}⊤ Column vector S User attributes
I = {i : ρ(i) ∈ S} Row subset in M {ωi} Constant set

λi = Mi · v i-th share of s Mi i-th row in M

Notes: ρ(i) maps the i-th row of M to an attribute; I denotes the
row subset with corresponding attributes in S.

each party is described by an attribute in this paper, and all
authorized attribute sets belong to A. Besides, A represents
the monotone access structure.

3.2 Linear Secret Sharing Scheme

To reconstruct the secret key, we will exploit the linear secret
sharing scheme defined in Waters’s scheme [44], which is
demonstrated as follows.

Definition 1 (Linear Secret-Sharing Scheme (LSSS)). If the
following conditions both hold, the LSSS over P is linear.

• The share for each party (or attribute) forms a vector
over Zp;

• Let M be the LSSS matrix (l rows and n columns)
which can be used to describe the access structure
A, and its i-th row is defined as Mi(i ∈ [1, l]).
The mapping function ρ(·) maps each row Mi

to a certain attribute ρ(i). Given a column vector
v = {s, r2, · · · , rn}⊤, the symbol M · v represents
the l shares of s in LSSS, and Mi · v is the share λi
belonging to attribute ρ(i), where s ∈ Zp denotes the
secret to be shared, and r2, · · · , rn ∈ Zp are random
elements.

The linear secret-sharing scheme enjoys the property of
linear reconstruction. Let A represent the access structure, S
denote an attribute set that satisfies A, and the symbol I ⊆
{1, 2, · · · , l} represent the row set that has corresponding
attributes in S , namely I = {i : ρ(i) ∈ S}, then there exists
a tuple of constants {ωi ∈ Zp}i∈I such that

∑
i∈I ωiλi = s.

Note that λi = Mi · v denotes each row’s share of secret
s according to LSSS, and {ωi} can be found in polynomial
time in the size of M.

3.3 Security Assumptions

To proof the security of the MABKS system, we present
some necessary security assumptions (e.g., decisional q-
parallel Bilinear Diffie-Hellman Exponent (BDHE) assump-
tion [44], Decisional Bilinear Diffie-Hellman (DBDH) as-
sumption [45]).

Definition 2 (Decisional q-parallel Bilinear Diffie-Hellman Ex-
ponent (BDHE) assumption). Let (G,GT , e, g) be the bilin-
ear map parameters, a, z, b1, · · · , bq be random elements.
Even though an adversary has the tuple ϕ shown with
Eq. 1, it is still difficult for the adversary to distinguish

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

e(g, g)a
q+1z from a random element R in group GT , where

1 ≤ j, i ≤ q, i ̸= j.

ϕ =

g, gz, ga, · · · , ga

q

, ga
q+2

, · · · , ga
2q

,

gz·bj , ga/bj , · · · , ga
q/bj , ga

q+2/bj , · · · ,
ga

2q/bj , ga·z·bi/bj , · · · , ga
q·z·bi/bj

 . (1)

If the following inequation Eq. 2 holds, the algorithm
has an advantage ϵ in solving the decisional q-parallel
BDHE problem in group G. Hence, the decisional q-parallel
BDHE assumption holds on condition that there exists on
polynomial time B that can break the decisional q-parallel
BDHE problem with a non-negligible advantage ϵ.

|Pr[B(ϕ, e(g, g)a
q+1z) = 0]− Pr[B(ϕ,R) = 0]| ≥ ϵ. (2)

Definition 3 (Decisional Bilinear Diffie-Hellman (DBDH) as-
sumption). Let (G,GT , e, g) be the bilinear map parame-
ters, the challenger C first randomly selects three elements
a, b, c ∈ Zp, and then flips a fair binary coin κ ∈ {0, 1}. If
κ = 1, C outputs a tuple {g, ga, gb, gc, e(g, g)abc}; otherwise,
it returns the tuple {g, ga, gb, gc, e(g, g)z}. The goal of ad-
versary A is to output a guess bit κ′ of κ. If the following
inequation Eq. 3 holds, then A can break the DBDH problem
with an advantage at least ϵ, note that the probability is over
random elements a, b, c, z and random bits consumed by A.∣∣∣∣∣Pr[A(g, ga, gb, gc, e(g, g)abc) = 1]

− Pr[A(g, ga, gb, gc, e(g, g)z) = 1]

∣∣∣∣∣ ≥ ϵ. (3)

If there exists no adversary A that can break the DBDH
problem with an advantage at least ϵ, then we can say that
the DBDH assumption holds.

4 PROBLEM FORMULATION

In this section, we present the system model, threat model,
scheme definition and security model, respectively.

4.1 System & Threat Models
We consider a cloud storage system in the cloud computing
environment, which involves with five entities in Fig. 3,
namely Central Authority (CA), multiple Attribute Authori-
ties (AAs), Data Owner (DO), Cloud Service Provider (CSP)
and Data User (DU). It is worth noticing that DUs are usu-
ally resource-limited entities (i.e., mobile devices, wearable
devices, sensor nodes, etc.). However, the CA and multiple
AAs have sufficient computation and storage capabilities to
accomplish the assigned tasks.

In the cloud storage system, the DO collects files and
generates the ciphertexts including indexes and file encryp-
tion key ciphertexts (Step 1⃝). To relieve the computation
and storage burden, the DO outsources ciphertexts to CSP
which has capacities to issue huge amounts of data storage
and search operations. Before conducting search queries, the
DU must issue the secret key generation, which is coopera-
tively conducted by CA and his chosen AA (Step 2⃝). Specif-
ically, the DU first obtains his certificate by submitting his
identity to CA, then sends his certificate to the selected AA.
The AA needs to perform the user certificate verification and
send the intermediate secret key to CA. The CA returns the
final secret key to the DU. After that, the DU first generates

Data owners

Cloud service provider

Indexes

Ciphertexts

Access policy

File set

Data encryption

Ciphertexts retrieval

Upload

Initialization

Central authority

Final keys

Keys update

Tracing Verify certificate

Intermediate keys

Transmission

Attribute authority (AA) Data users

Search query

Decryption

Key generation

Malicious attribute authority tracing

TrapdoorResults
Update a fraction of indexes

Punish malicious AA

Fig. 3: The system model of MABKS scheme.

the trapdoor according to his specified keyword, then sends
the trapdoor (or search token) along with his attributes to
CSP (Step 3⃝). In the step 4⃝, the CSP first checks whether
both the attributes and trapdoor satisfy the access policy
and indexes, respectively, then returns the relevant search
results to DU if above two conditions hold. When gaining
the search results, the DU needs to obtain the corresponding
file decryption keys before he can decrypt these encrypted
search results (Step 5⃝). When the suspect AA mistakenly or
intentionally outputs the incorrect intermediate secret key
for a suspect DU, the CA can trace the malicious AA by
interacting with the suspect DU (Step 6⃝). If the attributes
of a certain DU have been updated, the CA will generate
the transformation keys to update the DU’s final secret key
and indexes so that the malicious DU cannot access the
sensitive information by using his old or outdated secret
key (Step 7⃝). The role of each entity is presented as follows:

• Central authority. The CA can not only generate final
secret keys for DUs but also trace the malicious AAs
which generate incorrect intermediate secret keys for
DUs in the extended MABKS system.

• Attribute authorities. Each AA, which has adequate
storage and computation capabilities, can separately
perform user certificate validation according to DU’s
claimed attributes and generate the corresponding
intermediate secret key on behalf of the CA. Note
that the goal of introducing multiple AAs is to relieve
CA from burdensome tasks of certificate verification
and key generation, and further reduce the possibili-
ty of single-point performance bottleneck.

• Cloud service provider. The CSP which has numerous
store space and powerful computation capability can
provide data storage and information retrieval ser-
vices for DOs and DUs, respectively.

• Data owner. The DO collects and outsources his en-
crypted cloud data to CSP in order to share his data
with multiple DUs, and significantly reduce local
storage and computation burden.

• Data user. The DU can issue ciphertexts retrieval
requirements based on interested keywords before
being verified his legitimacy by a certain AA and
gaining the final secret key from CA.

Additionally, the CSP is an honest-but-curious entity

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

MABKS system definition

The overview of the MABKS system is presented as follows:
Setup(1k). Given a security parameter k, the CA conducts the
algorithm to output the public key PK and master key MSK.
KeyGen(PK,S,MSK). Take the attribute set S of a certain
DU as input, the selected AA (i.e., AAj(j ∈ [1,m])) and
CA separately generate the intermediate secret key SKu,0

and final secret key SKu,1. Notice that the CA also outputs
public/secret key pairs (PKj , SKj) for selected AAj , and the
AAj needs to issue user certificate validation on behalf of CA.
Enc(PK,F ,W,A). Given the file set F , keyword set W and
access structure A, the DO first outputs the file ciphertexts C∗,
file encryption key ciphertexts CT and encrypted indexes Ind,

and then returns the tuple {C∗, CT, Ind,A} to CSP.
Trap(PK,w′, S, SKu,1). Given the queried keyword w′, the
DU generates the trapdoor Tw′ according to his attributes S
and secret key SKu,1 and submits (Tw′ , S) to CSP.
Search(PK, C∗, Ind, CT, Tw′ , S,A): After gaining submitted
trapdoor Tw′ along with DU’s attributes S, the CSP checks
whether S (resp., Tw′) satisfies A (resp., Ind). If above condi-
tions both hold, the CSP returns the relevant search results Cw′

and corresponding encryption key ciphertexts CT ∗.
Dec(PK, Cw′ , CT ∗, SKu,1); Given the tuple (Cw′ , CT ∗), the
DU needs to obtain the relevant file encryption keys which are
used to decrypt Cw′ by using his secret key SKu,1 and CT ∗.

Fig. 4: Overview of the MABKS system

which honestly abides by established protocols but may
try to spy out some sensitive information. The CA, which
should be real-time online to generate the final secret keys
for DUs, is assumed to be fully trusted. The AAs provided
by third-parties may perform maloperations incurred by
carelessness or malicious behaviors. The malicious DUs may
collude with each other or even compromise any AA to
obtain unauthorized accesses beyond their access privileges.
The DOs are fully credible.

4.2 Definition of MABKS System
The MABKS system is a tuple of algorithms involving
Setup, KeyGen, Enc, Trap, Search and Dec. The overview
of the MABKS system is presented in Fig. 4

4.3 Security Model
To protect files confidentiality, sensitive information can-
not be accessed by unauthorized DUs or CSP. Thus, the
MABKS system should be secure in the selective-matrix
and selective-attribute models. Besides, the MABKS system
should resist user collusion attacks.

In the selective-matrix model [44], [46], the security
model of the MABKS system allows a certain adversary
A to query for the secret key which cannot be utilized to
decrypt the challenging ciphertexts. In the MABKS system,
ciphertexts are encrypted with an access structure A and
secret keys are created with attribute sets, where A can be
described by LSSS. Next, we give the following selective-
matrix model between challenger C and A, where A chooses
challenging ciphertexts encrypted by A∗ and issues the
secret key generation for attribute set S such that S does
not satisfy A∗.

• Setup: C runs the Setup to create the system public
parameters PK and sends PK to A.

• Phase 1: A repeatedly issues secret key queries for
attribute sets S1, S2, · · · , Sq1 .

• Challenge: First, A submits two records R0, R1 with
equal length and a challenging access structure
A∗, but one restriction is that all attribute sets
S1, S2, · · · , Sq1 do not match with A∗. Then, C selects
a random bit κ ∈ {0, 1} and encrypts the record Rκ

with A∗. Finally, C sends the challenging ciphertext
Cκ to A.

• Phase 2: A repeats Phase 1 for attribute sets
Sq1+1, · · · , Sq , but notice that none of these attribute
sets satisfy the aforementioned A∗.

• Guess: A outputs a guess bit κ′ ∈ {0, 1}. If κ′ = κ, A
wins this game; otherwise, it fails.

It is worth noticing that this above security model can be
extended to deal with chosen-ciphertext attacks by allowing
A to conduct decryption queries in Phase 1 and Phase 2.

Definition 4. The MABKS system is secure if there exist
probabilistic polynomial time (PPT) adversaries that can
have at most a negligible advantage AdvA(1k) = |Pr[κ′ =
κ]− 1

2 | < ϵ in breaking the above security game in selective-
matrix model, where k represents the security parameter.

As for the selective-attribute model, in which A must
submit a challenging attribute set before gaining the pub-
lic system parameters and adaptively issuing secret key
and trapdoor generation queries, the MABKS system can
achieve stronger security when compared with previous
ABE schemes in selective-set model [40]. Next, we show
this kind of security game between A and C as follows. This
security game is demonstrated in Supplemental Material
A.

Definition 5. The MABKS system is secure if there does not
exist an adversary that can break the above security game
with a non-negligible advantage AdvA(1k) = |Pr[κ′ = κ]−
1
2 | ≥ ϵ in selective-attribute model.

5 THE PROPOSED MABKS SYSTEM

For ease of understanding, we first show some notation
descriptions used in the MABKS system in TABLE 3 before
introducing its concrete construction. Different from the
traditional CP-ABKS schemes that can achieve fine-grained
access control and keyword-based ciphertexts retrieval at
the same time by simply combining CP-ABE and SE tech-
niques, the MABKS system can gain the file-level fine-
grained key by embedding the secret s ∈ Zp chosen in
file key encryption process into the corresponding index
building process. However, the traditional single-authority
CP-ABKS schemes or multi-authority CP-ABE schemes still
suffer from the single-point performance bottleneck. Hence,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

the MABKS system first employs the heterogeneous archi-
tecture including a trusted CA and multiple AAs, note that
each AA selected by a certain DU can conduct the time-
consuming certificate verification and generate intermediate
secret keys for data users on behalf of CA, thereby elimi-
nating the CA’s computation burden significantly and then
avoiding the single-point performance bottleneck. Besides,
the encryption and decryption costs in traditional CP-ABKS
schemes increase with the complexities of access policies
linearly, which impose high computation burden on DO and
DUs, respectively. Then, the modified MABKS will separate-
ly use the online/offline ABE mechanism and outsourced
decryption mechanism to solve these two flaws. However,
in actual deployments, the AAs provided by third-parties
may execute malicious operations (i.e., returning incorrect
intermediate secret keys for data users). To overcome this
shortcoming, the extended MABKS system redefines the
random elements α, β ∈ Zp chosen in the MABKS system
as α = H(IDu∥Ts∥0), β = H(IDu∥Ts∥1), where Ts
denotes the timestamp, then computes k∗j,τ,u,0 to confirm
the secret key ownership, and recovers the public key to
trace malicious AA. In dynamic scenarios, the role of each
DU may change dynamically. The DUs will use the original
or outdated secret keys to access original documents/files.
To prevent this kind of unauthorized accesses, the extended
MABKS system requires the CA to update the master key
MSK , public parameters PK and output two transforma-
tion keys, note that these two transformation keys allow the
DUs and CSP to update the secret key component SKu,1

and a fraction of indexes associated with updated attributes,
respectively.

TABLE 3: Notation descriptions in MABKS system

Notations Descriptions
U = {Att1, · · · , AttU} System attribute set
AA = {AA1, · · · , AAm} Attribute authority set
(PK,MSK) Public parameters/master key
(PKj , SKj) AAj ’s public/secret key pair
(Certj , Certu) AAj ’s/DU’s ceetificates
(SKu,0, SKu,1) DU’s intermediate/final key
(F = {f},W = {w}) File/keyword set
{skf , CTf} File key plaintext/ciphertext
C∗ = {Encskf

(f)} File ciphertexts for F
Ind = {Iw} Encrypted indexes for W
Tw′ = (T0, T1) Trapdoor for queried keyword w′

(Cw′ , CT ∗) Returned file/file key ciphertexts

5.1 Construction of MABKS System

In this part, we demonstrate the concrete construction of
the basic MABKS system. It is worth noticing that the
construction of the MABKS system includes six phases,
namely system initialization (Setup), secret key generation
(KeyGen), ciphertexts generation (Enc), trapdoor genera-
tion (Trap), ciphertexts retrieval (Search) and ciphertexts
decryption (Dec). The high-level description of MABKS
algorithms is shown in Fig. 5.

In Setup, the fully-trusted CA creates the global public
parameters PK and the master key MSK , where MSK
is kept by itself. In KeyGen, the DU’s secret key is coopera-
tively generated by CA and his selected AA. Each AA which
owns the whole attributes needs to conduct user certificate

CA-Central authority

Public parameters

Master keys

KeyGen

AAs-Attribute authorities

Public/secret keys

 jAA
1AA mAA

DUs-Data users

File ciphertexts

Key ciphertexts

Indexes

Access policyData owner

Enc Storage Search

Cloud service provider

Search

Match

Results

Final secret key

Intermediate key

Trap Dec

Selected AA

Fig. 5: The high-level description of MABKS algorithms.

verification independently and generates the intermediate
secret key, thereby reducing the user legitimacy verification
burden on CA. When gaining the intermediate secret key
returned by the chosen AA, the CA outputs the final secret
key for each DU. In Enc, the DO first encrypts each file with
a symmetric encryption key, then protects the symmetric
keys and builds the indexes for the whole file set with the
specified access structure. In Trap, the DU first needs to
encrypt his plaintext search query as trapdoor by using his
final secret key so that the sensitive information is not leaked
to the honest-but-curious CSP, then sends his attributes and
trapdoors to CSP. In Search, the CSP can return the DU’s
interested search results iff both attributes and trapdoor
match with the access policy and indexes, respectively. In
Dec, the DU needs to obtain the corresponding symmetric
keys for search results before he/she can decrypt them. The
concrete algorithm descriptions of MABKS system is shown
in Fig. 6. It is worth noticing that the detailed algorithms for
key generation process, ciphertexts generation process and
ciphertexts retrieval process are shown in Supplemental
Material B.

Remarks. In the MABKS system, each AA can sep-
arately issue user certificate authentication and generate
intermediate secret keys for DUs on behalf of CA, then the
problems of single-point performance bottleneck and high
computation burden on CA can be solved. Furthermore, the
MABKS system has constant-size trapdoor and ciphertexts
retrieval overhead, which applies to resource-limited device
deployment. Last but not the least, the MABKS system
can achieve both keyword-based ciphertexts retrieval and
fine-grained access control, and authorized DUs can gain
and decrypt interested search results iff their attribute sets
(resp., trapdoors) satisfy established access structures (resp.,
indexes). However, the MABKS scheme still incurs high
computation burden on DO and DUs in Enc and Dec al-
gorithms, respectively. To solve these challenging issues, we
demonstrate the idea that how to achieve online/offline en-
cryption and outsourced decryption mechanisms by using
the online/offline ABE [48] and outsourcing the decryption
of ABE ciphertexts [49], [50], respectively. Note that we just
show the modified algorithms in our MABKS system, which
are shown in Fig. 7. However, some other challenging issues
shown in the following sections still need to be addressed.

5.2 Extension to Support AA Tracing
To prevent the malicious AA from generating the illegal
intermediate secret key, an efficient tracing mechanism must
be furnished in MABKS to guarantee that the secret key
components really belong to a suspected DU. It is worth

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

The algorithms in MABKS system

The concrete construction of the MABKS system is presented
as follows:
Setup(1k): Let k be the security parameter, the CA first cre-
ates the global bilinear parameters GP = (G,GT , e, g) and
selects other two generators g0, g1 of group G, then randomly
chooses elements a0, a1, b0, b1 ∈ Zp and anti-collision hash
function H : {0, 1}∗ → Zp before computing θ = e(g, g)a0 ,
A = ga1 , A0 = ga0 , B0 = gb0 . Given the system attributes
U = {Att1, · · · , AttU}, the CA picks a random element νi ∈ Zp

for each attribute Atti ∈ U(i ∈ [1, U]) and computes Hi = Bνi
0 .

Finally, the CA sets the public parameters PK and master key
MSK with Eq. 4.

PK = {GP,H, g0, g1, θ, A,A0, B0, H1, · · · ,HU};
MSK = {a0, a1, b0, b1, ν1, · · · , νU}.

(4)

KeyGen(PK,S,MSK): The key generation process of a cer-
tain DU is involved with both AA and CA, where CA deals
with registration requests of multiple attribute authorities
AA = {AA1, AA2, · · · , AAm} and different DUs by using its
public/secret key pair [15], which is beyond the scope of our
discussion. For each attribute authority AAj(j ∈ [1,m]) with
identity IDj , the CA picks a random element kj ∈ Zp and
outputs AAj ’s public/secret key pair (PKj , SKj) along with
a certificate Certj , where PKj = gkj , SKj = kj . In addition,
a certain DU with identity IDu first gets the certificate Certu
from CA. Then, the DU conducts the key generation query
with randomly selecting AAj(j ∈ [1,m]). Finally, the selected
AAj verifies the validity of DU’s certificatea Certu. Assume
that the AAj honestly executes established protocols, the AAj

will abort this process if the DU does not have the legal
attribute set that he claims to; otherwise, it will return the
intermediate secret key SKu,0 and send SKu,0 to CA with
the following steps.

• For each attribute τ ∈ S, the AAj selects two random
elements α, β ∈ Zp and computes k′j,u,τ,0 = H

kjα
τ ,

k′′j,u,τ,0 = Hβ
τ .

• The AAj returns SKu,0 = {k′j,u,τ,0, k′′j,u,τ,0}τ∈S and the
related tuple (IDj , IDu, S) to CA which is responsible
for generating the final secret key SKu,1.

After gaining (SKu,0, IDj), the CA first looks up AAj ’s
corresponding public key PKj , then selects a random
element γu ∈ Zp before generating DU’s final secret
key SKu,1 with Eq. 5, finally securely sends SKu,1 =
(K0,K1,K2,K3, {k′j,u,τ,1, k′′j,u,τ,1, k′′′j,u,τ,1}τ∈S) to a certain DU
via AAj .

K0 = gγu ,K1 = ga0
0 gγu

1 ,K2 = ga0PKa1b0α
j ga1a0β ;

K3 = PKb0α
j ga0β , k′j,u,τ,1 = (k′j,u,τ,0)

b0gb1(α+β);

k′′j,u,τ,1 = (k′′j,u,τ,0)
a0g−b1(α+β), k′′′j,u,τ,1 = Hγu

τ .

(5)

Enc(PK,F ,W,A): Take as input the file set F = {f} and
the keyword dictionary W = {w}, the DO first encrypts
each file f ∈ F with corresponding symmetric key skf , then
protects skf with specified access structure A described by
matrix Ml×n. Notice that the encrypted files are defined as
C∗ = {Encskf (f)}, and the access structure embedded in
keywords is similar to that of files.

• The DO chooses a column vector v = {s, r2, · · · , rn}
and computes λi = Miv, where Mi(i ∈ [1, l]) rep-
resents the i-th row of M. After that, the DO picks
random elements π1, · · · , πl ∈ Zp and outputs the
file ciphertext CTf = (C′

f , C
′′, {Ci,1, Ci,2}), where

C′
f = skf · e(g, g)a0s, C′′ = gs, Ci,1 = (ga1)λiH−πi

ρ(i) ,
Ci,2 = gπi .

• The DO extracts keywords from each file f ∈ F
according to keywords W before building index Iw for
each keyword w ∈ W . For each attribute ρ(i)(i ∈ [1, l]),
the DO computes I0 = gs1, I1,i = ϖs

i , I2 = e(A0, g0)
s,

I3 = B
s/H(w)
0 , where ϖi = H

1/H(w)

ρ(i) . Finally, the DO
sets Iw = (I0, I2, I3, {I1,i}). Note that the component
I3 is mainly used to update indexes in Section 5.3.

• The DO sends the final ciphertexts (C∗, CT, Ind) and
access structure A to CSP, where CT = {CTf}, Ind =
{Iw}.

Trap(PK,w′, S, SKu,1): When a certain DU intends to search
encrypted files including queried keyword w′, the DU needs
to generate a trapdoor Tw′ and sends it to CSP. The DU first
chooses a random element γ′

u ∈ Zp and computes T0 = K0g
γ′
u ,

φ = K1g
γ′
u

1 , φτ = k′′′j,u,τ,1H
γ′
u

τ , then computes T1 = φ
∏

τ∈S φ
′
τ ,

where φ′
τ = φ

1/H(w′)
τ . Finally, the DU sets the search token as

Tw′ = (T0, T1) and returns Tw′ to CSP.
Search(PK, C∗, Ind, CT, Tw′ , S,A): After receiving the DU’s
submitted trapdoor (or search token) Tw′ and attribute set S,
the CSP first checks whether S satisfies the access structure
A. If not, the CSP aborts this search operation; otherwise, it
continues to check whether Tw′ matches with indexes Indwith
Eq. 6, where i ∈ [1, l].

I2 · e(T0, I0 ·
∏

ρ(i)∈S

I1,i) = e(C′′, T1). (6)

If Eq. 6 holds, the CSP returns the encrypted files Cw′ con-
taining the keyword w′ and corresponding encryption key
ciphertexts CT ∗; otherwise, it returns ⊥.
Dec(PK, Cw′ , CT ∗, SKu,1): After gaining the relevant search
results Cw′ , the DU can decrypt them with his final secret key.
Suppose that the submitted attributes match with the access
structure embedded in file ciphertexts and let I ⊆ {1, 2, · · · , l}
be defined as I = {i : ρ(i) ∈ S}, there must exist a tuple
of constants {ωi} such that

∑
i∈I ωiλi = s, where λi = Miv.

Before gaining file plaintexts, the DU needs to obtain the secret
value s and further have symmetric keys for Cw′ with the
following steps:

• For each attribute τ ∈ S, the DU first computes
ψτ = k′j,u,τ,1 · k′′j,u,τ,1 = H

(kjb0α+a0β)
τ .

• Given the constant set {ωi}, the DU then further gains
ξ = e(g, g)a0s with Eq. 7.

ξ =
e(C′′,K2)∏

i∈I(e(Ci,1,K3) · e(Ci,2, ψρ(i)))ωi
. (7)

• The DU computes C′
f/ξ to get the symmetric key

skf for file f . Finally, the DU can decrypt Cw′ with
corresponding symmetric keys.

a. The CA distributes a certificate, which is used to blind each DU’s attributes to public key and auxiliary information, based on traditional
Public Key Infrastructure (PKI) architectures [47], and the selected AAj can check the validity of each DU’s certificate as both AAj and DUs
trust CA.

Fig. 6: Concrete construction of MABKS system

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

Modified algorithms to support online/offline encryption and outsourced decryption

The modified algorithmsa are shown as follows:
KeyGen(PK,S,MSK): Different from the original KeyGen
algorithm, the CA also selects a random element Tr ∈ Zp in
the final secret key generation process. The CA computes the
transformation key SK′

Tr = (K′
2,K

′
3, {TK′

j,s,τ,1, TK
′′
j,s,τ,1}),

where K′
2 = K

1/Tr
2 , K′

3 = K
1/Tr
3 , TK′

j,s,τ,1 = (k′j,u,τ,1)
1/Tr ,

TK′′
j,s,τ,1 = (k′′j,u,τ,1)

1/Tr , then returns the DU’s final secret
key SK′

u,1 = (Tr,K0,K1, {k′′′j,u,τ,1}) and CSP’s transform key
SK′

Tr , where τ ∈ S. Note that the MABKS system does
not need to modify Trap algorithm as the secret key compo-
nents (K0,K1, {k′′′j,u,τ,1}) used to generate trapdoor are still
unchanged.
To avoid the heavy computation burden of Enc on resource-
limited DO, we extend the online-offline ABE technique [48]
into the MABKS system. The online/offline Enc consists of
two phases, namely offline phase in which DO can conduct the
vast majority of ciphertext generation tasks prior to knowing
the specific files and access policies, and online phase in which
DO can rapidly output the final ciphertexts. Note that the
computationally intensive tasks in an offline phase can also
be conducted by the client-server, which further the compu-
tation overhead of resource-constrained DO. The original Enc
includes Offline-Enc and Online-Enc.

• Offline-Enc(PK,Ψ): Let the maximum bound of rows
in LSSS access structure embedded in each file key
ciphertext be Ψ, then DO (i.e., mobile devices, sensor
nodes, etc.) selects random element s, λ′

i, πi ∈ Zp

and computes C′
f = e(g, g)a0s, C′′, C′

i,1 = ga1λ
′
i ,

C′′
i,1 = H−πi

ρ(i) , Ci,2, I0, I2 in offline phase when
he/she is plugged into a power source. Then, the DO

outputs the intermediate file key ciphertext CT ∗ =
(C′

f , C
′′, λ′

i, {C′
i,1, C

′′
i,1, Ci,2}i∈[1,Ψ]) and intermediate

index I∗ = (I0, I2).
• Online-Enc(PK,CT ∗, I∗,F ,W,A): The generation

process of file ciphertexts C∗ = {Encskf (f)} is the
same as that of original Enc. Then, the DO chooses
a column vector v = {s, r2, · · · , rn} and computes
C∗

i = λi − λ′
i, C′′

f = skf · C′
f . Finally, to build index Iw

each keyword in f , the DO further computes Ii,1 = ϖs
i ,

I3 = B
s/H(w)
0 , where ϖi = H

1/H(w)

ρ(i) , i ∈ [1, l]. The final
ciphertexts are defined as (C∗, CT = {CTf}, Ind =
{Iw}), where CTf = (C′′

f , C
′′, {C∗

i , C
′
i,1, C

′′
i,1, Ci,2}),

Iw = (I0, I2, I3, I1,i).

Search(PK, C∗, Ind, CT, Tw′ , S,A): Apart from verifying the
correctness of Eq. 6, the CSP also executes ciphertexts trans-
formation so that the burdensome ciphertexts decryption
burden exposed on resource-limited DU can be relieved.
For each attribute τ ∈ S, the CSP first computes ψ′

τ =

TK′
j,s,τ,1 · TK′′

j,s,τ,1 = H
(kjb0α+a0β)/Tr
τ , then he computes

ξ′ = e(g, g)a0s/Tr with Eq. 8. Finally, the CSP returns the search
results Cw′ , corresponding file key ciphertexts CT ∗ = {C′′

f } as
well as transformed ciphertexts ξ′ to CSP.

ξ′ =
e(C′′,K′

2)∏
i∈I(e(C

′
i,1A

C∗
i C′′

i,1,K
′
3) · e(Ci,2, ψρ(i)))ωi

. (8)

Dec(PK, Cw′ , CT ∗, ξ′, SK′
u,1): To obtain the file encryption

key skf , the DU computes skf = C′′
f /ξ

′Tr , which just takes one
exponentiation operation ET to recover each file encryption
key.

a. The modified MABKS system facilitates online/offline encryption and outsourced decryption, which greatly reduces the DO and DUs’
computation burden. It is worth noticing that the outsourced decryption does not incur burdensome computation burden on CSP as its
computation overhead still grows with the number of DUs’ submitted attributes rather than system attributes. Besides, we just assess the
performance of our original MABKS schemes in Section 6.2 as these modified algorithms do not bring much additional computation costs.

Fig. 7: Modified MABKS system

noticing that the tracing process periodically conducted by
CA is divided into two phases, namely secret key ownership
confirming and malicious AA tracing.

• To confirm that the suspected DU really own-
s submitted secret key components, the CA first
checks the key components (k′j,u,τ,1,K3) by ask-
ing DU with identity IDu. Notice that two ran-
dom elements α, β ∈ Zp in KeyGen are rede-
fined as α = H(IDu∥Ts∥0), β = H(IDu∥Ts∥1),
and the AAj sends (SKu,0, S, IDj , IDu, T s) to CA,
where Ts denotes the timestamp and SKu,0 =
{k′j,τ,u,0, k′′j,τ,u,0}τ∈S . Then, the CA computes α∗ =
H(IDu∥Ts∥0) = α, β∗ = H(IDu∥Ts∥1) = β,
k∗j,τ,u,0 = Ha0β

τ g−b1(α
∗+β∗). Finally, the CA checks

whether the following Eq. 9 holds. If Eq. 9 holds,
the suspected DU indeed owns aforementioned se-
cret key components; otherwise, the suspected DU
should be punished and then CA proceeds to next
phase.

e(Hτ ,K3) = e(g, k′j,u,τ,1k
∗
j,τ,u,0). (9)

• To further trace which AA has maliciously or incor-
rectly generated the secret key for above suspected

DU, the CA first computes PK∗ = (K3g
−a0β)1/b0α.

Then, the CA traverses the public keys of AAs, if
the public key PKj of AAj is equal to PK∗, we
can say that the AAj does not accurately verify the
legitimacy of suspected DU and the AAj should be
punished or kicked out of the trusted domain.

5.3 Extension to Support Attribute Update
In practice, the changes of DUs’ access permissions or roles
require that the CA should generate new secret keys so
that the DUs cannot access unauthorized information by
reusing their old or outdated secret keys. To enhance the
practicability and feasibility of the MABKS system in actual
scenarios, we take the attribute update into account in the
MABKS system.

When there are some attributes which need to be up-
dated, the CA first updates the master key MSK and
public parameters PK , then generates two transformation
keys to update the secret key SKu,1 of DU and indexes
Ind stored in CSP. Finally, it increases the version number
by one so that the DUs whose attributes match with the
access structure in other version number cannot generate
valid search tokens. Notice that the MABKS system just

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

updates a fraction of secret keys and indexes rather than
the whole ciphertexts. Thus, the MABKS system is suitable
for storage and computation resource-limited devices. The
modified algorithms are shown as follows:

• Setup: Let U∗ ⊆ U be the updated attributes. For
each attribute Att∗ ∈ U∗, the CA first selects a
new random element ν∗ ∈ Zp to update MSK and
computes HAtt∗ = Bν∗

0 to update PK , respective-
ly. Then, the CA outputs two transformation keys
ν′ = ν∗ − νAtt, ν′′ = ν∗/νAtt, where νAtt is the
original random element chosen for attribute Att∗.
Finally, the CA sends ν′, ν′′ to CSP and DU to update
Ind and SKu,1, respectively.

• KeyGen: Once receiving ν′′, the DU updates secret
key component k′′′j,u,Att∗,1 = BνAttγu

0 by computing
k∗j,u,Att∗,1 = (k′′′j,u,Att∗,1)

ν′′
= Hγu

Att∗ = Bν∗γu

0 , where
Att∗ denotes the updated attribute belonging to S.

• Enc: After gaining ν′, the CSP just needs to update
index component I1,i = ϖs

i as I∗1,i by computing
I∗1,i = I1,i · Iν

′

3 = H
s/H(w)
ρ(i) · B(sν∗−sνAtt)/H(w)

0 =

ϖs
Att∗ , where ϖAtt∗ is set as H1/H(w)

Att∗ .

6 ANALYSIS OF MABKS SYSTEM

In this section, the security and performance of MABKS
system are presented, respectively. Due to space limitation,
the correctness of the MABKS system is presented in Sup-
plemental Material C.

6.1 Security
In this section, we first prove that the MABKS system is se-
cure in selective-matrix and selective-attribute models with
following two theorems, then we show that the MABKS
system can resist user collusion attack and AA collusion
attack.

Theorem 1. There does not exist a polynomial-time ad-
versary that can selectively break the MABKS system with
a challenge matrix M∗ of size l∗ × n∗ on condition that
the decisional q-parallel BDHE assumption holds, where
l∗, n∗ ≤ q.

Proof: For convenience, the secret key components
K2 = ga0PKa1b0α

j ga1a0β , K3 = PKb0α
j ga0β can be reduced

as K2 = ga0ga1(kjb0α+a0β) = ga0ga1η , K3 = gkjb0α+a0β =
gη , where kjb0α + a0β = η. Besides, for each attribute
ψτ = k′j,u,τ,1 · k′′j,u,τ,1 = Hη

τ . Thus, the tuple (K2,K3, {ψτ})
is consistent with secret key form in CP-ABE scheme [33].

Assume that an adversary A can break the MABKS
system with a non-negligible advantage δ and choose a chal-
lenging matrix M∗

l∗×n∗ , we need to build a simulator B that
plays the decisional q-parallel BDHE problem as follows.
The detail proof of Theorem 1 is shown in Supplemental
Material D.

Theorem 2. The MABKS system is secure in the selective-
attribute model on the condition that the DBDH assumption
holds.

Proof: Assume that an adversary A can break the
MABKS system, then there must exist a simulator B that
can use A to break the DBDH assumption as follows:

Given the bilinear map parameters (G,GT , e, p, g), the
challenger C first selects a random bit κ ∈ {0, 1}. If κ = 0,
C returns a tuple (ga, gb, gc, e(g, g)abc) to B; otherwise, C
sends the tuple (ga, gb, gc, e(g, g)z) to B, where a, b, c, z ∈
Zp. Then, B outputs a guess bit κ′ ∈ {0, 1} and sets A0 =
ga0 = ga, g0 = gb, g∗ = gc. The detail proof of Theorem 2 is
shown in Supplemental Material E.

Apart from guaranteeing the MABKS system security,
the user collusion attack can be avoided in the MABKS
system and AA collusion attack can be prevented in the ex-
tended MABKS system. Similar to the CP-ABE scheme [33],
the MABKS system prevents user collusion attack by assign-
ing a global identity IDu for each DU. In KeyGen , secret
key components (K2,K3, {k′j,u,τ,1, k′′j,u,τ,1}) are associated
with a common random value kjb0α+ a0β ∈ Zp, and other
secret key components (K0,K1, {k′′′j,u,τ,1}) are confused by
a random element γu ∈ Zp. Thus, it is difficult for malicious
DUs to collude and gain valid secret keys without random
values (kjb0α+ a0β, γu).

Furthermore, the malicious AAs should not collude
with each other to spy out some sensitive information.
If two collusive AAs want to generate the valid secret
key for the same DU, they must have the same values
α, β. Assume that malicious AA1, AA2 can generate the
secret key components (K2,1,K3,1, {k′j,u,τ,1,1, k′′j,u,τ,1,1}),
(K2,2,K3,2, {k′j,u,τ,1,2, k′′j,u,τ,1,2}) for DU with identity IDu,
and random elements α, β are different, AA1 and AA2

can first have K2,1

K2,2
= ga1b0α(k1−k2), K3,1

K3,2
= gb0α(k1−k2),

k′
j,u,τ,1,1k

′′
j,u,τ,1,1

k′
j,u,τ,1,2k

′′
j,u,τ,1,2

= H
b0α(k1−k2)
τ , then they can gain ga0 =

(
K3,1

(K3,1/K3,2)k1/(k1−k2))
1/β . Finally, they can compute ga1b0 ,

ga1a0 , Ha0
τ , Hb0

τ . However, if the CA has kept the used
α, β, these two AAs will have different random elements
(α, β) and thus cannot generate the valid secret keys for the
DU. Therefore, the MABKS system can resist user collusion
attack [33] and AAs collusion attack [18].

6.2 Performance

Compared with prior schemes (i.e., HP-CPABKS [43], ABKS-
UR [14]), we show the performance analysis (e.g., theoretical
performance, actual performance, etc.) of the MABKS sys-
tem. Note that we assume that each attribute just has one
value in HP-CPABKS scheme.

TABLE 4: Theoretical computation costs in various schemes

Schemes MABKS HP-CPABKS [43] ABKS-UR [14]
KeyGen (3|S| + 8)E (2|U | + 1)E + ET (2|U | + 1)E + ET

Enc (4|U | + 3)E + 2ET + P (2|U | + 1)E + ET (|U | + 1)E + ET

Trap (2|S| + 2)E (2|U | + 1)E (2|U | + 1)E
Search 2P (2|U | + 1)P + ET (|U | + 1)P + ET

Dec (2|S| + 1)P + |S|ET — —

Notes. “|U |”: Number of system attributes; “|S|”: Number of submitted
attributes; “—”: Without consideration.

Firstly, we present the theoretical performance regarding
computation and storage costs in TABLE 4 and TABLE 5,
respectively. As for the computation costs of aforemen-
tioned schemes in TABLE 4, we mainly take several time-
consuming operations into consideration, namely bilinear
pairing operation P , exponentiation operation E (or ET) in
group G (or GT). In KeyGen, the secret key generation time

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

TABLE 5: Theoretical storage costs in various schemes

Schemes MABKS HP-CPABKS [43] ABKS-UR [14]
KeyGen (3|S| + 4)|G| + 3|Zp| Θ + (|U | + 2)|Zp| |Zp| + Θ + |GT |
Enc Θ + ∆ + 2|G| + 2|GT | Θ + (|U | + 1)|Zp| Θ + |GT |
Trap |Zp| + 2|G| Θ + 2|Zp| |Zp| + Θ
Search 2|GT | 4|GT | (|U | + 3)|GT |
Dec (2|S| + 1)|GT | + |S||G| — —

Notes: Θ = (2|U | + 1)|G|; ∆ = |U ||G| + |U ||Zp|.

in the MABKS system is fewer than that of the other two
schemes when setting |S| ≪ |U | in practice. Although the
computation cost of Enc in the MABKS system is more than
those of CP-ABKS, HP-CPABKS and ABKS-UR schemes, the
Enc does not affect user search experience as the ciphertexts
generation is just a one-time cost operation. As for trapdoor
generation in Trap, the MABKS system is obviously superior
to remaining schemes due to |S| ≪ |U |. As the computation
overhead of Search in the MABKS system is constant and
that of the other two schemes is affected by the variable
|U |, the MABKS system is much more efficient than afore-
mentioned three schemes in terms of ciphertexts retrieval.
In Dec, we just analyze the ciphertexts decryption time in
the MABKS system without considering other schemes since
the encrypted data in HP-CPABKS and ABKS-UR schemes
are decrypted by traditional symmetric or public-key al-
gorithms. In general, the MABKS system is efficient and
feasible in practice, which can be applied in a broad range of
applications. In TABLE 5, element lengths in G,GT ,Zp are
defined as |G|, |GT | and |Zp|, respectively. With the same
reasons about computation overhead analysis, the MABKS
system has fewer storage costs in KeyGen, Trap and Search
than the other two schemes. It is worth noticing that the
MABKS system has constant trapdoor size and storage cost
of ciphertexts retrieval, which is well suited for resource-
constrained devices (e.g., sensor nodes, smartphones, etc.).

Secondly, we conduct a series of experiments to assess
the actual performance of aforementioned schemes by utiliz-
ing the real-world Enron Email Dataset2. This public dataset
contains about 517431 emails from 151 users distributed in
3500 folders, and its size is about 422 MB. Each message
presented in the folders contains the senders, receiver email
address, data, time, subject, body, text and some other
specific technical details. The experimental simulations are
conducted on an Ubuntu Server 15.04 with Intel Core i5
Processor 2.3 GHz by utilizing C and Paring Based Cryp-
tography (PBC) Library. It is worth noticing that we select
the Type A as E(Fq) : y

2 = x3 + x, and the groups G,GT

of order p as the subgroups of E(Fq). When the lengths of
parameters p and q are set as 160 bits and 512 bits, respec-
tively, then we can have |Zp| = 160 bits, |G| = |GT | = 1024
bits. Finally, 10000 files are chosen from this public dataset,
and the experiments are executed 100 times. For ease of
comparison, we set |U | ∈ [1, 100], |S| ∈ [1, 50].

In Figs. 8a, 8b, the computation and storage costs of the
MABKS system are both affected by the number of user
attributes (|S|), while those of other schemes almost linearly
increase with the number of system attributes (|U |). In

2. http://www.cs.cmu.edu/∼enron/

KeyGen3, when setting |U | = 100, we notice that the com-
putation cost of MABKS linearly increases with increasing
the value of |S|, but the computation costs of HP-CPABKS
and ABKS-UR schemes still keep unchanged. With the same
reason shown in the analysis of computation overhead in the
key generation process, we can draw a similar conclusion
when comparing the storage costs in various schemes. Thus,
we can say that the MABKS system outperforms the other
two schemes in terms of key generation due to |S| ≪ 50 in
practice.

Apart from analyzing the CA’s key generation cost with
equipping with multiple AAs, we also compare the CA’s
computation costs in two cases (i.e., without AAs, with
AAs, etc.). Furthermore, we demonstrate how many key
generation queries can be processed by CA in above two
cases in one minute. Finally, we show the CA’s computation
cost for tracing each malicious AA. The CA’s additional per-
formance analysis about reduced rate and each AA tracing
is shown in TABLE 6.

TABLE 6: CA’s performance in key generation and each AA
tracing processes

Value of |S| Without AAs With AAs Reduced rate Tracing costs
10 (424 ms, 141) (138 ms, 435) 67% 247 ms
20 (666 ms, 90) (248 ms, 242) 63% 423 ms
30 (862 ms, 70) (374 ms, 161) 57% 661 ms
40 (1151 ms, 52) (503 ms, 120) 57% 968 ms
50 (1488 ms, 40) (614 ms, 98) 59% 1145 ms

Notes. “|S|”: Number of submitted attributes; “The symbol (∗, ∗)”
in above two cases (i.e., without AAs, with AAs, etc.) represents
the CA’s key generation cost for each DU and the number of key
generation queries processed by CA in one minute; Reduced rate
means that how much CA’s computation burden on each DU’s
key generation can be reduced by comparing above two cases;
AA tracing cost means that the CA’s computation cost for each
AA tracing.

As for the Enc in Figs. 8c, 8d, the MABKS system
needs to build indexes as well as encrypt file keys, but the
other schemes just generate the searchable indexes without
considering record key encryption. Therefore, the MABKS
system has higher computation and storage overhead when
compared with the other two schemes, but it will not affect
user search experience as ciphertexts generation process
is executed only once in cloud systems. Besides, we have
shown the idea that how to reduce the DO’s computation
burden by offering online/offline encryption mechanism in
Section 5.1.

When comparing the performance of trapdoor genera-
tion in Figs. 8e, 8f, we also fix the value of |U | as 100 and
vary that of |S| from 1 to 50. We notice that the computation
cost of the MABKS system increases with the value of
|S|, while those of other schemes remain nearly constant.
Besides, the length of trapdoor generation of the MABKS
system in Trap is constant |Zp| + 3|G|, and the storage
costs of other two schemes are affected by the value of
|U |. Hence, the performance of trapdoor generation in the
MABKS system is superior to that of the other two schemes.
When setting |S| = 50, |U | = 100, the MABKS system needs
(458 ms, 0.41 KB) to generate the search token, but the CP-

3. We just analyze the CA’s computation and storage costs in MABKS
without considering the selected AA.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

0 10 20 30 40 50
0

300

600

900

1200

1500

Ke
y

ge
ne

ra
tio

n
tim

e
(m

s)

Number of user attributes

 MABKS
 HP-CPABKS
 ABKS-UR

(a) Keygen

0 10 20 30 40 50
0.00

6.40x104

1.28x105

1.92x105

2.56x105

3.20x105

Le
ng

th
 o

f k
ey

 g
en

er
at

io
n

(b
it)

Number of user attributes

 MABKS
 HP-CPABKS
 ABKS-UR

(b) Keygen

0 20 40 60 80 100
0

500

1000

1500

2000

2500

C
ip

he
rte

xt
 g

en
er

at
io

n
tim

e
(s

)

Number of system attributes

 MABKS
 HP-CPABKS
 ABKS-UR

(c) Enc

0 20 40 60 80 100
0.0

8.0x104

1.6x105

2.4x105

3.2x105

4.0x105

Le
ng

th
 o

f c
ip

he
rte

xt
s

(b
it)

Number of system attributes

 MABKS
 HP-CPABKS
 ABKS-UR

(d) Enc

0 10 20 30 40 50
0

300

600

900

1200

1500

Tr
ap

do
or

 g
en

er
at

io
n

tim
e

(m
s)

Number of user attributes

 MABKS
 HP-CPABKS
 ABKS-UR

(e) Trap

0 20 40 60 80 100
0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

Le
ng

th
 o

f t
ra

pd
oo

r (
bi

t)

Number of system attributes

 MABKS
 HP-CPABKS
 ABKS-UR

(f) Trap

0 20 40 60 80 100
0

200

400

600

800

1000

C
ip

he
rte

xt
s

re
tri

ev
al

 ti
m

e
(m

s)

Number of system attributes

 MABKS
 HP-CPABKS
 ABKS-UR

(g) Search

0 20 40 60 80 100
0.00

2.40x104

4.80x104

7.20x104

9.60x104

1.20x105

Le
nt

h
of

 c
ip

he
rte

xt
 re

tri
ev

al
 (b

it)

Number of system attributes

 MABKS
 HP-CPABKS
 ABKS-UR

(h) Search

Fig. 8: Practical performance analysis in various algorithms.

ABKS, HP-CPABKS and ABKS-UR schemes take (952 ms,
27.03 KB), (954 ms, 27.01 KB) to issue trapdoor generations,
respectively. Thus, the MABKS system is appropriate for
most applications with resource-constrained devices.

In Figs. 8g, 8h, the performance of ciphertexts retrieval in
the MABKS system in Search is superior to that of the other
two schemes. The computation cost (2P) and storage cost
(2|GT |) of the MABKS system are constant, but the com-
putation overhead of other aforementioned two schemes
almost linearly increases as the value of |U | ∈ [1, 100] in-
creases. Furthermore, the storage cost of ABKS-UR scheme
is still affected by the variable |U |. For instance, when
setting |S| = 40, |U | = 40, the computation and storage
costs of ciphertexts retrieval in the MABKS system are 14
ms and 0.26 KB, and those of other schemes (e.g., HP-
CPABKS, ABKS-UR) are (309 ms, 0.50 KB), (141 ms, 5.02
KB), respectively.

0 10 20 30 40 50
0

200

400

600

800

1000

C
ip

he
rte

xt
s

de
cr

yp
tio

n
tim

e
(m

s)

Number of user atributes (|S|)

Performance of Dec algorithm in MABKS

Computation cost

Storage cost

0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

Le
ng

th
 o

f c
ip

he
rte

xt
s

de
cr

yp
tio

n
(b

it)

(a) Dec

Fig. 9: Performance analysis of Dec in MABKS.

In Fig. 9a, we just analyze the performance of the
MABKS system in Dec as other schemes do not need to
decrypt record encryption keys. By encrypting symmetric
keys with DO’s specified strategy, the MABKS system can
achieve file-level fine-grained access control and further
guarantee keys security even though malicious DUs collude
with each other. Besides, both the computation and storage

costs increase with increasing the number of user attributes
|S| ∈ [1, 50]. For instance, when setting |S| = 20, the
computation and storage costs of MABKS system are 247
ms and 8.80 KB during decrypting each search result. In the
modified MABKS system, we also show how to outsource
ciphertexts decryption tasks to CSP. Then, the DU just needs
one exponentiation operation to recover each file key. Note
that outsourced decryption mechanism does not incur much
computation burden on CSP as the outsourced decryption
overhead grows with the value of S instead of U .

To further evaluate the performance of the MABKS sys-
tem as well as other schemes (e.g., HP-CPABKS scheme,
ABKS-UR scheme) in terms of KeyGen, Enc, Trap and
Search, we also conduct a large number of tests over
other datasets (e.g., National Science Foundation Research
Awards Abstract 1990-2003 dataset (or NSF dataset)4, the
Request For Comments database (or RFC dataset)5). For
comparison, we set |U | = 100, |S| = 50, randomly s-
elect 10000 files from these three datasets, and conduct
the experiments 100 times. The test results are shown in
TABLE 7. The performance of aforementioned four schemes
is approximately similar in different datasets. Besides, the
performance of the MABKS systems outperforms that of
other schemes except for the Enc algorithm.

In summary, the performance assessment of the above
schemes echoes those of the theoretical analysis shown in
TABLE 4 and TABLE 5. In supporting a heterogeneous archi-
tecture and fine-grained keyword search functionalities, the
MABKS system does not incur additional computation and
storage costs. Furthermore, our extended MABKS system
only executes (2P + E)|S′′|, (2|U∗| + 1)E operations to
trace AAs and update attributes, where |S′′| denotes the
number of suspected attributes in S and |U∗| represents the
number of updated attributes. Clearly, it does not incur high
computation overhead as the values of variables |S′′|, |U∗|

4. http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
5. http://www.ietf.org/rfc.html

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

TABLE 7: The actual performance analysis in different
datasets

Schemes MABKS HP-CPABKS [43] ABKS-UR [14]
Performance CC SC CC SC CC SC

KeyGen
Enron 610 ms 29.65 KB 829 ms 27.12 KB 981 ms 25.27 KB
NSF 589 ms 28.87 KB 779 ms 26.49 KB 974 ms 25.18 KB
RFC 641 ms 29.94 KB 883 ms 27.31 KB 991 ms 26.03 KB

Enc
Enron 1997 s 433.8 MB 1206 s 300.8 MB 848 s 273.6 MB
NSF 1864 s 419.3 MB 1178 s 289.6 MB 837 s 269.4 MB
RFC 2049 s 453.5 MB 1295 s 314.2 MB 853 s 277.4 MB

Trap
Enron 458 ms 0.41 KB 952 ms 27.03 KB 954 ms 27.01 KB
NSF 432 ms 0.38 KB 938 ms 26.69 KB 941 ms 26.86 KB
RFC 479 ms 0.48 KB 978 ms 27.65 KB 971 ms 27.43 KB

Search
Enron 16 ms 0.26 KB 889 ms 0.50 KB 41 ms 13.78 KB
NSF 15 ms 0.24 KB 864 ms 0.46 KB 37 ms 13.65 KB
RFC 19 ms 0.27 KB 912 ms 0.51 KB 52 ms 13.86 KB

Notes. “CC”: Computation Costs; “SC”: Storage Costs.

are very small. Hence, the MABKS system is practical in a
broad range of applications.

7 CONCLUSION

In this paper, we proposed an efficient and feasible MABKS
system to support multiple authorities, in order to avoid
having performance bottleneck at a single point in cloud
systems. Furthermore, the presented MABKS system allows
us to trace malicious AAs (e.g., to prevent collusion attacks)
and support attribute update (e.g., to avoid unauthorized
access using outdated secret keys). We then demonstrated
the selective security level of the system in selective-matrix
and selective-attribute models under decisional q-parallel
BDHE and DBDH assumptions, respectively. We also e-
valuated the system’s performance and demonstrated that
significant computation and storage cost reductions were
achieved, in comparison to prior ABKS schemes. However,
the main flaw is that the MABKS system cannot support ex-
pressive search queries such as conjunctive keyword search,
fuzzy search, subset search and so on. The future work will
focus on building an efficient and flexible index construction
so that the MABKS system is capable of supporting various
search requests.

ACKNOWLEDGMENT

This work was supported by the National Natural Sci-
ence Foundation of China (No. 61702404, No. 61702105,
No. U1804263), the Fundamental Research Funds for the
Central Universities (No. JB191506), the National Natu-
ral Science Foundation of Shaanxi Province (No. 2019JQ-
005), the China Postdoctoral Science Foundation Funded
Project (No. 2017M613080), the project funded by China
Scholarship Council (No. 201806965010), the Singapore Na-
tional Research Foundation under the NCR Award (No.
NRF2014NCR-NCR001-012), and the AXA Research Fund.

REFERENCES

[1] Y. T. Demey and M. Wolff, “Simiss: A model-based searching
strategy for inventory management systems,” IEEE Internet of
Things Journal, vol. 4, no. 1, pp. 172–182, 2017.

[2] C. Huang, R. Lu, H. Zhu, J. Shao, and X. Lin, “Fssr: Fine-
grained ehrs sharing via similarity-based recommendation in
cloud-assisted ehealthcare system,” in Proc. ACM on Asia Confer-
ence on Computer and Communications Security (AsiaCCS’16), 2016,
pp. 95–106.

[3] Y. Miao, J. Weng, X. Liu, K.-K. R. Choo, Z. Liu, and H. Li, “Enabling
verifiable multiple keywords search over encrypted cloud data,”
Information Sciences, vol. 465, pp. 21–37, 2018.

[4] Y. Miao, J. Ma, X. Liu, J. Weng, H. Li, and H. Li, “Lightweight
fine-grained search over encrypted data in fog computing,” IEEE
Transactions on Services Computing, vol. PP, no. 1, pp. 1–14, 2018.

[5] Y. Miao, J. Ma, X. Liu, X. Li, Q. Jiang, and J. Zhang, “Attribute-
based keyword search over hierarchical data in cloud computing,”
IEEE Transactions on Services Computing, vol. PP, no. 1, pp. 1–14,
2017.

[6] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symposium on Security
and Privacy (SP’00), 2000, pp. 44–55.

[7] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT’04), vol. 3027, 2004, pp. 506–522.

[8] H. Li, D. Liu, Y. Dai, T. H. Luan, and S. Yu, “Personalized search
over encrypted data with efficient and secure updates in mobile
clouds,” IEEE Transactions on Emerging Topics in Computing, vol. 6,
no. 1, pp. 97–109, 2018.

[9] J. Ning, J. Xu, K. Liang, F. Zhang, and E.-C. Chang, “Passive attacks
against searchable encryption,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 3, pp. 789–802, 2019.

[10] X. Zhang, Y. Tang, H. Wang, C. Xu, Y. Miao, and H. Cheng,
“Lattice-based proxy-oriented identity-based encryption with key-
word search for cloud storage,” Information Sciences, vol. PP, pp.
1–15, 2019.

[11] J. Li, Y. Huang, Y. Wei, S. Lv, Z. Liu, C. Dong, and W. Lou,
“Searchable symmetric encryption with forward search privacy,”
IEEE Transactions on Dependable and Secure Computing, vol. PP, pp.
1–15, 2019.

[12] Y. Miao, J. Ma, X. Liu, X. Li, Z. Liu, and H. Li, “Practical attribute-
based multi-keyword search scheme in mobile crowdsourcing,”
IEEE Internet of Things Journal, vol. 5, no. 4, pp. 3008–3018, 2018.

[13] Q. Zheng, S. Xu, and G. Ateniese, “Vabks: verifiable attribute-
based keyword search over outsourced encrypted data,” in Proc.
IEEE Conference on Computer Communications (INFOCOM’14), 2014,
pp. 522–530.

[14] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your
right: verifiable attribute-based keyword search with fine-grained
owner-enforced search authorization in the cloud,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 27, no. 4, pp. 1187–
1198, 2016.

[15] L. Harn and J. Ren, “Generalized digital certificate for user au-
thentication and key establishment for secure communications,”
IEEE Transactions on Wireless Communications, vol. 10, no. 7, pp.
2372–2379, 2011.

[16] M. Chase, “Multi-authority attribute based encryption,” in Proc.
IACR Theory of Cryptography Conference (TCC’07), 2007, pp. 515–
534.

[17] K. Yang and X. Jia, “Expressive, efficient, and revocable data access
control for multi-authority cloud storage,” IEEE transactions on
parallel and distributed systems, vol. 25, no. 7, pp. 1735–1744, 2014.

[18] K. Xue, Y. Xue, J. Hong, W. Li, H. Yue, D. S. Wei, and P. Hong,
“Raac: Robust and auditable access control with multiple attribute
authorities for public cloud storage,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 12, no. 4, pp. 953–967, 2017.

[19] V. K. A. Sandor, Y. Lin, X. Li, F. Lin, and S. Zhang, “Efficient de-
centralized multi-authority attribute based encryption for mobile
cloud data storage,” Journal of Network and Computer Applications,
vol. 129, pp. 25–36, 2019.

[20] J. Ning, X. Dong, Z. Cao, L. Wei, and X. Lin, “White-box traceable
ciphertext-policy attribute-based encryption supporting flexible
attributes,” IEEE Transactions on Information Forensics and Security,
vol. 10, no. 6, pp. 1274–1288, 2015.

[21] Y. Yang, X. Liu, X. Zheng, C. Rong, and W. Guo, “Efficient
traceable authorization search system for secure cloud storage,”
IEEE Transactions on Cloud Computing, vol. PP, pp. 1–14, 2018.

[22] J. Ning, Z. Cao, X. Dong, and L. Wei, “White-box traceable cp-abe
for cloud storage service: how to catch people leaking their access
credentials effectively,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 5, pp. 883–897, 2018.

[23] J. Hur and D. K. Noh, “Attribute-based access control with effi-
cient revocation in data outsourcing systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 22, no. 7, pp. 1214–1221,
2011.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

[24] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han, “Flexible and fine-
grained attribute-based data storage in cloud computing,” IEEE
Transactions on Services Computing, vol. 10, no. 5, pp. 785–796, 2017.

[25] Q. Xu, C. Tan, W. Zhu, Y. Xiao, Z. Fan, and F. Cheng, “De-
centralized attribute-based conjunctive keyword search scheme
with online/offline encryption and outsource decryption for cloud
computing,” Future Generation Computer Systems, vol. PP, pp. 1–33,
2019.

[26] Q. Huang and H. Li, “An efficient public-key searchable encryp-
tion scheme secure against inside keyword guessing attacks,”
Information Sciences, vol. 403, pp. 1–14, 2017.

[27] Y. Yang and M. Ma, “Conjunctive keyword search with designat-
ed tester and timing enabled proxy re-encryption function for
e-health clouds,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 4, pp. 746–759, 2016.

[28] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” IEEE
Transactions on parallel and distributed systems, vol. 25, no. 1, pp.
222–233, 2014.

[29] H. Li, Y. Yang, T. H. Luan, X. Liang, L. Zhou, and X. S. Shen,
“Enabling fine-grained multi-keyword search supporting classi-
fied sub-dictionaries over encrypted cloud data,” IEEE Transactions
on Dependable and Secure Computing, vol. 13, no. 3, pp. 312–325,
2016.

[30] H. Li, D. Liu, Y. Dai, T. H. Luan, and X. S. Shen, “Enabling efficient
multi-keyword ranked search over encrypted mobile cloud data
through blind storage,” IEEE Transactions on Emerging Topics in
Computing, vol. 3, no. 1, pp. 127–138, 2015.

[31] Q. Chai and G. Gong, “Verifiable symmetric searchable encryption
for semi-honest-but-curious cloud servers,” in Proc. IEEE Interna-
tional Conference on Communications (ICC’12), 2012, pp. 917–922.

[32] W. Sun, X. Liu, W. Lou, Y. T. Hou, and H. Li, “Catch you if you
lie to me: Efficient verifiable conjunctive keyword search over
large dynamic encrypted cloud data,” in Proc. IEEE Conference on
Computer Communications (INFOCOM’15), 2015, pp. 2110–2118.

[33] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proc. IEEE Symposium on Security
and Privacy (SP’07), 2007, pp. 321–334.

[34] A. Balu and K. Kuppusamy, “An expressive and provably secure
ciphertext-policy attribute-based encryption,” Information Sciences,
vol. 276, pp. 354–362, 2014.

[35] J. Li, W. Yao, J. Han, Y. Zhang, and J. Shen, “User collusion
avoidance cp-abe with efficient attribute revocation for cloud
storage,” IEEE Systems Journal, 2017.

[36] P. Zhang, Z. Chen, K. Liang, S. Wang, and T. Wang, “A cloud-based
access control scheme with user revocation and attribute update,”
in Proc. Australasian Conference on Information Security and Privacy
(ACISP’16), 2016, pp. 525–540.

[37] Z. Wan, J. L. Liu, and R. H. Deng, “Hasbe: a hierarchical attribute-
based solution for flexible and scalable access control in cloud
computing,” IEEE transactions on information forensics and security,
vol. 7, no. 2, pp. 743–754, 2012.

[38] H. Cui, R. H. Deng, G. Wu, and J. Lai, “An efficient and expressive
ciphertext-policy attribute-based encryption scheme with partially
hidden access structures,” in Proc. International Conference on Prov-
able Security (ProvSec’16), 2016, pp. 19–38.

[39] X. Mao, J. Lai, Q. Mei, K. Chen, and J. Weng, “Generic and ef-
ficient constructions of attribute-based encryption with verifiable
outsourced decryption,” IEEE Transactions on Dependable and Secure
Computing, vol. 13, no. 5, pp. 533–546, 2016.

[40] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,”
in Proc. ACM conference on Computer and communications security
(CCS’06), 2006, pp. 89–98.

[41] J. Li, X. Lin, Y. Zhang, and J. Han, “Ksf-oabe: outsourced attribute-
based encryption with keyword search function for cloud stor-
age,” IEEE Transactions on Services Computing, vol. 10, no. 5, pp.
715–725, 2017.

[42] Y. Miao, X. Liu, K.-K. R. Choo, R. H. Deng, J. Li, H. Li, and J. Ma,
“Privacy-preserving attribute-based keyword search in shared
multi-owner setting,” IEEE Transactions on Dependable and Secure
Computing, vol. PP, pp. 1–15, 2019.

[43] S. Qiu, J. Liu, Y. Shi, and R. Zhang, “Hidden policy ciphertext-
policy attribute-based encryption with keyword search against
keyword guessing attack,” Science China Information Sciences,
vol. 60, no. 5, p. 052105, 2017.

[44] B. Waters, “Ciphertext-policy attribute-based encryption: An ex-
pressive, efficient, and provably secure realization.” in Proc. Inter-
national Conference on Practice and Theory in Public Key Cryptography
(PKC’11), vol. 6571, 2011, pp. 53–70.

[45] A. Sahai and B. Waters, “Fuzzy identity-based encryption.” in
Proc. Annual International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT’05), vol. 3494, 2005, pp.
457–473.

[46] D. Boneh and M. Franklin, “Identity-based encryption from the
weil pairing,” in Proc. Annual International Cryptology Conference on
Advances in Cryptology (CRYPTO’01), 2001, pp. 213–229.

[47] W. T. Polk and N. E. Hastings, “Bridge certification authorities:
Connecting b2b public key infrastructures,” in PKI Forum Meeting
Proceedings, 2000, pp. 27–29.

[48] S. Hohenberger and B. Waters, “Online/offline attribute-based en-
cryption,” in Proc. International workshop on public key cryptography
(PKC’14). Springer, 2014, pp. 293–310.

[49] M. Green, S. Hohenberger, B. Waters et al., “Outsourcing the de-
cryption of abe ciphertexts.” in Proc. USENIX Security Symposium
(USENIX’11), vol. 2011, no. 3, 2011.

[50] J. Ning, Z. Cao, X. Dong, K. Liang, H. Ma, and L. Wei, “Auditable
σ-time outsourced attribute-based encryption for access control in
cloud computing,” IEEE Transactions on Information Forensics and
Security, vol. 13, no. 1, pp. 94–105, 2018.

Yinbin Miao (M’18) received the B.E. degree with the Department of T-
elecommunication Engineering from Jilin University, Changchun, China,
in 2011, and Ph.D. degree with the Department of Telecommunication
Engineering from Xidian University, Xi’an, China, in 2016. He is also a
postdoctor in Nanyang Technological University from September 2018
to September 2019. He is currently a Lecturer with the Department
of Cyber Engineering in Xidian University, Xi’an, China. His research
interests include information security and applied cryptography.

Robert H. Deng (F’16) is AXA Chair Professor of Cybersecurity and
Professor of Information Systems in the School of Information Systems,
Singapore Management University since 2004. His research interests
include data security and privacy, multimedia security, network and
system security. He served/is serving on the editorial boards of many
international journals, including TFIS, TDSC. He has received the Dis-
tinguished Paper Award (NDSS 2012), Best Paper Award (CMS 2012),
Best Journal Paper Award (IEEE Communications Society 2017). He is
a fellow of the IEEE.

Ximeng Liu (M’16) received the B.E. degree with the Department of
Electronic Engineering from Xidian University, Xi’an, China, in 2010 and
Ph.D. degree with the Department of Telecommunication Engineering
from Xidian University, Xi’an, China in 2015. He is currently a post-doctor
with the Department of Information System, Singapore Management U-
niversity, Singapore. His research interests include applied cryptography
and big data security. He is a member of the IEEE.

Kim-Kwang Raymond Choo (SM’15) received the Ph.D. in Information
Security in 2006 from Queensland University of Technology, Australia.
He currently holds the Cloud Technology Endowed Professorship at The
University of Texas at San Antonio (UTSA). He is the recipient of various
awards including the UTSA College of Business Col. Jean Piccione and
Lt. Col. Philip Piccione Endowed Research Award for Tenured Faculty in
2018, ESORICS 2015 Best Paper Award. He is an Australian Computer
Society Fellow, and an IEEE Senior Member.

Hongjun Wu received the B.Eng. and M.Eng. degrees from the National
University of Singapore in 1998 and 2000, respectively, and the Ph.D.
degree from the Katholieke Universiteit Leuven in 2008. He was a
Nanyang Assistant Professor from 2010 to 2016. He has been an Asso-
ciate Professor with the School of Physical and Mathematical Sciences,
Nanyang Technological University, since 2016. His research interests
include cryptography, cryptanalysis, and computer security.

Hongwei Li (M’12) received the Ph.D. degree in computer software
and theory from the University of Electronic Science and Technology
of China, Chengdu, China, in 2008. He is currently a professor with
the School of Computer Science and Engineering, University of Elec-
tronic Science and Technology of China. His research interests include
network security, applied cryptography, and trusted computing. He is
a member of IEEE, a member of China Computer Federation and a
member of China Association for Cryptologic Research.

	Multi-authority attribute-based keyword search over encrypted cloud data
	Citation
	Author

	tmp.1583999607.pdf.pjrQp

