
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Information 
Systems School of Information Systems 

11-2009 

Fair model checking with process counter abstraction Fair model checking with process counter abstraction 

Jun SUN 
Singapore Management University, junsun@smu.edu.sg 

Yang LIU 

Abhik ROYCHOUDHURY 

Shanshan LIU 

Jin Song DONG 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Programming Languages and Compilers Commons, and the Software Engineering 

Commons 

Citation Citation 
SUN, Jun; LIU, Yang; ROYCHOUDHURY, Abhik; LIU, Shanshan; and DONG, Jin Song. Fair model checking 
with process counter abstraction. (2009). Proceedings of the Second World Congress Eindhoven, The 
Netherlands, 2009 November 2-6. 123-139. Research Collection School Of Information Systems. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5039 

This Conference Proceeding Article is brought to you for free and open access by the School of Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at 
Singapore Management University. For more information, please email libIR@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5039&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5039&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5039&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5039&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Fair Model Checking with Process Counter Abstraction�

Jun Sun, Yang Liu, Abhik Roychoudhury, Shanshan Liu, and Jin Song Dong

School of Computing, National University of Singapore
{sunj,liuyang,abhik,liushans,dongjs}@comp.nus.edu.sg

Abstract. Parameterized systems are characterized by the presence of a large
(or even unbounded) number of behaviorally similar processes, and they often
appear in distributed/concurrent systems. A common state space abstraction for
checking parameterized systems involves not keeping track of process identifiers
by grouping behaviorally similar processes. Such an abstraction, while useful,
conflicts with the notion of fairness. Because process identifiers are lost in the
abstraction, it is difficult to ensure fairness (in terms of progress in executions)
among the processes. In this work, we study the problem of fair model checking
with process counter abstraction. Even without maintaining the process identi-
fiers, our on-the-fly checking algorithm enforces fairness by keeping track of the
local states from where actions are enabled / executed within an execution trace.
We enhance our home-grown PAT model checker with the technique and show
its usability via the automated verification of several real-life protocols.

1 Introduction

Parameterized concurrent systems consist of a large (or even unbounded) number of
behaviorally similar processes of the same type. Such systems frequently arise in dis-
tributed algorithms and protocols (e.g., cache coherence protocols, control software
in automotive / avionics) — where the number of behaviorally similar processes is
unbounded during system design, but is fixed later during system deployment. Thus,
the deployed system contains fixed, finite number of behaviorally similar processes.
However during system modeling/verification it is convenient to not fix the number of
processes in the system for the sake for achieving more general verification results.
A parameterized system represents an infinite family of instances, each instance be-
ing finite-state. Property verification of a parameterized system involves verifying that
every finite state instance of the system satisfies the property in question. In general,
verification of parameterized systems is undecidable [2].

A common practice for analyzing parameterized systems can be to fix the number
of processes to a constant. To avoid state space explosion, the constant is often small,
compared to the size of the real applications. Model checking is then performed in the
hope of finding a bug which is exhibited by a fixed (and small) number of processes.
This practice can be incorrect because the real size of the systems is often unknown
during system design (but fixed later during system deployment). It is also difficult to
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fix the number of processes to a “large enough” constant such that the restricted sys-
tem with fixed number of processes is observationally equivalent to the parameterized
system with unboundedly many processes. Computing such a large enough constant is
undecidable after all, since the parameterized verification problem is undecidable.

Since parameterized systems contain process types with large number of behav-
iorally similar processes (whose behavior follows a local finite state machine or FSM),
a natural state space abstraction is to group the processes based on which state of the
local FSM they reside in [23, 7, 24]. Thus, instead of saying “process 1 is in state s ,
process 2 is in state t and process 3 is in state s” — we simply say “2 processes are
in state s and 1 is in state t”. Such an abstraction reduces the state space by exploiting
a powerful state space symmetry (concrete global states with different process identi-
fiers but the same count of the processes in the individual local states get grouped into
the same abstract global state), as often evidenced in real-life concurrent systems such
as a caches, memories, mutual exclusion protocols and network protocols. Verification
by traversing the abstract state space here produces a sound and complete verification
procedure. However, if the total number of processes is unbounded, the aforementioned
counter abstraction still does not produce a finite state abstract system. The count of
processes in a local state can still be ω (unbounded number), if the total number of
processes is ω. To achieve a finite state abstract system, we can adopt a cutoff number,
so that any count greater than the cutoff number is abstracted to ω. This yields a finite
state abstract system, model checking which we get a sound but incomplete verification
procedure — any linear time Temporal Logic (LTL) property verified in the abstract
system holds for all concrete finite-state instances of the system, but not vice-versa.

Contributions. In this paper, we study the problem of fair model checking with pro-
cess counter abstraction. Imagine a bus protocol where a large / unbounded number of
processors are contending for bus access. If we do not assume any fairness in the bus
arbitration policy, we cannot prove the non-starvation property, that is, bus accesses by
processors are eventually granted. In general, fairness constraints are often needed for
verification of such liveness properties — ignoring fairness constraints results in unre-
alistic counterexamples (e.g. where a processor requesting for bus access is persistently
ignored by the bus arbiter for example) being reported. These counterexamples are of
no interest to the protocol designer. To systematically rule out such unrealistic coun-
terexamples (which never happen in a real implementation), it is important to verify
the abstract system produced by our process counter abstraction under fairness. We do
so in this paper. However, this constitutes a significant technical challenge — since we
do not even keep track of the process identifiers, how can we ensure a fair scheduling
among the individual processes!

In this work, we develop a novel technique for model checking parameterized sys-
tems under (weak or strong) fairness, against linear temporal logic (LTL) formulae.
We show that model checking under fairness is feasible, even without the knowledge
of process identifiers. This is done by systematically keeping track of the local states
from which actions are enabled / executed within any infinite loop of the abstract state
space. We develop necessary theorems to prove the soundness of our technique, and
also present efficient on-the-fly model checking algorithms. Our method is realized
within our home-grown PAT model checker [26]. The usability / scalability of PAT is
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demonstrated via (i) automated verification of several real-life parameterized systems
and (ii) a quantitative comparison with the SPIN model checker [17].

2 Preliminaries

We begin by formally defining our system model.

Definition 1 (System Model). A system model is a structure S = (VarG , initG ,Proc)
where VarG is a finite set of global variables, initG is their initial valuation and Proc
is a parallel composition of multiple processes Proc = P1 ‖ P2 ‖ · · · such that each
process Pi = (Si , initi ,→i) is a transition system.

We assume that all global variables have finite domains and each Pi has finitely many
local states. A local state represents a program text together with its local context
(e.g. valuation of the local variables). Two local states are equivalent if and only if
they represent the same program text and the same local context. Let State be the set
of all local states. We assume that State has finitely many elements. This disallows
unbounded non-tail recursion which results in infinite different local states. Proc may
be composed of infinitely many processes. Each process has a unique identifier. In an
abuse of notation, we use Pi to represent the identifier of process Pi when the con-
text is clear. Notice that two local states from different processes are equivalent only
if the process identifiers are irrelevant to the program texts they represent. Processes
may communicate through global variables, (multi-party) barrier synchronization or
synchronous/asynchronous message passing. It can be shown that parallel composition
‖ is symmetric and associative.

Example 1. Fig. 1 shows a model of the readers/writers problem, which is a simple pro-
tocol for the coordination of readers and writers accessing a shared resource. The proto-
col, which we refer to as RW , is designed for arbitrary number of readers and writers.
Several readers can read concurrently, whereas writers require exclusive access. Global
variable counter records the number of readers which are currently accessing the re-
source; writing is true if and only if a writer is updating the resource. A transition is of
the form [guard ]name{assignments}, where guard is a guard condition which must
be true for the transition to be taken and assignments is a simple sequential program
which updates global variables. The following are properties which are to be verified.

�!(counter > 0 ∧ writing) – Prop1

��counter > 0 – Prop2

Property Prop1 is a safety property which states that writing and reading cannot occur
simultaneously. Property Prop2 is a liveness property which states that always eventu-
ally the resource can be accessed by some reader.

In order to define the operational semantics of a system model, we define the notion of a
configuration to capture the global system state during the execution, which is referred
to as concrete configurations. This terminology distinguishes the notion from the state
space abstraction and the abstract configurations which will be introduced later.
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proc Reader proc Writer

R0 R1
startread{counter++}

stopread{counter--} stopwrite{writing:=false}

startwrite{writing:=true}
W0 W1

[counter==0 && !writing]

global variables: int counter = 0; bool writing = false; 

[!writing]

Fig. 1. Readers/writers model

Definition 2 (Concrete Configuration). Let S be a system model. A concrete config-
uration of S is a pair (v , 〈s1, s2, · · ·〉) where v is the valuation of the global variables
(channel buffers may be viewed as global variables), and si ∈ Si is the local state in
which process Pi is residing.

A system transition is of the form (v , 〈s1, s2, · · ·〉) →Ag (v ′, 〈s ′1, s ′2, · · ·〉) where the
system configuration after the transition is (v ′, 〈s ′1, s ′2, · · ·〉) and Ag is a set of partici-
pating processes. For simplicity, set Ag (short for agent ) is often omitted if irreverent.
A system transition could be one of the following forms:

(i) a local transition of Pi which updates its local state (from si to s ′i ) and possibly
updating global variables (from v to v ′). An example is the transition from R0 to R1 of
a reader. In such a case, Pi is the participating process, i.e., Ag = {Pi}.

(ii) a multi-party synchronous transition among processes Pi , · · · ,Pj . Examples are
message sending/receiving through channels with buffer size 0 (e.g., as in Promela [17])
and alphabetized barrier synchronization in the classic CSP. In such a case, local states
of the participating processes are updated simultaneously. The participating processes
are Pi , · · · ,Pj .

(iii) process creation of Pm by Pi . In such a case, an additional local state is appended
to the sequence 〈s1, s2, · · ·〉, and the state of Pi is changed at the same time. Assume for
now that the sequence 〈s1, s2, · · ·〉 is always finite before process creation. It becomes
clear in Section 5 that this assumption is not necessary. In such a case, the participating
processes are Pi and Pm .

(iv) process deletion of Pi . In such case, the local state of Pi is removed from the
sequence (〈s1, s2, · · ·〉). The participating process is Pi .

Definition 3 (Concrete Transition System). Let S = (VarG , initG ,Proc) be a sys-
tem model, where Proc = P1 ‖ P2 ‖ · · · such that each process Pi = (Si , initi ,→i)
is a local transition system. The concrete transition system corresponding to S is a 3-
tuple TS = (C , init , ↪→) where C is the set of all reachable system configurations,
init is the initial concrete configuration (initG , 〈init1, init2, · · ·〉) and ↪→ is the global
transition relation obtained by composing the local transition relations →i in parallel.

An execution of S is an infinite sequence of configurations E = 〈c0, c1, · · · , ci , · · ·〉
where c0 = init and ci ↪→ ci+1 for all i ≥ 0. Given a model S and a system configura-
tion c, let enabledS(c) (or enabled(c) when the context is clear) be the set of processes
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which is ready to make some progress, i.e., enabled(c) = {Pi | ∃ c′, c ↪→Ag c′ ∧
Pi ∈ Ag}. The following defines two common notions of fairness in system execu-
tions, i.e., weak fairness and strong fairness.

Definition 4 (Weak Fairness). Let S be a system model. An execution 〈c1, c2, · · ·〉 of
TS is weakly fair, if and only if, for every Pi there are infinitely many k such that
ck →Ag ck+1 and Pi ∈ Ag if there exists n so that Pi ∈ enabled(cm ) for all m > n .

Weak fairness states that if a process becomes enabled forever after some steps, then it
must be engaged infinitely often. From another point of view, weak fairness guarantees
that each process is only finitely faster than the others.

Definition 5 (Strong Fairness). Let S be a system model. An execution 〈c1, c2, · · ·〉
of TS is strongly fair, if and only if, for every Pi there are infinitely many k such that
ck →Ag ck+1 and Pi ∈ Ag if there are infinitely many n such that Pi ∈ enabled(cn ).

Strong fairness states that if a process is infinitely often enabled, it must be infinitely
often engaged. This type of fairness is particularly useful in the analysis of systems that
use semaphores, synchronous communication, and other special coordination primi-
tives. Clearly, strong fairness guarantees weak fairness.

In this work, we assume that system properties are expressed as LTL formulae consti-
tuted by propositions on global variables. One way to state property of a single process
is to migrate part of its local context to global variables. Let φ be a property. S satisfies
φ, written as S � φ, if and only if every execution of TS satisfies φ. S satisfies φ under
weak fairness, written as S �wf φ, if and only if, every weakly fair execution of TS
satisfies φ. T satisfies φ under strong fairness, written as T �sf φ, if and only if, every
strongly fair execution of T satisfies φ.

Given the RW model presented in Fig. 1, it can be shown that RW � Prop1. It is,
however, not easy to prove it using standard model checking techniques. The challenge
is that many or unbounded number of readers and writers cause state space explosion.
Also, RW fails Prop2 without fairness constraint. For instance, a counterexample is
〈startwrite, stopwrite〉∞, i.e., a writer keeps updating the resource without any reader
ever accessing it. This is unreasonable if the system scheduler is well-designed or the
processors that the readers/writers execute on have comparable speed. To avoid such
counterexamples, we need to perform model checking under fairness.

3 Process Counter Representation

Parameterized systems contain behaviorally similar or even identical processes. Given
a configuration (v , 〈· · · , si , · · · , sj , · · ·〉), multiple local states1 may be equivalent. A
natural “abstraction” is to record only how many copies of a local state are there.

Let S be a system model. An alternative representation of a concrete configuration is
a pair (v , f ) where v is the valuation of the global variables and f is a total function from
a local state to the set of processes residing at the state. For instance, given that R0 is a
local state in Fig. 1, f (R0) = {Pi ,Pj ,Pk} if and only if reader processes Pi , Pj and Pk

1 The processes residing at the local states may or may not have the same process type.
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are residing at state R0. This representation is sound and complete because processes
at equivalent local states are behavioral equivalent and ‖ composition is symmetric and
associative (so that processes ordering is irrelevant).

Furthermore, given a local state s and processes residing at s , we may consider the
processes indistinguishable (as the process identifiers must be irrelevant given the local
states are equivalent) and abstract the process identifiers. That is, instead of associating
a set of process identifiers with a local state, we only keep track of the number of
processes. Instead of setting f (R0) = {Pi ,Pj ,Pk}, we now set f (R0) = 3. In this and
the next section, we assume that the total number of processes is bounded.

Definition 6 (Abstract Configuration). Let S be a system model. An abstract con-
figuration of S is a pair (v , f ) where v is a valuation of the global variables and
f : State → N is a total function2 such that f (s) = n if and only if n processes
are residing at s .

Given a concrete configuration cc = (v , 〈s0, s1, · · ·〉), let F(〈s0, s1, · · ·〉) returns the
function f (refer to Definition 6) — that is, f (s) = n if and only if there are n
states in 〈s0, s1, · · ·〉 which are equivalent to s . Further, we write F(cc) to denote
(v ,F(〈s0, s1, · · ·〉)). Given a concrete transition c →Ag c′, the corresponding abstrac-
tion transition is written as a ↪→Ls a′ where a = F(c) and a′ = F(c′) and Ls (short
for local-states) is the local states at which processes in Ag are. That is, Ls is the set of
local states from which there is a process leaving during the transition. We remark that
Ls is obtained similarly as Ag is.

Given a local state s and an abstract configuration a, we define enabled(s , a) to be
true if and only if ∃ a′, a ↪→Ls a′ ∧ s ∈ Ls , i.e., a process is enabled to leave s in a.
For instance, given the transition system in Fig. 2, Ls = {R0} for the transition from
A0 to A1 and enabled(R0,A1) is true.

Definition 7 (Abstract Transition System). Let S = (VarG , initG ,Proc) be a system
model, where Proc = P1 ‖ P2 ‖ · · · such that each process Pi = (Si , initi ,→i) is a lo-
cal transition system. An abstract transition system of S is a 3-tuple AS = (C , init , ↪→
) where C is the set of all reachable abstract system configurations, init ∈ C is
(initG ,F(initG , 〈init1, init2, · · ·〉)) and ↪→ is the abstract global transition relation.

We remark that the abstract transition relation can be constructed without constructing
the concrete transition relation, which is essential to avoid state space explosion. Given
the model presented in Fig. 1, if there are 2 readers and 2 writers, then the abstract
transition system is shown in Fig. 2.

A concrete execution of TS can be uniquely mapped to an execution of AS by ap-
plying F to every configuration in the sequence. For instance, let X = 〈c0, c1, · · · ,
ci , · · ·〉 be an execution of TS (i.e., a concrete execution), the corresponding execution
of AS is L = 〈F(c0),F(c1), · · · ,F(ci), · · ·〉 (i.e., the abstract execution). In an abuse
of notation, we write F(X ) to denote L. Notice that the valuation of the global variables
are preserved. Essentially, no information is lost during the abstraction. It can be shown
that AS � φ if and only if TS � φ.

2 In PAT, the mapping from a local state to 0 is always omitted for memory saving.
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A0: ((writing,false),(counter,0),(R0,2),(R1,0),(W0,2),(W1,0))
A1: ((writing,false),(counter,1),(R0,1),(R1,1),(W0,2),(W1,0))

A3: ((writing,true),(counter,0),(R0,2),(R1,0),(W0,1),(W1,1))
A2: ((writing,false),(counter,2),(R0,0),(R1,2),(W0,2),(W1,0))

A2 A0 A3A1
stopread stopread startwrite

stopwritestartreadstartread

Fig. 2. Readers/writers model

4 Fair Model Checking Method

Process counter abstraction may significantly reduce the number of states. It is useful
for verification of safety properties. However, it conflicts with the notion of fairness.
A counterexample to a liveness property under fairness must be a fair execution of
the system. By Definition 4 and 5, the knowledge of which processes are enabled or
engaged is necessary in order to check whether an execution is fair or not. In this section,
we develop the necessary theorems and algorithms to show that model checking under
fairness constraints is feasible even without the knowledge of process identifiers.

By assumption the total number of processes is finite, the abstract transition system
AS has finitely many states. An infinite execution of AS must form a loop (with a
finite prefix to the loop). Assume that the loop starts with index i and ends with k ,
written as Lk

i = 〈c0, · · · , ci , ci+1, · · · , ci+k , ci+k+1〉 where ci+k+1 = ci . We define
the following functions to collect loop properties and use them to define fairness later.

always(Lk
i ) = {s : State | ∀ j : {i , · · · , i + k}, enabled(s , cj )}

once(Lk
i ) = {s : State | ∃ j : {i , · · · , i + k}, enabled(s , cj )}

leave(Lk
i ) = {s : State | ∃ j : {i , · · · , i + k}, cj ↪→Ls cj+1 ∧ s ∈ Ls}

Intuitively, always(Lk
i ) is the set of local states from where there are processes, which

are ready to make some progress, throughout the execution of the loop; once(Lk
i ) is

the set of local states where there is a process which is ready to make some progress,
at least once during the execution of the loop; leave(Lk

i ) is the set of local states from
which processes leave during the loop. For instance, given the abstract transition system
in Fig. 2, X = 〈A0,A1,A2〉∞ is a loop starting with index 0 and ending with index 2.
always(X ) = ∅; once(X ) = {R0,R1,W 0}; leave(X ) = {R0,R1}.

The following lemma allows us to check whether an execution is fair by only looking
at the abstract execution.

Lemma 1. Let S be a system model; X be an execution of TS; Lk
i = F(X ) be the

respective abstract execution of AS . (1). always(Lk
i ) ⊆ leave(Lk

i ) if X is weakly fair;
(2). once(Lk

i ) ⊆ leave(Lk
i ) if X is strongly fair.

Proof. (1). Assume X is weakly fair. By definition, if state s is in always(Lk
i ), there

must be a process residing at s which is enabled to leave during every step of the loop.
If it is the same process P , P is always enabled during the loop and therefore, by
definition 4, P must participate in a transition infinitely often because X is weakly
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fair. Therefore, P must leave s during the loop. By definition, s must be in leave(Lk
i ).

If there are different processes enabled at s during the loop, there must be a process
leaving s , so that s ∈ leave(Lk

i ). Thus, always(Lk
i ) ⊆ leave(Lk

i ).
(2). Assume X is strongly fair. By definition, if state s is in once(Lk

i ), there must be a
process residing at s which is enabled to leave during one step of the loop. Let P be the
process. Because P is infinitely often enabled, by Definition 4, P must participate in a
transition infinitely often because X is strongly fair. Therefore, P must leave s during
the loop. By definition, s must be in leave(Lk

i ). �

The following lemma allows us to generate a concrete fair execution if an abstract fair
execution is identified.

Lemma 2. Let S be a model; Lk
i be an execution of AS . (1). There exists a weakly

fair execution X of TS such that F(X ) = Lk
i if always(Lk

i ) ⊆ leave(Lk
i ); (2).

If once(Lk
i ) ⊆ leave(Lk

i ), there exists a strongly fair execution X of TS such that
F(X ) = Lk

i .

Proof. (1). By a simple argument, there must exist an execution X of TS such that
F(X ) = Lk

i . Next, we show that we can unfold the loop (of the abstract fair execution)
as many times as necessary to let all processes make some progress, so as to generate
a weakly fair concrete execution. Assume P is the set of processes residing at a state
s during the loop. Because always(Lk

i ) ⊆ leave(Lk
i ), if s ∈ always(Lk

i ), there must
be a transition during which a process leaves s . We repeat the loop multiple times and
choose a different process from P to leave each time. The generated execution must be
weakly fair.

(2). Similarly as above. �

The following theorem shows that we can perform model checking under fairness by
examining the abstract transition system only.

Theorem 1. Let S be a system model. Let φ be an LTL property. (1). S �wf φ if and
only if for all executions Lk

i of AS we have always(Lk
i ) ⊆ leave(Lk

i ) ⇒ Lk
i � φ; (2).

S �sf φ if and only if for all execution Lk
i of AS we have once(Lk

i ) ⊆ leave(Lk
i ) ⇒

Lk
i � φ.

Proof. (1). if part: Assume that for all Lk
i of AS we have Lk

i � φ if always(Lk
i ) ⊆

leave(Lk
i ), and S �wf φ. By definition, there exists a weakly fair execution X of TS

such that X � φ. Let Lk
i be F(X ). By lemma 1, always(Lk

i ) ⊆ leave(Lk
i ) and hence

Lk
i � φ. Because our abstraction preserves valuation of global variables, Lk

i � φ as
X � φ. We reach a contradiction.
only if part: Assume that S �wf φ and there exists Lk

i of AS such that always(Lk
i ) ⊆

leave(Lk
i ), and Lk

i �wf φ. By lemma 2, there must exist X of TS such that X is weakly
fair. Because process counter abstraction preserves valuations of global variables, X �
φ. Hence, we reach contradiction.

(2). Similarly as above. �

Thus, in order to prove that S satisfies φ under fairness, we need to show that there is no
execution Lk

i of AS such that Lk
i � φ and the execution satisfies an additional constraint
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for fairness, i.e., always(Lk
i ) ⊆ leave(Lk

i ) for weak fairness or once(Lk
i ) ⊆ leave(Lk

i )
for strong fairness. Or, if S �wf φ, then there must be an execution Lk

i of AS such
that Lk

i satisfies the fairness condition and Lk
i � φ. In such a case, we can generate a

concrete execution.
Following the above discussion, fair model checking parameterized systems is re-

duced to searching for particular loops in AS . There are two groups of methods for
loop searching. One is based on nested depth-first-search (DFS) [17] and the other is
based on identifying strongly connected components (SCC) [12]. It has been shown
that the nested DFS is not suitable for model checking under fairness assumptions, as
whether an execution is fair depends on the path instead of one state [17]. In this work,
we extend the approaches presented in [12, 27] to cope with weak or strong fairness
and process counter abstraction. Given AS and a property φ, model checking involves
searching for an execution of AS which fails φ. In automata-based model checking,
the negation of φ is translated to an equivalent Büchi automaton B¬φ, which is then
composed with AS . Notice that a state in the produce of AS and B¬φ is a pair (a, b)
where a is an abstract configuration of AS and b is a state of B¬φ. Model checking
under fairness involves searching for a fair execution which is accepted by the Büchi
automaton.

Given a transition system, a strongly connected subgraph is a subgraph such that
there is a path connecting any two states in the subgraph. An MSCC is a maximal
strongly connected subgraph. Given the product of AS and B¬φ, let scg be a set of
states which, together with the transitions among them, forms a strongly connected
subgraph. We say scg is accepting if and only if there exists one state (a, b) in scg
such that b is an accepting state of B¬φ. In an abuse of notation, we refer to scg as the
strongly connected subgraph in the following. The following lifts the previously defined
functions on loops to strongly connected subgraphs.

always(scg) = {y : State | ∀ x : scg, enabled(y, x )}
once(scg) = {y : State | ∃ x : scg, enabled(y, x )}
leave(scg) = {z : State | ∃ x , y : scg, z ∈ leave(x , y)}

always(scg) is the set of local states such that for any local state in always(scg), there
is a process ready to leave the local state for every state in scg; once(scg) is the set
of local states such that for some local state in once(scg), there is a process ready to
leave the local state for some state in scg; and leave(scg) is the set of local states such
that there is a transition in scg during which there is a process leaving the local state.
Given the abstract transition system in Fig. 2, scg = {A0,A1,A2,A3} constitutes a
strongly connected subgraph. always(scg) = nil; once(scg) = {R0,R1,W 0,W 1};
leave(scg) = {R0,R1,W 0,W 1}.

Lemma 3. Let S be a system model. There exists an execution Lk
i of AS such that

always(Lk
i ) ⊆ leave(Lk

i ) if and only if there exists an MSCC scc of AS such that
always(scc) ⊆ leave(scc).

Proof. The if part is trivially true. The only if part is proved as follows. Assume there
exists execution Lk

i of AS such that always(Lk
i ) ⊆ leave(Lk

i ), there must exist a
strongly connected subgraph scg which satisfies always(scg) ⊆ leave(scg). Let scc
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procedure checkingUnderWeakFairness(AS ,B¬φ)

1. while there are un-visited states in AS ⊗ B¬φ

2. use the improved Tarjan’s algorithm to identify one SCC, say scg ;

3. if scg is accepting to B¬φ and always(scg) ⊆ leave(scg)

4. generate a counterexample and return false;
5. endif
6. endwhile
7. return true;

Fig. 3. Model checking algorithm under weak fairness

be the MSCC which contains scg . We have always(scc) ⊆ always(scg), therefore, the
MSCC scc satisfies always(scc) ⊆ always(scg) ⊆ leave(scg) ⊆ leave(scc). �

The above lemma allows us to use MSCC detection algorithms for model checking
under weak fairness. Fig. 3 presents an on-the-fly model checking algorithm based on
Tarjan’s algorithm for identifying MSCCs. The idea is to search for an MSCC scg such
that always(scg) ⊆ leave(scg) and scg is accepting. The algorithm terminates in two
ways, either one such MSCC is found or all MSCCs have been examined (and it returns
true). In the former case, an abstract counterexample is generated. In the latter case, we
successfully prove the property. Given the system presented in Fig. 2, {A0,A1,A2,A3}
constitutes the only MSCC, which satisfies always(scg) ⊆ leave(scg). The complexity
of the algorithm is linear in the number of transitions of AS .

Lemma 4. Let S be a system model. There exists an execution Lk
i of AS such that

once(Lk
i ) ⊆ leave(Lk

i ) if and only if there exists a strongly connected subgraph scg of
AS such that once(scg) ⊆ leave(scg).

We skip the proof of the lemma as it is straightforward. The lemma allows us to extend
the algorithm proposed in [27] for model checking under strong fairness. Fig. 4 presents
the modified algorithm. The idea is to search for a strongly connected subgraph scg
such that once(scg) ⊆ leave(scg) and scg is accepting. Notice that a strongly con-
nected subgraph must be contained in one and only one MSCC. The algorithm searches
for MSCCs using Tarjan’s algorithm. Once an MSCC scg is found (at line 2), if scg
is accepting and satisfies once(scg) ⊆ leave(scg), then we generate an abstract coun-
terexample. If scg is accepting but fails once(scg) ⊆ leave(scg), instead of throwing
away the MSCC, we prune a set of bad states from the SCC and then examinate the
remaining states (at line 6) for strongly connected subgraphs. Intuitively, bad states are
the reasons why the SCC fails the condition once(scg) ⊆ leave(scg). Formally,

bad(scg) = {x : scg | ∃ y, y ∈ leave(scg) ∧ y ∈ enabled(y, x )}

That is, a state s is bad if and only if there exists a local state y such that a process may
leave y at state s and yet there is no process leaving y given all transitions in scg . By
pruning all bad states, there might be a strongly connected subgraph in the remaining
states which satisfies the fairness constraint.
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procedure checkingUnderStrongFairness(AS ,B¬φ, states)

1. while there are un-visited states in states

2. use Tarjan’s algorithm to identify a subset of states which forms an SCC, say scg ;

3. if scg is accepting to B¬φ

4. if once(scg) ⊆ leave(scg)

5. generate a counterexample and return false;
6. else if checkingUnderStrongFairness(AS ,B¬φ, scg \ bad(scg)) is false
7. return false;
8. endif
9. endif
10. endwhile
11. return true;

Fig. 4. Model checking algorithm under strong fairness

The algorithm is partly inspired by the one presented in [16] for checking emptiness
of Streett automata. Soundness of the algorithm follows the discussion in [27,16]. It can
be shown that any state of a strongly connected subgraph which satisfies the constraints
is never pruned. As a result, if there exists such a strongly connected subgraph scg , a
strongly connected subgraph which contains scg or scg itself must be found eventually.
Termination of the algorithm is guaranteed because the number of visited states and
pruned states are monotonically increasing. The complexity of the algorithm is linear in
#states ×#trans where #states and #trans are the number of states and transitions
of AS respectively. A tighter bound on the complexity can be found in [16].

5 Counter Abstraction for Infinitely Many Processes

In the previous sections, we assume that the number of processes (and hence the size
of the abstract transition system) is finite and bounded. If the number of processes is
unbounded, there might be unbounded number of processes residing at a local state,
e.g., the number of reader processes residing at R0 in Fig. 1 might be infinite. In such a
case, we choose a cutoff number and then apply further abstraction. In the following,
we modify the definition of abstract configurations and abstract transition systems to
handle unbounded number of processes.

Definition 8. Let S be a system model with unboundedly many processes. Let K be a
positive natural number (i.e., the cutoff number). An abstract configuration of S is a
pair (v , g) where v is the valuation of the global variables and g : State → N ∪ {ω}
is a total function such that g(s) = n if and only if n(≤ K ) processes are residing at s
and g(s) = ω if and only if more than K processes are at s .

Given a configuration (v , 〈s0, s1, · · ·〉), we define a function G similar to function F ,
i.e., G(〈s0, s1, · · ·〉)) returns function g (refer to Definition 8) such that given any state
s , g(s) = n if and only if there are n states in 〈s0, s1, · · ·〉 which are equivalent to s and
g(s) = ω if and only if there are more than K states in 〈s0, s1, · · ·〉 which are equivalent
to s . Furthermore, G(c) = (v ,G(〈s0, s1, · · ·〉)).
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A2 A0 A3A1
stopread startwrite

stopwritestartread

stopread

startread

A0: ((writing,false),(counter,0),(R0,inf),(R1,0),(W0,inf),(W1,0))
A1: ((writing,false),(counter,1),(R0,inf),(R1,1),(W0,inf),(W1,0))
A2: ((writing,false),(counter,inf),(R0,inf),(R1,inf),(W0,inf),(W1,0))
A3: ((writing,true),(counter,0),(R0,inf),(R1,0),(W0,inf),(W1,1))

startread

stopread

Fig. 5. Abstract readers/writers model

The abstract transition relation of S (as per the above abstraction) can be constructed
without constructing the concrete transition relation. We illustrate how to generate an
abstract transition in the following. Given an abstract configuration (v , g), if g(s) > 0,
a local transition from state s to state s ′, creating a process with initial state init may re-
sult in different abstract configurations (v , g ′) depending on g . In particular, g ′ equals
g except that g ′(s) = g(s) − 1 and g ′(s ′) = g(s ′) + 1 and g ′(init) = g(init) + 1
assuming ω + 1 = ω, K + 1 = ω and ω − 1 is either ω or K . We remark that by as-
sumption State is a finite set and therefore the domain of g is always finite. This allows
us to drop the assumption that the number of processes must be finite before process
creation. Similarly, we abstract synchronous transitions and process termination.

The abstract transition system for a system model S with unboundedly many pro-
cesses, written as RS (to distinguish from AS), is now obtained by applying the afore-
mentioned abstract transition relation from the initial abstract configuration.

Example 2. Assume that the cutoff number is 1 and there are infinitely many readers
and writers in the readers/writers model. Because counter is potentially unbounded
and, we mark counter as a special process counter variable which dynamically counts
the number of processes which are reading (at state R1). If the number of reading pro-
cesses is larger than the cutoff number, counter is set to ω too. The abstract transition
system ARW is shown in Fig. 5. The abstract transition system may contain spurious
traces. For instance, the trace 〈start , (stopread)∞〉 is spurious. It is straightforward to
prove that ARW � Prop1 based on the abstract transition system.

The abstract transition system now has only finitely many states even if there are un-
bounded number of processes and, therefore, is subject to model checking. As illus-
trated in the preceding example, the abstraction is sound but incomplete in the presence
of unboundedly many processes. Given an execution X of TS , let G(X ) be the corre-
sponding execution of the abstract transition system. An execution L of RS is spurious
if and only if there does not exist an execution X of TS such that G(X ) = L. Because
the abstraction only introduces execution traces (but does not remove any), we can for-
mally establish a simulation relation (but not a bisimulation) between the abstract and
concrete transition systems, that is, RS simulates TS . Thus, while verifying an LTL
property φ we can conclude TS � φ if we can show that RS � φ. Of course, RS � φ
will be accomplished by model checking under fairness.

The following re-establishes Lemma 1 and (part of) Theorem 1 in the setting of RS .
We skip the proof as they are similar to that of Lemma 1 and Theorem 1 respectively.
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Lemma 5. Let S be a system model, X be an execution of TS and Lk
i = G(X ) be the

corresponding execution of RS . We have (1). always(Lk
i ) ⊆ leave(Lk

i ) if X is weakly
fair; (2).once(Lk

i ) ⊆ leave(Lk
i ) if X is strongly fair.

Theorem 2. Let S be a system model and φ be an LTL property. (1). S �wf φ if for all
execution traces Lk

i of RS we have always(Lk
i ) ⊆ leave(Lk

i ) ⇒ Lk
i � φ; (2). S �sf φ

if for all execution traces Lk
i of RS we have once(Lk

i ) ⊆ leave(Lk
i ) ⇒ Lk

i � φ;

The reverse of Theorem 2 is not true because of spurious traces. We remark that the
model checking algorithms presented in Section 4 are applicable to RS (as the abstrac-
tion function is irrelevant to the algorithm). By Theorem 2, if model checking of RS
(using the algorithms presented in Section 4 under weak/fairness constraint) returns
true, we conclude that the system satisfies the property (under the respective fairness).

6 Case Studies

Our method has been realized in the Process Analysis Toolkit (PAT) [26]. PAT is de-
signed for systematic validation of distributed/concurrent systems using state-of-the-art
model checking techniques. In the following, we show the usability/scalability of our
method via the automated verification of several real-life parameterized systems. All
the models are embedded in the PAT package and available online. The experimental
results are summarized in the following table, where NA means not applicable (hence
not tried, due to limit of the tool); NF means not feasible (out of 2GB memory or run-
ning for more than 4 hours). The data is obtained with Intel Core 2 Quad 9550 CPU at
2.83GHz and 2GB RAM. We compared PAT with SPIN [17] on model checking under
no fairness or weak fairness. Notice that SPIN does not support strong fairness and is
limited to 255 processes.

Model #Proc Property No Fairness Weak Fairness Strong Fairness
Result PAT SPIN Result PAT SPIN Result PAT Spin

LE 10 �� one leader false 0.04 0.015 true 0.06 320 true 0.06 NA
LE 100 �� one leader false 0.04 0.015 true 0.27 NF true 0.28 NA
LE 1000 �� one leader false 0.04 NA true 2.26 NA true 2.75 NA
LE 10000 �� one leader false 0.04 NA true 23.89 NA true 68.78 NA
LE ∞ �� one leader false 0.06 NA true 264.78 NA true 463.9 NA
KV 2 PropKvalue false 0.05 0 true 0.6 1.14 true 0.6 NA
KV 3 PropKvalue false 0.05 0 true 4.56 61.2 true 4.59 NA
KV 4 PropKvalue false 0.05 0.015 true 29.2 NF true 30.24 NA
KV 5 PropKvalue false 0.06 0.015 true 174.5 NF true 187.1 NA
KV ∞ PropKvalue false 0.12 NA ? NF NA ? NF NA

Stack 5 Propstack false 0.06 0.015 false 0.78 NF false 0.74 NA
Stack 7 Propstack false 0.06 0.015 false 11.3 NF false 12.1 NA
Stack 9 Propstack false 0.06 0.015 false 158.6 NF false 191.8 NA
Stack 10 Propstack false 0.05 0.015 false 596.1 NF false 780.3 NA
ML 10 �� access true 0.11 21.5 true 0.11 107 true 0.11 NA
ML 100 �� access true 1.04 NF true 1.04 NF true 1.04 NA
ML 1000 �� access true 11.04 NA true 11.08 NA true 11.08 NA
ML ∞ �� access true 13.8 NA true 13.8 NA true 13.8 NA
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The first model (LE ) is a self-stabilizing leader election protocol for complete net-
works [11]. Mobile ad hoc networks consist of multiple mobile nodes which interact
with each other. The interactions among the nodes are subject to fairness constraints.
One essential property of a self-stabilizing population protocols is that all nodes must
eventually converge to the correct configurations. We verify the self-stabilizing leader
election algorithm for complete network graphs (i.e., any pair of nodes are connected).
The property is that eventually always there is one and only one leader in the network,
i.e., �� one leader . PAT successfully proved the property under weak or strong fair-
ness for many or unbounded number of network nodes (with cutoff number 2). SPIN
took much more time to prove the property under weak fairness. The reason is that the
fair model checking algorithm in SPIN copies the global state machine n +2 times (for
n processes) so as to give each process a fair chance to progress, which increases the
verification time by a factor that is linear in the number of network nodes.

The second model (KV ) is a K-valued register [3]. A shared K-valued multi-reader
single-writer register R can be simulated by an array of K binary registers. When the
single writer process wants to write v into R, it will set the v -th element of B to 1
and then set all the values before v -th element to 0. When a reader wants to read the
value, it will do an upwards scan first from 0 to the first element u whose value is 1,
then do a downwards scan from u to 0 and remember the index of the last element
with value 1, which is the return value of the reading operation. A progress property is
that PropKvalue = �(read inv → �read res), i.e., a reading operation (read inv )
eventually returns some valid value (read res). With no fairness, both PAT and SPIN
identified a counterexample quickly. Because the model contains many local states, the
size of AS increases rapidly. PAT proved the property under weak/strong fairness for 5
processes, whereas SPIN was limited to 3 processes with weak fairness.

The third model (Stack ) is a lock-free stack [28]. In concurrent systems, in order
to improve the performance, the stack can be implemented by a linked list, which is
shared by arbitrary number of processes. Each push or pop operation keeps trying to
update the stack until no other process interrupts. The property of interest is that a
process must eventually be able to update the stack, which can be expressed as the LTL
Propstack = �(push inv → �push res) where event push inv (push res) marks
the starting (ending) of push operation. The property is false even under strong fairness.

The fourth model (ML) is the Java meta-lock algorithm [1]. In Java language, any ob-
ject can be synchronized by different threads via synchronized methods or statements.
The Java meta-locking algorithm is designed to ensure the mutually exclusive access
to an object. A synchronized method first acquires a lock on the object, executes the
method and then releases the lock. The property is that always eventually some thread
is accessing the object, i.e., �� access , which is true without fairness. This example
shows that the computational overhead due to fairness is negligible in PAT.

In another experiment, we use a model in which processes all behave differently (so
that counter abstraction results in no reduction) and each process has many local states.
We then compare the verification results with or without process counter abstraction.
The result shows the computational and memory overhead for applying the abstrac-
tion is negligible. In summary, the enhanced PAT model checker complements existing
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model checkers in terms of not only performance but also the ability to perform model
checking under weak or strong fairness with process counter abstraction.

7 Discussion and Related Work

We studied model checking under fairness with process counter abstraction. The contri-
bution of our work is twofold. First, we presented a fully automatic method for property
checking of under fairness with process counter abstraction. We showed that fairness
can be achieved without the knowledge of process identifiers. Secondly, we enhanced
our home-grown PAT model checker to support our method and applied it on large
scale parameterized systems to demonstrate its scalability. As for future work, we plan
to investigate methods to combine well-known state space reduction techniques (such
as partial order reduction, data abstraction for infinite domain data variables) with the
process counter abstraction so as to extend the applicability of our model checker.

Verification of parameterized systems is undecidable [2]. There are two possible
remedies to this problem: either we look for restricted subsets of parameterized sys-
tems for which the verification problem becomes decidable, or we look for sound but
not necessarily complete methods. The first approach tries to identify a restricted sub-
set of parameterized systems and temporal properties, such that if a property holds for
a system with up to a certain number of processes, then it holds for any number of
processes in the system. Moreover, the verification for the reduced system can be ac-
complished by using model checking. This approach can be used to verify a number of
systems [13,18,8]. The sound but incomplete approaches include methods based on syn-
thesis of invisible invariant (e.g., [10]); methods based on network invariant (e.g., [21])
that relies on the effectiveness of a generated invariant and the invariant refinement tech-
niques; regular model checking [19] that requires acceleration techniques. Verification
of liveness properties under fairness constraints have been studied in [15,17,20]. These
works are based on SCC-related algorithms and decide the existence of an accepting run
of the product of the transition system and Büchi automata, Streett automata or linear
weak alternating automaton.

The works closest to ours are the methods based on counter abstraction (e.g., [7,24,
23]). In particular, verification of liveness properties under fairness is addressed in [23].
In [23], the fairness constraints for the abstract system are generated manually (or via
heuristics) from the fairness constraints for the concrete system. Different from the
above work, our method handles one (possibly large) instance of parameterized systems
at a time and uses counter abstraction to improve verification effectiveness. In addition,
fairness conditions are integrated into the on-the-fly model checking algorithm which
proceeds on the abstract state representation — making our method fully automated.

Our method is related to work on symmetry reduction [9,5]. A solution for applying
symmetry reduction under fairness is discussed in [9]. Their method works by finding a
candidate fair path in the abstract transition system and then using special annotations
to resolve the abstract path to a threaded structure which then determines whether there
is a corresponding fair path in the concrete transition system. A similar approach was
presented in [14]. Different from the above, our method employs a specialized form of
symmetry reduction and deals with the abstract transition system only and requires no
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annotations. Additionally, a number of works on combining abstraction and fairness,
were presented in [6,22,29,4,25]. Our work explores one particular kind of abstraction
and shows that it works with fairness with a simple twist.
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