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Abstract. Compositional coordination models and languages play an important
role in cyber-physical systems (CPSs). In this paper, we introduce a formal model
for describing hybrid behaviors of connectors in CPSs. We extend the constraint
automata model, which is used as the semantic model for the exogenous channel-
based coordination language Reo, to capture the dynamic behavior of connectors
in CPSs where the discrete and continuous dynamics co-exist and interact with
each other. In addition to the formalism, we also provide a theoretical composi-
tional approach for constructing the product automata for a Reo circuit, which is
typically obtained by composing several primitive connectors in Reo.

1 Introduction

Cyber-physical systems (CPSs) are systems that integrate computing and communica-
tion with monitoring and control of physical entities. The complex interaction with the
physical world through computation, communication and control leads to the dynamic
behavior of CPSs. CPSs are present everywhere, such as airplanes and space vehicles,
hybrid gas-electric vehicles, power grids, oil refineries, medical devices, defense sys-
tems, etc. The design of such systems requires understanding the complex interactions
among software, hardware, networks and physical components. Coordination models
and languages that provide a formalization of the “glue code” that interconnects the
components and organizes their interactions in a distributed environment, are extremely
important to the success of CPSs [9].

The use of coordination models and languages distinguishes the interaction among
components from computing in single component explicitly. This can simplify the
development process for complex systems and reasoning and verification of system
properties. For example, Reo [2] is a powerful coordination language that offers an ap-
proach to express interaction protocols. Such coordination languages provide a proper
approach that focuses on the interaction aspects in distributed applications, instead of
the behavior models for individual components. However, most of existing coordina-
tion models and languages focused only on interactions among software components
with discrete behavior. In CPSs, not only software components, but also physical com-
ponents are coordinated together as well. This makes the integration of discrete and
continuous dynamics for coordination an important issue in CPSs.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 59–74, 2014.
© Springer International Publishing Switzerland 2014
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In this paper, we investigated the problem of using Reo to model connectors in CPSs.
As channels in CPS have often both discrete and continuous dynamics, existing seman-
tics for Reo [2] is insufficient. Thus, we use hybrid constraint automata (HCA) which
is an extension of constraint automata (CA), to capture the dynamic behavior of con-
nectors in CPSs where the discrete and continuous dynamics co-exist and interact with
each other. The concepts in HCA are borrowed from classical hybrid automata [1,6].
There are three types of transitions in HCA: (1) continuous flow inside one control
state captured by some differential equations; (2) discrete jump between two control
states representing the execution of some I/O operations; (3) discrete jump between two
control states caused by violating the location invariant. Furthermore, a compositional
approach for construction of HCA from a given Reo connector is provided, where the
composition operator on HCA models the join operator in Reo to build complex con-
nectors from basic channels.

This work is related to existing semantic models for connectors in CPSs. The time
aspects of Reo has been investigated in [3], which uses timed constraint automata (TCA)
as the operational semantics for Reo connectors and provides a variant of LTL as a
specification formalism for timed Reo connectors. In [7,8] the TCA model has been
translated into mCRL2 for model checking timed Reo connectors. The UTP model for
timed connectors in Reo has been proposed in [12]. However, both the TCA model and
UTP model lack of mechanisms to describe continuous dynamics for connectors. Lynch
et al. proposed the Hybrid I/O Automata (HIOA) model [11,10] for the hybrid behavior
in composition of components, where the input action enabling and input flow enabling
axioms should be satisfied, which is not required in the constraint automata (and HCA)
model.

The paper is structured as follows. We briefly summarize the coordination language
Reo in Section 2. In Section 3 we introduce the hybrid constraint automata model. In
Section 4 we show some examples of hybrid Reo circuits and how HCA can serve as
their operational model. Finally, Section 5 concludes with further research directions.

2 A Reo Primer

Reo is a channel-based exogenous coordination model wherein complex coordinators,
called connectors, are compositionally constructed from simpler ones. We summarize
only the main concepts in Reo here. Further details about Reo and its semantics can be
found in [2,4,5].

A connector provides the protocol that controls and organizes the communication,
synchronization and cooperation among the components that they interconnect. Prim-
itive connectors in Reo are channels that have two channel ends. There are two types
of channel ends: source and sink. A source channel end accepts data into its channel,
and a sink channel end dispenses data out of its channel. It is possible for the ends of
a channel to be both sinks or both sources. Reo places no restriction on the behavior
of a channel and thus allows an open-ended set of different channel types to be used
simultaneously. Each channel end can be connected to at most one component instance
at any given time.

Figure 1 shows the graphical representation of some simple channel types in Reo. A
FIFO1 channel represents an asynchronous channel with one buffer cell which is empty
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Fig. 1. Some basic channels in Reo

if no data item is shown in the box (this is the case in Figure 1). If a data element d is
contained in the buffer of an FIFO1 channel then d is shown inside the box in its graph-
ical representation. A synchronous channel has a source and a sink end and no buffer. It
accepts a data item through its source end iff it can simultaneously dispense it through
its sink. A lossy synchronous channel is similar to a synchronous channel except that
it always accepts all data items through its source end. The data item is transferred if
it is possible for the data item to be dispensed through the sink end, otherwise the data
item is lost. For a filter channel, its pattern P specifies the type of data items that can
be transmitted through the channel. Any value d ∈ P is accepted through its source end
iff its sink end can simultaneously dispense d; all data items d ∉ P are always accepted
through the source end, but are immediately lost. The synchronous drain has two source
ends and no sink end. It can accept a data item through one of its ends iff it can simul-
taneously accept data item through the other end, and all data accepted by the channel
are lost.

Complex connectors are constructed by composing simpler ones mainly via the join
and hiding operations. Channels are joined together in a node which consists of a set
of channel ends. Nodes are categorized into source, sink and mixed nodes, depending
on whether all channel ends that coincide on a node are source ends, sink ends or a
combination of the two. The hiding operation is used to hide the internal topology of a
component connector. The hidden nodes can no longer be accessed or observed from
outside. A complex connector has a graphical representation, called a Reo circuit, which
is a finite graph where the nodes are labeled with pair-wise disjoint, non-empty sets of
channel ends, and the edges represent the connecting channels. The behavior of a Reo
circuit is formalized by means of the data-flow at its sink and source nodes. Intuitively,
the source nodes of a circuit are analogous to the input ports, and the sink nodes to
the output ports of a component, while mixed nodes are its hidden internal details.
Components cannot connect to, read from, or write to mixed nodes. Instead, data-flow
through mixed nodes is totally specified by the circuits they belong to.

A component can write data items to a source node that it is connected to. The write
operation succeeds only if all (source) channel ends coincident on the node accept the
data item, in which case the data item is simultaneously written to every source end
coincident on the node. A source node, thus, acts as a replicator. A component can ob-
tain data items, by an input operation, from a sink node that it is connected to. A take
operation succeeds only if at least one of the (sink) channel ends coincident on the node
offers a suitable data item; if more than one coincident channel end offers suitable data
items, one is selected nondeterministically. A sink node, thus, acts as a nondetermin-
istic merger. A mixed node nondeterministically selects and takes a suitable data item
offered by one of its coincident sink channel ends and replicates it into all of its co-
incident source channel ends. A component can not connect to, take from, or write to
mixed nodes.
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3 Hybrid Constraint Automata

In order to capture both discrete and continuous behaviors of connectors in CPSs, we
extend the model of constraint automata as hybrid constraint automata. The formal
definition of hybrid constraint automata (HCA) arises by combining the concepts of
constraint automata and hybrid automata.

3.1 Syntax of HCA

Data Assignments and Data Constraints. Let Data be a finite and non-empty set
of data items that can be transferred through channels, and N a finite and non-empty
set of node names. A data assignment δ denotes a function δ ∶ N → Data where ∅ ≠

N ⊆ N . All possible data assignments on N is denoted as DA(N) or DataN . For a
subset N0 ⊆ N, the restriction of δ over N0 is a data assignment δ ↾N0∈ DA(N0) defined
as δ↾N0(A) = δ(A) for each A ∈ N0. We use the notation of δ = [A ↦ d ∣ A ∈ N]
to specify a data assignment that assigns a value d ∈ Data to every node A ∈ N. For
example, if d1 is transferred through node A and d2 is transferred through node B, then
the corresponding data assignment is δ = [A ↦ d1, B ↦ d2].

Formally, a data constraint g over N is a propositional formula built from the atoms
such as “dA ∈ P” and “dA = dB” and boolean operators ∧,∨,¬, etc. where A, B ∈ N ,
P ⊆ Data and dA is interpreted as δ(A). For N ⊆ N , DC(N) denotes the set of all data
constraints that specify values being transferred on nodes in N. We use δ ⊧ g to denote
that the data assignment δ satisfies the data constraint g.

Example 1. Let N = {A, B,C} and Data = {d0,d1}. Data assignment δ = [A ↦ d1,C ↦

d0] says that d1 and d0 are transferred through nodes A and C respectively, while no
data item is transferred through B. Let g1 = (dA = d1) and g2 = (dA = dC) be two data
constraints, then δ ⊧ g1 and δ ⊭ g2.

Dynamical Systems and Space Constraints. Dynamical systems can model systems
with continuous behaviors. Consider the differential equation:

ξ̇ = f (ξ) (1)

where the dotted variables represent the first derivatives during continuous change and
f ∶ IRn

→ IRn is an infinitely differentiable function. We also call such functions smooth.
By a trajectory of (1) with initial condition x ∈ IRn, we mean a smooth curve

ξ ∶ [0, τ) → IRn (2)

satisfying

– τ > 0;
– ξ(0) = x;
– ξ̇(t) = f (ξ(t)) for each t ∈ (0, τ).

In this case, we say the duration of the trajectory ξ is τ.
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Definition 1 (Dynamical system). An n-dimensional dynamical system Σ = (IRn, f )
is the real space IRn equipped with differential equation given by a smooth map f ∶

IR → IRn. A trajectory of a dynamical system is a trajectory of the differential equation
defined by f .

We also consider systems (X , f ) with f defined in a subset X of IRn. A trajectory ξ
of the dynamical system Σ = (X , f ) with a duration τ and initial condition x ∈ X is a
solution to (1) satisfying

– τ > 0;
– ξ(0) = x;
– ξ̇(t) = f (ξ(t)) for each t ∈ (0, τ);
– ξ(t) ∈ X for each t ∈ [0, τ).

Intuitively, an n-dimensional dynamical system Σ = (IRn, f ) describes how a point
P evolves and flows in space IRn based on the rules given as differential equations. If at
present time t = t0, the coordination of P’s location is x0 ∈ IRn, then in the near future
P follows a trajectory ξ with duration τ and initial condition x0. At time t = t0 + Δt
where Δt < τ, P will locate in point ξ(Δt) ∈ IRn. This intuition makes sense in that if
there are two trajectories, ξ1 with duration τ1 and ξ2 with duration τ2 sharing the same
initial condition, then ξ1(t) = ξ2(t) for each t ∈ [0,min{τ1, τ2}). This is concluded in
Theorem 1 which comes directly from the Peano existence theorem [13], a fundamental
theorem in the study of ordinary differential equations that guarantees the existence of
solutions to certain initial value problems.

Theorem 1. Let X ⊆ IRn be a nonempty subset, f ∶ X → IRn a continuously differen-
tiable function, and x0 ∈ X an interior point. Then there exists some τ > 0 and a unique
solution ξ ∶ [0, τ) → X of the differential equation ξ̇ = f (ξ) satisfying ξ(0) = x0.

A space constraint ϕ to an n-dimensional dynamical system Σ is defined as a pred-
icate over free variables {#1,#2,⋯,#n} where #i is interpreted as the i-th coordinate of
a point x ∈ IRn for each i ∈ {1,2,⋯,n}. If the dimension n = 1, then we abbreviate #1

as #. The set of all n-dimensional space constraints is denoted as S C(n) or S C. We use
x ⊧ ϕ to denote that the point x in space IRn satisfies the space constraint ϕ.

Example 2. Let x1, x2, x3 be three points in space IR3 with their coordinations:

x1 = (1,2,3) , x2 = (1,0,−1) , x3 = (0,0,0) (3)

and ϕ1 and ϕ2 two space constraints defined as

ϕ1 = (#1 = #2) ∧ (#2 ≤ #3) , ϕ2 = (#1 + #2 + #3 = 0) . (4)

Then we have
x1 ⊭ ϕ1 , x1 ⊭ ϕ2 ,
x2 ⊭ ϕ1 , x2 ⊧ ϕ2 ,
x3 ⊧ ϕ1 , x3 ⊧ ϕ2 .

(5)
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Hybrid Constraint Automata. We now give the formal definition of HCA and some
intuitive interpretation on how it operates.

Definition 2 (Hybrid constraint automata). A hybrid constraint automata (HCA) T
is a tuple (S , IRn,N ,E , IS ,{Ins}s∈S ,{ fs}s∈S ,{ret}t∈E) consisting of

– a finite set of control states S and a set of initial control states IS ⊆ S ;
– the dynamical system space IRn;
– a finite set of nodes N ;
– an n-dimensional dynamical system Σs = (Ins, fs) for each s ∈ S ;
– an edge relation E which is a subset of S × 2N × DC × S C × S ;
– a reset function re

(s,N,g,ϕ, s̄) ∶ DataN
× Ins → Ins̄.

Instead of writing (s,N,g, ϕ, s̄) ∈ E , we use s
N, g, ϕ
���→ s̄. If re

(s,N,g,ϕ, s̄) = r then we say

s
N, g, ϕ
���→

r
s̄.

The intuitive interpretation of how an HCA T operates is as follows. In the begin-
ning, T stays in one of the initial control states s0 ∈ IS and behaves exactly as the
dynamical system Σs0 , that is, it starts with a point x0 ∈ Ins0 and then flows based on the
differential equation given by fs0 . If T stays in control state s ∈ S and locates at point
x ∈ Ins, it

– must choose an edge t = (s,N,g, ϕ, s̄) from E such that the data assignment δ ⊧ g
and x ⊧ ϕ, if some I/O operations specified by δ happen on exact those nodes in N.
If more than one edges are available, T chooses one of them nondeterministically.
If T chooses t = (s,N,g, ϕ, s̄), it successfully accepts I/O operations and jumps
to control state s̄ and then behaves exactly as the dynamical system Σs̄ with initial
condition ret(δ, x) ∈ Ins̄. If no such edge is available, T halts;

– must choose an edge t = (s,N,g, ϕ, s̄) from E where N = ∅ and g = [] such that x ⊧
ϕ, if T is about to violate the invariant Ins and no I/O operation happens at the time.
If more than one edges are available, T chooses one of them nondeterministically.
If T chooses t = (s,∅, [], ϕ, s̄), it jumps to control state s̄ and then behaves exactly
as the dynamical system Σs̄ with initial condition ret([], x) ∈ Ins̄. If no such edge
is available, T halts;

– may stay in the control state s and behaves exactly as the dynamical system Σs as
long as it is not forced to make a jump to a new control state.

3.2 The State-Transition Graph of an HCA

So far we described the syntax of HCA and gave some intuitive explanations for their
meaning. The following definition formalizes this intuitive behavior by means of a state-
transition graph.

Definition 3 (State-transition graph). Given an HCA T = (S , IRn,N ,E , IS ,{Ins}s∈S ,
{ fs}s∈S ,{ret}t∈E) as above, T induces a state-transition graphAT = (Q,�→, IQ) con-
sisting of
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– a set of states Q = {⟨s, x⟩ ∣ s ∈ S ∧ x ∈ Ins};
– a set of initial states IQ = {⟨s, x⟩ ∣ s ∈ IS ∧ x ∈ Ins};
– a transition relation �→ ⊆ Q × 2N × DA × IR≥0 × Q;

where ⟨s, x⟩
N, δ, τ
��→ ⟨s̄, x̄⟩ if and only if one of the following conditions holds:

– (Flows) s = s̄, N = ∅, δ = [], τ > 0 and there exists a trajectory ξ with duration τ
and initial condition x in the dynamical system Σs = (Ins, fs). The trajectory heads
for the point x̄, that is

lim
t→τ−
ξ(t) = x̄ ; (6)

– (External interactions) s
N, g, ϕ
���→

re
s̄, N ≠ ∅, δ ∈ DA(N), δ ⊧ g, x ⊧ ϕ, τ = 0 and

x̄ = re(δ, x);

– (Internal jumps) s
N, g, ϕ
���→

re
s̄, N = ∅, δ = [], g = true, x ⊧ ϕ, τ = 0 and x̄ = re([], x).

According to Definition 3, transitions in a state-transition graph AT are disjointly
divided into three categories: flows, external interactions (or briefly interactions) and
internal jumps (or briefly jumps). Both interactions and jumps are discrete behavior
while flows are continuous. Given a state q ∈ Q, a successor of q is a state p ∈ Q such

that there exists a transition q
N, δ, τ
��→ p inAT . If this transition is a flow, then p is called a

flow-successor of q with duration τ. Similarly, we can define interaction-successor and
jump-successor. A state q = ⟨s, x⟩ is called terminal if and only if it has no outgoing
transition.

Given an HCA T and a state q = ⟨s, x⟩ in AT , a q-run (or briefly run) in T de-
notes any finite or infinite sequence of successive transitions in AT starting in state q.
Formally, a q-run has the form

� = q0
N0, δ0, τ0
����→ q1

N1, δ1, τ1
����→⋯ (7)

where q0 = q. It is required that for any sequence segment

qi
Ni , δi, τi
���→ qi+1

Ni+1, δi+1, τi+1
������→ qi+2 (8)

in �, exactly one of the two transitions is flow for the following reasons. If a run � con-

tains two consecutive flow-transitions, say, qi
∅, [], τi
���→ qi+1

∅, [], τi+1
����→ qi+2, then it can be

replaced by one flow-transition qi
∅, [], τi + τi+1
������→ qi+2 without any change of its behavior.

On the other hand, if � contains two consecutive discrete actions (interaction- or jump-
transition), then these actions occur at the same time point, which violates the general
idea of constraint automata where all observable activities that occur simultaneously
are collapsed into a single transition. Therefore, a run � in HCA actually consists of an
alternating sequence of continuous transitions (flows) and discrete actions (interactions
or jumps).

Let t = q
N, δ, τ
��→ q̄ be a transition in AT , we introduce some abbreviate notations as

follows:



66 X. Chen, J. Sun, and M. Sun

– instead of writing q
∅, [], τ
���→ q̄, we say q

τ
�→ q̄ if t is a flow-transition. Under this

circumstances, τ > 0;

– instead of writing q
N, δ, 0
��→ q̄, we say q

N, δ
��→ q̄ if t is an interaction-transition. Under

this circumstances, N ≠ ∅;

– instead of writing q
∅, [], 0
���→ q̄, we say q

0
�→ q̄ if t is a jump-transition.

The q-run � is called initial if q ∈ IQ and the first transition of � is a flow. The q-run
� is called time divergent if � is infinite and

lim
n→+∞

n

∑

i=0
τi = +∞ . (9)

For an initial run �, instead of using general notation as in (7), we use the following
simplified notation:

� = q0
τ0
�→ q1

N1, δ1
��→ q2

τ2
�→ q3

N3, δ3
��→ ⋯ (10)

where the notation q1
N1, δ1
��→ q2 should be regarded as an interaction-transition if N1 ≠ ∅

or a jump-transition if N1 = ∅ and δ1 = []. Maximality of a run means that it is either
time divergent or finite and ends in a terminal state.

Intuitively, Ni is the set of nodes in state qi that are scheduled to synchronously
perform the next set of I/O operations, while δi represents the concrete values that are
exchanged through those operations at the nodes A ∈ Ni. The value τi stands for the
duration time when the system evolves based on differential equations.

We now define the notion of timed data stream (TDS) which serves to formalize the
observable data flows of the runs in an HCA and thus formally define the behavior of
an HCA. A TDS is a sequence of triples (N, δ, t) where N is a non-empty set of nodes,
δ is a data assignment over N and t is a time point. The intuitive meaning of (N, δ, t) is
that at time t the nodes in N simultaneously perform some I/O-operations specified by
the pair (N, δ).

Definition 4 (Timed data stream). A timed data stream for a node-set N denotes any
finite or infinite sequence

Θ = (N0, δ0, t0) , (N1, δ1, t1) , ⋯ ∈ (2N × DA × IR≥0)
∗ (11)

such that Ni ≠ ∅, δi ∈ DA(Ni), 0 < t0 < t1 < ⋯. The empty timed data stream is denoted
by the symbol ε. The length ∥Θ∥ ∈ IN ∪ {∞} is defined as the number of triples (N, δ, t)
in Θ. The execution time

τ(Θ) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎩

tk ∥Θ∥ = k + 1

lim
i→+∞

ti ∥Θ∥ = ∞

0 Θ = ε

Θ is called time divergent if it is infinite and τ(Θ) = +∞.

Definition 5 (Timed data stream language). If � is a run of HCA T as above then the
induced TDS Θ(�) = (Ni0 , δi0 , ti0) , (Ni1 , δi1 , ti1) , ⋯ is obtained by
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1. removing all flow- and jump-transitions in �;
2. building the projection on the transition labels;
3. replacing the duration time τi by the absolute time points ti = ∑

i
j=0 τi.

The generated TDS language of a state q in AT is

L(T ,q) = {Θ(�) ∶ � is a maximal q-run} . (12)

The language L(T ) consists of all timed data streams Θ(�) where � is a maximal and
initial run.

s
ξ̇ = 0
ξ = 0

s̄
ξ̇ = −1

0 ≤ ξ ≤ 1

{A},#� 1

# = 0

Fig. 2. HCA for a delay channel

Example 3. Let Data = {d} and N = {A}. Fig. 2 shows an HCA T with the set
of control states S = {s, s̄} and the initial control state s ∈ S 1. T has two edges:

s
{A},true,true
������→

#�1
s̄ and s̄

∅,true,#=0
�����→

σx

s. Here, # � 1 is an abbreviation of the function

re ∶ [A ↦ d] × {0} ↦ {1} and σx ∶ DataN → IR is the projection function satisfy-
ing σx(δ, x) = x for any δ ∈ DA(N) and x ∈ IR. According to Definition 3, we can
give the corresponding state-transition graph AT = (Q,�→, IQ) of the HCA T , where
Q = {⟨s,0⟩} ∪ {⟨s̄, x⟩ ∣ 0 ≤ x ≤ 1}, IQ = {⟨s,0⟩} and �→ consists of

– flow-transitions in control state s, that is ⟨s,0⟩
∅,[],τ
���→ ⟨s,0⟩ for each τ > 0;

– flow-transitions in control state s̄, that is ⟨s̄, x⟩
∅,[],τ
���→ ⟨s̄, x − τ⟩ for each x ∈ (0,1]

and 0 < τ ≤ x;

– an interaction-transition ⟨s,0⟩
{A},[A↦d],0
������→ ⟨s̄,1⟩;

– a jump-transition ⟨s̄,0⟩
∅,[],0
���→ ⟨s,0⟩.

The intuitive interpretation of how AT works is as follows. At the beginning,AT stays
in state ⟨s,0⟩, where there are two outgoing transitions: one is an interaction-transition
to state ⟨s̄,1⟩ and the other is a self-loop flow-transition to state ⟨s,0⟩ itself. Therefore
if no I/O-transition is performed, then AT must stay in state ⟨s,0⟩, until some I/O-
operations happen. Because T has only one node A and the data set Data contains only
one data item d, the only I/O-operation that can happen here is the one specified by the
data assignment δ = [A ↦ d], which triggers AT moving to state ⟨s̄,1⟩ through the

only interaction-transition ⟨s,0⟩
{A},[A↦d],0
������→ ⟨s̄,1⟩. From then on, AT will flow based

1 To make the graph simple and clear, here we omit all the trivial conditions and labels such as
the projection function σx, the true predicate and empty node-set ∅.
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on the differential equation ξ̇ = −1. Notice that in any state ⟨s̄, x⟩ where x ∈ (0,1], the
only outgoing transitions for AT is flow-transitions, which implies that AT will stay in
control state s̄ and keep flowing until it reaches the state ⟨s̄,0⟩. As soon as it reaches

⟨s̄,0⟩, it will choose the only outgoing transition ⟨s̄,0⟩
∅,[],0
���→ ⟨s,0⟩ and finally come

back to the initial state ⟨s,0⟩.
A typical maximal and initial run � of the HCA T has the form

� = ⟨s,0⟩
τ1
�→ ⟨s,0⟩

{A}, [A↦ d]
������→ ⟨s̄,1⟩

1
�→ ⟨s̄,0⟩

0
�→ ⟨s,0⟩

τ2
�→⋯ (13)

where τ1, τ2, . . . are positive real numbers and τ(�) = τ1 + 1 + τ2 + 1 +⋯ = +∞, which
means � is time divergent. The corresponding TDS Θ(�) induced by q is

Θ(�) = ({A}, [A ↦ d], τ1), ({A}, [A ↦ d], τ1 + 1 + τ2),⋯ (14)

and the TDS-language L(T ) of T is set of sequences ({A}, [A ↦ d], t1), ({A}, [A ↦

d], t2),⋯ where ti+1 − ti > 1 for each i ≥ 1.

4 Hybrid Reo Circuits

This section explains how HCA is able to formalize connectors with hybrid behaviors
in Reo in a compositional way.

4.1 Hybrid Primitive Channels

Reo defines what a channel is and how channels can be composed into more com-
plex connectors. Reo places no restrictions on the behavior of channels. This allows
an open-ended set of user-defined channel types as primitives for constructing com-
plex connectors (also called circuits in Reo). In the sequel, we introduce a number of
common channel types when considering the hybrid behavior of CPSs.

s s̄(d)

{A},d � dA

{B},dB = d

Fig. 3. HCA for FIFO1 channel

FIFO channels. FIFO channels are the most common form of asynchronous channels.
The word “asynchronous” here means that there exists some delay after a data item
is written into the input port for the data item to be available on the output port. The
simplest FIFO channel with discrete behavior only is the FIFO1 channel. A FIFO1
channel is a FIFO channel with one buffer cell, which has a source end and a sink end.
The corresponding HCA for the FIFO1 channel is shown in Fig. 3, where all the trivial
conditions and labels are omitted intentionally.
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s s̄(1)s̄(0)

{A},dA = 1

{B},dB = 1{A},dA = 0

{B},dB = 0

Fig. 4. Non-parametric HCA for FIFO1 channel

Note that in Fig. 3 we use a parametric notation for HCA which can be easily un-
folded to a standard HCA as in Definition 2. For example, let Data = {0,1} be the set
of data items, the unfolded non-parametric HCA is given in Fig. 4.

There are FIFO channels with some time properties such as the expiring FIFO1 chan-
nel, where a data item is lost if it is not taken out from the buffer through the sink end
within τ time units after it enters the source end. The HCA for an expiring FIFO1 chan-
nel is shown in Fig. 5. The edge from s to s̄(d) models a write action on the source end
A, which triggers the HCA moving to control state s̄(d), where the differential equa-
tion ξ̇ = −1 forces the automata to flow from the point τ ∈ IR towards 0 ∈ IR. If no
interaction-transition is available, i.e., the sink end B is not ready for a take operation,
then the automata will reach the point 0 ∈ IR finally and immediately jump to the control

state s trough s̄(d)
# = t
��→ s in order to avoid violating the invariant predicate ξ ≥ 0. Under

this circumstance, the channel loses the data item in its buffer, which is exactly the be-
havior as we supposed. It is also possible that when the automaton is in the control state
s̄(d) a take operation happens on the sink end B. This will force the automata to accept

the I/O-operation and move back to the initial state s through s̄(d)
{B}, dB = d, # ≥ 0
��������→

# � 0
s.

s
ξ̇ = 0
ξ = 0

s̄(d)
ξ̇ = −1
ξ ≥ 0

{A},d � dA,#� τ

{B},dB = d,# ≥ 0,#� 0

# = 0

Fig. 5. HCA for expiring FIFO1 channel

A more interesting example is the data-sensitive FIFO1 channel where the behavior
is determined by not only the external environment (i.e., the I/O-operations on its chan-
nel ends) but also the data items which are transferred through the channel. A typical
example is a variant of a standard FIFO1 channel where after a write operation happens
on the source end A, the times it takes to “transfer” the data item from A to the sink
end B depends on the size of the data item being transferred. Let size ∶ Data → IR>0 be
a primitive function where size(d) gives the size of data item d ∈ Data and a constant
data transferring speed k ∈ IR>0. The HCA for such a channel is shown in Fig. 6. The

edge s
{A},d�dA
�����→

# � size(d)
s̄(d) models a write operation on A which forces the automata to
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move to the control state s̄(d) and locates in size(d) ∈ IR. When the automata stays in
s̄(d), it flows based on the differential equation ξ̇ = −k in the negative direction in IR.
Notice the invariant set of s̄(d) is the entire space IR, therefore the automata is allowed
to stay in the control state s̄(d) as long as there is no I/O-operation succeeds on B. If a
take operation successfully happens on B, then the automata checks all legal outgoing

transitions from s̄(d). Since the only outgoing transition is s̄(d)
{B}, dB = d, # ≤ 0
��������→

# � 0
s where

the space constraint is # ≤ 0, the automata is able to make the transition only when it
reaches the non-positive part in IR, that is at least size(d)/k time units after the write
operation happened on A.

s
ξ̇ = 0
ξ = 0

s̄(d)
ξ̇ = −k
ξ ∈ IR

{A}, d � dA, #� size(d)

{B}, dB = d, # ≤ 0, #� 0

Fig. 6. HCA for constant speed transferring FIFO1 channel

4.2 Join on HCA

In Reo, complex circuits can be composed by primitive channels. We now define the
composition operator on HCA that serves to formalize Reo circuits in a compositional
way.

Definition 6 (HCA product). Let T1 and T2 be two HCA

Ti = (S i, IR
ni ,Ni,Ei, IS i,{Ins}s∈S i ,{ fs}s∈S i ,{ret}t∈Ei) (15)

where i ∈ {1,2} such that the set of all shared nodes N0 = N1∩N2. The product T1!T2

is defined as an HCA

T = (S , IRn,N ,E , IS ,{Ins}s∈S ,{ fs}s∈S ,{ret}t∈E) (16)

consisting of

– a set of control states S = S 1 × S 2 and a set of initial control states IS = IS 1 × IS 2;
– the dynamical system space IRn where n = n1 + n2;
– a finite set of nodes N = N1 ∪N2;
– an n-dimensional dynamical system Σs = (Ins, fs) for each s = ⟨s1, s2⟩ ∈ S ,

where Ins = Ins1 × Ins2 , and fs ∶ Ins → IRn is a function defined as fs(x1, x2) =

( fs1(x1), fs2(x2)) for each x1 ∈ Ins1 and x2 ∈ Ins2;
– an edge relation E which is a subset of S × 2N × DC × S C × S ;
– a reset function ret ∶ DataN

× Ins → Ins̄ for each t = (s,N,g, ϕ, s̄) ∈ E .
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Intuitively, the compositional product HCA T behaves exactly as the parallel of T1

and T2, with the only constraint that all I/O-operations happen on the shared ports in N

should coincide with each other. Therefore, ⟨s1, s2⟩
N, g, ϕ
���→

re
⟨s̄1, s̄2⟩ ∈ E is defined by the

following rules.

– The first rule deals with the situation when T1 and T2 are about to do some I/O-
operations on the nodes in N1 and N2 respectively at the same time. This is allowed
only when they coincide on the shared nodes, that is

s1
N1, g1, ϕ1
����→

re1

s̄1 ∈ E1

s2
N2, g2, ϕ2
����→

re2

s̄2 ∈ E2

N1 ∩N0 = N2 ∩N0

g1 ∧ g2 ≢ f alse
ϕ1 ∧ ϕ2 ≢ f alse

⟨s1, s2⟩
N1 ∪ N2, g1 ∧ g2, ϕ1 ∧ ϕ2
�����������→

re
⟨s̄1, s̄2⟩ ∈ E

(17)

where re ∶ DataN
× In

⟨s1,s2⟩
→ ⟨s̄1, s̄2⟩ is a function defined as follows. For each

δ ∈ DataN and i ∈ {1,2}, let δi ∈ DataNi satisfy δi(A) = δ(A) for each A ∈ Ni. For
each δ ∈ DataN and ⟨x1, x2⟩ ∈ ⟨Ins1 , Ins2⟩,

re(δ, ⟨x1, x2⟩) = ⟨re1(δ1, x1), re2(δ2, x2)⟩.

– The second rule deals with the situation when T1 is about to make a discrete tran-
sition while T2 continues in flowing. This is allowed if T1’s transition does not ask
T2 to coordinate with it, that is

s1
N1 , g1, ϕ1
����→

re1

s̄1 ∈ T1

s2 ∈ S 2

N1 ∩N0 = ∅

⟨s1, s2⟩
N1, g1, ϕ1
����→

re
⟨s̄1, s2⟩

(18)

where re ∶ DataN
× In

⟨s1,s2⟩ → ⟨s̄1, s̄2⟩ is a function defined as re(δ, ⟨x1, x2⟩) =

re1(δ, x1) which is well defined since N = N1. There is a symmetric rule which
deals with the situation when T2 is about to make a discrete transition while T1

continues in flowing:

s2
N2 , g2, ϕ2
����→

re2
s̄2 ∈ T2

s1 ∈ S 1

N2 ∩N0 = ∅

⟨s1, s2⟩
N2, g2, ϕ2
����→

re
⟨s1, s̄2⟩

(19)
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Roughly speaking, the product HCA T needs to deal with three situations:

– both HCA choose to make discrete transitions. This is captured by (17);
– one of the HCA chooses to make a discrete transition while the other chooses to stay

in current control state and continues in flowing. This is captured by (18) and (19).
– both HCA choose to stay in their current control states respectively and continue in

flowing. This is captured by the composed dynamical systems Σ
⟨s1,s2⟩.

Here we introduce some convenient notations for the join operation. For s = ⟨s1, s2⟩,
we use s. f irst, s.second to denote s1, s2 respectively. Similarly, for x = ⟨x1, x2⟩, we use
x. f irst, x.second to denote x1, x2 respectively.

The join operator introduced in Definition 6 captures the replicator semantics of
source nodes in Reo. Therefore it can serve as the semantic operator for the join of two
nodes where at least one of them is a source node. To mimic the merge semantics of
sink nodes, we introduce the HCA TMerger shown in Fig. 7. To join two sink nodes A and
B, we first choose a new node named C and then return TMerger(A, B,C)!TA!TB where
TA and TB are the HCA that model the sub-circuits containing A and B respectively.

s
ξ̇ = 0
ξ = 0

{A,C}, dA = dC {B,C}, dB = dC

Fig. 7. HCA for merger

The correctness of the join operator on HCA is guaranteed by means of TDS-
languages. For this purpose, we define the join operator on TDS-languages and es-
tablish a compositionality result in Theorem 2.

Definition 7 (Join on timed data streams and TDS languages). Let Θ = ((Ni, δi, ti))i

andΦ = ((M j, γ j, s j)) j be two TDS over N and M respectively. The common node-set
is denoted as N0 = N ∩M. We say that Θ and Φ are inconsistent if there exist i ∈ IN
and j ∈ IN such that ti = s j, (Ni ∪ M j) ∩ N0 ≠ ∅ and δi ↾N0≠ γ j ↾N0 . We say that Θ and
Φ are consistent if they are not inconsistent. The join Θ !Φ of two consistent TDS can
be inductively defined as a sequence generated by

– appending (N1, δ1, t1) to Θ′ !Φ, if t1 < s1;
– appending (M1, γ1, s1) to Θ !Φ′, if s1 < t1;
– appending (N1 ∪ M1, δ1 ∪ γ1, t1) to Θ′ !Φ′, if s1 = t1. δ1 ∪ γ1 is well defined since
Θ and Φ are consistent.

Let L1 and L2 be two TDS-languages overN1 andN2 respectively. The join L1!L2 is
a TDS-language over N1∪N2 consists of all timed data streams Θ that can be obtained
by joining two consistent timed data streams Θ1 ∈ L1 and Θ2 ∈ L2.

Lemma 1. Let T1 and T2 be HCA, then

L(T1 ! T2) = L(T1) ! L(T2) . (20)
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Lemma 1 directly leads to the following compositional theorem, which implies the
correctness of the product operator on HCA.

Theorem 2. Let T1, T2 and T3 be HCA, then

L((T1 ! T2) ! T3) = L(T1 ! (T2 ! T3)) (21)

Example 4. Figure 8 shows a Reo circuit consisting of two expiring FIFO1 channels,
with expiring limit τ and ω respectively. The HCA for the two channels and the whole
circuit obtained by their join are shown in Fig. 9.

Fig. 8. The Reo circuit obtained by joining two expiring FIFO1 channels

s
ξ̇ = 0
ξ = 0

s̄
ξ̇ = −1
ξ ≥ 0

{A},dA = d,#� τ

{B},dB = d,# ≥ 0,#� 0

# = 0

p
η̇ = 0
η = 0

p̄
η̇ = −1
η ≥ 0

{B},dB = d,#� ω

{C},dC = d,# ≥ 0,#� 0

# = 0

sp sp̄

s̄p s̄p̄

{
A
}
,d

A
=

d,
# 1
�
τ

{C}, dC = d, #2 ≥ 0

#2 = 0

{
A
}
,d

A
=

d,
# 1
�
τ

{A}, dA = d, #1 � τ, #2 = 0

{A
,C
},

d A
=

dC
=

d,
# 1
�
τ,

# 2
≥

0

# 1
=

0

{B
},

d B
=

d,
# 1
≥

0,
# 2
�
ω

#
1

#
2 = 0

{C
}, #

1 = 0

=

∧

0

#

∧

2 ≥ 0, dC
= d # 1
=

0

#2 = 0

{C}, dC = d, #2 ≥ 0

Fig. 9. HCA for two expiring FIFO1 channels and the Reo circuit consisting of them

5 Conclusion

In this paper we introduced hybrid constraint automata (HCA) as a formal model to
define hybrid behavior for Reo component connectors. We presented a compositional
product operator that can serves as a basis for the automated construction of a hybrid
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constraint automaton model from a given Reo circuit, and as a starting point for its
formal verification.

In terms of future work, what we would like to do in the next step is to develop
proper logics for specifying hybrid properties of Reo connectors. Development of suit-
able algorithms and model checking tools to verify hybrid properties of connectors in
Reo based on the HCA model will also be studied.
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