
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

12-2015

GPU accelerated on-the-fly reachability checking GPU accelerated on-the-fly reachability checking

Zhimin WU

Yang LIU

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Jianqi SHI

Shengchao QIN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Computer and Systems Architecture Commons, and the Software Engineering Commons

Citation Citation
WU, Zhimin; LIU, Yang; SUN, Jun; SHI, Jianqi; and QIN, Shengchao. GPU accelerated on-the-fly reachability
checking. (2015). 20th International Conference on Engineering of Complex Computer Systems, Gold
Coast, Australia, 2015 December 9-12. Research Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4951

This Conference Paper is brought to you for free and open access by the School of Information Systems at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at Singapore
Management University. For more information, please email libIR@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/287750725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4951&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4951&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4951&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

GPU Accelerated On-the-fly Reachability Checking

Zhimin Wu∗, Yang Liu∗, Jun Sun†, Jianqi Shi‡, Shengchao Qin§
∗Nanyang Technological University, Singapore

†Singapore University of Technology and Design, Singapore
‡East China Normal University, China

‡Shenzhen University & Teesside University, United Kindom

Abstract—Model checking suffers from the infamous state
space explosion problem. In this paper, we propose an approach,
named GPURC, to utilize the Graphics Processing Units (GPUs)
to speed up the reachability verification. The key idea is to achieve
a dynamic load balancing so that the many cores in GPUs are fully
utilized during the state space exploration.To this end, we firstly
construct a compact data encoding of the input transition systems
to reduce the memory cost and fit the calculation in GPUs. To
support a large number of concurrent components, we propose a
multi-integer encoding with conflict-release accessing approach.
We then develop a BFS-based state space generation algorithm
in GPUs, which makes full use of the GPU memory hierarchy
and the latest dynamic parallelism feature in CUDA to achieve a
high parallelism. GPURC also supports a parallel collaborative
event synchronization approach and integrates a GPU hashing
method to reduce the cost of data accessing. The experiments
show that GPURC can give significant performance speedup
(average 50X and up to 100X) compared with the traditional
sequential algorithms.

I. INTRODUCTION

Model checking is an automatic technique for verifying
finite state systems. As the number of state variables or pro-
cesses increases, the size of the state space grows exponentially
and results in the state space explosion problem [6]. On-the-
fly verification is one of the most widely used approaches to
deal with the state space explosion problem [12]. Traditionally,
on-the-fly verification is DFS-based for its memory efficiency.
However it is known that DFS is hard to be parallelized. BFS
is widely used in multi-core and many-core based verification
algorithm design due to the fact that the state space can be
easily partitioned and distributed independently. Because the
state space is unknown during the verification process, the key
challenge in these researches is to achieve a fully distribution
of the state space so that the different cores can be fully utilized
for maximum parallelization.

GPUs have been widely applied to accelerate computation
in many areas, including model checking problems [13],
[3], [9]. The challenges of effectively utilizing GPU for
model checking are the redesign of the data structure and
the algorithm mechanism to fit the architecture and compute
model for GPUs (e.g., memory hierarchy and single instruction
multiple data (SIMD)1). In this paper, we propose an on-the-
fly reachability checking approach in GPU, which is realized
in a tool named GPURC. The core algorithm is a parallel
GPU accelerated BFS-based state space generation algorithm
performed on the compacted GPU encoding of system models.
The parallelism during the state space generation process is

1It describes devices with multiple processing elements that perform the
same operation on multiple data points simultaneously

dynamically adjusted so as to fully utilize the many cores
resources for GPUs to improve the performance. The execution
process can be flexibly adjusted according to different system
features, e.g., global variables and event synchronization.

Our key contributions of this work are as follows. 1) We
propose a compact GPU encoding of concurrent system models
with the support of global variables and event synchronization.
Our approach can support systems with a large number of
concurrent components using a multiple integer encoding. 2)
We develop a BFS-based searching algorithm in GPU with
dynamic load balancing without CPU involvement, using the
latest dynamic parallelism feature of the Kepler architecture.
3) Our approach incorporates an efficient hierarchical hash
structure to store the state space and uses parallel state space
generation to achieve event synchronization. A conflict-release
accessing model is used to support the multi-integer encoding.
4) Experimental results show that our approach can achieve up
to around 100X speedup on benchmark examples compared
with the sequential BFS-based and DFS-based algorithm.
When exploring the complete state space is necessary, our
approach can give up to 8X speedup.

Related Work GPUs have already been used for solving model
checking problems, e.g., state space exploration and duplicate
elimination problems. [10] presents a smooth interplay of a
bitvector state space representation and the GPU accelerated
BFS based on bitvector. It also integrates perfect hashing,
but it is not suitable for an on-the-fly verification process.
[18] accelerates the state space exploration for explicit-state
model checking by utilizing GPU to do the breadth-first
layered construction. [11] proposes how to use GPUs in the
SPIN model checker. The closest work to ours is [4], which
focuses on utilizing GPUs to construct the state space on-
the-fly. And their journal version [5], which expands [4] for
safety verification. It does not support the system models
with global variables. The compute models in [10], [18], [4]
are all based on CPU-GPU collaboration, which are only
for state space generation instead of verification, while we
support the compute model that purely based on GPU, which
is also achieved by our previous work [21] for GPU-based
counterexample generation.

II. BACKGROUND

II-A System Modeling and Reachability Verification

In this work, a component is modeled as a labelled transi-
tion system (LTS).

Definition 1: A labelled transition system (LTS) is a tuple
M = (S,Act, s0,−→, AP, L) where S is a set of states, Act

2015 20th International Conference on Engineering of Complex Computer Systems

978-1-4673-8581-7/15 $31.00 © 2015 IEEE

DOI 10.1109/ICECCS.2015.21

100

is a set of actions (events), s0 ∈ S is the initial state, −→ ⊆
S × Act × S is a transition relation, AP is a set of atomic
propositions, and L : S → 2AP is a labeling function.

A transition system is finite if S, Act, and AP are finite.
For convenience, we write s

α−→ s′ instead of (s, α, s′) ∈ −→
where s, s′ ∈ S and α ∈ Act. A concurrent system may consist
of multiple components running in parallel, each of which is
a component LTS. The behavior of the composed system can
be represented by the parallel composition of all component
transition systems.

Definition 2: Given two LTSs Mi = (Si, Acti, s
i
0,−→i

, APi, Li) for i ∈ {1, 2}, the parallel composition of them
is an LTS: M1 ‖ M2 = (S1 × S2, Act1 ∪ Act2, (s

1
0, s

2
0),−→

, AP1∪AP2, L) such that L((s1, s2)) = L1(s1)∪L2(s2) where
s1 ∈ S1, s2 ∈ S2. The transition relation −→ is the smallest
transition relation which satisfies the following:

⎧⎨
⎩

(s1, s2)
α−→ (s′1, s

′
2) if s1

α−→ s′1 ∧ s2
α−→ s′2

(s1, s2)
α−→ (s′1, s2) if s1

α−→ s′1 ∧ α /∈ Act2
(s1, s2)

α−→ (s1, s
′
2) if s2

α−→ s′2 ∧ α /∈ Act1

The process of generating the global state space is to
compute the parallel composition of all the components. Given
a concurrent system with n components M1,M2, . . . ,Mn, a
state is defined as a state vector sv ∈ S1 × S2 × . . . × Sn

where Si is the state set of Mi for i ∈ {1, 2, . . . , n}. On-the-fly
reachability verification is to search the target during the state
space generation, which can be applied in safety verification.
e.g., deadlock verification. On-the-fly verification can avoid
generating the complete state space.

II-B GPU Preliminaries

GPUs have been widely used to accelerate scientific, engi-
neering and industry computations. CUDA is a parallel com-
puting platform and programming model for NVIDIA GPUs.
In this paper, we utilize the GPUs with compute capability no
less than 3.5, e.g., Nvidia Geforce Titan with Kepler GK110
architecture. Generally, GPUs is made up of a fixed number
of streaming multiprocessors (SMX) e.g., 15 SMX in a full
version Kepler GK110. Fig. 1 shows the architecture of one
SMX, each of which contains a fixed number of streaming
processors (C:core in Fig. 1). The execution model for these
streaming processors is called single instruction multiple data
(SIMD) [7], which makes GPUs have simple control hardware
but imposes heavy cost in flow control.

One of the most important features of GPU is the memory
hierarchy [16]. The hierarchical memory structure consists
of Global Memory (GM), Constant Memory (CM), Texture
Memory (TM), Shared Memory (SM) and Local Memory
(Registers). The access performance of these memories in the
descending order are as follows: GM<CM/TM<SM<LM. SM
is independent for each SMX. It is shared among all stream
processors in a SMX. GM is the large size board memory.
e.g., 5GB in Geforce Titan. The slow access to the GM is
always the major aspect that affects the performance of GPU
computation. The most effective global memory access could
be achieved when the same instruction for all threads in a warp
accesses global memory locations that are physically adjacent.
In this case, the hardware coalesces all memory accesses into
a consolidated one to consecutive DRAM locations [20].

64KB Shared Memory(SM)/L1 Cache

48KB Read-Only Data Cache

Warp Scheduler Warp Scheduler

Disp Disp Disp Disp

CC C

CC C

DP Unit

DP Unit

... 16

... 16
CC C

CC C

DP Unit

DP Unit

... 16

... 16

Register File

L/S SFU

L/S SFU
... 16

...

...

Part A. The architecture of SMX in GPU

SMX

SMX

Global M
emory(GM)

Figure 1. Architecture of SMX

Time
CPU Thread

A.
Parent

Grid

Launch Parent Grid

Grid A Threads

B.
Child
Grid

Launch Child Grid

Grid B Threads

Grid B Completed

Grid A Completed

Figure 2. Dynamic Parallelism

In software perspective, the CUDA architecture defines
three levels of threads organizing units: Grid, Block and
Warp. A warp consists of 32 threads, which is the basic
scheduling unit. Threads inside a warp is synchronized. A
block contains a limited number of threads (e.g., 1024) and
can only execute in a SMX. Grid is the organization of blocks.
Threads inside a warp or block communicate through SM and
threads in different blocks communicate through GM. The
application running on GPUs is called Kernel. Note that the
divergence execution in multiple threads inside a warp may
follow different paths of execution, and all these paths are
executed sequentially instead of in parallel, which is called
Warp Divergence.

Since Kepler GK110, GPUs with compute capability no
less than 3.5 support the new feature: Dynamic Parallelism.
Different from the previous Fermi architecture, it gives kernels
the ability to launch new tasks in GPU from itself, syn-
chronize on results, and control the scheduling of that work
via dedicated, accelerated hardware paths. This feature makes
GPU computation fully independent from CPU. In CUDA 5+
architecture, the dynamic parallelism is described as in Fig. 2.
The kernel launched from CPU is defined as Parent Kernel,
while the corresponding execution environment is Parent Grid.
The kernel launched from Parent Kernel is Child Kernel, with
the execution environment Child Grid.

Defining a parallel-friendly data structure is an important
GPU research topic [15]. The most important aspect for de-
signing this kind of data structure should be the efficient update
and access with millions of elements. In CPU, hash table is
the most widely used data structure to fit these requirements.
However, hash table based techniques used in CPU often
cannot be translated directly in GPU [1]. Recently, Cuckoo
hashing has been adopted, e.g., [1], [2], [4], by integrating
multiple hash functions to provide each element a fixed number
and random store positions. It avoids collisions by moving

101

Insertion when one of the two bucket is empty Insertion when the two buckets already contain entries

S1 T1

T2

S2

Step1. Both hashed position in T1 and T2 are
tested and the one in T2 is empty

S1

S2

T1

T2

Step2. S2 is stored in the empty position in T2

S1

S3

T1

T2

S2

Step1. Both hashed position in T1 and T2 are
occupied, S1 will be kicked out

S2

S3

T1

T2

Step2. S1 is kicked out from T1, then it is
hashed to T2, the entry in T2 is empty, store S1

S1

Note: 2 hash functions are used in this example. It is not static in cuckoo hashing

Figure 3. Cuckoo Hashing

elements around instead of fixing them in their initial positions.
This technique can easily fit the memory access requirements
in GPU. As it just takes few steps to read or update the
elements, the number of uncoalesced memory accesses are
reduced. An example is presented in Fig. 3 to describe the
process of Cuckoo hashing.

III. GPURC OVERVIEW

This section presents the overview of GPURC design,
which aims to achieve the following goals in parallelizing
the reachability verification in GPU: 1) Be able to design an
efficient algorithm to fully parallels in the GPUs. 2) Be able
to reduce the memory cost for large scale state space. 3) Be
able to support LTS models with different features.

The core of GPURC is a BFS-based on-the-fly state space
generation algorithm, as shown in Algorithm 1. We parallelize
the BFS process in GPU by distributing the expanded states
to a large number of threads in different blocks. The whole
verification process is on the fly such that if a target state (a
goal state in terms of the property to check) is found by any
thread in any block, the verification terminates.

The input of the algorithm is a succinct representation of
the global transition system M and the reachability condition
φ. The output is the reacheability verification result. A number
of blocks2 are started on GPUs and each block has a number
of concurrent threads. In this work, we introduce the notion
of thread group [4] as the logic grouping of threads for the
purpose of concurrent generation of the outgoing transitions.
Algorithm 1 is executed on all the threads in the GPU
concurrently. The corresponding block ID (bid), thread group
ID (gid) and thread ID (tid) are identified in line 1. The
number of threads in each thread group equals to the number
of component LTS in M . The number of thread groups is the
thread number per block divided by the thread group number
in a Warp as the synchronization of threads inside a warp can
be maintained all the time. For example, if a warp consists
of 32 threads, the number of components is |Mi| = 5, and a
block has 512 threads, then the number of thread groups is
(512÷ 32)× (32÷ |Mi|) = 80.

Each block has a global working list Ωbid, which is stored
in GM and can be accessed by all other blocks. Ωbid is initially
empty for all blocks, except block 0. Block 0 starts the BFS

2Grid is another way to organize threads for matrix computation, which is
not used in this paper.

Algorithm 1: PBFS: Breadth-First Search for GPU
input : M = (S,Act, s0,−→, AP, L): the global transition system. φ: the

reachability condition
output: Yes/No

1 Let bid, gid and tid be the current block ID, thread group ID and thread ID
respectively;

2 Let Ωbid be a working list, which contains the initial state s0 for block with
bid = 0;

3 while true do
4 Let Ω be the thread group queue for breadth-first search;
5 Initialize Ω using the states in Ωbid based on gid ;
6 while Ω is not empty do
7 Remove a state s from Ω;
8 if s is not visited then
9 Mark s as visited;

10 else
11 continue;

12 if s ∈ φ then
13 return Yes;

14 foreach state s′ such that s
α−→tid s′ and s′ is not visited do

15 if s′ ∈ Sφ then
16 Insert s′ into Ω;

17 else
18 continue;

19 Mark Ωbid as empty: Define Status[] and Status[bid] = true;
20 Status[0..|M |]: break when no element in array is false;

21 return No;

from the initial state s0; all other blocks are waiting until some
states are inserted in their global working list.

Each thread group has a private local queue Ω in SM,
which is initialized using one state in Ωbid as shown in line 5.
If Ωbid has more states than the maximum number of thread
groups in a block, the extra states remain in Ωbid for next round
execution. From lines 6 to 18, each thread group performs
the BFS searching for reachability detection. Here we use a
global hash table (refer to Section IV-B) to check whether
a state has been visited. The hash table is stored in GM
and can be accessed by all blocks. Each thread in the thread
group is in charge of one LTS in M for outgoing transition
generation. This is the reason why the number of threads
in each thread group equals to the number of component
transition systems in M 3. At line 14, each thread generates
transitions for the corresponding LTS based on the transition
relations. The event synchronization is handled differently as
explained in Section IV-B.

This BFS is an iterative process. If the global working list
Ωbid is not empty and the local working list Ω has space,
states are transferred to Ω. In line 19, when both Ωbid and Ω
become empty, we define a Boolean array Status in GM, and
the running block marks Status[bid] as true. Then in line 20,
the block reduces all elements in Status to find if there is a
false value. The whole algorithm terminates when all elements
in Status are true, otherwise the block continues to wait for
new states.

During the BFS-based process, the workload is changing
all the time, so we adopt a dynamic BFS process to adjust
the parallelism such that we can help make full use of the
many cores in GPU. To fit both Fermi and Kepler architecture,

3For systems with concurrent components more than 32, each thread takes
charge of the successor generation of more than one component LTS.

102

CPU
Program Launch GPU

Kernel
Exit

Launch GPU
Kernel

Exit

(a) Execution Model in Fermi

CPU
Program Launch GPU

Parent Kernel

Exit

Launch

Exit

GPU
Child Kernel

Launch GPU
Child Kernel

Exit

(b) Execution Model in Kepler

Figure 4. Execution Model in Fermi and Kepler

we integrate the BFS-based process in two execution models.
Fig. 4(a) shows the normal execution model in Fermi, which is
a CPU-GPU collaborative process and is the most widely used
in current research. Fig. 4(b) shows the execution model in
Kepler, which utilizes the new dynamic parallelism feature to
be a GPU-pure process without the involvement of CPU, which
integrates the concept of Parent Kernel and Child Kernel.
Details are shown in the first paragraph of Section IV.

To fit the computation in GPUs, it requires us to build a
compact encoding for both the input models and the gener-
ated state space. During the state space generation process,
there are a large number of memory accesses that affect the
performance. We integrate the efficient GPU hash structures
such that we can access the location to store the state within
a fixed number of steps. Duplicate states elimination can also
be handled by hash, mentioned in Algorithm 1. In addition,
we integrate an efficient data transfer approach for the process
to transfer data together with the adjustment of parallelism.
Details are shown in Section IV-B.

IV. GPU ACCELERATED ON-THE-FLY STATE SPACE
GENERATION FOR REACHABILITY VERIFICATION

In this section, we explain the GPU searching process in
Algorithm 1. Our searching process can dynamically adjust
the parallelism, which can be integrated into two different
execution models as shown in Fig. 4. In this work, we focus
on the integration of our approach to the one in Fig. 4(b) with
the latest GPU technique. We present the GPU computation
process in Fig. 5, which is a two-level scheduling model
based on the dynamic parallelism of CUDA and GPU memory
hierarchy. Both the Parent Kernel (presented in Algorithm 3)
and the Child Kernel (presented in Algorithm 4) are the
extended runtime implementation of the BFS searching process
in Algorithm 1.

Different types of memory in GPU hierarchical memory
structure have differences in access rate and size. Therefore, we
propose to use hierarchical hash structures for data accessing
and storage. As shown in Fig. 5, GlobalHash and LocalHash
are created in GM and SM as the GPU implementation for Ωbid

and Ω in Algorithm 1, respectively. The details about how they
work and the hash function are introduced in Section IV-B.

The GPU computation starts from 1©. The Parent Kernel
is launched from CPU to start the verification with the initial
state s0. Parent Kernel is concurrently executed by many
thread groups. In 2©, each thread group independently proceeds
the successor generation and synchronization. Generated new
states are stored in LocalHash. If a collision happens, defined
as the overflow of LocalHash, a Child Kernel is launched
from the Parent Kernel to allocate more computation resources,
as shown in 3©. The unvisited states are transferred from
LocalHash of Parent Kernel to GlobalHash so as to be

Thread
groups

Thread
groups

Pa
re

nt
 K

er
ne

l
Ch

ild
 K

er
ne

l
GM

SM

Successor Generation,
Collaborative

Synchronization

CollisionHappens
, Launch Child

Kernel

READ

IFReachTarget

CollisionHappens.
Target Detected,

No new State

WRITE

EN
D

Iteration
Launch New

Child
1

23

4
5

6

7

8

Successor
Generation,

Collaborative
Synchronization

IFReachTarget

LocalHash

GlobalHash

Initial
State

vector

Figure 5. GPUDV with Dynamic Parallelism

transferred to Child Kernel, shown in 8©. The Child Kernel
performs the same computation as the Parent Kernel, as shown
in 4©, which is also executed by many thread groups. In
runtime, when a target state is detected, all thread groups in the
same block are notified through a bool mark in SM, and these
thread groups terminate. If there is no target state, an array
in SM works for the status recording of all thread groups,
which has the same function as Status[] defined in line 19 of
Algorithm 1. During the execution, Parent Kernel terminates
after all Child Kernels finish their execution, which occurs
in three conditions, as shown in 5©:a) a collision happens in
LocalHash, b) a target state is found and c) no more new state,
i.e., the state space being completely generated and there is
no target state. In 6©, Parent Kernel continues if Child Kernel
terminates in condition a), and finishes its execution if Child
Kernel terminates in condition b) and c).

In our approach, we bring in the efficient GPU hashing
design and combine it with the latest features in GPU archi-
tectures. We build a parallel collaborative synchronization and
data transferring approach to improve the performance of the
state space generation. Note that our approach is a BFS-based,
but the search is not strictly layer by layer. We describe more
details in Section IV-B. These approaches are independent to
the GPU execution models.

IV-A System Encoding in GPU

The performance of graph traversal in GPU is highly
affected by the memory access pattern. Each component LTS
can be considered as a sparse graph with imbalanced structure.
Hence adjacency matrix is not the suitable data structure for
GPU computation. A compact encoding to represent the LTS
is necessary. To this end, we build a minimal bit-cost encoding
for LTSs.

Assume the global state space is the parallel composition
of n LTSs denoted as M1 ‖ M2 ‖ · · · ‖ Mn, and Mi =
(Si, Acti, s

i
0,−→i, APi, Li) for 1 ≤ i ≤ n. We encode the

global state space as the composition of all component LTSs

103

LTSIndex

StatesIndex

LocalTransitions

SyncTransitions

1 2

1 2 ... n

Part A

Sync
Index

Integers
An Integer

Transition
s

Transition
s...

event tostate

X bitsY bits
TransBytes

Part BX: StateEncodeBit[]
Y:EventEncodeBit

State Vector with
Global Variables

V1 V2 Vn...
Part CGlobal Variables

VE[1]VE[2] VE[n]...
(bits) A fixed number of

Integers

...1ltsS 2ltsS 3ltsS ltsnS

Figure 6. Component LTS Encoding

Mi, which is a four-layer integer array as explained in the
following. The states in the global state space are in the form
of S1 × S2 × . . .× Sn, which is encoded as a state vector. If
the system model contains global variables, we encode them
into the state vector with additional bits. An intuitive view on
the four-array encoding can be observed in Fig. 6

Firstly, the encoding for the system model M is composed
of multiple encoded Mi. To encode Mi for state space gen-
eration, we encode all states in Si and all events in Acti. We
encode them as outgoing transitions in array LocalTransitions
and SyncTransitions. An outgoing transition of a state is
encoded as the montage of event in Acti and its tostate in
Si. They are compact encoded with minimum number of bits.
An event in Acti is encoded with a fixed number of bits,
which is equal to log |Act|, where |Act| is the number of all
events. A state in Si is encoded with log |Si| bits, where |Si|
is the number of states of Mi. The encoding of a transition
should be aligned to a fixed number of bytes, shown in Part
B in Fig. 6. In this way, an integer can be used to encode
multiple transitions. Two types of transition, transitions and
transitions with synchronized events are encoded separately
in array LocalTransitions and SyncTransitions. There is an
integer index from LocalTransitions to SyncTransitions in
order to build the complete list of outgoing transitions from
a state. Encoded transitions in SyncTransitions should be in
order by the event ID of the transition.

The array StatesIndex is introduced to record the starting
offset for the outgoing transitions of a state in array Local-
Transitions. The array LTSIndex is used to record the starting
offset for each Mi in array StatesIndex. The values in these
four encoding arrays are static during the verification and can
be bind to TM for fast random access.

Secondly, a state vector is encoded with a fixed number of
64bits integers. Global variables are encoded together with the
state vector, which locates at the head of each state vector, the
number of bits required to encode global variables is based on
the number of variables and the range of their value, shown
in Part C in Fig. 6. Different types of global variables are
transferred to integers. e.g, for boolean type, 1 means true, 0
means false.

We introduce the concept of thread group in Section III,
which consists of threads inside the same warp. As the
synchronization of threads inside a warp can be maintained all
the time, and tasks are independently proceeded inside a thread

group so the runtime execution has Coarse-grained parallelism,
which reduces the cost for synchronization.

IV-B State Space Generation in GPU

Based on the proposed system encoding, we explain the
state space generation process in this section.

State Space Hashing and Duplicate Elimination For on-the-
fly verification, the size of the state space is unknown. It is
important to find an effective way to store the state vectors. In
our previous work [21], we build arrays in both GM and SM
to store data, but it is hard to define the size of the arrays
with the load balancing problem among all threads, which
always results in a sparse storage and is also not efficient for
random access. In this work, we adopt hash tables to solve
this problem.

Fig. 5 shows that our hash structures consist of LocalHash
in SM and GlobalHash in GM. The hash methods for the
two hash structures are cuckoo hashing [17] combined with
linear probing hashing. Generated new state vectors are firstly
stored in LocalHash. There are two global hash tables inside
GlobalHash : GlobalVisitedHash and GlobalOpenHash. Glob-
alVisitedHash stores the visited state vectors, which is used
in line 8, 9 and 14 in Algorithm 1. GlobalOpenHash is used
to store the generated but unvisited state vectors, i.e., Ωbid in
Algorithm 1. Cuckoo hashing in our approach is described in
Fig. 3. The cuckoo hashing uses multiple hash functions with
the form: hash(k) = (a∗k+b)%P%TableSize, where P is a
prime number. a and b are a set of values which are generated
randomly.

Duplicate elimination works on LocalHash, GlobalOpen-
Hash to avoid storing duplicated unvisited state vectors and
works on GlobalVisitedHash to avoid the successor generation
for a visited state vector. As each state vector has its own
hash value, the same state vectors have the same hash value.
However, the hash value is not unique to a state vector, which
means two different state vectors may also have the same hash
value. These can cause more work to do duplicate detection
as we need to compare the value of state vectors instead of
just comparing their hash value. And we also integrate the
linear probing if there is no available hash position to store
the state vector. With these, the duplicate elimination cannot
completely avoid duplicates. It should be noticed that the
duplicate detection results can be true-negative but never be
false-positive. So there is no missing state vector.

State Space Generation with Dynamically adjusted Paral-
lelism State space generation is a BFS searching process based
on the compact system encoding. Each thread group generates
the successor states by decoding the transition relations in
the four encoding arrays. Newly generated state vectors are
stored in LocalHash, in which each thread group gets new
state vectors to handle. Once a thread group finishes the
successor generation, the state vector handled by it is stored
in GlobalVisitedHash. Based on our design in Section III, suc-
cessor generation process is scheduled dynamically and non-
deterministically : 1) The parallelism for successor generation
is dynamically adjusted based on the collision circumstance
shown in Fig. 5. 2) The successor generation is not restricted
to a BFS. As generated states are randomly distributed in the
LocalHash, there is no guarantee that thread group gets states

104

Algorithm 2: Collaborative Synchronization
Input: SyncTransition

1 Define Shared : SyncEInterC[], SyncSInterC[], SyncMark[] ;
2 index = 0,m = numof(Mi), tgid = threadindexinthreadgroup;
3 while true do
4 GetMinSyncT (&SyncEInterC[],&SyncSInterC[]);
5 if SyncEInterC[] = 0 then
6 break;

7 if
SyncEInterC[tgid] ≤ SyncEInterC[0...tgid−1, tgid+1...m]
then

8 leqthanall + +;

9 if leqthanall = m − 1 then
10 while i < m do
11 if SyncEInterC[tid] = SyncEInterC[i], i �= tid then
12 SyncSV ec(SyncSInterC[tgid], SyncSInterC[i]);

13 SyncMark[tgid] := true;

14 Eliminate duplicate sync result;
15 index + +;

layer by layer by following the BFS mechanism. The benefit
is that it can work like a DFS to some extent. It has potential
to reach the target (e.g., deadlock state) faster.

No matter which execution model we use, i.e., Fig 4(a)
or Fig 4(b), data transferring occurs with the parallelism
adjustment. For Read operation from GlobalOpenHash to the
local working list of thread groups. i.e., Ω in Algorithm 1,
all threads access the GlobalOpenHash in GM in order for
coalesced access, then use atomic operation to fill up the local
working list for each thread group. For Write operation from
LocalHash to GlobalVisitedHash and GlobalOpenHash, we
use the hash operation mentioned previously.

Collaborative Synchronization Synchronization operation
occurs during the interleaving state space generation process.
Different from [4], which uses a central mode - one thread sorts
all the time to synchronize and other threads just wait based
on the warp divergence of GPU, we design a parallel collabo-
rative synchronization approach. Instead of using several bits
to mark the synchronized events, we encode all transitions
with synchronized events in the same array, mentioned in
Section IV-A. The process is shown in Algorithm 2. We define
the shared space inter a thread group a tuple (SyncEInterC,
SyncSInterC) in line 1 in Algorithm 2, Which stores a state’s
outgoing transition: the ID of event in Acti and its tostate
in Si. The synchronization process starts with the ordered
SyncTransitions, where the ID of event stored in SyncEInterC
represents the smallest event ID. It is an iterative process that
all threads are involved in the judgement if their event id stored
in SyncEInterC is the smallest among all threads, shown in
line 8. If so, the threads try to find the transition to synchronize
by searching each threads’ SyncEInterC in line 9 to 13. It
may generate several same state vectors but we guarantee
only one being stored in LocalHash in line 14. After that,
each thread reads the next outgoing transition to SyncEInterC
and SyncSInterC. For a intuitive view, we also propose the
structure of collaborative synchronization in the Fig. 7.

The synchronization process in Algorithm 2 occurs only
inside each thread group. Thread synchronization among all
threads in a thread group is guaranteed. Each thread in a
thread group owns a shared space for communication with

T1

threadgroup SyncInteractiveSpace SyncTransitions

Sync
Interactive

Event

Sync
Interactive

State

T0
3
1

2
2

T2
T3

31
43

3

5

2
2

EMPTYT4

LocalHash

X

Figure 7. Collaborative Synchronization

other threads in the same thread group. Each thread reads the
synchronization event in ascending order, it guarantees that
the events with a minimum ID appear at the same iteration.
So the synchronization works in an ascending order with the
event ID. The conditions for the process to move to next event
are that 1) no synchronized event exists in other components
2) it finishes the synchronization based on current event.

IV-C Supporting Global Variables and Large Number of
Concurrent Components

For system models with global variables, the value set of
the global variables is updated during the state space gener-
ation process. The value set updates based on the alphabets
of the transition systems and the updating rules vary from
different systems models. For general usage, we build the
interface to support global variables independently to the state
space generation process.

We define the structure for global variables as a tuple
GV S = (V,E, L,R,AR) where V is the set of global
variables, E is the set of alphabets (the event ID) for all LTSs
Mi. R is the set of formulas that define the rules to update
the value of variables based on alphabets. AR is named from
abstracted R, which is a set of symbols and encoded with
bits. To generate the new value set of global variables V ′ for
the successor is to perform mapping and analysing operation,
V ′ = L(V) : AR ← E,R. The mapping and analyzing
operation L is specific to different system models. Then we
make our GPURC work as a common framework and supply
two interfaces to support global variables: 1) EncodeRule. We
mention in Section IV-A that the value set of global variables
is encoded at the head of each state vector. This interface gets
V as the input and calculates the bits needed to encode each
global variables and builds an array to store the information
for GPURC. 2) VariablesUpdating. Shown in Fig. 8(a), this
interface performs the function of L. It decodes AR and works
on the current value set of global variables to output the new
value set. This is completely language or platform independent.
The key idea is to construct AR, which is built by simplifying
the formula of R, which represents the value change of
variables with alphabets, to a fixed number of symbols so
that it is easy to store and transfer to GPU for execution.
e.g., Si

a−→ Sj , Vi = Vi + 1, (Vi ≤ Max) is abstracted
as i, a,Max, and in VariablesUpdating we recognise these
symbols as variables should be more close to Max, then the
variables should plus one to finish this operation. In addition,
for systems in which the event id can be matched to specific
rules regularly, the construction of AR can be simplified more
by updating global variables just based on event id. e.g.,
ReaderWriter model in Section V-A, in which the events

105

VariablesUpdating

1 2: { , ... }nEncodeRule VEbits VE VE VE�

': { } { }a lphabetR V V�� ��

:SymbolSet AbstractR

GPUDV

State Vector{ }V

{ }V

'{ }V

State VectorSSS'{ }VLanguage Independent

(a) VariablesUpdating

Integer 1 Integer x...
ReadOperation: AtomicCAS

WriteOperation: AtomicCAS

(b) Conflict Release R/W

Figure 8. Support Global Variables and Large Number of Concurrent
Components

with eid%2 == 0/eid%2 == 1 indicate the same rules to
update global variables.

Besides supporting the system models with global vari-
ables, the other challenge is to support a large number of con-
current components, which means the number of components
exceeds a threshold that a single 64bits integer is not enough
to encode a state vector. So multiple integers are required.
However, encoding a state vector with more than 1 64bits
integer means the hash store operation cannot finish in one
step as an atomic operation can handle at most a 64bit integers
at a time. During the GPU state space generation process, the
high parallelism results in a random write/read order. If we
write/read operate on multiple integers with the same order as
we do on single integer, it has the high probability to cause
conflict and inconsistency. We deal with this problem by two
approaches: 1) Read and Write operate in the opposite order
with atomicCAS operation, shown in Fig 8(b). Only when the
atomic operation succeeds in reading/writing the position to
get/store the last/first integer of the state vector, the read/write
operation continues. 2) The hashing method we used originally,
the cuckoo hashing, should be changed to a double hashing
together with linear probing. This change is to get rid of the
inconsistency caused by the data exchange operation in cuckoo
hashing, which requires several times’ exchanging as a state
vector is encoded in more than one integer.

IV-D Algorithms

In this section, we present the algorithms for the process in
Fig 5. We describe the algorithm of Parent Kernel and Child
Kernel based on dynamic parallelism. In fact, both of the
parent kernel and child kernel handle the same work. Their
relationship is based on the parallelism adjustment. And the
algorithms shown can be easily transferred to the execution
model in Fermi in Fig 4(a).

Parent Kernel is described in Algorithm 3 and Child Kernel
is described in Algorithm 4. Note that we use bid, gid and tid
as the block ID, thread group ID and the thread ID respectively
as in Algorithm 1. We define warpid to represent thread ID
inside a Warp, and define tgid as the thread index inside a
thread group.

In Algorithm 3, the input is the encoded transition system
M . s0 is the set of initial state vectors. |Mi| is the number of
LTSs. In line 2, GroupStore[] is the local working list of thread
group to store the state vector it works on. The first thread in
each thread group x transfers an unvisited state vector from
I to its GroupStore[x]. Lines 3 to 28 are the major process.

In line 4, each thread y in a thread group decodes and gets
the state S of LTSy based on GroupStore[x] and its tgid .
In line 5, the function GetAllSucc initializes SuccIdx , which
is a tuple (LTbeginInt ,LTendInt ,STbeginInt ,STendInt) to
index all outgoing transitions of S in LocalTransitions and
SyncTransitions. In line 7, the first thread in a thread group
detects if the GroupStore[x] has been visited by accessing
GlobalVisitedHash with cuckoo hashing. Then it enters the
process in line 9 and line 10 if necessary, which is the process
mentioned in Section IV-B and IV-C.

As the size of the LocalHash is limited, during the process
of successor generation, collisions happen when the saturation
of the LocalHash overflows, which means the LocalHash can
not hold more insertions. If there is no collision, the process
continues from line 26 to 20. All threads attend to get new state
vectors randomly from LocalHash to fill up the GroupStore
for all thread groups, and start a new iteration.

If collisions have happened, no matter which execution
model is integrated, all data in LocalHash is hashed to Glob-
alOpenHash in line 14. Current grid works as a Parent Grid.
In the loop from line 16 to 20, the first thread in the block
launches the Child Grid with more blocks and distributed data
in GlobalOpenHash to Child Kernel.

In Dynamic Parallelism, the CUDA interface cudaDe-
viceSynchronize is used to synchronize between Parent Kernel
and Child Kernel. In line 18, the Child Kernel finishes its exe-
cution and synchronizes with Parent Kernel for the information
about 1) IfTargetDetected. 2) Whether the collision happens in
Child Kernel. 3) Whether there is no unvisited state vector.
Based on this information, Parent Kernel decides to either
exit or calculate and allocate new size of resources to launch
new Child Kernel. The interface in line 19 is integrated from
[16], which is a high performance reduction approach. We
use it to calculate the number of unvisited state vectors in
GlobalOpenHash.

The function and process of Algorithm 4 are similar
to Algorithm 3. So we ignore the duplicate description in
line 7. The differences between Algorithm 3 and Algorithm 4
are: 1) In line 5, each thread group gets state vector from
GlobalOpenHash. 2) In lines 9 to 10, after transfer data back to
GlobalOpenHash, Child Kernel exits execution. 3) In line 11,
if no more new state vectors exist, Child Kernel exits the
execution.

It can be shown from the algorithms that the Parent Kernel
needs to iteratively launch the Child Kernel and should not
terminate until all Child Kernels terminate. Parallelism of
Parent Kernel is static while it is flexible for Child Kernel to
adjust parallelism. These motivate us that in our BFS-based
state space exploration, we allocate little scale parallelism
for Parent Kernel and let the Child Kernel achieve the high
parallelism to finish the tasks as soon as possible.

V. EVALUATION

GPURC is developed in CUDA C++ with two variants:
1) GPURC-GC: implemented in the CPU-GPU collaborative
execution model in Fig. 4(a). 2) GPURC: implemented in
the GPU-pure execution model in Fig. 4(b). It is the im-
plementation of Algorithm 3 and Algorithm 4.We evaluate

106

Algorithm 3: Parent Kernel Algorithm
Input: Compact Encoding of M , s0, |Mi|, GV S

1 if tgid = 0 then
2 GroupStore[gid] = s0;

3 while ¬ifDs do
4 S ← GetStateinV (tgid,GroupStore[gid]);
5 ifanyOutgoing ← GetAllSucc(S,&SuccIdx);
6 if tgid = 0 then
7 ifdup ← DuplicateElimination(GroupStore[gid]);

8 if ifanyOutgoing and ¬ifdup then
9 Successor generation,Collaborative Synchronization

→ ifcollision;
10 OPTION:GV S for system models with global variables.

11 IFTargetDetected() → ifDs;
12 if ¬ifDs then
13 if ifcollision then
14 cuckoo hash store&linear

probing:LocalHash → GlobalOpenHash;
15 if tid = 0 then
16 while ¬ifDs do
17 LaunchChildKernel;
18 CUDA-API:CudaDeviceSynchronize();
19 cudahighperformanceReduce → NoS

CUDA-API:CudaDeviceSynchronize();
20 Adjust Parallelism based on the NoS: number of

state vectors in GlobalOpenHash;

21 else
22 break;

23 CUDA-API: syncthreads();
24 index = 0;
25 if LocalHash[tid]! = NULL then
26 atomicAdd(Index);
27 Index < |threadgroups|?LocalHash[tid] →

GroupStore[Index] : donothing;

28 Index = 0?GlobalOpenHash → GroupStore : continue;

Algorithm 4: Child Kernel Algorithm
Input: GlobalOpenHash, Compact Encoding of M , |Mi|, GV S

1 S ← Read(GlobalOpenHash[tgid + |threadgroups| ∗ bid]);
2 Index = 0;
3 if S! = NULL then
4 atomicAdd(Index);
5 Index < |threadgroups|?S → GroupStore[Index] :

donothing;

6 while ¬IFTargetDetected do
7 The process is same to Parent Kernel;
8 if ¬ifcollision then
9 cuckoo hash store&linear probing: LocalHash to

GlobalOpenHash;
10 “return” to parent kernel;

11 Get new state vector from LocalHash,same to Parent Kernel
Index = 0?GlobalOpenHash → GroupStore : exit;

the performance of GPURC-GC and GPURC by comparing
them with the traditional sequential state space generation for
deadlock verification algorithm, which is implemented based
on the PAT model checker [19] and named as DFS for DFS-
based algorithm and BFS for BFS-based algorithm. SPUP
means the speedup.

Our experiments are conducted on a PC with two Intel(R)
Xeon(R) CPU E5− 2670, 2.60GHz, 16GB RAM and Geforce
Titan Black GPU with 13SMX, 6GB GM and 48KB SM in
each SMX. The compute capability of the GPU is 3.5 based
on Kepler GK110 architecture. The execution model in Fermi
in Fig.4(a) is common for all GPU.

= ...=

(a) MDL-1

= ...=
(b) MDL-2

= =...

(c) MNoDL
Figure 9. The Manual System Model for Evaluation

V-A Performance Evaluation

We take three sets of experiments. All experiments are
taken several times and the Speedup means the average
speedup. In the experiments, we assign 512 threads per block.
Note that the parallelism (the number of GPU blocks) of
GPURC is dynamically adjusted during the execution. We de-
fine MPblocks as the maximum parallelism, i.e., the maximum
number of blocks in GPU that can be allocated during the
execution, which in all experiments is set to 5000 blocks. We
build two types of system models manually: ManualDeadlock
(MDL), which consists of two types MDL-1 and MDL-
2, and ManualNoDeadlock (MNoDL), separately shown in
Fig. 9. Both of them are composed of multiple component
LTSs. Component LTS Mi in ManualDeadlock contains a
deadlock state at the bottom layer. Component LTS Mi in
ManualNoDeadlock is a circle structure. The features of all
models for the experiment are shown in Table I.

In the first set of experiments, we take deadlock state as
the target and all the models have deadlock state. We use
different sizes of Dinning Philosopher (DP) model and our
two types of ManualDeadlock models. During the execution,
the parallelism is adjusted dynamically based on the unvisited
state vectors in GlobalOpenHash. The realistic parallelism
started in this set of experiments ranges from 1500 to 5000.
Experiment results are shown in Table II, where we can see
that in this set of experiments, compared with the traditional
BFS-based sequential algorithm, our approach can give up to
70X speedup. Based on the result of MDL-2, we can see that
compared with DFS-based sequential algorithm, our approach
can bring up to 20X speedup.

The results show that GPU based approaches can quickly
spread the threads to search for different parts of the state
space, and hence give good speedup compared with traditional
approach. This phenomenon comes from the high parallelism
in GPU and the random data accessing in our approach
which is not restricted to layer by layer. On the other hand,
MDL-1 and MDL-2 contain the same number of states and
transitions. But the cost of DFS-based algorithm on MDL-1
can be ignored. We can see that the performance of DFS on
reachability verification depends on the structure of models.
The good performance on both MDL-1 and MDL-2 shows
our approach is not restricted to the structure. GPURC-GC
and GPURC give similar results because the number of CPU-
GPU coordination is small and gives less overhead. Further,
in the last row of Table II, we start 8000 blocks for the
experiments. The BFS/DFS gets out of memory exception that
cannot handle the MDL-2 with 11 processes while the GPU

107

Table I. FEATURES OF TEST MODELS
Model Proc Ints States Trans

DP 13 2 1.1 ∗ 106 7 ∗ 106

DP 14 2 3.42 ∗ 106 2.34 ∗ 107

DP 15 2 1.06 ∗ 107 7.7 ∗ 107

MDL-1 8 1 1.67 ∗ 106 1.34 ∗ 107

MDL-1 9 1 1.01 ∗ 107 9.07 ∗ 107

MDL-1 10 1 6.04 ∗ 107 5.23 ∗ 108

MDL-2 8 1 1.67 ∗ 106 1.34 ∗ 107

MDL-2 9 1 1.01 ∗ 107 9.07 ∗ 107

MDL-2 10 1 6.04 ∗ 107 5.23 ∗ 108

MDL-2 11 1 3.62 ∗ 108 −
DP-Free 11 2 5.1 ∗ 105 3.6 ∗ 106

DP-Free 12 2 1.68 ∗ 106 1.29 ∗ 107

DP-Free 13 2 5.56 ∗ 106 4.62 ∗ 107

MNoDL 9 1 1.95 ∗ 106 2.1 ∗ 107

MNoDL 10 1 9.76 ∗ 106 1.17 ∗ 108

MNoDL 11 1 4.88 ∗ 107 5.25 ∗ 108

RW 100 4 5.4 ∗ 105 1.6 ∗ 106

RW 120 4 9.3 ∗ 105 2.7 ∗ 106

RW 140 5 1.46 ∗ 106 4.3 ∗ 106

RW 160 6 2.16 ∗ 106 6.4 ∗ 106

RW 180 6 3.06 ∗ 106 9.09 ∗ 106

SP 12 1 3.6 ∗ 105 2.1 ∗ 106

SP 13 1 1.06 ∗ 106 6.6 ∗ 106

SP 14 1 3.05 ∗ 106 2.05 ∗ 107

Table II. PERFORMANCE EVALUATION FOR REACHABILITY
VERIFICATION(TIME IN SEC)

Model GPURC-GC GPURC BFS DFS SPUP(B/D)
DP/13 2.5 2.2 25 - 11X/-
DP/14 3.4 3 104 - 35X/-
DP/15 68 62 367.7 - 60X/-

MDL-1/8 1.2 1.4 15.3 - 12X/-
MDL-1/9 3.1 2.8 112.8 - 40X/-
MDL-1/10 9 8.3 623.3 - 70X/-
MDL-2/8 1.25 1.5 13.9 7.2 11X/5X
MDL-2/9 5.2 5.7 102.3 61.1 20X/11X
MDL-2/10 26.1 24.3 604 474 30X/20X
MDL-2/11 15.5/8000 17.5/8000 EX EX -/-

approach works, which is based on the compact encoding and
with high parallelism for exploration, we could reduce the size
of state space required to generate before reaching the target
states.

In the second set of experiment, we want to see the speedup
of GPURC when the complete state space is explored. We
use different size of Dinning Philosopher Deadlock Free (DP-
Free) model and our ManualNoDeadlock model. During the
execution of the experiments, the parallelism always reaches
5000. Results are shown in Table III. Compared with tradi-
tional BFS-based algorithm, our approach can achieve up to 8X
speedup. We can conclude that our approach is also available
for the complete state space generation. But compare with
results in Table II, we can conclude that the biggest advantage
of GPURC is to handle the on-the-fly state space generation
for the target searching. Note that 6GB ≈ 6.44 ∗ 109bytes
memory can store approximately 8.05 ∗ 108 64bit integers. In
our experiments, at most 6 integers are used to encode a state
vector, which means at least 1.34 ∗ 108 state vectors can be
stored in GPU.

In the third set of experiment, we aim to test the perfor-
mance of GPURC for supporting global variables and large
numbers of concurrent components. We use different sizes
of ReaderWriter (RW) model and Semaphore (SP) model
in PAT. Both of them contain global variables and there
is no deadlock state. We do non-executive verification with
RW and do the RechabilityTest verification with SP. non-
executive verification requires to search the complete state

Table III. PERFORMANCE EVALUATION FOR COMPLETE STATE SPACE
GENERATION (TIME IN SEC)

Model GPURC-GC GPURC BFS SPUP
DP-Free/11 10.1 9.5 11.4 1.2X
DP-Free/12 25 22 50.1 2X
DP-Free/13 48 42 192.5 5X
MNoDL/9 10.3 8.4 24.9 3X

MNoDL/10 44 36.3 145.4 4.5X
MNoDL/11 89 72 538.4 8X

Table IV. PERFORMANCE EVALUATION FOR SYSTEMS WITH
DIFFERENT FEATURES (TIME IN SEC)

Model GPURC-GC GPURC BFS DFS SPUP(B/D)
RW/100 33 32 36.9 - 1.1X/-
RW/120 57 55.1 72.2 - 1.5X/-
RW/140 63 61.3 112 - 2X/-
RW/160 71.5 69 177 - 3X/-
RW/180 88 83.2 234 - 3X/-
SP/12 0.25 0.22 15.6 2 70X/9X
SP/13 0.6 0.56 50.5 6 100X/10X
SP/14 1.21 1.1 151.3 14 150X/11X

space. RechabilityTest verification is to verify if the target state
vectorRW contains a large number of concurrent components.
As shown in Table IV, We use Ints to represent the number
of 64bit integers required to encode the state vector. For
the non-executive verification, each state vector is encoded
with multiple integers so during the state space generation
process, we need to access the memory for multiple times to
finish the read/write operation, which is costly and affects the
performance speedup. We mention that a thread group cannot
exceed a warp. In this experiment, the whole warp is a thread
group. One thread in a thread group needs to take charge of
several component LTSs, which is a sequential process in all
threads. For the RechabilityTest, we always finish the searching
with Parallelism ≈ 450blocks. We can see compared with
SeqB, our approach can reach up to 150X speedup. Compared
with SeqD, the speedup can reach up to around 10X. It can
be concluded our approach can handle models with different
features well.

Finally, the change of performance with different size of
state space in GPU can be concluded from Table III. We
can see that for sequential algorithm, the time cost increases
almost linearly with the increasing size of state space. But
for GPU algorithm, it is not increasing as fast as sequential
algorithm, which reflects that we can get more speedup for
larger state space. On the other hand, we can see the increment
rate of speedup is decreasing, which is the feature of memory
intensive GPU algorithm as the benefit of parallelism can be
neutralized by the costly memory access.

Based on all our experiments, we can conclude that
GPURC is efficient for the reachability test during the on-
the-fly state space generation, which can be applied in safety
verification. Our approach supports different types of system
models and can be generally integrated to deal with other state
space searching problems. Furthermore, in our experiments,
for some system models with larger size than what we show
in tables, the sequential algorithm will result in OutOfMemo-
ryException while our approach can handle. This benefits from
our compact encoding in Section IV-A.

V-B Discussion

Four points in our approach should be noticed: 1) The
parallelism utilized in GPU. Theoretically, the value of MP-
blocks defines the maximum parallelism and may have impact
on the performance. In fact, we test different parallelism and

108

find there is no much difference among different MPblocks.
The reason is the huge I/O cost neutralize the benefit of
a larger parallelism. 2) The size of hash table used in our
approach, which is restricted to the GPU memory hierarchy.
When the state vector is encoded with multiple integers,
the size of LocalHash should not exceed a threshold as the
SM that available for a block is limited. e.g., 1536 ∗ 64bit
integers for state space encoded with single 64bit integer,
256 ∗ 64bit integers for state vector encoded with > 4 64bit
integers. 3) Our approach works well with both the CPU-
GPU collaborative and the GPU-Pure execution models. But
the performance gap between utilizing this two execution
models here is not too obvious. Based on researches [8] on
the dynamic parallelism. The Clustering problems with high
data dependency during the iterations can benefit much from
the GPU-pure execution model as the large size of data can
be directly used inside the execution in GPU to avoid the cost
of copy all data back to CPU memory. The observation in
our approach is because the size of data required to cluster
for launching a new kernel is small. But GPU-Pure execution
model makes the algorithm development more flexible. e.g., in
our approach, we can use the data in global memory directly
for the resource reallocation to launch a new kernel (child
kernel) instead of copying some data back to CPU to calculate.
And with dynamic parallelism, we can allocate resources to
launch a new kernel based on runtime results at any threads,
without terminating all threads to return the control to CPU.
In addition, based on [14], with dynamic parallelism, nested
parallel problem can also be handled completely in GPU and
the solution for recursive problems with dynamic parallelism
shows the complexity simplify. 4) There is a limitation in the
approach. Although we support large number of concurrent
components, we haven’t support the event synchronization
with more than 32 components, which is due to that our
synchronization occurs inside a warp (32 threads). This can be
solved with our current work by integrating a sort operation for
each thread to sort all synchronized events. The rest process
can be similar to our existing algorithm. We plan to expand
our approach with this in future work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an approach to accelerating the
reachability verification with support to LTS Models with dif-
ferent features in GPU. We propose the compact encoding that
supports global variables, efficient hierarchical hash structure
and parallel state space generation with collaborative synchro-
nization, which can be generally used in other state space
exploration problems. Our approach supports system models
with global variables and large number of concurrent compo-
nents. The experiments have shown that the design of GPURC
significantly enhance the performance of dealing with the
on-the-fly reachability verification problem. Meanwhile, our
approach is flexible and scalable according to the evaluation
results. In our future work, we plan to expand our approach by
integrating some delay detection approaches, e.g., delay event
synchronization, which is to delay the synchronization so as to
reduce the number of states being explored temporarily. And it
has potential to help improve the performance of reachability
verification in our approach.

Acknowledgement This work is supported by project under
Grant No.M4011178, NNSFC project Grant No.61373033 and

SZSTI project Grant No.JCYJ201418193546117.

REFERENCES

[1] D. Alcantara, S. Andrei, A. Fatemeh, S. Shubhabrata, M. Michael,
J. Owens, and A. Nina. Real-time parallel hashing on the GPU. TOG,
28(5):154, 2009.

[2] D. Alcantara, V. Vasily, S. Shubhabrata, M. Michael, J. Owens, and
A. Nina. Building an efficient hash table on the GPU. GPU Computing
Gems, 2:39–53, 2011.

[3] W. Anton and B. Dragan. Improving gpu sparse matrix-vector multipli-
cation for probabilistic model checking. In Model Checking Software,
pages 98–116. 2012.

[4] W. Anton and B. Dragan. GPUexplore: Many-Core On-the-Fly State
Space Exploration Using GPUs. In TACAS, pages 233–247. 2014.

[5] W. Anton and B. Dragan. Many-core on-the-fly model checking of
safety properties using GPUs. International Journal on Software Tools
for Technology Transfer, pages 1–17, 2015.

[6] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani. Model checking
and the state explosion problem. In Tools for Practical Software
Verification, pages 1–30. 2012.

[7] N. David and S. Sartaj. Data broadcasting in SIMD computers. TC,
100(2):101–107, 1981.

[8] J. DiMarco and M. Taufer. performance impact of dynamic parallelism
on different clustering algorithms. In SPIE Defense, Security, and
Sensing, pages 87520E–87520E. International Society for Optics and
Photonics, 2013.

[9] B. Dragan, E. Stefan, S. Damian, and W. Anton. Parallel probabilis-
tic model checking on general purpose graphics processors. STTT,
13(1):21–35, 2011.

[10] S. Edelkamp and D. Sulewski. Parallel state space search on the gpu.
In SoCS, 2009.

[11] B. Ezio, D. Richard, and S. S. A. Towards a GPGPU-parallel
SPIN model checker. In Proceedings of the 2014 International SPIN
Symposium on Model Checking of Software, pages 87–96. ACM, 2014.

[12] C. Jean-Michel. On-the-fly verification of linear temporal logic. In FM,
pages 253–271. 1999.

[13] B. Jiřı́, B. Petr, B. Luboš, and Č. Milan. Designing fast LTL model
checking algorithms for many-core GPUs. JPDC, 72(9):1083–1097,
2012.

[14] S. Jones. Introduction to dynamic parallelism. In GPU Technology
Conference Presentation S, volume 338, 2012.

[15] A. Lefohn, S. Shubhabrata, K. Joe, S. Robert, and J. Owens. Glift:
Generic, efficient, random-access GPU data structures. TOG, 25(1):60–
99, 2006.

[16] Nvidia Corporation. Cuda c programming guide 6.0. 2014.
[17] P. Rasmus and R. F. Friche. Cuckoo Hashing. Journal of Algorithms,

51(2):122–144, 2004.
[18] E. Stefan and S. Damian. Efficient Explicit-state Model Checking on

General Purpose Graphics Processors. In SPIN, pages 106–123. 2010.
[19] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible

Verification under Fairness. In CAV, pages 709–714, 2009.
[20] J. W.Davidson and J. Sanjay. Memory access coalescing: a technique

for eliminating redundant memory accesses. In ACM SIGPLAN Notices,
volume 29, pages 186–195, 1994.

[21] Z. Wu, Y. Liu, Y. Liang, and J. Sun. GPU Accelerated Dynamic
Counterexample Generation in LTL Model Checking. In ICFEM, pages
413–429, 2014.

109

	GPU accelerated on-the-fly reachability checking
	Citation

	GPU Accelerated On-the-Fly Reachability Checking

