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Abstract

Time series momentum (TSM) refers to the predictability of the past 12-month return on the next

one-month return and is the focus of several recent influential studies. This paper shows that asset-

by-asset time series regressions reveal little evidence of TSM, both in- and out-of-sample. While

the t-statistic in a pooled regression appears large, it is not statistically reliable as it is less than the

critical values of parametric and nonparametric bootstraps. From an investment perspective, the

TSM strategy is profitable, but its performance is virtually the same as that of a similar strategy

that is based on historical sample mean and does not require predictability. Overall, the evidence

on TSM is weak, particularly for the large cross section of assets.
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1. Introduction

Whether past returns predict future returns is a central topic in finance. Fama (1965), French

and Roll (1986), Lo and MacKinlay (1988), and Conrad and Kaul (1988), among others, show that

past returns can positively predict future returns at a short horizon, but the magnitude is too small

to be exploitable. Moskowitz, Ooi and Pedersen (MOP, 2012) conclude with a much greater degree

of predictability that time series momentum (TSM) is everywhere: The past 12-month return

positively predicts the next one- to 12-month return for a comprehensive set of approximately

55 assets. In addition, MOP show that a TSM trading strategy, which buys assets if their past

12-month returns are positive and sells them otherwise, earns significant average and risk-adjusted

returns. Hurst, Ooi and Pedersen (2017) and Georgopoulou and Wang (2017) examine the TSM on

a broader range of asset classes and longer sample periods, and they find similar results. Koijen,

Moskowitz, Pedersen and Vrugt (2018) use TSM portfolio returns as a risk factor to analyze carry

trade. Kim, Tse and Wald (2016) find that the profits of the TSM strategy are driven by volatility

scaling and that its performance without volatility scaling is no better than that of a buy-and-hold

strategy. Moreover, in a concurrent study, Goyal and Jegadeesh (2018) show that the traditional

cross-sectional momentum strategy is more profitable than the TSM once the leverage ratio is

properly adjusted. Despite an improved understanding, whether time series predictability is present

at the 12-month frequency remains an open question.1

In this paper, using the same data set as MOP (2012), we reexamine the statistical and economic

evidence of TSM. From both time series and cross-sectional analyses, we find that the evidence

on TSM is weak. Hence, concluding that TSM exists across the global asset classes appears

questionable.

We conduct our study in three stages. In the first stage, we run a time series regression of

monthly return for each asset on its past 12-month return. At the 10% significance level, 47 of

the 55 assets have a t-statistic of less than 1.65, suggesting that the in-sample evidence of TSM

1In this paper, the terms “TSM” and “time series predictability” are used interchangeably.

2



is weak.2 Since Welch and Goyal (2008), studies on return predictability have shifted the focus

to out-of-sample performance. We compute the standard Campbell and Thompson (2008) out-of-

sample R2
OS for each asset and find that only three assets deliver significant R2

OS at the 10% level.

Univariate time series regressions thus indicate that the evidence on time series predictability is

weak among the assets.

In the second stage, we follow MOP’s approach and run a pooled regression by stacking all

asset returns together. Consistent with MOP, we find a t-statistic of 4.34 in the regression of

predicting the next one-month return using the past 12-month return. At the conventional critical

level of 2, one could interpret this t-statistic of 4.34 as strong evidence against no predictability.

We argue that the pooled regression is likely to over-reject the null hypothesis for three reasons.

First, if assets have different mean returns, the slope estimate from the pooled regression without

controlling for fixed effects tends to be biased upward (Hjalmarsson, 2010). Second, as a predictor,

the past 12-month return is persistent and can generate substantial size distortions (Hodrick, 1992;

Stambaugh, 1999; Campbell and Yogo, 2006; Ang and Bekaert, 2007; Boudoukh, Richardson and

Whitelaw, 2008; Li and Yu, 2012). Third, because volatility varies dramatically across assets,

volatility scaling in the pooled regression without controlling for fixed effects further exacerbates

the upward bias.

To assess the degree of over-rejection, we use two bootstrap methods. The first is a parametric

wild bootstrap that simulates samples based on the fitted pooled regression residuals, and the

second is a nonparametric pairs bootstrap that resamples the predictor and the dependent variable

simultaneously. Both methods accommodate conditional heteroskedasticity, but the latter allows

for more general data-generating processes. We find that the 5% critical values of the bootstraps

are 12.53 and 4.83, respectively. They are larger than 4.34, the t-statistic from the pool regression

with real data. This finding is robust to all alternative cases, such as within each asset class, with

different sample periods, and without volatility scaling. Hence, a high t-statistic found by MOP is

2The multiple test framework of Harvey, Liu and Zhu (2016) could suggest even weaker evidence on TSM.
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not statistically significant in supporting the existence of TSM.

In the third stage, we examine why the TSM strategy is profitable even though the statistical

evidence on time series predictability is weak. In their study, MOP (2012) construct the TSM

strategy by buying assets with positive past 12-month return and selling assets with negative past

12-month return. At the same time, MOP assign a portfolio weight equal to 40% divided by the

asset volatility, so that for each asset the ex ante annualized volatility is 40%. This volatility scaling

can make the attribution of the performance of the TSM strategy complex. To separate the volatility

effect, we follow Kim, Tse and Wald (2016) and Goyal and Jegadeesh (2018) and focus on the TSM

strategy with the simple equal weighting without volatility scaling as the benchmark. Volatility

scaling is not an issue if all strategies are based on volatility-scaled returns when comparing their

performances.

We examine the performance of the TSM strategy in four ways. First, we investigate the

performance of an alternative trading strategy that does not require predictability. Based on the

observation that a high mean asset is more likely to have a positive past 12-month return and

therefore is more likely to be bought by the TSM strategy, we propose a times series history (TSH)

strategy that buys assets if their historical mean returns are positive and sells them otherwise,

which is theoretically profitable even if asset returns are independent over time, but some have

significantly higher means than others. We find that the TSM and TSH strategies perform virtually

the same and their differences in average returns, as well as in risk-adjusted ones, are indifferent

from zero. Also, we find that the performances of the TSM and TSH strategies mainly stem from

their long legs, and their short legs have insignificant average and risk-adjusted returns. This result

suggests that both the TSM and TSH tend to long assets with greater mean returns and short those

with lower means. Because the TSH strategy is defined without requiring time series predictability,

it seems questionable to attribute the performance of the TSM strategy to predictability.

Second, we report the results with alternative portfolio weighting schemes, such as volatility

weighting as in MOP (2012), past 12-month return weighting, and equal weighting with a zero-
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investment constraint as in Goyal and Jegadeesh (2018). The results are similar, and the alpha

differential between the TSM and TSH strategies is always indifferent from zero. In short, the

profitable performance of the TSM strategy is similar to that of the TSH strategy that requires

no predictability, suggesting that the performance of the TSM does not necessarily support

predictability at the 12-month frequency across asset classes.

Third, based on the predictive slope of Lewellen (2015), we examine the overall predictability

of TSM across assets. The slope measures how realized returns are explained by predicted returns.

If the past 12-month return perfectly predicts the next one-month return, the slope should have a

value of one. We find that for the TSM forecasts the slope has a value close to zero, suggesting that

the TSM forecasts have little predictive power.3 When regressing the TSM forecasts on the TSH

forecasts, the slope is very close to one, irrespective of whether the TSM forecasts use volatility

scaling or not. This result indicates little difference in predictability between the two forecasts,

suggesting, again, no evidence of TSM across the assets.

Fourth, of interest is examining under what conditions the TSM is a better trading strategy

than the TSH. Based on one thousand simulated samples by using pooled regression with varying

assumed degrees of time series momentum (i.e., the slope varies from 0.1 to 0.4), we find that

the TSM and TSH strategies perform similarly when the slope is 0.1 (with real data, the slope

of the pooled regression is 0.08, controlling for fixed effects). When the slope is 0.2, the TSM

outperforms the TSH, but the difference is statistically insignificant. This means that if there is

genuine time series predictability, the advantage of the TSM strategy is not apparent as long as the

slope is small. When the slope is 0.4, the TSM dominates the TSH in the sense that it does better

in almost all the simulated samples. Because the two strategies generate similar performance using

real data, our simulation indicates that the evidence of TSM is likely weak if it exists. Combined

with other results, the TSM is unlikely to be statistically significant for all the assets. In short, a

lack of empirical evidence exists to support the hypothesis that the TSM is everywhere.

3Lewellen (2015) shows in his footnote 3 that a slope of less than 0.5 under-performs a naive forecast. Han, He,
Rapach and Zhou (2019) discuss more properties of the slope.
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As a final remark, our results do not claim in any way that there is no predictability in the asset

classes, but that the predictability, if it exists, is not as simple as a constant 12-month return rule.

The best example could be the stock market, with ample evidence that its risk premium can be

predicted by a wide range of predictors such as macroeconomic variables and investor sentiment

[see, e.g., Jiang, Lee, Martin and Zhou (2019) for the latest literature]. Cross-sectionally, since

Jegadeesh and Titman’s (1993) discovery of momentum, there have been hundreds of potential

anomalies [see, e.g., Hou, Xue and Zhang (2019) for the replication]. Recently, Gu, Kelly and Xiu

(2018) and Freyberger, Neuhierl and Weber (2019), among others, use machine learning tools to

find even stronger predictability.4 However, none of them is related to the TSM.

The rest of this paper is organized as follows. Section 2 introduces data we use in this

paper. Section 3 shows that asset-by-asset regressions suggest that the evidence of TSM, if any,

is weak. Section 4 finds that the pooled regression overstates the presence of TSM and that

bootstrap-corrected t-statistics cannot reject the null hypothesis of no predictability. Section 5

shows that the TSM strategy performs the same as an alternative trading strategy that does not

require predictability. Section 6 concludes.

2. Data

We collect futures prices for 24 commodities, nine developed country equity indexes, 13

developed government bonds, and nine currency forwards from the same data sources as MOP

(2012). These 55 instruments are the same as those in MOP’s Table 1.5 The sample period is from

January 1985 to December 2015. For each day, we calculate the daily excess return of each futures

contract with the nearest- or next-nearest-to-delivery contract and compound the daily returns to

a cumulative month return index. For brevity, returns in this paper always refer to excess returns,

4Rapach, Strauss and Zhou (2013) use LASSO, a major machine learning tool, to forecast international equity
markets, which is the earliest study that we find in the finance literature applying LASSO to predict stock returns.

5MOP use 12 cross-currency pairs in trading strategies but report only nine underlying currencies in their summary
statistics table. To maximally replicate the results, we focus on the nine underlying currencies. As a consequence, we
examine a total of 55 assets, not 58.
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unless otherwise stated.

Table 1 reports the sample mean (arithmetic), volatility (standard deviation), and first-order

autocorrelation of the returns on the 55 futures contracts. The mean and volatility are annualized

and represented in percentage. Significant variations exist in mean return and volatility across

different contracts. Within the commodity asset class, 24 contracts yield positive, zero, and

negative mean returns, from −11.33% for natural gas to 12.31% for unleaded gasoline. The

volatility ranges from 13.56% for cattle to 50.79% for natural gas. On average, the mean return

and volatility are 2.59% and 28.50%, respectively. The nine equity index futures contracts are

more homogenous, with mean return from 3.09% for TOPIX (Tokyo Stock Price Index) to 9.69%

for DAX (German Stock Index) and volatility from 15.87% for FTSE 100 (Financial Times Stock

Exchange 100 Index) to 23.21% for FTSE/MIB (Italian National Stock Exchange Index). On

average, the return and volatility are 7.24% and 19.26%, respectively. Finally, bond futures and

currency forwards earn lower mean returns with lower volatilities. Within each asset class, the

average mean and volatility are 4.54% and 7.85% for bond futures and 1.22% and 10.90% for

currency forwards, respectively. Table 1 also highlights a well-known fact that the past one-month

return cannot predict the next one-month return, because the first-order correlation is generally

close to zero.

3. Univariate time series regression

In this section, we run univariate time series regressions to explore the predictability of the

past 12-month return for individual assets. These regressions clearly tell which asset return can

be predicted by its past 12-mopnth return and which cannot, thereby providing direct evidence on

whether the finding in MOP (2012) is common across asset classes.

3.1. In-sample performance

Time series regressions are standard for identifying return predictability, but the pooled

regression is seldom used in the literature. Ang and Bekaert (2007) and Hjalmarsson (2010) are
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exceptions, showing a heterogeneous pattern in predictability. For example, Ang and Bekaert

(2007, p.663) show that, in contrast to the US, the UK and Japan return predictability disappears

when expected returns are constrained to be non-negative and conclude that “none of the [return

predictability] patterns in other countries resembles the US pattern.”

For each asset, we run the predictive regression

ri
t+1 = α +β ri

t−12,t + ε
i
t+1, (1)

where ri
t+1 is the return of asset i in month t + 1 and ri

t−12,t is its past 12-month return (i.e., the

return between months t−12 and t). The predictive power is based on either the regression slope

β or the R2 statistic. If the regression R2 statistic is significantly larger than zero with a positive β ,

then asset i displays TSM, i.e., its past 12-month return predicts the next one-month return.

Table 2 reports the regression slope, the Newey-West t-statistic, and R2. We have four

observations. First, the presence of TSM is not prevalent. Of the 55 assets, only eight display

significant regression slopes at the 10% level, representing 15% of assets (only three significant

at the 5% level). Second, the significance is not concentrated but disperse among the four

asset classes, including three commodities, two equity indexes, two government bonds, and one

currency. Third, although not significant, 17 assets deliver negative slopes, amounting to 31% of

the assets. Fourth, the R2s are small, with an average of 0.39%, and only five assets generate an R2

larger than 1%. To have an intuitive understanding of the predictive performance, Panel A of Fig.

1 plots the R2 statistic for each asset. Only two assets have R2s that stand out above 2%.

3.2. Out-of-sample performance

Due to concerns of data mining and structural breaks, studies on return predictability have

shifted the focus to out-of-sample performance since Welch and Goyal (2008). To investigate the

out-of-sample performance of TSM, we use the Campbell and Thompson (2008) out-of-sample
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R2
OS statistic as the assessment criterion, which is defined as

R2
OS = 1−

∑
T−1
t=K (ri

t+1− r̂i
t+1)

2

∑
T−1
t=K (ri

t+1− r̄i
t+1)

2
, (2)

where K is the initial sample size for parameters training, r̂i
t+1 is the expected return estimated with

information up to month t and calculated as r̂i
t+1 = α̂t + β̂tri

t−12,t , α̂t and β̂t are the coefficients of

the time series regression Eq. (1), and r̄i
t+1 is the sample mean of asset i with data up to month

t. The choice of K is ad hoc in the literature, which depends on the nature of the possible model

instability and the timing of the possible breaks. Hansen and Timmermann (2012) theoretically

show that a large K is preferable if the data-generating process is stationary, but it comes at the

cost of low power as there are fewer observations for out-of-sample evaluation. A small K can

give the out-of-sample test more desirable size properties, but it perhaps does not provide precise

estimation. For these reasons, we select the first 15 years of data for in-sample training and the

remaining 16 years of data for out-of-sample evaluation. That is, the full sample period is from

January 1985 to December 2015 and the out-of-sample period is from January 2000 to December

2015.

Welch and Goyal (2008) show that the sample mean is a very stringent out-of-sample

benchmark. If R2
OS > 0, the forecast r̂i

t+1 outperforms the sample mean in terms of mean squared

forecast error (MSFE). Empirically, they show that the in-sample forecasting abilities of a variety

of return predictors generally do not hold in out-of-sample tests. To ascertain whether a forecast

delivers a statistically significant improvement in MSFE relative to the sample mean, we use the

Clark and West (2007) statistic to test the null hypothesis that the MSFE of the sample mean

forecast is less than or equal to the MSFE of the forecasted expected return, corresponding to H0:

R2
OS ≤ 0 against HA: R2

OS > 0.

Although no strict relation exists between the in-sample and out-of-sample performance (Inoue

and Kilian, 2005), the last column of Table 2 and Panel B of Fig. 1 show that the R2
OS is smaller

than the in-sample R2 on average. Of the 55 assets, 45 have negative R2
OS, indicating no out-of-
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sample predictability. Of the remaining ten assets with positive R2
OS, only three are significant at

the 10% level, which are the two-year European bond, the two-year US bond, and the JPY/USD

(Japanese yen/US dollar) forward. As a result, the average R2
OS across the 55 assets is −0.67%,

suggesting that there is no TSM out of sample.

To further explore the robustness, Fig. 2 plots the R2s and R2
OSs of TSM by regressing the

next one-month return on the past one-, three-, and six-month return, respectively. The results are

similar to the case with the past 12-month return in Fig. 1. In addition, we consider volatility

scaling when running the asset-by-asset time series regressions. The results are still quantitatively

the same: Only the same three assets have significant R2
OSs. In sum, based on the typical univariate

time series regression, the evidence of TSM across all the assets is very weak.

4. Pooled regression

In this section, we first replicate the results in MOP (2012) and then show that the pooled

regression tends to overstate the presence of TSM.

4.1. The t-statistic

By stacking all futures contracts’ returns and dates, MOP (2012) run a pooled predictive

regression of monthly returns scaled by volatility on the scaled returns lagged h months,

ri
t+1/σ

i
t = α +β ri

t−h+1/σ
i
t−h + ε

i
t+1, (3)

where ri
t+1 is asset i’s return in month t +1 and σ i

t is the ex ante annualized volatility estimated by

its exponentially weighted lagged squared daily returns:

(σ i
t )

2 = 261
∞

∑
j=0

(1−δ )δ j(ri
t−1− j− r̄i

t)
2, (4)
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where r̄i
t is the exponentially weighted average return and δ is chosen so that ∑

∞
j=0(1−δ )δ j = 60

days.

MOP (2012) also use an alternative specification with the sign of lagged returns as the regressor

to examine the robustness of TSM,

ri
t+1/σ

i
t = α +β sign(ri

t−h+1)+ ε
i
t+1, (5)

where sign is the sign function that equals +1 when ri
t−h+1 ≥ 0 and −1 when ri

t−h+1 < 0.

As in MOP (2012), we calculate the t-statistics by clustering the standard errors by time

(month) and plot the t-statistics of the pooled regression slopes with lagged returns from one month

to 60 months in Fig. 3.6 Qualitatively, we confirm MOP (2012) that the past 12-month return of

each asset is a positive predictor of its future returns for one month to 12 months in the pooled

regression. After 12 months, the forecasting sign changes and the forecasting power decays. In

Fig. 3, Panel A shows the results with Eq. (3) over all asset classes, and Panel B replaces the

lagged return with its sign as Eq. (5). Both have a sizable t-statistic of about 4 at the 12-month

horizon.

Panels C to F of Fig. 3 plot the t-statistics of Eq. (5) within each asset class and exhibit a

similar pattern. The t-statistics appear to show a strong return continuation for the first 12 months

and weak reversal for the following 48 months. Overall, Fig. 3 appears to provide strong evidence

on TSM. However, the t-statistics at the conventional level tend to overstate the predictability of

the past 12-month return.

4.2. Estimation bias

In Eq. (3), MOP (2012) make an implicit assumption that the mean returns of all assets are

the same by imposing a common intercept. From Table 1, the sample means of individual assets

6The t-statistics that double-cluster the standard errors by time and asset are quantitatively similar.
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vary dramatically across asset classes. In the literature, Jorion and Goetzmann (1999) show strong

evidence that the equity premium varies across countries. Ang and Bekaert (2007) investigate

return predictability with pooled regression but explicitly consider the variation in average returns.

Menzly, Santos and Veronesi (2004) analyze cross-sectional differences in time series return

predictability.

To highlight fixed effects, a possible specification is

ri
t+1/σ

i
t = α +β ri

t−h+1/σ
i
t−h +µi/σi + ε

i
t+1, (6)

where µi and σi are the unconditional mean and volatility of asset i. Hence, the estimate of β from

Eq. (3) should be

β̂ = β +
Cov(ri

t−h+1/σ i
t−h,µi/σi)

Var(ri
t−h+1/σ i

t−h)
. (7)

If all assets have the same Sharpe ratio (or mean, if volatilities are the same), the second term

is zero. Otherwise, it would be significantly positive when the number of assets is large, as the

correlation between realized returns and their means is mechanically positive. As a result, the

slope estimate of Eq. (3) is biased upward.

The question then is whether the 55 assets have the same mean or Sharpe ratio. We perform four

tests for this hypothesis. The first is analysis of variance (ANOVA), which was proposed by Ronald

A. Fisher in 1918 (Fisher, 1918) with two assumptions: normality and homoskedasticity. The

second is B.L. Welch’s ANOVA (Welch, 1951), which allows the variance to be Heteroskedastic.

The third is the Kruskal-Wallis test, which relaxes both the normality and homoskedasticity

assumptions (Kruskal and Wallis, 1952), and the fourth is a bootstrap test. When applying these

four tests to real data, Table 3 shows that the null hypothesis that all 55 assets have the same mean

is strongly rejected. In addition, we reject the null that they have the same Sharpe ratio. Therefore,

the evidence of TSM shown in MOP (2012) is at least partially driven by the fixed effects.
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The fixed effects are not easily corrected in the predictive regression framework. Statistically,

Hjalmarsson (2010) shows that when different assets have different average returns, the pooled

regression, after controlling for fixed effects, suffers from a looking-forward bias because the

time series demeaning of the data requires information after month t, which induces a correlation

between the lagged value of the demeaned regressor and the error term in the predictive regression.

In addition to the fixed effects, two more reasons can lead to overstating the evidence on time

series predictability. First, as a predictor, the past 12-month cumulative return is persistent and can

generate substantial size distortions (Hodrick, 1992; Stambaugh, 1999; Valkanov, 2003; Campbell

and Yogo, 2006; Ang and Bekaert, 2007; Boudoukh, Richardson and Whitelaw, 2008; Li and Yu,

2012). For example, Ang and Bekaert (2007) show substantial size distortions with the Newey-

West t-statistic when predicting stock returns with persistent variables. Second, because volatility

varies dramatically across assets, volatility scaling in the pooled regression without controlling for

fixed effects can further exacerbate the upward bias. For example, in Eq. (6), even when all assets

have the same mean, volatility scaling generates the fixed effects as σi varies dramatically across

assets. MOP (2012) also explore the pooled regression in Eq. (5) by using the sign of the past

12-month return as the predictor, which can distort and change the true statistical significance as

the sign of the past 12-month return is highly skewed.

4.3. Bootstrap tests

Due to the concerns discussed above, the t-statistic from the pooled regression is questionable.

To correctly evaluate the statistic significance, we use bootstrap to simulate the distribution of the

t-statistic and define its 97.5% quantile as the simulated t-statistic for significance at the 5% level.

If the t-statistic from the real data is larger than 1.96 but smaller than the simulated t-statistic, we

can conclude that the pooled regression tends to overreject the null hypothesis and no significant

evidence supports TSM.

We use two standard bootstrap approaches. The first is a more restrictive parametric wild

bootstrap that samples data based on the pooled regression residuals, and the second is a more
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general nonparametric pairs bootstrap that resamples the predictor and the dependent variable

simultaneously. Both approaches accommodate conditional heteroskedasticity, but the second

allows for a wider range of data-generating processes. Pairs bootstrap is considered the most

general and applicable method of bootstrapping.

Wild bootstrap. Suppose the true data-generating process is as Eq. (3). Let α̂ and β̂ be the

estimates from the full sample of real data. Then, the residuals are

ε̂
i
t+1 = ri

t+1/σ
i
t − α̂− β̂ ri

t−h+1/σ
i
t−h. (8)

We simulate a pseudo sample path with T observations as

ri∗
t+1/σ

i∗
t = α̂ + β̂ ri

t−h+1/σ
i
t−h + ε̂

i
t+1vi

t+1, (9)

where ∗ indicates that the value is a bootstrapped observation and vi
t is a random draw from a

two-point Rademacher distribution with mean 0 and variance 1:

vi
t =

 1 with probability 1/2,

−1 with probability 1/2.
(10)

This distribution has an appealing property that the error-in-rejection probability is minimal when

the sample size is small, and it is robust to other distributions such as the Mammen distribution and

standard normal distribution (Davidson and Flachaire, 2008). After constructing a pseudo sample

path, we run pooled regression Eq. (3). We repeat this procedure one thousand times to calculate

the simulated t-statistic of β̂ .

Pairs bootstrap. Pairs bootstrap resamples T pairs of (ri
t+1/σ i

t ,r
i
t−h+1/σ i

t−h) with replacement

from the real data and uses these pairs to run the pooled regression

ri∗
t+1/σ

i∗
t = αh +βhri∗

t−h+1/σ
i∗
t−h + ε

i
t+1. (11)
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Hence, the simulated t-statistic of β̂ can be calculated after repeating the procedure one thousand

times. This bootstrap allows not only more general data-generating processes, but also potential

model misspecification [e.g., E(r) is not a linear function of rt−h+1].

Table 4 reports the t-statistics with real data and the bootstrapped t-statistics. Consistent with

Ang and Bekaert (2007), the t-statistics that cluster by time tend to overreject the null hypothesis.

For example, when forecasting the next one-month return with the past one-month return, the t-

statistic from the real data is 3.11, suggesting strong evidence of TSM. However, this is not the case

because the bootstrapped t-statistics are 9.26 and 3.63, respectively. Similarly, when forecasting

the next one-month return with the past 12-month return, the t-statistic from the real data is 4.34,

and the simulated t-statistics are 12.53 and 4.83, respectively, suggesting that the evidence is weak

in support of TSM. Moreover, forecasting with the sign of lagged returns does not support TSM

either.

Table 5 presents the simulated t-statistics within each asset class. For brevity, we report the

results of predicting the next one-month return with the past one-, three-, six-, and 12-month

return, respectively. Consistent with Tables 2 and 4, the results reveal that TSM is unlikely to be

present in any of the four asset classes.

Does volatility scaling play a role in estimating the regression slopes and detecting the existence

of TSM because MOP (2012) run Eqs. (3) and (5) with volatility scaling while volatility varies

across assets and is predictable by its lagged values (Paye, 2012)? Table 6 reports the t-statistics

with real data and boostrapped t-statistics from Eqs.(3) and (5) without volatility scaling. The

results display two empirical facts. First, the t-statistics without volatility scaling are much smaller

than those with volatility scaling. For example, when predicting the next one-month return with

the past one- and 12-month return without volatility scaling, the t-statistics of the regression slope

are 1.80 and 1.68, respectively, which are much smaller than the values with volatility scaling in

Table 4 (3.11 and 4.34), lending little support to TSM. Second, when predicting the next one-

month return with the signs of the past one- and 12-month return, the t-statistics are 2.20 and 3.72,
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respectively, and they are smaller than that with volatility scaling. Therefore, volatility scaling

plays a role. In fact, it seems at least partially responsible for the performance of the TSM trading

strategy.

This paper extends the sample ending period of MOP (2012) from 2009 to 2015 and raises a

possibility that TSM exists before 2009 and disappears thereafter. Table 7 reports the results for

the 1985 to 2009 sample period and rules out the possibility. The t-statistics from real data are still

smaller than the simulated t-statistics, regardless of which bootstrap approach is employed. For

example, when forecasting the next one-month return with the past 12-month return, the t-statistic

is 4.48 with real data, but it is 12.76 and 4.96 with the two bootstrap approaches, respectively. The

TSM is also insignificant for each asset class. The results are reported in the Online Appendix.

4.4. Controlling for fixed effects

Earlier evidence shows that the assets do not have the same mean, implying that fixed effects

should be controlled in the pooled regression. In so doing, one can run the pooled regression by

removing the asset means. The bootstrap procedures can also make a similar modification. The

question is whether controlling for fixed effects can alter substantially the evidence on TSM.

Following Gonçalves and Kaffo (2015), we now compute the t-statistic from the pooled

regression

ri
t+1/σ

i
t − ri/σ i = β (ri

t−h+1/σ
i
t−h− ri

−h+1/σ i
−h)+ ε

i
t+1, (12)

where ri/σ i and ri
−h+1/σ i

−h denote the time series averages of ri
t+1/σ i

t and ri
t−h+1/σ i

t−h,

respectively. Suppose the estimate of β is β̂FE , then the residual ε̂ i
t+1 can be calculated as

ε̂
i
t+1 = ri

t+1/σ
i
t − ri/σ i− β̂FE(ri

t−h+1/σ
i
t−h− ri

−h+1/σ i
−h). (13)
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Then, we simulate a pseudo sample path with T observations as

(ri
t+1/σ

i
t − ri/σ i)∗ = β̂FE(ri

t−h+1/σ
i
t−h− ri

−h+1/σ i
−h)+ ε̂

i
t+1vi

t+1, (14)

where vi
t+1 follows the Rademacher distribution. We can then estimate the model with the

simulated samples and repeat the procedure one thousand times, to obtain the critical value of

the wild bootstrap t-statistic.

Regarding the pairs bootstrap, we resample T pairs of the predictor and the dependent variable

in Eq. (12) with replacement from real data after de-meaning and then use these pairs to rerun the

pooled regression. The pairs bootstrap t-statistic is naturally obtained after repeating the procedure

one thousand times. Both the wild and pairs bootstraps do not suffer from the incidental parameter

bias emphasized in Gonçalves and Kaffo (2015), because the sample size is relatively large here.

Table 8 reports the t-statistics from the pooled regression and the bootstrapped t-statistics.

Compared with Table 4, after controlling for the fixed effects, the t-statistic is smaller than that

without controlling for fixed effects. For example, when predicting the next one-month return with

the past 12-month return, the t-statistic is 4.34 in Table 4 and 3.37 in Table 8. The most important

result is that the t-statistic of 3.37 when controlling for fixed effects does not affect the conclusion

that insufficient evidence exists in support of TSM. In the Online Appendix, we show that this

finding is robust to the cases within each asset class and without volatility scaling.

4.5. Out-of-sample performance

A further implicit assumption of a pooled regression is that all 55 futures contracts are

homogenous with the same slope in Eqs. (3) and (5). If the individual slopes are all identical, the

pooled estimate converges to the common slope, and pooling data leads to a more precise estimate

than the individual time series regression estimate. Whether the slopes of all individual assets are

identical or not, there is no guarantee that pooling the data will help. Nevertheless, whether pooling

the data improves out-of-sample performance is of interest to examine empirically.
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Fig. 4 plots the out-of-sample R2
OS for each individual asset. In Panel A, we present the results

with volatility scaling when running the pooled regression. To predict returns in month t + 1 at

the end of month t, we run pooled regression Eq. (3) with returns up to month t as MOP (2012).

Let α̂t and β̂t be the estimated intercept and slope. We calculate the expected return of asset i for

month t +1 as

Et(ri
t+1) = α̂tσ

i
t + β̂t

ri
t−12,t

σ i
t−1

σ
i
t , (15)

which can be plugged into Eq. (2) to calculate the R2
OS accordingly.

In comparison with earlier univariate regressions (Table 2), the pooled regression does improve

the out-of-sample forecasting performance in some of the markets. The R2
OS is significantly positive

for three commodity futures contracts: cocoa, copper, and gold. Of the nine international equity

markets, six are significant at the 10% level, with the remaining three positive but not significant.

The average R2
OS in the equity markets is 2.08%, indicating potential economic significance as

well (Campbell and Thompson, 2008). The R2
OSs in the bond and currency markets are generally

negative or slightly positive. The two exceptions are the two-year European bond and two-year US

bond. Overall, if there is any TSM, it appears to show up in the international equity markets only,

not present in the entire cross section of assets.

Panel B of Fig. 4 plots the R2
OS for each asset without volatility scaling when running regression

Eq. (3). The out-of-sample performance does not change significantly. Untabulated results show

that the value of R2
OS with volatility scaling is generally similar to that without volatility scaling.

Two exceptions are the two-year European bond and two-year US bond, which have extreme

positive R2
OS in the case with volatility scaling (15.18% and 3.48%) but extreme negative R2

OS

in the case without volatility scaling (−19.54% and −16.71%). As such, the average R2
OS using

volatility scaling is −0.06%, which is larger than −0.35% without volatility scaling.

Overall, to a certain extent, a pooled regression can improve the out-of-sample forecasting

power relative to the asset-by-asset time series regression, but such improvement is restricted to
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some specific assets. For the entire cross section of assets, it does little to improve their out-of-

sample forecasting performances, and it cannot provide significant support for TSM either.

5. Trading strategy

In this section, we examine the source of profitability of the TSM strategy proposed by MOP

(2012). We show in various ways that its performance does not necessarily indicate that TSM

exists across assets.

5.1. TSM versus TSH at asset level

The early univariate regressions show that time series predictability is not a common feature

across assets, which suggests that the performance of the TSM strategy perhaps is not attributed to

predictability, at least not entirely. Furthermore, it raises the possibility that some strategies that do

not require predictability can perform as well as the TSM strategy. As it turns out, this is the case.

Suppose the return of asset i follows an independent and identically distributed normal

distribution with mean µ i and volatility σ i. Then, the probability of the past 12-month return

being positive is

Pr(ri
t−12,t > 0) = 1−Pr

(ri
t−12,t−12µ i

√
12σ i

≤−
√

12
µ i

σ i

)
= Φ(

√
12µ

i/σ
i), (16)

where Φ(·) is the N(0,1) cumulative distribution function. Hence, without time series predictabil-

ity, the TSM strategy tends to buy an asset with high mean return (i.e., Sharpe ratio). Based on this

observation, we consider an alternative strategy based on the time series history of asset i’s return

rTSH,i
t+1 = sign(ri

1,t)r
i
t+1, (17)

where ri
1,t is the accumulative return of asset i from month 1 to month t or the historical sample

mean multiplied by t.

19



Volatility scaling on the TSH strategy is unnecessary because we compare the TSM and TSH

strategies at the asset level in this section. Without volatility scaling, the corresponding return of

the TSM strategy in month t +1 for asset i is

rTSM,i
t+1 = sign(ri

t−12,t)r
i
t+1. (18)

Comparing Eqs. (17) and (18), the TSM strategy attempts to exploit possible predictability of the

past 12-month return, and the TSH does not rely on any predictability at all. Our goal here is to

examine their performances across assets.

Table 9 reports the average returns and Sharpe ratios, and their differences, of the TSM and

TSH strategies based on Eqs. (18) and (17), respectively. The results show that the TSM strategy

generally performs the same as the TSH strategy. Of the 55 assets, only five show that the TSM

strategy generates a higher average return than the TSH strategy. When we use the Sharpe ratio

as the performance measure, the results remain unchanged. Thus, the TSM strategy does not

significantly outperform at the asset level the TSH strategy that does not require predictability.

5.2. TSM versus TSH at portfolio level

Even though no time series predictability exists, the TSM strategy could still be profitable.

Conrad and Kaul (1988), Jegadeesh (1990), and Jegadeesh and Titman (1993) note that if there are

differences in mean returns, a strategy that buys high-mean assets using the proceeds from selling

low-mean assets has a natural tilt toward high-mean assets. To see this, consider just two assets.

If the mean return of the first asset far exceeds that of the second, buying the first and shorting the

second is profitable. Because the past 12-month return can be viewed as an estimate of the mean

return, the TSM strategy could profit from the differences in mean returns. If this is the case, it

will unlikely outperform the TSH strategy at the portfolio level.

To make the two strategies comparable, we consider the following equal-weighting scheme for
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the TSM and TSH:

rTSM
t+1 =

1
Nt

Nt

∑
i=1

sign(ri
t−12,t)r

i
t+1 (19)

and

rTSH
t+1 =

1
Nt

Nt

∑
i=1

sign(ri
1,t)r

i
t+1, (20)

where Nt is the number of assets investable at time t.7 By doing so, the two strategies differ

only in how the past information is used to select the assets. So, differences in performance

stem from the differences in asset selection, not from differences in scaling the portfolio weights.

Because our goal here is not to improve the performance, the concern that the TSM strategy tilts

weighting toward low volatility assets is not an issue, because the TSH strategy has the same tilts.

Nevertheless, we will examine volatility weighting.

Panel A of Table 10 presents the average and risk-adjusted returns of the two strategies, the

second of which is computed from two benchmark asset pricing models as in MOP (2012). The

first model is the Fama-French four-factor model that uses the MSCI World Index as the market

factor, and the second is the Asness, Moskowitz and Pedersen (2013) three-factor model with the

MSCI World Index, the value everywhere factor, and the momentum everywhere factor. Over the

1986 to 2015 investment period, the average return differential between the two strategies is as

small as 0.14%, not significant with a p-value of 0.19. The results suggest that the TSM strategy

generates virtually the same average portfolio return as the TSH strategy, consistent with earlier

comparison at the asset level.

When turning to the risk-adjusted returns, the TSM and TSH alphas are 0.15% (t-statistic

= 1.94) and 0.05% (t-statistic = 0.80) with the Fama-French four-factor model and 0.07% (t-

7TSH and TSM have similar expressions here, in parallel with the asset-level comparison. At the portfolio level,
we also explore two alternative TSH strategies that buy (sell) half or one-third of the assets with high (low) historical
sample means and find that their performances are quantitatively similar.
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statistic = 1.01) and 0.09% (t-statistic = 1.14) with the Asness, Moskowitz and Pedersen (2013)

three-factor model, respectively. As for the case with average return, the two strategies’ alpha

differentials with the two models are 0.10% (p-value = 0.29) and −0.02% (p-value = 0.84) and,

therefore, are not statistically significant from zero. Thus, the TSM and TSH strategies do not

generate sizable abnormal returns. Moreover, their difference in alpha is even smaller than the

difference in average return and is also insignificant.

Also reported in Panel A of Table 10 are the average and risk-adjusted returns of the long-

and short-leg portfolios of the TSM and TSH strategies. The results show that the performance of

the two strategies mainly stems from the long legs and that the performance of their short legs is

always indifferent from zero. This new finding, not shown by MOP (2012) or Goyal and Jegadeesh

(2018), is consistent with our argument that the strong TSM performance is due to the difference

in mean returns.

For robustness, we also consider three alternative portfolio weighting schemes: volatility

weighting as in MOP (2012), past-12-month-return weighting, and equal weighting with a zero-

investment constraint as in Goyal and Jegadeesh (2018). The results do not change qualitatively,

and the alpha differential between the TSM and TSH strategies is always indifferent from zero.

The Online Appendix considers the case of constructing the TSM with the past six-month return,

instead of the past 12-month return, and the results remain unchanged. In sum, the performance of

the TSM strategy in MOP (2012) seems mainly stemming from the difference in mean returns, not

from the times series predictability of the past 12-month return.

5.3. TSM and TSH forecast comparison: predictive slope

Lewellen (2015) proposes an interesting predictive slope that assesses the degree of predictabil-

ity of cross-sectional forecasts in an elegant way, in which one simply runs a cross-sectional

regression of the realized returns on the forecasts. If the forecasts are perfect, the slope should

be one. Generally, a value less than 0.5 indicates no predictability as the forecasts under-perform

naive forecasts.
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At the end of month t, we calculate the expected return of asset i as r̂TSM,i
t+1 , which is estimated

by pooled regression Eq. (3) with data up to month t, and then we regress month t + 1 return

ri
t+1 on r̂TSM,i

t+1 . The first three columns of Table 11 report the results. Consistent with the earlier no

predictability results, the regression slope is close to zero and its t-statistic is less than one standard

deviation, suggesting that the in-sample performance with pooled regression Eq. (3) is not reliable

and that the TSM estimates do not line up with the true expected returns out of sample.

We also explore whether the TSM and TSH forecasts have the same mean. The last three

columns of Table 11 report the results of regressing the TSM forecasts of expected returns on

the TSH forecasts. Because these two estimates are potentially unbiased, we do not include

an intercept to improve the estimate efficiency. Consistent with earlier results indicating little

difference between the two strategies, the slope is close to one and the t-statistic is much larger

than two standard deviations. For robustness, we also perform the tests for each asset class, and

the results are the same as the overall case. In short, the TSM strategy has little predictive power

and behaves in a very similar manner to the TSH strategy.

5.4. When does the TSM outperform the TSH?

In the previous sections, we have shown that the predictability of the past 12-month return is

weak with real data and that the TSM strategy performs similarly as the TSH strategy that does not

require any predictability. This section attempts to answer another question: If the predictability is

strong, to what extent does the TSM strategy outperform the TSH strategy?8

Consistent with the pooled regression of MOP, we assume the following data-generating

process:

ri
t+1 = α

i +β
ri
t−12,t

12
+ ε

i
t+1, (21)

where β = 0.1, 0.2, and 0.4 (we divide the past 12-month return ri
t−12,t by 12 to make β easy to

8We thank the anonymous referee for this intriguing research question.
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interpret; β is 0.08 for the real data). There are two ways to draw the residuals. The first is to ignore

the off-diagonal elements and draw the residuals asset by asset, thereby assuming no cross-asset

predictability, and the second is to keep the covariance matrix structure and draw the residuals

across assets. For a given specification and beta, we simulate a path for the 55 assets with T = 372

observations and construct the TSM and TSH strategies accordingly. We repeat this procedure one

thousand times to test whether these two strategies generate the same mean returns. Empirically,

we find that the two specifications generate almost the same results and therefore focus on the first

specification.

Fig. 5 reports the results. When the slope is 0.1, the two strategies perform almost the same.

When the slope is 0.2, the TSM outperforms the TSH, but the difference is not significant. Thus, if

there is genuine time series predictability, the advantage of the TSM strategy is not apparent as long

as the slope is small. When the slope is 0.4, the TSM dominates the TSH in the sense that it does

better in almost all the simulated data sets. Because the two strategies generate similar performance

using the real data, our simulation indicates that the evidence of time series predictability is weak

if it exists. Combined with other results, the TSM is unlikely to be statistically significant for all

the assets. In short, a lack of empirical evidence exists to support that the TSM is everywhere.

Because the TSM and TSH use overlapping data at the beginning of the investment period, one

could expect that this explains the statistically indistinguishable difference even when the slope is

0.2. In fact, it is not the case. To see this, we simulate a path of T + 240 observations for the 55

assets, construct the TSM and TSH strategies starting from the 241th observation (i.e., the TSM

is based on the past 12-month return and the TSH is based on the historical sample mean), and

calculate their mean returns. We repeat this procedure one thousand times to test whether these

two strategies generate the same mean returns. Fig. A1 of the Online Appendix summarizes the

results. Generally, the basic patterns are similar to Fig. 5; that is, the TSM strategy performs

similarly as the TSH when the data exhibit weak or intermediate time series predictability, and

it outperforms the TSH when the data exhibit strong time series predictability. One observation

is that with longer historical data in calculating the historical mean, the TSH generates 1% more
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annualized return relative to the case of Fig. 5, which is simply due to the fact that observations

over a longer time horizon generate a better estimate of the sample mean (Merton, 1980).

6. Conclusion

In their influential study, MOP (2012) assert a surprising time series momentum that the past

12-month return can positively predict the next one-month to 12-month return everywhere. They

also show that a trading strategy based on TSM generates significant average and risk-adjusted

returns. As TSM is in stark contrast to the previous literature and strongly challenges the weak

form market efficiency hypothesis, we revisit TSM in this paper. Employing the same data as MOP

but extending the sample period to 2015, we show that, statistically, the evidence for TSM is weak

in asset-by-asset time series regressions and a pooled regression accounting for size distortions.

Economically, we show that the performance of the TSM strategy is likely driven by differences

in mean returns, not predictability. A predictive slope analysis following the approach of Lewellen

(2015) further confirms weak evidence on TSM.

A number of topics are of interest for future research. First, while the TSM strategy focuses on

the 12-month return predictability, examining such a strategy at other time horizons and an optimal

combination of all would be worthwhile. Second, the predictability horizon can be time-varying

and could be different across assets (instead of the same horizon), and developing a test and a new

trading strategy for this possibility would be important. Finally, considering the conditions under

which time series predictability can exist in an equilibrium model and developing an empirical test

for the implications would be desirable.
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Fig. 1. Time series momentum (TSM) with asset-by-asset regression. This figure plots the in- and
out-of-sample R2s of forecasting a futures contract return with time series regression as

ri
t+1 = αi +βiri

t−12,t + ε
i
t+1,

where ri
t−12,t is asset i’s past 12-month return. The in- and out-of-sample periods are 1985:01–

2015:12 and 2000:01–2015:12, respectively.
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Fig. 2. Time series momentum (TSM) with asset-by-asset regression based on different lags. This
figure plots the in- and out-of-sample R2s of forecasting a futures contract return with time series
regression as

ri
t+1 = αi +βiri

t−h,t + ε
i
t+1,

where ri
t−h,t is asset i’s past h-month return (h = 1, 3, and 6). The in- and out-of-sample periods

are 1985:01–2015:12 and 2000:01–2015:12, respectively.
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Fig. 3. Time series momentum (TSM) with pooled regression: in-sample performance. This figure
plots the t-statistics of the pooled regression slopes that regress month t returns on month t − h
returns as

ri
t+1/σ

i
t = αh +βhri

t−h+1/σ
i
t−h + ε

i
t+1,

for Panel A and
ri
t+1/σ

i
t = αh +βhsign(ri

t−h+1)+ ε
i
t+1

for Panels B to F, where ri
t−h+1 is asset i’s return in month t − h+ 1 for h = 1,2, · · · ,60. The

t-statistics are clustered by time (month). The sample period is 1985:01–2015:12.
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Fig. 4. Time series momentum (TSM) with pooled regression: out-of-sample performance. This
figure plots the out-of-sample R2

OS of forecasting a futures contract return with pooled regression

ri
t+1/σ

i
t = α +β ri

t−12,t/σ
i
t−1 + ε

i
t+1,

for Panel A and
ri
t+1 = α +β ri

t−12,t + ε
i
t+1

for Panel B, where ri
t−12,t is asset i’s past 12-month return. We calculate asset i’s out-of-sample

R2
OS by applying the same α̂t and β̂t to all assets in estimating the expected return as Et(ri

t+1) =

α̂tσ
i
t + β̂t

ri
t−12,t
σ i

t−1
σ i

t in Panel A and Et(ri
t+1)= α̂t + β̂tri

t−12,t in Panel B, where α̂t and β̂t are the pooled

regression estimates with data up to month t. The out-of-sample period is 2000:01–2015:12.

32



0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

Fig. 5. Annualized mean return difference between time series momentum (TSM) and time series
history (TSH). This figure plots the distributions of simulated annualized mean returns of the TSM
and TSH strategies, where each asset is assumed to follow

ri
t+1 = α

i +β
ri
t−12,t

12
+ ε

i
t+1,

where β equals 0.1, 0.2, and 0.4. For each asset, we assume it has the same mean and variance
as that in Table 1. Then, given the common slope β , α i is estimated with asset i’s real returns.
We simulate a path of T = 372 observations, construct the TSM and TSH strategies, and calculate
their mean returns. We repeat this procedure one thousand times to test whether these two strategies
generate the same mean returns.
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Table 1
Summary statistics of 55 assets across four asset classes

This table reports the mean return, volatility (standard deviation), and first-order autocorrelation
[ρ(1)], where the mean and volatility are annualized and represented in percentage. “Average”
refers to the average value within asset class. The sample period is 1985:01–2015:12.

Asset Start date Mean Volatility ρ(1)

Panel A: Commodity futures
Aluminum November 1986 −2.09 19.92 0.10
Brent oil February 1992 7.77 30.62 0.12
Cattle January 1985 1.64 13.56 0.02
Cocoa January 1985 −2.54 28.11 −0.13
Coffee January 1985 −2.06 37.95 −0.02
Copper January 1985 11.48 26.80 0.15
Corn January 1985 −4.91 26.65 0.00
Cotton January 1985 1.36 25.83 0.03
Crude January 1985 6.37 34.98 0.19
Gas oil April 1989 8.21 33.23 0.12
Gold January 1985 1.54 15.65 −0.12
Heating oil January 1985 6.41 32.60 0.08
Hogs January 1985 −3.70 24.23 −0.04
Natural gas April 1990 −11.33 50.79 0.08
Nickel February 1993 7.06 34.37 0.05
Platinum January 1992 6.36 20.76 0.06
Silver January 1985 2.02 27.73 −0.08
Soybeans January 1985 4.01 23.17 −0.05
Soymeal January 1985 6.23 28.75 −0.11
Soy oil October 1990 4.33 26.12 −0.07
Sugar January 1985 6.24 34.75 0.11
Unleaded gasoline January 1985 12.31 35.71 0.10
Wheat January 1985 −4.33 26.68 −0.03
Zinc February 1991 −0.33 25.08 0.00
Average 2.59 28.50 0.02

Panel B: Equity index futures
SPI 200 January 1985 7.41 16.11 0.00
DAX January 1985 9.69 21.70 0.07
IBEX 35 January 1985 9.27 22.66 0.10
CAC 40 January 1985 6.73 19.69 0.09
FTSE/MIB January 1985 6.29 23.21 0.05
TOPIX January 1985 3.09 19.70 0.09
AEX January 1985 6.96 19.16 0.08
FTSE 100 January 1985 6.51 15.87 −0.01
S&P 500 January 1985 9.21 15.20 0.04
Average 7.24 19.26 0.06
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Panel C: Government bond futures
Three-year Australian July 1988 3.34 4.58 −0.05
Ten-year Australian January 1985 5.57 6.90 0.08
Two-year European January 1989 1.47 3.41 0.13
Five-year European January 1989 1.83 4.26 0.09
Ten-year European January 1985 4.16 9.66 0.03
Thirty-year European January 1987 7.56 10.39 0.09
Ten-year Canadian January 1985 6.44 10.79 −0.03
Ten-year Japanese December 1986 3.66 13.78 0.07
Ten-year UK January 1985 4.14 8.28 0.08
Two-year US January 1989 1.49 1.67 0.22
Five-year US January 1989 2.84 4.30 0.15
Ten-year US January 1985 3.64 7.60 0.06
Thirty-year US January 1985 12.59 16.44 0.07
Average 4.54 7.85 0.08

Panel D: Currency forwards
AUD/USD January 1985 1.10 12.03 0.06
EUR/USD January 1985 2.06 11.02 0.01
CAD/USD January 1985 0.43 7.44 −0.06
JPY/USD January 1985 1.72 11.12 0.05
NOK/USD January 1985 0.51 11.01 0.04
NZD/USD January 1985 2.13 12.31 −0.02
SEK/USD January 1985 0.39 11.25 0.10
CHF/USD January 1985 2.92 11.77 −0.01
GBP/USD January 1985 −0.28 10.14 0.07
Average 1.22 10.90 0.03

35



Table 2
In- and out-of-sample performance of time series momentum (TSM) with time series regression

This table reports the slope, t-statistic, in-sample R2, and out-of-sample R2
OS of

ri
t+1 = αi + βiri

t−12,t + ε i
t+1. “Average” refers to the average value within each asset class.

#(10% significance) refers to the number of significant in-sample regression slopes or significant
R2

OSs at the 10% level or stronger. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%,
5%, and 10% level, respectively. The in- and out-of-sample periods are 1985:01–2015:12 and
2000:01–2015:12, respectively.

Asset βi t-stat R2 R2
OS

Panel A: Commodity futures
Aluminum 0.30 0.88 0.28 −1.42
Brent oil 0.34 0.69 0.14 −1.29
Cattle 0.38∗∗ 2.23 0.94 −0.62
Cocoa −0.14 −0.28 0.03 −1.51
Coffee 0.21 0.40 0.04 0.23
Copper 0.77∗ 1.69 0.97 0.21
Corn −0.37 −0.94 0.23 −0.37
Cotton 0.57 1.23 0.56 −1.00
Crude 0.60 1.34 0.35 0.08
Gas oil 0.49 1.11 0.26 −1.00
Gold 0.29 1.43 0.42 −0.38
Heating oil 0.59 1.39 0.38 −0.06
Hogs 0.39 1.25 0.31 −0.73
Natural gas −0.21 −0.30 0.02 −4.51
Nickel 1.01∗ 1.83 1.03 −0.50
Platinum −0.12 −0.31 0.04 −1.83
Silver −0.11 −0.25 0.02 −2.31
Soybeans −0.39 −1.05 0.33 −0.63
Soymeal −0.47 −1.06 0.32 −0.19
Soy oil 0.04 0.09 0.00 −1.93
Sugar −0.65 −1.33 0.45 −0.10
Unleaded gasoline 0.05 0.12 0.00 −0.44
Wheat −0.10 −0.26 0.02 −1.21
Zinc 0.65 1.24 0.79 −2.29
Average 0.33 −0.99
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Panel B: Equity index futures
SPI 200 −0.23 −0.49 0.25 −3.99
DAX 0.18 0.54 0.08 −0.49
IBEX 35 0.36 1.20 0.30 0.07
CAC 40 0.30 0.98 0.28 0.13
FTSE/MIB 0.70∗ 1.92 1.08 0.73
TOPIX 0.44∗ 1.69 0.57 0.59
AEX 0.43 1.22 0.58 −0.14
FTSE 100 −0.16 −0.48 0.12 −5.24
S&P 500 0.14 0.45 0.10 −1.78
Average 0.37 −1.12

Panel C: Government bond futures
Three-year Australian 0.01 0.29 0.02 −0.27
Ten-year Australian 0.13 1.42 0.41 −1.74
Two-year European 0.15∗ 1.84 2.43 8.02∗∗

Five-year European 0.09 1.11 0.57 −1.03
Ten-year European 0.17 1.25 0.40 −1.03
Thirty-year European −0.06 −0.31 0.04 −0.74
Ten-year Canadian −0.02 −0.17 0.01 −1.32
Ten-year Japanese 0.11 0.47 0.11 −0.54
Ten-year UK 0.10 1.06 0.18 −0.37
Two-year US 0.08∗∗∗ 3.57 3.24 4.26∗∗∗

Five-year US 0.06 1.16 0.23 −0.23
Ten-year US −0.03 −0.35 0.02 −0.39
Thirty-year US 0.17 0.60 0.15 −0.82
Average 0.60 0.29

Panel D: Currency forwards
AUD/USD −0.10 −0.47 0.08 −0.92
EUR/USD 0.17 1.08 0.29 −0.74
CAD/USD 0.14 1.18 0.42 −0.88
JPY/USD 0.33∗∗∗ 2.60 1.10 0.43∗

NOK/USD −0.01 −0.06 0.00 −0.59
NZD/USD 0.09 0.40 0.07 −0.94
SEK/USD 0.12 0.70 0.13 −0.82
CHF/USD 0.12 0.75 0.13 −1.42
GBP/USD −0.05 −0.29 0.03 −0.82
Average 0.25 −0.75

Average across asset classes 0.39 −0.67
#(10% significance) 8 3
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Table 3
p-value from the test that all assets have the same mean or Sharpe ratio

This table reports the p-value from the test that all assets have the same mean or Sharpe ratio. We
perform four tests, including the analysis of variance (ANOVA) in Fisher (1918), Welch’s ANOVA
in Welch (1951), Kruskal-Wallis test in Kruskal and Wallis (1952), and bootstrap test. The sample
period is 1985:01–2015:12.

ANOVA Welch’s ANOVA Kruskal-Wallis Bootstrap

Mean 0.08 < 10−3 < 10−10 0

Sharpe ratio < 10−5 < 10−5 < 10−15 0
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Table 4
t-statistic of pooled regression without controlling for fixed effects

This table reports the t-statistic of pooled regression with real data and the simulated t-statistics
with wild and pairs bootstrap. For each asset, we bootstrap a path with T observations and run
pooled regression without controlling for fixed effects to calculate the t-statistic. We repeat this
procedure one thousand times and obtain the distribution of the t-statistic for testing the null
hypothesis that there is no time series momentum. The bootstrapped t-statistic is defined as the
97.5% percentile of the simulated t-statistics. The sample period is 1985:01–2015:12.

Bootstrapped t-statistic Bootstrapped t-statistic

h t-statistic Wild Pairs t-statistic Wild Pairs

Panel A: Forecast with return lagged h months
ri
t+1/σ i

t = αh +βhri
t−h+1/σ i

t−h + ε i
t+1 ri

t+1/σ i
t = αh +βhsign(ri

t−h+1)+ ε i
t+1

1 3.11 9.26 3.63 2.90 8.18 3.41
2 1.31 4.98 1.98 1.62 4.44 2.31
3 2.89 8.61 3.45 2.83 6.84 3.45
4 0.24 2.46 1.06 1.20 2.12 1.99
5 −0.17 1.88 0.60 −0.34 1.83 0.54
6 0.97 4.18 1.71 1.58 3.62 2.28
7 −0.21 1.52 0.65 0.44 1.55 1.29
8 0.75 3.81 1.49 1.09 3.20 1.84
9 1.36 4.76 2.10 1.70 4.20 2.47
10 3.02 8.12 3.60 2.56 6.46 3.30
11 3.63 10.34 4.13 3.97 7.61 4.39
12 0.29 2.52 1.00 0.55 2.35 1.26

Panel B: Forecast with past h-month returns
ri
t+1/σ i

t = αh +βhri
t−h,t/σ i

t−1 + ε i
t+1 ri

t+1/σ i
t = αh +βhsign(ri

t−h,t)+ ε i
t+1

1 3.11 9.26 3.63 2.90 8.18 3.41
2 2.92 9.46 3.46 3.07 8.32 3.61
3 3.74 11.45 4.22 4.15 10.20 4.61
4 3.49 10.71 3.97 4.57 9.49 4.96
5 3.11 9.58 3.63 4.24 8.85 4.72
6 3.29 9.65 3.80 3.88 8.88 4.39
7 3.03 9.30 3.62 3.93 8.31 4.40
8 3.05 9.44 3.62 3.74 8.33 4.24
9 3.38 9.85 3.95 4.44 8.99 4.78
10 3.94 11.38 4.46 5.27 10.22 5.63
11 4.64 13.12 5.08 5.71 11.73 6.05
12 4.34 12.53 4.83 5.14 11.05 5.53
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Table 5
t-statistic of pooled regression within each asset class without controlling for fixed effects

This table reports the t-statistic of pooled regression with real data and the simulated t-statistics
with wild and pairs bootstrap. For each asset, we bootstrap a path of T observations and run
pooled regression without controlling for fixed effects to calculate the t-statistic. We repeat this
procedure one thousand times and obtain the distribution of the t-statistic for testing the null
hypothesis that there is no time series momentum. The bootstrapped t-statistic is defined as the
97.5% percentile of the simulated t-statistics. The sample period is 1985:01–2015:12.

ri
t+1/σ i

t = αh +βhri
t−h,t/σ i

t−1 + ε i
t+1 ri

t+1/σ i
t = αh +βhsign(ri

t−h,t)+ ε i
t+1

Bootstrapped t-statistic Bootstrapped t-statistic

h t-statistic Wild Pairs t-statistic Wild Pairs

Panel A: Commodity futures
1 1.74 5.09 2.49 1.66 4.86 2.40
3 2.32 6.28 2.97 2.95 5.82 3.52
6 2.98 7.08 3.65 2.89 6.59 3.54
12 3.46 8.20 4.13 4.20 7.43 4.68

Panel B: Equity index futures
1 1.77 5.56 2.41 0.46 4.85 1.27
3 1.97 6.07 2.68 1.03 5.33 1.79
6 1.92 5.88 2.57 2.29 5.37 2.89
12 2.20 6.49 2.92 3.00 6.05 3.60

Panel C: Government bond futures
1 2.35 6.58 3.04 2.04 5.78 2.75
3 2.37 6.68 2.99 2.87 5.75 3.41
6 0.60 3.22 1.53 0.73 2.93 1.61
12 1.68 5.39 2.44 1.69 4.77 2.42

Panel D: Currency forwards
1 1.67 4.97 2.46 2.09 4.32 2.88
3 2.46 6.95 3.09 2.46 5.97 3.12
6 1.40 4.73 2.19 2.23 4.27 2.94
12 1.73 5.49 2.61 1.96 5.08 2.74
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Table 6
t-statistic of pooled regression without volatility scaling and without controlling for fixed effects

This table reports the t-statistic of pooled regression with real data and the simulated t-statistics
with wild and pairs bootstrap. For each asset, we bootstrap a path with T observations and run
pooled regression without volatility scaling and without controlling for fixed effects to calculate
the t-statistic. We repeat this procedure one thousand times and obtain the distribution of the
t-statistic for testing the null hypothesis that there is no time series momentum. The bootstrapped
t-statistic is defined as the 97.5% percentile of the simulated t-statistics. The sample period is
1985:01–2015:12.

Bootstrapped t-statistic Bootstrapped t-statistic

h t-statistic Wild Pairs t-statistic Wild Pairs

Panel A: Forecast with return lagged h months
ri
t+1 = αh +βhri

t−h+1 + ε i
t+1 ri

t+1 = αh +βhsign(ri
t−h+1)+ ε i

t+1

1 1.80 5.49 2.51 2.20 6.13 2.85
2 0.52 2.58 1.47 1.65 2.67 2.45
3 1.43 4.57 2.19 1.84 4.58 2.58
4 0.67 3.21 1.58 1.47 3.21 2.26
5 −1.33 −0.10 −0.14 −0.89 −0.08 0.28
6 1.03 3.37 1.92 1.77 3.45 2.48
7 −1.21 −0.47 −0.18 −0.18 −0.50 0.77
8 −0.64 0.60 0.42 0.17 0.54 1.12
9 −0.97 0.23 0.28 0.22 0.19 1.30
10 2.52 6.11 3.21 2.72 5.87 3.42
11 5.04 9.88 5.30 5.17 9.89 5.51
12 −1.04 −0.17 0.08 −0.11 −0.06 0.85

Panel B: Forecast with past h-month returns
ri
t+1 = αh +βhri

t−h,t + ε i
t+1 ri

t+1 = αh +βhsign(ri
t−h,t)+ ε i

t+1

1 1.80 5.49 2.51 2.20 6.13 2.85
2 1.39 4.56 2.21 2.57 5.10 3.18
3 1.71 5.26 2.45 3.06 5.81 3.62
4 1.82 5.30 2.59 3.75 5.94 4.25
5 1.27 4.27 2.09 3.23 4.75 3.77
6 1.55 4.85 2.39 2.71 5.38 3.32
7 1.04 3.89 1.90 2.54 4.26 3.19
8 0.78 3.49 1.58 2.24 3.64 2.94
9 0.62 3.12 1.50 2.57 3.31 3.29
10 1.08 3.75 1.96 3.62 4.23 4.14
11 2.09 5.61 2.84 4.17 6.41 4.72
12 1.68 4.96 2.50 3.72 5.64 4.16
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Table 7
t-statistic of pooled regression without controlling for fixed effects over 1985:01–2009:12

This table reports the t-statistic of pooled regression with real data and the bootstrapped
t-statistics with wild and pairs bootstrap. For each asset, we bootstrap a path with T observations
and run pooled regression without controlling for fixed effects to calculate the t-statistic. We
repeat this procedure one thousand times and obtain the distribution of the t-statistic for testing
the null hypothesis that there is no time series momentum. The bootstrapped t-statistic is defined
as the 97.5% percentile of the simulated t-statistics.

Bootstrapped t-statistic Bootstrapped t-statistic

h t-statistic Wild Pairs t-statistic Wild Pairs

Panel A: Forecast with return lagged h months
ri
t+1/σ i

t = αh +βhri
t−h+1/σ i

t−h + ε i
t+1 ri

t+1/σ i
t = αh +βhsign(ri

t−h+1)+ ε i
t+1

1 3.71 10.68 4.20 3.75 9.31 4.19
2 0.97 4.07 1.68 1.34 3.65 2.02
3 2.48 7.43 3.11 2.44 6.09 3.01
4 0.22 2.40 1.14 0.65 2.28 1.59
5 −0.15 1.53 0.67 −0.38 1.56 0.66
6 0.52 3.08 1.30 1.35 2.78 2.15
7 0.39 3.07 1.24 0.95 2.74 1.84
8 0.59 3.32 1.37 1.20 2.84 2.06
9 1.68 5.26 2.42 1.96 4.59 2.66
10 2.70 7.37 3.32 2.11 5.83 2.84
11 3.70 10.37 4.23 4.04 7.61 4.54
12 0.37 2.74 1.14 0.54 2.39 1.37

Panel B: Forecast with past h-month returns
ri
t+1/σ i

t = αh +βhri
t−h,t/σ i

t−1 + ε i
t+1 ri

t+1/σ i
t = αh +βhsign(ri

t−h,t)+ ε i
t+1

1 3.71 10.68 4.20 3.75 9.31 4.19
2 3.09 9.53 3.54 3.19 8.39 3.70
3 3.74 11.53 4.27 4.43 9.96 4.94
4 3.45 10.37 3.98 4.78 9.19 5.19
5 3.06 9.27 3.63 4.36 8.39 4.85
6 3.17 9.31 3.73 4.03 8.52 4.46
7 3.05 9.09 3.60 4.19 8.32 4.62
8 3.12 9.06 3.69 4.13 8.11 4.58
9 3.59 10.31 4.13 4.70 9.27 5.13
10 4.00 11.68 4.54 5.46 10.44 5.85
11 4.69 13.16 5.14 5.64 11.77 6.07
12 4.48 12.76 4.96 5.24 11.17 5.62
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Table 8
t-statistic of pooled regression controlling for fixed effects

This table reports the t-statistic of pooled regression with real data and the bootstrapped
t-statistics with wild and pairs bootstrap. For each asset, we bootstrap a path with T observations
and run pooled regression controlling for fixed effects to calculate the t-statistic. We repeat this
procedure one thousand times and obtain the distribution of the t-statistic for testing the null
hypothesis that there is no time series momentum. The bootstrapped t-statistic is defined as the
97.5% percentile of the simulated t-statistics. The sample period is 1985:01–2015:12.

Bootstrapped t-statistic Bootstrapped t-statistic

h t-statistic Wild Pairs t-statistic Wild Pairs

Panel A: Forecast with return lagged h months
ri
t+1/σ i

t = α i
h +βhri

t−h+1/σ i
t−h + ε i

t+1 ri
t+1/σ i

t = α i
h +βhsign(ri

t−h+1)+ ε i
t+1

1 2.80 8.51 3.39 2.66 7.60 3.19
2 0.96 4.17 1.66 0.94 3.85 1.67
3 2.53 7.77 3.12 2.17 6.36 2.83
4 −0.19 1.56 0.70 0.36 1.56 1.27
5 −0.56 1.00 0.25 −0.94 1.03 0.02
6 0.58 3.26 1.36 1.07 2.90 1.79
7 −0.62 0.59 0.27 0.20 1.01 1.04
8 0.37 2.90 1.14 0.80 2.64 1.53
9 0.94 3.84 1.73 0.94 3.53 1.79
10 2.57 7.21 3.22 1.87 5.71 2.61
11 3.22 9.40 3.75 3.53 7.03 4.17
12 −0.12 1.63 0.65 0.37 1.70 1.13

Panel B: Forecast with past h-month returns
ri
t+1/σ i

t = α i
h +βhri

t−h,t/σ i
t−1 + ε i

t+1 ri
t+1/σ i

t = α i
h +βhsign(ri

t−h,t)+ ε i
t+1

1 2.80 8.51 3.39 2.66 7.60 3.19
2 2.51 8.43 3.07 2.62 7.41 3.19
3 3.23 10.17 3.74 3.56 9.08 4.17
4 2.89 9.24 3.46 3.60 8.36 4.11
5 2.44 7.89 2.99 3.17 7.45 3.66
6 2.53 7.97 3.12 3.15 7.27 3.70
7 2.22 7.32 2.86 2.97 6.86 3.43
8 2.19 7.35 2.80 2.55 6.67 3.24
9 2.49 7.75 3.09 3.43 7.19 3.92
10 3.00 9.23 3.58 3.94 8.34 4.38
11 3.68 10.80 4.20 4.49 9.71 4.94
12 3.37 10.13 3.93 4.04 9.14 4.53
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Table 9
Time series momentum (TSM) versus time series history (TSH) at the asset level

This table reports the mean returns and Sharpe ratios of the time series momentum and time series history strategies, as well as
their difference, on the basis of individual assets. TSM refers to the strategy that buys the future contract if its past 12-month return
is non-negative and sells it if its past 12-month return is negative, and TSH refers to the strategy that buys the futures contract if its
historical sample mean is non-negative and sells it if its historical sample mean is negative. ∗∗∗, ∗∗, and ∗ denote statistical significance
at the 1%, 5%, and 10% level, respectively. The investment period is 1986:01–2015:12.

TSM TSH TSM TSH Return p-value of Sharpe ratio p-value of
Asset return return Sharpe ratio Sharpe ratio difference return difference difference Sharpe ratio difference

Aluminum 0.27 −0.47 0.05 −0.08 0.74∗∗ 0.04 0.13∗∗ 0.04
Brent oil 0.80 0.32 0.09 0.04 0.48 0.44 0.05 0.44
Cattle 0.28 0.08 0.07 0.02 0.20 0.48 0.05 0.48
Cocoa −0.46 0.13 −0.06 0.02 −0.59 0.32 −0.08 0.31
Coffee 0.18 −0.55 0.02 −0.05 0.73 0.30 0.07 0.30
Copper 0.77 0.94 0.10 0.12 −0.17 0.74 −0.02 0.73
Corn 0.11 0.14 0.01 0.02 −0.04 0.94 −0.01 0.94
Cotton 1.04 −0.07 0.14 −0.01 1.11∗∗ 0.04 0.15∗∗ 0.04
Crude 1.07 0.21 0.11 0.02 0.86 0.19 0.09 0.19
Gas oil 0.98 0.53 0.10 0.05 0.45 0.49 0.05 0.49
Gold 0.55 0.05 0.12 0.01 0.50∗ 0.10 0.11∗ 0.10
Heating oil 1.09 0.30 0.12 0.03 0.79 0.21 0.09 0.21
Hogs 0.29 −0.17 0.04 −0.02 0.46 0.37 0.06 0.37
Natural gas 1.26 0.05 0.09 0.01 1.21 0.25 0.08 0.25
Nickel 0.72 0.43 0.07 0.04 0.29 0.70 0.03 0.70
Platinum 0.30 0.53 0.05 0.09 −0.23 0.61 −0.04 0.61
Silver 0.33 −0.09 0.04 −0.01 0.42 0.46 0.05 0.47
Soybean −0.15 0.02 −0.02 0.01 −0.17 0.68 −0.03 0.67
Soymeal 0.20 0.51 0.02 0.06 −0.31 0.58 −0.04 0.58
Soy oil 0.42 0.14 0.06 0.02 0.28 0.57 0.04 0.57
Sugar 0.05 0.49 0.01 0.05 −0.44 0.50 −0.04 0.50
Unleaded gasoline 1.00 0.83 0.10 0.08 0.17 0.77 0.02 0.77
Wheat 0.38 0.26 0.05 0.03 0.12 0.81 0.02 0.81
Zinc 0.67 −0.22 0.09 −0.03 0.89∗ 0.08 0.12∗ 0.08
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SPI 200 0.18 0.55 0.04 0.12 −0.37 0.17 −0.08 0.17
DAX 0.79 0.68 0.13 0.11 0.11 0.80 0.02 0.79
IBEX 35 0.71 0.72 0.11 0.11 −0.01 0.98 0.00 0.98
CAC 40 0.43 0.49 0.08 0.09 −0.06 0.89 −0.01 0.88
FTSE/MIB 0.90 0.36 0.14 0.05 0.54 0.27 0.09 0.27
TOPIX 0.84 0.25 0.15 0.04 0.59 0.18 0.11 0.18
AEX 0.73 0.55 0.13 0.10 0.18 0.66 0.03 0.66
FTSE 100 0.27 0.52 0.06 0.11 −0.25 0.40 −0.05 0.40
S&P 500 0.67 0.73 0.15 0.16 −0.06 0.84 −0.01 0.83
Three-year Australian bond 0.24 0.28 0.24 0.28 −0.04 0.39 −0.04 0.37
Ten-year Australian bond 0.32 0.42 0.15 0.21 −0.10 0.27 −0.06 0.26
Two-year European bond 0.13 0.10 0.13 0.10 0.03 0.57 0.03 0.56
Five-year European bond 0.08 0.13 0.06 0.11 −0.05 0.46 −0.05 0.45
Ten-year European bond 0.05 0.25 0.02 0.09 −0.20 0.18 −0.07 0.18
Thirty-year European bond 0.14 0.56 0.05 0.19 −0.42∗∗∗ 0.01 −0.14∗∗∗ 0.01
Ten-year Canadian bond 0.34 0.52 0.11 0.17 −0.18 0.32 −0.06 0.31
Ten-year Japanese bond 0.21 0.08 0.06 0.02 0.13 0.55 0.04 0.56
Ten-year UK bond 0.34 0.28 0.14 0.12 0.06 0.68 0.02 0.68
Two-year US bond 0.13 0.12 0.28 0.26 0.01 0.65 0.02 0.63
Five-year US bond 0.19 0.23 0.15 0.19 −0.04 0.41 −0.04 0.40
Ten-year US bond 0.19 0.28 0.09 0.13 −0.09 0.40 −0.04 0.40
Thirty-year US bond 0.54 0.89 0.12 0.20 −0.35∗ 0.07 −0.08∗ 0.06
AUD/USD 0.06 −0.16 0.02 −0.05 0.22 0.37 0.07 0.37
EUR/USD 0.11 0.11 0.03 0.03 0.00 1.00 0.00 1.00
CAD/USD 0.23 −0.08 0.11 −0.04 0.31∗∗ 0.05 0.15∗∗ 0.05
JPY/USD 0.46 0.09 0.14 0.03 0.37 0.11 0.11 0.11
NOK/USD 0.06 −0.06 0.02 −0.02 0.12 0.58 0.04 0.58
NZD/USD 0.24 0.02 0.07 0.01 0.22 0.38 0.06 0.38
SEK/USD 0.04 −0.05 0.01 −0.02 0.09 0.70 0.03 0.70
CHF/USD 0.18 0.19 0.05 0.06 −0.01 0.96 −0.01 0.97
GBP/USD 0.00 −0.03 0.00 −0.01 0.03 0.87 0.01 0.87

#(significance) 7 7
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Table 10
Time series momentum (TSM) versus time series history (TSH) at the portfolio level

This table reports the average and risk-adjusted returns of the TSM and TSH strategies, where we restrict portfolio weights on
individual assets to be the same for comparison when constructing these two strategies. TSM refers to the strategy that buys futures
contracts with non-negative past 12-month return and sells futures contracts with negative past 12-month return, and TSH refers to the
strategy that buys futures contracts with non-negative historical sample mean and sells futures contracts with negative historical sample
mean. The benchmarks are the Fama-French four-factor model that includes MSCI World Index, SMB (small minus big), HML (high
minus low), and UMD (momentum), and the Asness, Moskowitz and Pedersen (2013) three-factor model. Newey-West t-statistics and
p-values are reported in parentheses and brackets, respectively. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10%
level, respectively. The investment period is 1986:01–2015:12.

Fama-French four-factor model Asness-Moskowitz-Pedersen three-factor model

MSCI MSCI Value Momentum
Mean Alpha World SMB HML UMD R2 Alpha World everywhere everywhere R2

Index Index

Panel A: Equal weighting, i.e., portfolio weight = 1
N

TSM strategy
Long leg 0.34∗∗∗ 0.12∗∗ 0.16∗∗∗ 0.05∗∗ 0.09∗∗∗ 0.32∗∗∗ 42.57% 0.09 0.16∗∗∗ 0.14∗∗∗ 0.38∗∗∗ 41.92%

(4.92) (2.29) (7.73) (2.24) (2.62) (7.19) (1.60) (7.21) (2.99) (7.33)
Short leg −0.05 −0.03 0.14∗∗∗ 0.11∗∗∗ 0.03 −0.28∗∗∗ 48.31% 0.02 0.13∗∗∗ −0.09 −0.32∗∗∗ 45.85%

(−0.72)(−0.46) (5.30) (4.01) (0.96)(−8.34) (0.23) (5.08) (−1.42) (−6.89)
Long - short 0.39∗∗∗ 0.15∗ 0.02 −0.06∗ 0.06 0.60∗∗∗ 46.03% 0.07 0.03 0.23∗∗ 0.70∗∗∗ 47.39%

(4.73) (1.94) (0.61)(−1.83) (1.01) (9.99) (1.01) (0.93) (2.50) (8.79)
TSH strategy
Long leg 0.27∗∗∗ 0.07 0.28∗∗∗ 0.14∗∗∗ 0.10∗∗∗ 0.08∗ 49.07% 0.10 0.26∗∗∗ 0.01 0.08∗ 45.30%

(2.56) (0.95) (8.79) (4.41) (3.90) (1.93) (1.13) (7.73) (0.24) (1.65)
Short leg 0.02 0.02 0.03∗∗∗ 0.03∗ 0.02 −0.04∗∗ 8.73% 0.01 0.03∗∗∗ 0.03 −0.03 8.04%

(0.61) (0.52) (3.51) (1.83) (1.47)(−2.01) (0.25) (3.17) (1.15) (−1.04)
Long - short 0.25∗∗∗ 0.05 0.25∗∗∗ 0.11∗∗∗ 0.08∗∗∗ 0.13∗∗∗ 44.83% 0.09 0.23∗∗∗ −0.02 0.11∗ 42.01%

(2.70) (0.80) (8.54) (3.70) (2.96) (2.76) (1.14) (7.59) (−0.29) (1.94)
TSM versus TSH
Mean difference 0.14

[0.19]
Alpha difference 0.10 −0.02

[0.26] [0.84]
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Panel B: Volatility weighting, i.e., portfolio weight = 1
N

40%
σ i

t
TSM strategy
Long leg 1.02∗∗∗ 0.58∗∗∗ 0.28∗∗∗−0.04 0.12 0.68∗∗∗ 36.04% 0.48∗∗∗ 0.28∗∗∗ 0.36∗∗∗ 0.84∗∗∗ 37.46%

(7.66) (5.31) (7.34) (−0.67) (1.85) (8.02) (4.29) (7.96) (3.21) (8.41)
Short leg −0.14 −0.06 0.22∗∗∗ 0.19∗∗∗ 0.04 −0.52∗∗∗ 44.46% 0.02 0.20∗∗∗−0.17 −0.59∗∗∗ 42.42%

(−1.07) (−0.53) (5.75) (3.06) (0.79) (−8.67) (0.13) (5.52) (−1.48) (−9.19)
Long - short 1.16∗∗∗ 0.64∗∗∗ 0.05 −0.22∗∗ 0.08 1.19∗∗∗ 40.62% 0.46∗∗∗ 0.08 0.53∗∗∗ 1.43∗∗∗ 41.58%

(6.31) (3.68) (0.80) (−2.24) (0.85) (10.31) (2.90) (1.25) (2.75) (10.81)
TSH strategy
Long leg 0.81∗∗∗ 0.42∗∗∗ 0.48∗∗∗ 0.12∗∗ 0.16∗∗ 0.25∗∗∗ 40.10% 0.43∗∗∗ 0.46∗∗∗ 0.13 0.29∗∗∗ 38.80%

(4.72) (3.06) (12.17) (2.29) (2.48) (2.97) (2.71) (10.96) (1.03) (3.05)
Short leg 0.07 0.10∗ 0.02 0.03 −0.01 −0.08∗∗∗ 4.27% 0.07 0.02 0.06 −0.04 4.35%

(1.50) (1.93) (1.28) (1.33) (−0.11) (−2.73) (1.39) (1.42) (1.07) (−1.06)
Long - short 0.74∗∗∗ 0.32∗∗ 0.46∗∗∗ 0.09 0.16∗∗ 0.33∗∗∗ 36.23% 0.36∗∗ 0.44∗∗∗ 0.06 0.33∗∗∗ 35.01%

(4.36) (2.18) (9.81) (1.46) (2.17) (3.76) (2.25) (8.85) (0.43) (3.21)
TSM versus TSH
Mean difference 0.42∗

[0.07]
Alpha difference 0.32∗ 0.10

[0.08] [0.56]
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Panel C: Past 12-month return weighting, i.e, portfolio weight =
ri
t−12,t

∑
N
i=1 |ri

t−12,t |
TSM strategy
Long leg 0.50∗∗∗ 0.08 0.27∗∗∗ 0.17∗∗∗ 0.14∗∗ 0.66∗∗∗ 32.83% 0.06 0.25∗∗∗ 0.15∗ 0.73∗∗∗ 30.95%

(3.54) (0.72) (5.85) (3.62) (2.06) (8.65) (0.52) (5.09) (1.65) (7.71)
Short leg −0.07 −0.01 0.19∗∗∗ 0.16∗∗∗ 0.01 −0.43∗∗∗ 39.93% 0.05 0.18∗∗∗−0.15 −0.49∗∗∗ 38.05%

(−0.65) (−0.08) (5.06) (3.61) (0.18) (−7.74) (0.49) (5.06) (−1.36) (−6.97)
Long - short 0.57∗∗∗ 0.09 0.08 0.01 0.13 1.09∗∗∗ 40.17% 0.01 0.08 0.30∗∗ 1.22∗∗∗ 40.55%

(3.79) (0.69) (1.48) (0.14) (1.35) (12.55) (0.08) (1.57) (2.04) (11.33)
TSH strategy
Long leg 0.30∗ −0.03 0.43∗∗∗ 0.23∗∗∗ 0.14∗∗∗ 0.19∗∗∗ 48.23% 0.03 0.41∗∗∗−0.03 0.17∗∗ 44.26%

(1.78) (−0.23) (8.10) (4.71) (3.22) (2.77) (0.21) (6.70) (−0.29) (1.96)
Short leg 0.02 0.02 0.02∗∗∗ 0.01 0.01 −0.04∗ 5.23% 0.01 0.02∗∗∗ 0.03 −0.03 5.18%

(0.77) (0.83) (2.82) (1.09) (1.06) (−1.70) (0.50) (2.64) (1.08) (−0.86)
Long - short 0.28∗ −0.05 0.41∗∗∗ 0.22∗∗∗ 0.13∗∗∗ 0.23∗∗∗ 46.18% 0.02 0.39∗∗∗−0.06 0.20∗∗ 42.65%

(1.71) (−0.42) (7.87) (4.39) (2.93) (3.10) (0.10) (6.85) (−0.56) (1.99)
TSM versus TSH
Mean difference 0.29

[0.12]
Alpha difference 0.14 −0.01

[0.34] [0.98]
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Panel D: Zero investment, i.e., long = 1
Nbuy and short = 1

Nsell

TSM strategy
Long leg 0.60∗∗∗ 0.24∗∗∗ 0.25∗∗∗ 0.08∗∗ 0.11∗∗ 0.53∗∗∗ 39.74% 0.20∗∗ 0.24∗∗∗ 0.17∗∗ 0.61∗∗∗ 39.10%

(5.29) (2.65) (6.93) (2.02) (2.26) (7.60) (2.14) (6.41) (2.19) (7.17)
Short leg −0.12 −0.06 0.28∗∗∗ 0.23∗∗∗ 0.05 −0.56∗∗∗ 42.77% 0.02 0.26∗∗∗−0.17 −0.64∗∗∗ 40.27%

(−0.74) (−0.42) (5.76) (3.94) (0.79) (−7.40) (0.10) (5.33) (−1.24) (−6.73)
Long - short 0.72∗∗∗ 0.30∗∗ −0.03 −0.16∗∗ 0.06 1.10∗∗∗ 45.91% 0.18 −0.02 0.34∗∗ 1.25∗∗∗ 46.18%

(4.32) (1.96) (−0.65) (−2.43) (0.69) (10.26) (1.25) (−0.40) (1.97) (8.52)
TSH strategy
Long leg 0.35∗∗∗ 0.10 0.35∗∗∗ 0.17∗∗∗ 0.12∗∗∗ 0.10∗ 49.49% 0.13 0.33∗∗∗ 0.02 0.10 45.78%

(2.64) (1.06) (8.98) (4.39) (3.85) (1.90) (1.25) (7.92) (0.21) (1.56)
Short leg 0.08 0.04 0.15∗∗∗ 0.14∗∗ 0.09 −0.18∗ 8.16% −0.01 0.14∗∗∗ 0.17 −0.09 7.37%

(0.51) (0.30) (3.66) (2.13) (1.62) (−1.86) (−0.05) (3.28) (1.48) (0.75)
Long - short 0.27∗∗ 0.06 0.20∗∗∗ 0.03 0.03 0.28∗∗∗ 11.89% 0.14 0.19∗∗∗−0.16 0.19 12.27%

(2.10) (0.40) (5.30) (0.45) (0.49) (2.75) (1.02) (4.83) (−1.24) (1.44)
TSM versus TSH
Mean difference 0.45∗∗

[0.03]
Alpha difference 0.24 0.04

[0.13] [0.76]
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Table 11
Time series momentum (TSM) and time series history (TSH) forecast comparison

This table reports the results of regressing ri
t+1 on the expected return (r̂TSM,i

t+1 ) estimated at time
t with the TSM pooled regression Eq. (3) and regressing r̂TSM,i

t+1 on the expected return (r̂TSH,i
t+1 )

estimated with the TSH approach (i.e., historical sample mean). ∗∗∗, ∗∗, and ∗ denote statistical
significance at the 1%, 5%, and 10% level, respectively.

ri
t+1 = α +β r̂TSM,i

t+1 + ε i
t+1 r̂TSM,i

t+1 = dr̂TSH,i
t+1 +ui

t

Asset class β t-statistic R2 d t-statistic R2

Panel A: r̂TSM,i
t+1 is estimated with volatility scaling

Overall 0.19 0.61 0.04 1.09∗∗∗ 18.56 40.33
Commodity 0.15 0.42 0.02 1.24∗∗∗ 11.62 23.53
Equity 0.07 0.10 0.01 0.84∗∗∗ 14.90 45.06
Bond 0.23 0.60 0.08 0.99∗∗∗ 68.75 92.27
Currency −0.08 −0.12 0.01 1.01∗∗∗ 14.95 4.45

Panel B: r̂TSM,i
t+1 is estimated without volatility scaling

Overall 0.30 0.45 0.03 1.04∗∗∗ 41.89 54.96
Commodity 0.09 0.11 0.00 1.01∗∗∗ 26.53 37.65
Equity −0.37 −0.32 0.07 0.93∗∗∗ 35.34 77.93
Bond −0.49 −0.52 0.07 1.00∗∗∗ 72.40 91.38
Currency 0.03 0.03 0.00 1.64∗∗∗ 19.78 14.32
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