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Abstract. Information leakage can have dramatic consequences on sys-
tems security. Among harmful information leaks, the timing informa-
tion leakage is the ability for an attacker to deduce internal information
depending on the system execution time. We address the following prob-
lem: given a timed system, synthesize the execution times for which one
cannot deduce whether the system performed some secret behavior. We
solve this problem in the setting of timed automata (TAs). We first pro-
vide a general solution, and then extend the problem to parametric TAs,
by synthesizing internal timings making the TA secure. We study decid-
ability, devise algorithms, and show that our method can also apply to
program analysis.

1 Introduction

Timed systems combine concurrency and possibly hard real-time constraints.
Information leakage can have dramatic consequences on the security of such
systems. Among harmful information leaks, the timing information leakage is
the ability for an attacker to deduce internal information depending on timing
information. In this work, we focus on the execution time, i. e., when a system
works as an almost black-box, with the ability of an attacker to mainly observe
its execution time.

We address the following problem: given a timed system, a private state
denoting the execution of some secret behavior and a final state denoting the
completion of the execution, synthesize the execution times to the final state for
which one cannot deduce whether the system has passed through the private
state. We solve this problem in the setting of timed automata (TAs), which is
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a popular extension of finite-state automata with clocks [2]. We first prove that
this problem is solvable, and we provide an algorithm, that we implement and
apply to a set of benchmarks containing notably a set of Java programs known
for their (absence of) timing information leakage.

Then we consider a higher-level problem by allowing (internal) timing param-
eters in the system, that can model uncertainty or unknown constants at early
design stage. The setting becomes parametric timed automata [3], and the prob-
lem asks: given a timed system with timing parameters, a private state and a
final state, synthesize the timing parameters and the execution times for which
one cannot deduce whether the system has passed through the private state.
Although we show that the problem is in general undecidable, we provide a
decidable subclass; then we devise a general procedure not guaranteed to termi-
nate, but that behaves well on examples from the literature.

2 Related Works

This work is closely related to the line of work on defining and analyzing infor-
mation flow in timed automata. It is well-known (see e. g., [8,16]) that time is a
potential attack vector against secure systems. That is, it is possible that a non-
interferent (secure) system can become interferent (insecure) when timing con-
straints are added [13]. In [7], a first notion of timed non-interference is proposed.
In [13], Gardey et al. define timed strong non-deterministic non-interference
(SNNI) based on timed language equivalence between the automaton with hid-
den low-level actions and the automaton with removed low-level actions. Further-
more, they show that the problem of determining whether a timed automaton
satisfies SNNI is undecidable. In contrast, timed cosimulation-based SNNI, timed
bisimulation-based SNNI and timed state SNNI are decidable. In [9], the prob-
lem of checking opacity for timed automata is considered: even for the restricted
class of event-recording automata, it is undecidable whether a system is opaque,
i. e., whether an attacker can deduce whether some set of actions was performed,
by only observing a given set of observable actions (with their timing). In [19],
Vasilikos et al. define the security of timed automata in term of information
flow using a bisimulation relation and develop an algorithm for deriving a sound
constraint for satisfying the information flow property locally based on relevant
transitions. In [8], Benattar et al. study the control synthesis problem of timed
automata for SNNI. That is, given a timed automaton, they propose a method to
automatically generate a (largest) sub-systems such that it is non-interferent if
possible. Different from the above-mentioned work, our work considers paramet-
ric timed automata, i. e., timed systems with unknown design parameters, and
focuses on synthesizing parameter valuations which guarantee information flow
property. As far as we know, this is the first work on parametric model checking
for timed automata for information flow property. Compared to [8], our approach
is more realistic as it does not require change of program structure. Rather, our
result provides guidelines on how to choose the timing parameters (e. g., how
long to wait after certain program statements) for avoiding information leakage.
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In [18], the authors propose a type system dealing with non-determinism and
(continuous) real-time, the adequacy of which is ensured using non-interference.
We share the common formalism of TA; however, we mainly focus on leakage as
execution time, and we synthesize internal parts of the system (clock guards),
in contrast to [18] where the system is fixed.

This work is related to work on mitigating information leakage through time
side channel. For example, in [20], Wang et al. proposed to automatically gener-
ate masking code for eliminating side channel through program synthesis. In [21],
Wu et al. proposed to eliminate time side channel through program repair. Dif-
ferent from the above-mentioned works, we reduce the problem of mitigating
time side channel as a parametric model checking problem and solve it using
parametric reachability analysis techniques.

This work is related to work on identifying information leakage through tim-
ing analysis. In [10], Chattopadhyay et al. applied model checking to perform
cache timing analysis. In [11], Chu et al. performed similar analysis through sym-
bolic execution. In [1], Abbasi et al. apply the NuSMV model checker to verify
integrated circuits against information leakage through side channels. In [12], a
tool is developed to identify time side channel through static analysis. In [22],
Sung et al. developed a framework based on LLVM for cache timing analysis.

3 Preliminaries

We assume a set X = {x1, . . . , xH} of clocks, i. e., real-valued variables that
evolve at the same rate. A clock valuation is μ : X → R≥0. We write 0 for the
clock valuation assigning 0 to all clocks. Given d ∈ R≥0, μ+d is s.t. (μ+d)(x) =
μ(x) + d, for all x ∈ X. Given R ⊆ X, we define the reset of a valuation μ,
denoted by [μ]R, as follows: [μ]R(x) = 0 if x ∈ R, and [μ]R(x) = μ(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters. A parameter valuation v
is v : P → Q+. We assume �� ∈ {<,≤,=,≥, >}. A guard g is a constraint over
X∪P defined by a conjunction of inequalities of the form x ��

∑
1≤i≤M αipi +d,

with pi ∈ P, and αi, d ∈ Z. Given g, we write μ |= v(g) if the expression obtained
by replacing each x with μ(x) and each p with v(p) in g evaluates to true.

Definition 1 (PTA). A PTA A is a tuple A = (Σ,L, �0,X,P, I, E), where:
(i) Σ is a finite set of actions, (ii) L is a finite set of locations, (iii) �0 ∈ L is the
initial location, (iv) X is a finite set of clocks, (v) P is a finite set of parameters,
(vi) I is the invariant, assigning to every � ∈ L a guard I(�), (vii) E is a finite
set of edges e = (�, g, a,R, �′) where �, �′ ∈ L are the source and target locations,
a ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is a guard.

Example 1. Consider the PTA in Fig. 1 (inspired by [13, Fig. 1b]), containing
one clock x and two parameters p1 and p2. �0 is the initial location, while �1 is
the (only) accepting location.
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�0 �2

�1

x ≤ 3 x ≤ 3x ≥ p1

x ≥ p2

Fig. 1. A PTA example

Given v, we denote by v(A) the non-parametric structure where all occur-
rences of a parameter pi have been replaced by v(pi).

The synchronous product (using strong broadcast, i. e., synchronization on a
given set of actions) of several PTAs gives a PTA.

Definition 2 (Semantics of a TA). Given a PTA A = (Σ,L, �0,X,P, I, E),
and a parameter valuation v, the semantics of v(A) is given by the timed tran-
sition system (TTS) (S, s0,→), with

– S = {(�, μ) ∈ L × R
H
≥0 | μ |= v(I(�))}, s0 = (�0,0),

– → consists of the discrete and (continuous) delay transition relations: (i)
discrete transitions: (�, μ) e�→ (�′, μ′), if (�, μ), (�′, μ′) ∈ S, and there exists e =
(�, g, a,R, �′) ∈ E, such that μ′ = [μ]R, and μ |= v(g). (ii) delay transitions:
(�, μ) d�→ (�, μ + d), with d ∈ R≥0, if ∀d′ ∈ [0, d], (�, μ + d′) ∈ S.

Moreover we write (�, μ)
(e,d)−→ (�′, μ′) for a combination of a delay and discrete

transition if ∃μ′′ : (�, μ) d�→ (�, μ′′) e�→ (�′, μ′).
Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states

of S as the concrete states of v(A). A run of v(A) is an alternating sequence of
concrete states of v(A) and pairs of edges and delays starting from the initial
state s0 of the form s0, (e0, d0), s1, · · · with i = 0, 1, . . . , ei ∈ E, di ∈ R≥0 and

si
(ei,di)−→ si+1. The duration of a finite run ρ : s0, (e0, d0), s1, · · · , si is dur(ρ) =∑
0≤j≤i−1 dj . Given s = (�, μ), we say that s is reachable in v(A) if s appears

in a run of v(A). By extension, we say that � is reachable. Given �, �′ ∈ L and
a run ρ, we say that � is reachable on the way to �′ in ρ if ρ is of the form
(�0), (e0, d0), · · · , (en, dn), · · · (em, dm) · · · for some m,n ∈ N such that �n = �,
�m = �′ and ∀0 ≤ i ≤ n − 1, �i �= �′. Conversely, � is unreachable on the way
to �′ in ρ if ρ is of the form (�0), (e0, d0), · · · , (em, dm) · · · with �m = �′ and
∀0 ≤ i ≤ m − 1, �i �= �.

Example 2. Consider again the PTA A in Fig. 1, and let v be such that v(p1) = 1
and v(p2) = 2. Consider the following run ρ of v(A): (�0, x = 0), (e2, 1.4), (�2, x =
1.4), (e3, 1.3), (�1, x = 2.7), where e2 is the edge from �0 to �2 in Fig. 1, and e3 is
the edge from �2 to �1. We write “x = 1.4” instead of “μ such that μ(x) = 1.4”.
We have dur(ρ) = 1.4 + 1.3 = 2.7. In addition, �2 is reachable on the way to �1
in ρ.

We will use reachability synthesis to solve the problems in Sect. 4. This pro-
cedure, called EFsynth, takes as input a PTA A and a set of target locations T ,
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�1 �2 �3

error

�4 �priv

�5

�f
cl ≤ ε cl ≤ ε cl ≤ ε cl ≤ ε

cl ≤ ε
setupserver

cl := 0

cl ≤ ε
read?x
cl := 0

cl ≤ ε
x < 0

cl ≤ ε
x ≥ 0

cl := 0

x ≤ secret
∧ cl ≤ ε

cl := 0

x > secret
∧ cl ≤ ε

cl := 0

322 ≤ cl
∧ cl ≤ 322 + ε

p × 322 ≤ cl
∧ cl ≤ p × 322 + ε

Fig. 2. A Java program encoded in a PTA

and attempts to synthesize all parameter valuations v for which T is reachable
in v(A). EFsynth(A, T ) was formalized in e. g., [15] and is a procedure that may
not terminate, but that computes an exact result (sound and complete) if it ter-
minates. EFsynth traverses the parametric zone graph of A, which is a potentially
infinite extension of the well-known zone graph of TAs (see, e. g., [5,15]).

Example 3. Consider again the PTA A in Fig. 1. EFsynth(A, {�1}) = p1 ≤ 3 ∨
p2 ≤ 3. Intuitively, it corresponds to all parameter constraints in the parametric
zone graph associated to symbolic states with location �1.

4 Timed-Opacity Problems

Let us first introduce two key concepts to define our notion of opacity.
DReachv(A)

� (�′) (resp. DReachv(A)
¬� (�′)) is the set of the durations of the runs

for which � is reachable (resp. unreachable) on the way to �′. Formally:
DReachv(A)

� (�′) = {d | ∃ρ in v(A) such that d = dur(ρ) ∧ � is reachable on the
way to �′ in ρ} and DReachv(A)

¬� (�′) = {d | ∃ρ in v(A) such that d = dur(ρ) ∧ �
is unreachable on the way to �′ in ρ}.

Example 4. Consider again the PTA in Fig. 1, and let v be such that v(p1) = 1
and v(p2) = 2. We have DReachv(A)

�2
(�1) = [1, 3] and DReachv(A)

¬�2
(�1) = [2, 3].

Definition 3 (timed opacity w.r.t. D). Given a TA v(A), a private loca-
tion �priv , a target location �f and a set of execution times D, we say that
v(A) is opaque w.r.t. �priv on the way to �f for execution times D if D ⊆
DReachv(A)

�priv
(�f ) ∩ DReachv(A)

¬�priv
(�f ).

Example 5. Consider the PTA A in Fig. 2 where cl is a clock, while ε,p are
parameters. We use a sightly extended PTA syntax: read?x reads the value input
on a given channel read, and assigns it to a (discrete, global) variable x. secret is
a constant variable of arbitrary value. If both x and secret are finite-domain vari-
ables (e. g., bounded integers) then they can be seen as syntactic sugar for loca-
tions. Such variables are supported by most model checkers, including Uppaal
and IMITATOR.
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This PTA encodes a server process from the DARPA Space/Time Analysis
for Cybersecurity (STAC) library, that compares a user-input variable with a
given secret and performs different actions taking different times depending on
this secret. In our encoding, a single instruction takes a time in [0, ε], while p is a
(parametric) factor to one of the sleep instructions of the program (originally,
v(p) = 2). For sake of simplicity, we abstract away instructions not related to
time, and merge subfunctions calls.

Fix v(ε) = 1, v(p) = 2. For this example, DReachv(A)
�priv

(�f ) = [1024, 1029]

while DReachv(A)
¬�priv

(�f ) = [2048, 2053]. Therefore, v(A) is opaque w.r.t. �priv on
the way to �f for execution times D = [1024, 1029] ∩ [2048, 2053] = ∅.

Now fix v(ε) = 2, v(p) = 1.002. DReachv(A)
�priv

(�f ) = [1024, 1034] while

DReachv(A)
¬�priv

(�f ) = [1026.048, 1036.048]. Therefore, v(A) is opaque w.r.t. �priv
on the way to �f for execution times D = [1026.048, 1034].

We can now define the timed-opacity computation problem, which consists in
computing the possible execution times ensuring opacity w.r.t. a private location.
In other words, the attacker model is as follows: the attacker has only access to
the computation time between the start of the program and the time it reaches
a given (final) location.

Timed-opacity Computation Problem:
Input: A TA v(A), a private location �priv , a target location �f

Problem: Compute the execution times D for which v(A) is opaque w.r.t.
�priv on the way to �f for execution times D

The synthesis counterpart allows for a higher-level problem by also synthe-
sizing the internal timings guaranteeing opacity.

Timed-opacity Synthesis Problem:
Input: A PTA A, a private location �priv , a target location �f

Problem: Synthesize the parameter valuations v and the execution times D
for which v(A) is opaque w.r.t. �priv on the way to �f for execution times D

Note that the execution times can depend on the parameter valuations.

5 Timed-Opacity Computation for Timed Automata

5.1 Answering the Timed-Opacity Computation Problem

Proposition 1 (timed-opacity computation). The timed-opacity computa-
tion problem is solvable for TAs.

This positive result can be put in perspective with the negative result of [9],
that proves that it is undecidable whether a TA (and even the more restricted
subclass of event-recording automata) is opaque, in a sense that the attacker can
deduce some actions, by looking at observable actions together with their timing.
The difference in our setting is that only the global time is observable, which can
be seen as a single action, occurring once only at the end of the computation.
In other words, our attacker is less powerful than the attacker in [9].
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5.2 Checking for Timed-Opacity

If one does not have the ability to tune the system (i. e., change internal delays,
or add some sleep() or Wait() statements in the program), one may be first
interested in knowing whether the system is opaque for all execution times.

Definition 4 (timed opacity). Given a TA v(A), a private location �priv and
a target location �f , we say that v(A) is opaque w.r.t. �priv on the way to �f if
DReachv(A)

�priv
(�f ) = DReachv(A)

¬�priv
(�f ).

That is, a system is opaque if, for any execution time d, a run of duration d
reaches �f after passing by �priv iff another run of duration d reaches �f without
passing by �priv .

Remark 1. This definition is symmetric: a system is not opaque iff an attacker
can deduce �priv or ¬�priv . For instance, if there is no path through �priv to �f ,
but a path to �f , a system is not opaque w.r.t. Definition 4.

As we have a procedure to compute DReachv(A)
�priv

(�f ) and DReachv(A)
¬�priv

(�f ),
(see Proposition 1), Definition 4 gives an immediate procedure to decide timed
opacity. Note that, from the finiteness of the region graph, DReachv(A)

�priv
(�f ) and

DReachv(A)
¬�priv

(�f ) come in the form of a finite union of intervals, and their equality
can be effectively computed.

Example 6. Consider again the PTA A in Fig. 1, and let v be such that v(p1) = 1
and v(p2) = 2. Recall from Example 4 that DReachv(A)

�2
(�1) = [1, 3] and

DReachv(A)
¬�2

(�1) = [2, 3]. Thus, DReachv(A)
�2

(�1) �= DReachv(A)
¬�2

(�1) and therefore
v(A) is not opaque w.r.t. �2 on the way to �1.

Now, consider v′ such that v′(p1) = v′(p2) = 1.5. This time,
DReachv′(A)

�2
(�1) = DReachv′(A)

¬�2
(�1) = [1.5, 3] and therefore v′(A) is opaque

w.r.t. �2 on the way to �1.

6 Decidability and Undecidability

We address here the following decision problem, that asks about the emptiness
of the parameter valuations and execution times set guaranteeing timed opacity.

Timed-opacity Emptiness Problem:
Input: A PTA A, a private location �priv , a target location �f

Problem: Is the set of valuations v such that v(A) is opaque w.r.t. �priv on
the way to �f for a non-empty set of execution times empty?

Dually, we are interested in deciding whether there exists at least one param-
eter valuation for which v(A) is opaque for at least some execution time.

With the rule of thumb that all non-trivial decision problems are undecidable
for general PTAs [4], the following result is not surprising, and follows from the
undecidability of reachability-emptiness for PTAs (Fig. 3).
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�0 �fA�′
0 �priv

�pub �′
f

Fig. 3. Reduction from reachability-emptiness

Proposition 2 (undecidability).The timed-opacity emptiness problem is
undecidable for general PTAs.

We now show that the timed-opacity emptiness problem is decidable for
the subclass of PTAs called L/U-PTAs [14]. Despite early positive results for
L/U-PTAs, more recent results mostly proved undecidable properties of L/U-
PTAs [4], and therefore this positive result is welcome.

Definition 5 (L/U-PTA). An L/U-PTA is a PTA where the set of param-
eters is partitioned into lower-bound parameters and upper-bound parameters,
where each upper-bound (resp. lower-bound) parameter pi must be such that, for
every guard or invariant constraint x ��

∑
1≤i≤M αipi + d, we have: αi > 0

implies �� ∈ {≤, <} (resp. �� ∈ {≥, >}).
Example 7. The PTA in Fig. 1 is an L/U-PTA with {p1, p2} as lower-bound
parameters, and ∅ as upper-bound parameters.

The PTA in Fig. 2 is not an L/U-PTA, because p is compared to cl both as
a lower-bound (in “p × 322 ≤ cl”) and as an upper-bound (“cl ≤ p × 322 + ε”).

Theorem 1 (decidability). The timed-opacity emptiness problem is decidable
for L/U-PTAs.

Remark 2. The class of L/U-PTAs is known to be relatively meaningful, and
many case studies from the literature fit into this class, including case studies
proposed even before this class was defined in [14]. Even though the PTA in
Fig. 2 does not fit in this class, it can easily be transformed into an L/U-PTA,
by duplicating p into pl (used in lower-bound comparisons with clocks) and pu

(used in upper-bound comparisons with clocks).

7 Parameter Synthesis for Opacity

Despite the negative theoretical result of Proposition 2, we now address the
timed-opacity synthesis problem for the full class of PTAs. Our method may
not terminate (due to the undecidability) but, if it does, its result is correct.
Our workflow can be summarized as follows.

1. We enrich the original PTA by adding a Boolean flag b and a final synchro-
nization action;
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2. We perform self-composition (i. e., parallel composition with a copy of itself)
of this modified PTA;

3. We perform reachability-synthesis using EFsynth on �f with contradictory
values of b.

We detail each operation in the following. In this section, we assume a PTA A,
a given private location �priv and a given final location �f .

Enriching the PTA. We first add a Boolean flag b initially set to false, and
then set to true on any transition leading to �priv (in the line of the proof of
Proposition 1). Therefore, b = true denotes that �priv has been visited. Second,
we add a synchronization action finish on any transition leading to �f . Third,
we add a new clock xabs (never reset) together with a new parameter pabs , and
we guard all transitions to �f with xabs = pabs . This will allow to measure the
(parametric) execution time. Let Enrich(A, �priv , �f ) denote this procedure.

Self-composition. We use here the principle of self-composition, i. e., com-
posing the PTA with a copy of itself. More precisely, given a PTA A′ =
Enrich(A, �priv , �f ), we first perform an identical copy of A′ with distinct vari-
ables: that is, a clock x of A′ is distinct from a clock x in the copy of A′—which
can be trivially performed using variable renaming.1 Let Copy(A′) denote this
copy of A′. We then compute A′ ‖{finish} Copy(A′). That is, A′ and Copy(A′)
evolve completely independently due to the interleaving—except that they are
forced to enter �f at the same time, thanks to the synchronization action finish.

Synthesis. Then, we apply reachability synthesis EFsynth (over all parameters,
i. e., the “internal” timing parameters, but also the pabs parameter) to the follow-
ing goal location: the original A′ is in �f with b = true while its copy Copy(A′)
is in �′

f with b′ = false (primed variables denote variables from the copy). Intu-
itively, we synthesize timing parameters and execution times such that there
exists a run reaching �f with b = true (i. e., that has visited �priv ) and there
exists another run of same duration reaching �f with b = false (i. e., that has not
visited �priv ).

Let SynthOp(A, �priv , �f ) denote the entire procedure. We formalize SynthOp
in Algorithm 1, where “�f ∧ b = true” denotes the location �f with b = true.
Also note that EFsynth is called on a set made of a single location of A′ ‖{finish}
Copy(A′); by definition of the synchronous product, this location is a pair of
locations, one from A′ (i. e., “�f ∧ b = true”) and one from Copy(A′) (i. e.,
“�′

f ∧ b′ = false”).

Example 8. Consider again the PTA A in Fig. 2. Fix v(ε) = 1, v(p) = 2. We
then perform the synthesis applied to the self-composition of A′ according to
1 In fact, the fresh clock xabs and parameter pabs can be shared to save two variables,

as xabs is never reset, and both PTAs enter �f at the same time, therefore both
“copies” of xabs and pabs always share the same values.
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Algorithm 1. SynthOp(A, �priv , �f )
input : A PTA A, locations �priv , �f
output : Constraint K over the parameters

1 A′ ← Enrich(A, �priv , �f )
2 A′′ ← A′ ‖{finish} Copy(A′)

3 return EFsynth
(
A′′,

{
(�f ∧ b = true, �′

f ∧ b′ = false)
})

Algorithm 1. The result obtained with IMITATOR is: pabs = ∅ (as expected from
Example 5).

Now fix v(ε) = 2, v(p) = 1.002. We obtain: pabs ∈ [1026.048, 1034] (again, as
expected from Example 5).

Now let us keep all parameters unconstrained. The result of Algorithm1 is the
following 3-dimensional constraint: 5×ε+1024 ≥ pabs ≥ 1024∧1024×p+5×ε ≥
pabs ≥ 1024 × p ≥ 0.

Soundness. We will state below that, whenever SynthOp(A, �priv , �f ) termi-
nates, then its result is an exact (sound and complete) answer to the timed-
opacity synthesis problem.

Theorem 2 (correctness). Assume SynthOp(A, �priv , �f ) terminates with
result K. Assume v. The following two statements are equivalent:

1. There exists a run of duration v(pabs) such that �priv is reachable on the way
to �f in v(A) and there exists a run of duration v(pabs) such that �priv is
unreachable on the way to �f in v(A).

2. v |= K.

8 Experiments

We use IMITATOR [6], a tool taking as input networks of PTAs extended with
several handful features such as shared global discrete variables, PTA synchro-
nization through strong broadcast, etc. We ran experiments using IMITATOR
2.10.4 “Butter Jellyfish” on a Dell XPS 13 9360 equipped with an Intel R© CoreTM

i7-7500U CPU @ 2.70 GHz with 8 GiB memory running Linux Mint 18.3 64 bits.2

8.1 Translating Programs into PTAs

We will consider case studies from the PTA community and from previous works
focusing on privacy using (parametric) timed automata. In addition, we will
be interested in analyzing programs too. In order to apply our method to the
analysis of programs, we need a systematic way of translating a program (e. g.,

2 Sources, models and results are available at doi.org/10.5281/zenodo.3251141.

https://doi.org/10.5281/zenodo.3251141
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a Java program) into a PTA. In general, precisely modeling the execution time
of a program using models like timed automata is highly non-trivial due to
complication of hardware pipelining, caching, OS scheduling, etc. The readers are
referred to the rich literature in, for instance, [17]. In this work, we instead make
the following simplistic assumption on execution time of a program statement
and focus on solving the parameter synthesis problem. How to precisely model
the execution time of programs is orthogonal and complementary to our work.

We assume that the execution time of a program statement other than
Thread.sleep(n) is within a range [0, ε] where ε is a small integer constant
(in milliseconds), whereas the execution time of statement Thread.sleep(n) is
within a range [n, n+ ε]. In fact, we choose to keep ε parametric to be as general
as possible, and to not depend on particular architectures.

Our test subject is a set of benchmark programs from the DARPA Space/-
Time Analysis for Cybersecurity (STAC) program.3 These programs are being
released publicly to facilitate researchers to develop methods and tools for iden-
tifying STAC vulnerabilities in the programs.

8.2 A Richer Framework

The symbolic representation of variables and parameters in IMITATOR allows us
to reason symbolically concerning variables. That is, instead of enumerating all
possible (bounded) values of x and secret in Fig. 2, we turn them to parameters
(i. e., unknown constants), and IMITATOR performs a symbolic reasoning. Even
better, the analysis terminates for this example even when no bound is provided
on these variables. This is often not possible in (non-parametric) timed automata
based model checkers, that usually have to enumerate these values. Therefore,
in our PTA representation of Java programs, we turn all user-input variable and
secret constant variables to parameters. Other local variables are implemented
using IMITATOR discrete (shared, global) variables.

8.3 Experiments

Benchmarks. As a proof of concept, we applied our method to a set of exam-
ples from the literature. The first five models come from previous works from
the literature [8,13,19], also addressing non-interference or opacity in timed
automata. In addition, we used two common models from the (P)TA literature,
not necessarily linked to security: a toy coffee machine (Coffee) used as bench-
mark in a number of papers, and a model Fischer’s mutual exclusion protocol
(Fischer-HRSV02) [14]. In both cases, we added manually a definition of private
location (the number of sugars ordered, and the identity of the process entering
the critical section, respectively), and we verified whether they are opaque w.r.t.
these internal behaviors.

We also applied our approach to a set of Java programs from the aforemen-
tioned STAC library. We use identifiers of the form STAC:1:n where 1 denotes

3 https://github.com/Apogee-Research/STAC/.

https://github.com/Apogee-Research/STAC/
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Table 1. Experiments: timed opacity

Model Transf. PTA Result
Name |A| |X| |A| |X| |P| Time (s) Vulnerable?

[19, Fig. 5] 1 1 2 3 3 0.02 (
√
)

[13, Fig. 1b] 1 1 2 3 1 0.04 (
√
)

[13, Fig. 2a] 1 1 2 3 1 0.05 (
√
)

[13, Fig. 2b] 1 1 2 3 1 0.02 (
√
)

Web privacy problem [8] 1 2 2 4 1 0.07 (
√
)

Coffee 1 2 2 5 1 0.05 ×
Fischer-HSRV02 3 2 6 5 1 5.83 (

√
)

STAC:1:n 2 3 6 0.12 (
√
)

STAC:1:v 2 3 6 0.11
√

STAC:3:n 2 3 8 0.72 ×
STAC:3:v 2 3 8 0.74 (

√
)

STAC:4:n 2 3 8 6.40
√

STAC:4:v 2 3 8 265.52
√

STAC:5:n 2 3 6 0.24 ×
STAC:11A:v 2 3 8 47.77 (

√
)

STAC:11B:v 2 3 8 59.35 (
√
)

STAC:12c:v 2 3 8 18.44
√

STAC:12e:n 2 3 8 0.58
√

STAC:12e:v 2 3 8 1.10 (
√
)

STAC:14:n 2 3 8 22.34 (
√
)

the identifier in the library, while n (resp. v) denotes non-vulnerable (resp. vul-
nerable). We manually translated these programs to parametric timed automata,
following the method described in Sect. 8.1. We used a representative set of pro-
grams from the library; however, some of them were too complex to fit in our
framework, notably when the timing leaks come from calls to external libraries
(STAC:15:v), when dealing with complex computations such as operations on
matrices (STAC:16:v) or when handling probabilities (STAC:18:v). Proposing
efficient and accurate ways to represent arbitrary programs into (parametric)
timed automata is orthogonal to our work, and is the object of future works.

Timed-Opacity Computation. First, we verified whether a given TA model
is opaque, i. e., if for all execution times reaching a given final location, both an
execution passes by a given private location and an execution does not pass by
this private location. To this end, we also answer the timed-opacity computation
problem, i. e., to synthesize all execution times for which the system is opaque.
While this problem can be verified on the region graph (Proposition 1), we use
the same framework as in Sect. 7, but without parameters in the original TA.
That is, we use the Boolean flag b and the parameter pabs to compute all possible
execution times. In other words, we use a parametric analysis to solve a non-
parametric problem.

We tabulate the experiments results in Table 1. We give from left to right
the model name, the numbers of automata and of clocks in the original timed
automaton (this information is not relevant for Java programs as the original
model is not a TA), the numbers of automata, of clocks and of parameters in
the transformed PTA, the computation time in seconds (for the timed-opacity
computation problem), and the result. In the result column, “×” (resp. “

√
”)
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denotes that the model is opaque (resp. is not opaque), while “(
√

)” denotes that
the model is not opaque, but could be fixed. That is, although DReachv(A)

�priv
(�f ) �=

DReachv(A)
¬�priv

(�f ), their intersection is non-empty and therefore, by tuning the
computation time, it may be possible to make the system opaque. This will be
discussed in Sect. 8.4.

Even though we are interested here in timed opacity computation (and not in
synthesis), note that all models derived from Java programs feature the param-
eter ε. The result is obtained by variable elimination, i. e., by existential quan-
tification over the parameters different from pabs . In addition, the number of
parameters is increased by the parameters encoding the symbolic variables (such
as x and secret in Fig. 2).

Discussion. Overall, our method is able to answer the timed-opacity computa-
tion problem relatively fast, exhibiting which execution times are opaque (timed-
opacity computation problem), and whether all execution times indeed guaran-
tee opacity (timed-opacity problem).

In many cases, while the system is not opaque, we are able to infer the
execution times guaranteeing opacity (cells marked “(

√
)”). This is an advantage

of our method w.r.t. methods outputting only binary answers.
We observed some mismatches in the Java programs, i. e., some programs

marked n (non-vulnerable) in the library are actually vulnerable according to our
method. This mainly comes from the fact that the STAC library uses some statis-
tical analyses on the execution times, while we use an exact method. Therefore,
a very small mismatch between DReachv(A)

�priv
(�f ) and DReachv(A)

¬�priv
(�f ) will lead

our algorithm to answer “not opaque”, while statistical methods may not be able
to differentiate this mismatch from noise. This is notably the case of STAC:14:n
where some action lasts either 5,010,000 or 5,000,000 time units depending on
some secret, which our method detects to be different, while the library does
not. For STAC:1:n, using our data, the difference in the execution time upper
bound between an execution performing some secret action and an execution
not performing it is larger than 1%, which we believe is a value which is not
negligible, and therefore this case study might be considered as vulnerable. For
STAC:4:n, we used a different definition of opacity (whether the user has input
the correct password, vs. information on the real password), which explains the
mismatch.

Concerning the Java programs, we decided to keep the most abstract rep-
resentation, by imposing that each instruction lasts for a time in [0, ε], with ε
a parameter. However, fixing an identical (parametric) time ε for all instruc-
tions, or fixing an arbitrary time in a constant interval [0, ε] (for some constant
ε, e. g., 1), or even fixing an identical (constant) time ε (e. g., 1) for all instruc-
tions, significantly speeds up the analysis. These choices can be made for larger
models.

Timed Opacity Synthesis. Then, we address the timed-opacity synthesis
problem. In this case, we synthesize both the execution time and the internal
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Table 2. Experiments: timed opacity synthesis

Model Transf. PTA Result
Name |A| |X| |P| |A| |X| |P| Time (s) Constraint

[19, Fig. 5] 1 1 0 2 3 4 0.02 K
[13, Fig. 1b] 1 1 0 2 3 3 0.03 K
[13, Fig. 2] 1 1 0 2 3 3 0.05 K

Web privacy problem [8] 1 2 2 2 4 3 0.07 K
Coffee 1 2 3 2 5 4 0.10 �

Fischer-HSRV02 3 2 2 6 5 3 7.53 K
STAC:3:v 2 2 3 9 0.93 K

values of the parameters for which one cannot deduce private information from
the execution time.

We consider the same case studies as for timed-opacity computation; however,
the Java programs feature no internal “parameter” and cannot be used here.
Still, we artificially enriched one of them (STAC:3:v) as follows: in addition to
the parametric value of ε and the execution time, we parameterized one of the
sleep timers. The resulting constraint can help designers to refine this latter
value to ensure opacity.

We tabulate the results in Table 2, where the columns are similar to Table 1.
A difference is that the first |P| column denotes the number of parameters in
the original model (without counting these added by our transformation). In
addition, Table 2 does not contain a “vulnerable?” column as we synthesize the
condition for which the model is non-vulnerable, and therefore the answer is non-
binary. However, in the last column (“Constraint”), we make explicit whether
no valuations ensure opacity (“⊥”), all of them (“�”), or some of them (“K”).

Discussion. An interesting outcome is that the computation time is compa-
rable to the (non-parametric) timed-opacity computation, with an increase of
up to 20 % only. In addition, for all case studies, we exhibit at least some val-
uations for which the system can be made opaque. Also note that our method
always terminates for these models, and therefore the result exhibited is com-
plete. Interestingly, Coffee is opaque for any valuation of the 3 internal param-
eters.

8.4 “Repairing” a Non-opaque PTA

Our method gives a result in time of a union of polyhedra over the internal
timing parameters and the execution time. On the one hand, we believe tun-
ing the internal timing parameters should be easy: for a program, an internal
timing parameter can be the duration of a sleep, for example. On the other
hand, tuning the execution time of a program may be more subtle. A solution
is to enforce a minimal execution time by adding a second thread in parallel
with a Wait() primitive to ensure a minimal execution time. Ensuring a max-
imal execution time can be achieved with an exception stopping the program
after a given time; however there is a priori no guarantee that the result of the
computation is correct.
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9 Conclusion

We proposed an approach based on parametric timed model checking to not
only decide whether the model of a timed system can be subject to timing infor-
mation leakage, but also to synthesize internal timing parameters and execution
times that render the system opaque. We implemented our approach in a frame-
work based on IMITATOR, and performed experiments on case studies from the
literature and from a library of Java programs. We now discuss future works.

Theory. We proved decidability of the timed-opacity computation problem for
TAs, but we only provided an upper bound (EXPSPACE) on the complexity.
It can be easily shown that this problem is at least PSPACE, but the exact
complexity remains to be exhibited.

Finally, while we proved for the class of L/U-PTAs the decidability of the
timed-opacity emptiness problem, i. e., the non-existence of a valuation for which
the system is opaque, our result does not necessarily mean that exact (complete)
synthesis is possible. In fact, some results for L/U-PTAs were proved to be
such that the emptiness is decidable but the synthesis is intractable: that is
notably the case of reachability-emptiness, which is decidable [14] while synthe-
sis is intractable [15]. Therefore, studying the timed-opacity synthesis problem
remains to be done for L/U-PTAs.

Applications. The translation of the STAC library required some non-trivial
creativity: proposing automated translations of (possibly annotated) programs
to timed automata dedicated to timing analysis is on our agenda.

Acknowledgements. We thank Sudipta Chattopadhyay for helpful suggestions, Jiay-
ing Li for his help with preliminary model conversion, and a reviewer for suggesting
Remark 1.
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2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32759-9 6

7. Barbuti, R., Francesco, N.D., Santone, A., Tesei, L.: A notion of non-interference
for timed automata. FI 51(1–2), 1–11 (2002)

8. Benattar, G., Cassez, F., Lime, D., Roux, O.H.: Control and synthesis of non-
interferent timed systems. Int. J. Control 88(2), 217–236 (2015). https://doi.org/
10.1080/00207179.2014.944356

9. Cassez, F.: The dark side of timed opacity. In: Park, J.H., Chen, H.-H., Atiquzza-
man, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 21–30.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02617-1 3

10. Chattopadhyay, S., Roychoudhury, A.: Scalable and precise refinement of cache
timing analysis via model checking. In: RTSS, pp. 193–203 (2011). https://doi.
org/10.1109/RTSS.2011.25

11. Chu, D., Jaffar, J., Maghareh, R.: Precise cache timing analysis via symbolic execu-
tion. In: RTAS, pp. 293–304 (2016). https://doi.org/10.1109/RTAS.2016.7461358
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15. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time
systems. TSE 41(5), 445–461 (2015). https://doi.org/10.1109/TSE.2014.2357445

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

17. Lv, M., Yi, W., Guan, N., Yu, G.: Combining abstract interpretation with model
checking for timing analysis of multicore software. In: RTSS, pp. 339–349. IEEE
Computer Society (2010). https://doi.org/10.1109/RTSS.2010.30

18. Nielson, F., Nielson, H.R., Vasilikos, P.: Information flow for timed automata.
In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.)
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