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Knowledge Recombination and Inventor Networks:  

The Asymmetric Effects of Embeddedness on Knowledge Reuse and Impact 

ABSTRACT 

Inventors are triply embedded. They are embedded in a network of knowledge components 

that they can reuse in future inventions. They are embedded in an inventor network, where 

internal embeddedness (the strength of relationships between focal inventors and their 

colleagues upon whose knowledge the team builds) and network centrality influence access 

to information. Finally, they are embedded in the firm, with its specific routines that favor 

external or internal knowledge search, what we call search orientation. Using a sample of 

39,785 semiconductor patents, we study the pattern of knowledge reuse, or the recombination 

of technologically similar components, on invention impact. We propose that reuse of 

internal knowledge affects invention impact in a concave manner, and posit that internal 

embeddedness steepens this relationship while network centrality leads to an inflection point 

shift. We examine whether these effects differ for subsamples of firms with inward- or 

outward-looking search orientation. Counter to expectations, we find that inward-looking 

firms’ optimal pattern of internal knowledge reuse does not differ markedly from outward-

looking firms. We find that inward-looking firms are more susceptible to internal 

embeddedness and that centrality in the collaborative network flattens rather than shifts the 

relationship between reuse and impact. These findings elevate the theoretical discourse of 

embeddedness from the effects of network positions on innovation outcomes, to one where 

similar network positions have asymmetric effects that vary with the firm’s search 

orientation. Our results contribute to an emergent area in innovation research on how inventor 

networks shape the inventive process and its outcomes.   
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The development, acquisition, management, and transfer of knowledge within and 

across firms has occupied scholars for decades (Appleyard, 1996; Grant, 1996; Kogut & 

Zander, 1992; Matusik, 2002; Polanyi, 1966, 2009). In general, knowledge evolves through 

recombinant processes and the exchange of ideas (Johnson, 2011; Nelson & Winter, 1982; 

Schumpeter, 1934), both within and beyond organizational boundaries, by individuals who 

are embedded in knowledge and collaborative networks that support the pooling of resources 

(Guan and Liu, 2016; Uzzi, 1996). During the recombinant process, inventors exploit their 

social networks in order to gather insights, validate information, and challenge their own 

vantage points. We focus on a subset of recombinations, namely those that reuse 

technologically similar components and hypothesize that internal knowledge reuse relates 

curvilinearly (inverted U-shape) to invention impact. We examine how these concave 

relationships are influenced by network characteristics and a firm’s search orientation.  

The relationship between the reuse of technologically similar components and 

invention impact is explained by two counteracting latent mechanisms1. Absorptive capacity 

increases with the degree of reuse because the prior use of components creates knowledge in 

which absorptive capacity is grounded (Zahra & George, 2002, Zou, Ertug & George, 2018). 

At the same time, an increasing degree of reuse reduces the novelty creation potential 

because teams that rehash similar component combinations exhibit less exploration, which 

negatively correlates with novelty and eventually with impact. Both absorptive capacity 

(which influences an invention’s usefulness) and novelty are required to create a patentable 

invention. Thus, we suggest that the concave shape is explained through the multiplicative 

effects of increasing team absorptive capacity and decreasing novelty creation as the degree 

 
1 A latent mechanism can be understood as a theoretical explanation for why the relationship between an 

explanatory variable and a response is the way it is. To properly theorize a curvilinear shape, one is required to 

rely on two latent mechanisms that cannot be measured separately: Ang (2008) for instance theorizes an 

inverted U-shape between competitive intensity and collaboration that is driven by two latent mechanisms, a 

negative opportunity function and a positive motivation function (see also Haans, Pieters & He, 2016) 
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of reuse increases (Gilsing, Nooteboom, Vanhaverbeke, Duysters & van den Oord, 2008; 

Nooteboom, Van Haverbeke, Duysters, Gilsing & Van den Oord, 2007).  

Recombinant processes, however, do not happen in a vacuum. Prior research has 

established that inventors are doubly embedded in knowledge networks and in networks of 

collaborative ties (Guan & Liu, 2016; Wang, Rodan, Fruin & Xu, 2014). We investigate the 

moderating role of two dimensions of the collaborative tie network. Internal embeddedness is 

the quality of being ingrained in an intra-organizational network of social relationships that 

enable knowledge exchange through the routinization and stabilization of linkages among 

organizational members (Gulati, 1998; Uzzi, 1996). This specialized form of embeddedness 

captures the relative ease (in terms of tie strength) with which the focal team has access to 

colleagues with domain knowledge. We posit that as internal knowledge reuse increases, 

internal embeddedness will steepen the concave relation between reuse and impact. Next, we 

look at the moderating effects of a team’s network centrality, which we operationalize 

through the team members’ mean degree centrality in the industry collaboration network. We 

argue that network centrality will enhance a team’s potential for novelty creation thanks to 

increased access to information. This leads us to suggest that the moderating effect of 

network centrality will consist of an inflection point shift of the relationship between internal 

knowledge reuse and invention impact.  

Finally, we add a third layer of embeddedness by recognizing inventor teams are also 

embedded within their own firms. Such firms, even within an industry, can be highly 

heterogeneous, and much-studied differentiators are the firm’s knowledge base and search 

behavior (Hoopes, Madsen & Walker, 2003; March, 1991; Wang, Choi, Wan & Dong, 2016). 

Search orientation is a characteristic of the firm’s knowledge base that reveals the firm’s 

historical tendency to search internally or externally, which could affect the effectiveness 

with which firms reuse knowledge. We split our sample into two separate groups of internally 
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and externally oriented firms and ask whether the hypothesized effects would differ for 

either.  

This research contributes to an emergent area in innovation research that examines the 

interplay of the knowledge network from which teams select and reuse components and the 

collaboration network in which they are embedded (Guan & Liu, 2016; Wang et al., 2014). 

Prior work finds that both networks are decoupled because collaborative patterns of 

researchers differ from co-occurrence patterns of components because an industry’s 

knowledge component combinations at least partially precede the current community of 

active researchers (Wang et al., 2014). By investigating interactions between knowledge 

reuse and collaborative networks at the level of the invention, our study advances our 

understanding of how knowledge and inventor networks are interlinked and jointly influence 

the impact of inventions.  

Our findings shine new light on the ‘paradox of embeddedness’ which suggests that 

embeddedness may facilitate as well as hinder knowledge transfer (Asakawa, Park, Song & 

Kim, 2017; Uzzi, 1997). While studies have shown that different types of embeddedness can 

influence knowledge-related outcomes in diverse ways (e.g. Asakawa et al., 2017), we find 

that the same type of embeddedness (network centrality) can have diverging consequences 

depending on the firm’s search orientation.  Thus, we expand the notion that inventors are 

doubly embedded in networks of knowledge components and knowledge holders (Wang et 

al., 2014), to a third layer of embeddedness in the firm with its idiosyncratic search 

orientation. Given that we expose diverse moderating effects of network centrality on reuse, 

our findings suggest that purely structuralist network arguments are insufficient to explain 

innovation success. This opens avenues for research into the influence of network structure 

on actor behavior.  
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THEORY DEVELOPMENT 

We follow Nelson and Winter (1982) who argued that the inventive process “consists 

to a substantial extent of a recombination of conceptual and physical materials that were 

previously in existence” (p. 130). The ‘conceptual materials’ of interest are knowledge 

components that an inventor team uses as inspiration, or as source material, for a new 

invention. An invention is then the outcome of a process of recombination of a number of 

knowledge components. We define reuse as a subset of recombination, namely the extent to 

which a current invention builds on similar knowledge domains as did its source materials. 

Source materials that refer to domains that are distinct from the focal invention’s domains are 

also used in the recombinant process, for inspiration, but are not reused.  Figure 1 

summarizes our hypotheses and guides our theoretical narrative.  

------------- Insert Figure 1 about here ------------- 

Internal knowledge reuse and invention impact  

Invention impact reflects the number of times a specific invention has been 

recombined in the creation of other inventions. Inventions that inspire many other inventors 

are influential, much like highly cited academic papers (Keijl, Gilsing, Knoben & Duysters, 

2016). We explain the effects of internal knowledge reuse on invention impact through a 

multiplicative combination of two mechanisms with opposing effects, leading to a concave, 

(inverted-U) relationship (Haans, Pieters & He, 2016)2. The two explanatory mechanisms are 

absorptive capacity, which correlates positively with reuse and enables teams to come up 

with useful inventions, and the potential for novelty creation, which correlates negatively 

with reuse and is evidently linked to novelty. Because both absorptive capacity and novelty 

 
2 We explicitly follow the advice of Haans et al (2016) and theorize along the lines of two latent mechanisms 

that jointly form an ∩-shape. While this is still quite uncommon in the management literature and prolongs 

theorizing, it is the recommended approach to substantiate theoretical arguments for curvilinear effects. We 

explain which of the two latent mechanisms (novelty creation or absorptive capacity) we expect to be influenced 

by the moderators. 
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creation are positively correlated to invention impact (Arts & Veugelers, 2014; Cohen & 

Levinthal, 1990; Kaplan & Vakili, 2015), these counterbalancing effects jointly create a 

concave relationship.  

Reusing technological components enhances the usefulness of technologically-related 

knowledge, improving a team’s domain-specific absorptive capacity and spurring innovation 

(Kim, 1998). Knowledge reuse is associated with fewer mistakes and higher quality (Argote 

& Miron-Spektor, 2011; Fleming, 2001), which leads to an improvement in the ability to 

value, assimilate, and apply the reused knowledge (Cohen & Levinthal, 1990). Moreover, 

reusing internal knowledge components builds component competence (Henderson & 

Cockburn, 1994) and is indicative of combinative capabilities that help firms generate 

inventions from existing knowledge (Kogut & Zander, 1992). This suggests that reusing 

internal knowledge drives invention impact via a positive relation with absorptive capacity. 

Three complementary arguments explain why increasing internal knowledge reuse 

also lowers the potential for novelty creation and thus invention impact. At the component 

level, high reuse suggests teams may face idiosyncratic constraints because there may 

objectively be less novelty to explore (Dosi, 1982), due to the creative potential of component 

combinations being largely exhausted (Kim & Kogut, 1996), or because the inventive process 

exhibits little explorative search (March, 1991). At the team level, when a “new project is like 

a prior one” (Skilton & Dooley, 2010: 122), the likelihood that teams start following firm-

specific, task-related mental models rises with reuse. As these mental models constrain what 

a team sees or does (Kim, 1993), they relate negatively to novelty creation and could reduce 

impact. At the knowledge base level, teams that reuse the firm’s existing knowledge 

necessarily start from a smaller base than teams that search the entire industry knowledge 

base. Because the technological search landscape is rugged (Fleming & Sorenson, 2004; 

Levinthal, 1997), starting from a smaller knowledge base (e.g. strong reuse) reduces the 



 

8 
 

 

team’s possible vantage points from which to see new peaks, which will also reduce impact. 

These three arguments imply a negative relationship between reuse and impact through the 

novelty creation mechanism. 

When combining these mechanisms, we see that at low reuse the potential to do 

something novel is great but the capacity to do so is low, resulting in low overall impact. On 

the opposite side, when a team’s invention reuses only technologically similar components, 

absorptive capacity is high but the potential of doing something creative is reduced due to the 

tendency to create incremental innovations in familiar domains, leading to lower average 

impact (Singh & Fleming, 2010; Sørensen & Stuart, 2000). In the middle, when some 

components are reused while other ones are added, the team has the best chance of creating 

high impact. All parts of the curve are likely to exist: teams may apply knowledge 

components to a technologically dissimilar (reuse = 0) or similar (reuse = 1) domain, or 

anything in between. Moreover, firms may differ in their preferred, and even optimal, levels 

of reuse. Reuse should thus generally relate curvilinearly to invention impact.  

Hypothesis 1: Internal knowledge reuse is curvilinearly (∩-shape) related to 

invention impact.  

 

Embeddedness in inventor networks 

The embeddedness perspective recognizes that economic action is contained within a 

social structure that constrains and facilitates action (Gulati, 1998; Uzzi, 1996). Connectivity 

within a collaborative network facilitates knowledge search and transfer, and opens up 

knowledge-related opportunities (Carnabuci & Operti, 2013; Savino, Messeni Petruzzelli & 

Albino, 2017), which explains why embeddedness is also referred to as an ‘opportunity 

structure’ (Uzzi, 1996). We proffer that the effects of knowledge reuse are influenced by the 

inventor network within which inventor teams are embedded. Following Haans et al. (2016), 

we theorize the moderation of a curvilinear effect by explaining how the latent mechanisms 

that jointly shape invention impact (absorptive capacity and novelty creation) are influenced 



 

9 
 

 

by the moderator. 

Internal embeddedness 

 We define internal embeddedness as a team’s collaborative relationships that enable 

specialized knowledge exchange within the boundaries of the firm (Gulati, 1998; Uzzi, 

1996). Like relational embeddedness, internal embeddedness reflects a history of prior 

interactions and the strength of collaborative ties among firm colleagues (Nahapiet & 

Ghoshal, 1998). Inventors can also access internal indirect ties relatively easily, because 

firms facilitate knowledge exchange (Grant, 1996; Zander & Kogut, 1995). Through a 

combination of direct ties that enable resource and information provisioning and indirect ties 

that facilitate knowledge transfers, internal embeddedness can contribute to innovation output 

(e.g. Ahuja, 2000). We argue that internal embeddedness pivots the slope of the absorptive 

capacity effect upward while it pushes the slope of the novelty creation effect downward such 

that the net effect is a steepening of the ∩-shape. 

Internal embeddedness increases absorptive capacity via facilitating the flow of 

relevant knowledge. “Knowledge is grounded in the experience and expertise of individuals” 

(Gulati, 1998; Mabey & Zhao, 2017: 41) and much of the knowledge underpinning 

inventions remains tacit (i.e. not explained by the knowledge components) because 

codification is hard (Cowan, David, & Foray, 2000; Gore & Gore, 1999). Internal 

embeddededness facilitates socialization and enhances the willingness to share information 

(Nonaka, 1994; Reagans & McEvily, 2003), which increases the probability that internally 

embedded teams can access their colleagues’ tacit knowledge. While such knowledge is often 

difficult to articulate, it can be shared through conversation and shared experiences with 

knoweldgeable colleagues (Zack, 1999). Because internally embedded teams have collabored 

with their colleagues before, they already share mututal knowledge which facilitates 

knowledge exchange (Kotha, George & Srikanth, 2013). This suggests that an internally 
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embedded team that is reusing internal knowledge will have the chance and the capacity to 

exchange ideas with knowledgeable colleagues, thereby improving the team’s absorptive 

capacity. 

Aside from its effect on absorptive capacity, internal embeddedness also influences a 

team’s ability to create novelty by reinforcing the mental barriers in the team, which will be 

stronger as reuse increases (Wang et al., 2014; Yayavaram & Ahuja, 2008). Mental models 

are shared through internal embeddedness, shape and steer perception and search (Gore & 

Gore, 1999), and can lead to rigidity and reduced creative capacity (Skilton & Dooley, 2010), 

amongst others by altering search behavior (Knudsen & Srikanth, 2014). This will be 

especially salient when internal knowledge reuse and internal embeddedness are both high as 

the colleagues with which the team is connected are domain experts who are known to 

struggle with novelty (Schillebeeckx, Lin & George, 2019). As team members internalize 

their colleagues’ cognitive barriers, their own creative thinking is hampered. Internal 

embeddedness may then increase knowledge insularity and trap teams “in a negative spiral of 

self-affirming, marginal innovations that become narrowed in scope” rather than generating 

more useful inventions (George, Kotha & Zheng, 2008: 1451). Internal embeddedness will 

thus pivot the novelty creation mechanism downward. Combined with the upward pivot for 

absorptive capacity, the expected moderation effect is then a steepening of the concave 

relationship between internal knowledge reuse and invention impact. 

Hypothesis 2a: Internal knowledge reuse’s curvilinear (∩-shape) relationship with 

invention impact will be steepened as internal embeddedness increases. 

 

Network centrality 

We make a related argument for the moderating effect on a team’s centrality in a 

network of collaborative ties. Network centrality boosts a team’s potential for novelty 

creation by enabling access to people with complementary domains of expertise that can be 

useful in the team’s ongoing recombinant process. Centrality in external networks or in the 
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inter-unit network is known to positively influence invention-related outcomes (Tsai, 2001) 

because social network connectivity improves the quality of ideas (Björk & Magnusson, 

2009). Being central is likely to be associated with having boundary-spanning ties that could 

serve as diverse information sources and this will enhance the team’s potential for novelty 

creation. It is possible that this effect would strengthen as reuse increases, simply because the 

central teams can reap larger benefits from their network as they are reusing internal 

knowledge and look outside for creative ideas. If this holds, we would expect steepening. 

However, it is perhaps more likely that the contribution network centrality makes to novelty 

creation is not contingent on whether the team is reusing internal knowledge or recombining 

other knowledge. This would imply a mere upward shift of the novelty creation mechanism 

which is associated with a shift of the concave curve’s inflection point. We deem the latter 

more plausible, therefore, we propose:    

Hypothesis 2b: The inflection point of internal knowledge reuse’s curvilinear (∩-

shape) relationship with invention impact will move to the right as network centrality 

increases. 

Search Orientation 

The knowledge base of the firm, or “the set of information inputs, knowledge, and 

capabilities that inventors draw on when looking for innovative solutions” (Dosi, 1988: 1126) 

exposes a firm’s search orientation. A highly specific knowledge base exemplifies strong 

local search whereas a broad knowledge base indicates more distant search tendencies. By 

looking at what Wang and Chen (2010: 146) term “backward-based firm specificity,” a firm’s 

search orientation reveals whether it has relied more or less on its internally developed 

knowledge than its industry peers. Given the importance of search in the inventive process, 

we investigate whether the processes, routines, and practices in place in a firm (to search 

chiefly inward or outward) could alter the relationships established above.  

To provide some insight into this question, we revisit our three prior hypotheses 

through the lens of a firm’s search orientation. Because of experiential learning’s positive 
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effect on innovation (Argote & Miron-Spektor, 2011) and firms’ tendencies to develop and 

focus on core competences (Prahalad & Hamel, 1990), we expect that firms will strategically 

play to their idiosyncratic competences. If practice indeed makes perfect, inward-looking 

firms should be better at reusing internal knowledge than outward-looking firms, who are 

more used to relying on external knowledge. We would anticipate a higher optimum 

(inflection point) for inward-looking firms than for outward-looking firms: 

Hypothesis 3: Ceteris paribus, teams in inward-looking firms will exhibit a higher 

level of optimum internal knowledge reuse than teams in outward-looking firms. 

 

When investigating the moderation effect of internal embeddedness separately in 

inward-and outward-looking organizations, we also anticipate a difference. Inward-looking 

firms strongly support the interactions among their inventors in order to foster future 

collaborations and discoveries. In comparison to outward-looking firms, teams in inward-

looking firms are more likely to work on inventions that build on their colleagues’ prior 

inventions so that the same level of internal embeddedness is more useful, simply because the 

quality of connections between inventors who tend to rely on their own firm’s knowledge 

base is likely to be better. These closer interactions will boost both absorptive capacity as 

well as exacerbate the negative effect on novelty creation, because when it comes to novelty 

creation, teams in inward-looking firms can be thought of as being embedded in a non-benign 

environment (MacAulay, Steen & Kastelle, 2017) that worsens the problems with rigid 

mental models. Therefore, we anticipate that the moderation effect of internal embeddedness 

will be stronger for inward-looking firms than for outward-looking firms.  

Hypothesis 4a: Inward-looking firms are more sensitive to the effects of internal 

embeddedness than outward-looking firms. 

 

Finally, we take a closer look at how search orientation may influence the moderation 

effect of network centrality. Hypothesis 2b abides by the structuralist perspective on 

networks, which suggests that particular network constellations have positive or negative 
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consequences. While there may be disagreements about which constellations are more 

conducive to innovation-related outcomes (Burt, 2004; Coleman, 1988), the structuralist 

perspective leaves limited room for contingency arguments. Although Coleman (1988) 

recognized that any type of social capital could be at once useful for certain actions but 

harmful for other actions, he never said that structuralist network characteristics could be at 

once beneficial for certain actors, while being harmful to others. The dominant belief is thus 

that “social capital increases the efficiency of action” (Nahapiet & Ghoshal, 1998: 245).  

Yet, recent findings have started to question this non-contingent view on structural 

network effects. Guan, Zhang and Yan (2015) for instance found that the relationship 

between the intercity collaboration network structure and innovation is moderated by the 

structure of inter-country collaboration networks. Schillebeeckx, George, and Lin (2019) 

found that expert teams that occupy structural holes create less impactful inventions, thereby 

providing some counterweight to the established structuralist perspective on the benefits of 

structural holes (Burt, 1994; Guan & Liu, 2016; Paruchuri & Awate, 2017, Wang et al., 

2014). Therefore, we explore if firm characteristics can alter how teams benefit from 

structurally similar network positions.  

We theorize that for inward-looking firms, network centrality will not initiate the 

previously hypothesized inflection point shift but may instead flatten the concave curve. For 

hypothesis 2b, we relied strictly on the novelty creation mechanism to explain the inflection 

point shift. When considering inward-looking firms, we anticipate effects on both absorptive 

capacity as well as novelty creation. Regarding absorptive capacity, being central in an 

inward-looking firm is likely to be associated with a higher incidence of attention diffusion. 

High status individuals are frequently called upon by colleagues and thus more likely to be 

distracted, are more likely to be complacent, and often need to help others, reducing cognitive 

bandwidth, which eventually could weigh on their own performance (Bothner, Kim & Smith, 
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2012). We anticipate that this attention diffusion effect is weaker in outward-looking firms, 

because colleagues are less likely to make significant demands on their central colleagues in 

such environments. These cognitive influences are associated with a downward intercept shift 

in absorptive capacity’s ability to drive impact.  

For novelty creation, individuals in central positions are likely to be experts on the 

firm’s internal knowledge, which may decrease their tendency to explore new ideas, simply 

because their organizational standing has been acquired through the exploitation of internal 

knowledge (Wang et al., 2014). This is likely to be more salient in inward-looking firms that 

have historically developed more exploitative routines and practices than their outward-

looking counterparts. Central inventors in inward-looking firms are likely to be well-

connected with their colleagues. This strongly embeds them in the firm’s ways of thinking 

and mental maps, which lower their tendency to think differently.  

Central actors in outward-looking firms are more likely to have obtained their position 

from being more broadly connected in the industry in general. Centrality in an inward-

looking firm may also resemble an echo chamber in which the central members’ ideas are not 

challenged. Specifically, it is likely that the central inventor is connected to people who have 

an incentive to filter out information they think would not appeal to the central inventor. 

Thus, while the network structure of a central inventor team in an inward-and an outward-

looking firm may in theory be identical, we propose that the quality of the nodes (types of 

information they can share) and how they process and transmit information (filtering) are 

likely to be distinct. These three reasons are all linked to a decrease in novelty creation, such 

that the novelty creation mechanism should move downward. Together, this leads us to our 

final hypothesis: 

Hypothesis 4b: For inward-looking firms, network centrality will flatten the concave 

relationship between internal knowledge reuse and invention impact. 
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DATA AND METHODS 

We investigate our hypotheses using patent data from the US semiconductor industry. 

Because this industry relies heavily on R&D and is known to have high invention and 

patenting rates since the 1980s, this industry is an appropriate context to test our hypotheses 

(Alcácer & Zhao, 2012; Mathews & Cho, 1999; Stuart, 2000). We limit ourselves to a single 

industry because vicarious learning through embeddedness differs across industries 

(Srinivasan, Haunschild & Grewal., 2007) and we focus only on US firms to control for 

institutional variation in patenting behavior (Cohen, Goto, Nagata, Nelson & Walsh, 2002). 

While using patent data has known limitations, patent documents do provide “a reasonably 

complete description of the invention” (Griliches, 1998: 291) and offer the following 

benefits: (1)  independent categorization into a technology structure called the International 

Patent Classification (IPC) system, (2) explicit incorporation of knowledge upon which the 

previous invention builds (prior art citations), and (3) identification of the focal inventors 

and, through prior art citations, the knowledge holders upon whose ideas they relied. These 

three characteristics of patent data make our hypotheses testable.  

Our initial dataset is built by merging the list of US semiconductor firms provided by 

Hall and Ziedonis (2001) with all US firms with SIC code = 3674 (i.e. semiconductor 

industry) in Compustat, and add all firms listed in the ranking of semiconductor firms 

published by iSuppli Corporation. In doing so, we developed a list of 171 semiconductor 

firms with a Compustat record (Alnuaimi & George, 2016). Then, we compare our 171 firms 

to the 247,309 assignees that were granted USPTO patents between 1975 and 2008. Because 

of the variation in the naming of patent assignees (see Kogan, Papanikolaou, Seru & 

Stoffman, 2012), we improve the matching of parent firm to assignee by: (1) using the 

numerical identifiers provided by NBER patent projects, and (2) using the Directory of 

American Firms Operating in Foreign Countries to isolate subsidiaries (Alnuaimi & George, 
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2016). Once we completed this matching exercise, we developed our sample of inventions. 

Our focal sample consists of inventions made by semiconductor firms between 2000 

and 2004. This window was characterized by significant inventive activity in the 

semiconductor industry and its relative short timespan has the advantage of keeping 

variations in the patenting process, which could affect our invention impact measure, small 

(e.g. Hall & Ziedonis, 2001). For each of the 39,785 firm patents in our five-year window, we 

collect the cited prior art, its IPC classifications, and the names and affiliations of the cited 

inventors. This allows us to create detailed knowledge component and collaboration 

networks. Our component knowledge network connects the focal patent’s IPC classifications 

to the classifications of the prior art, and the inventor network allows us to connect citing 

inventors (the focal invention team) to the cited inventors.  

Response 

Invention Impact. We extract a sliding ten-year window of forward citations from 

Google Patents. This gives every patent the same length of time to be cited, increasing 

comparability. Many studies have shown that forward citations are related to economic 

importance of inventions, patent quality, as well as patent value (Agarwal, Ganco & 

Ziedonis, 2009; Albert, Avery, Narin & McAllister, 1991; Harhoff, Narin, Scherer & Vopel, 

1999). For robustness, we add a measure for a ten-year window excluding self-citations.  

Predictors 

Internal Knowledge Reuse is the redeployment of technologically similar components 

in the process of invention. Inventing teams reuse internal knowledge which is proxied by 

prior art citations. Besides firm self-citations, we also consider team member self-citations as 

internal knowledge, even if a team member developed those inventions when she was 

working for a different company. Like Gruber, Harhoff and Hoisl (2013), we understand the 

technological classifications of the cited prior art as proxies for knowledge components. We 
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believe these classifications serve as proxies for the underlying knowledge domains with 

which inventors are more or less familiar. Although we know that some prior art citations are 

added by USPTO officials (Giuri et al., 2007), citations and their technological classifications 

remain useful to demarcate the knowledge upon which new inventions build, and this remains 

true even if the focal firm did not add the prior art citations itselfi.  

We look at reuse as a continuum between 0 and 100% with 0% (100%) reflecting an 

invention with no (perfect) overlap between the classifications of its cited prior art and the 

focal patent’s classifications. Reuse thus increases as similarity between the classifications to 

which prior art is assigned and the classifications to which the focal patent is assigned goes 

up. This allows us to differentiate recombination (i.e. all the knowledge components that are 

inputs (i.e. cited) in the invention) from reuse (only the technological components that 

overlap with the components of the focal invention). To determine the similarity between the 

focal patent and a backward citation, we create binary vectors of length 129 (total number of 

classes in our sample) for each patent and each prior art citation. We then calculate the cosine 

similarity between the focal patent’s ‘class vector’ and each prior art citation, after which we 

determine averages for internal knowledge reuse. The cosine similarity is a proximity 

measure in vector space and is preferred over the alternative Jaccard index from the 

perspective of graph theory (Leydesdorff, Kogler & Yan, 2017). Internal knowledge reuse is 

then the average of the cosine similarity of the team members’ self-citations and the cosine 

similarity of the team members’ current firm citations.  

While every backward citation provides evidence of recombination and influence, our 

operationalization for reuse is more granular. First, by linking the focal patent’s 

classifications to the classifications of the cited art, we create a proxy for the salience of a 

prior art citation in the recombination process: IPC classes are discretely attributed to a patent 

and it is therefore impossible to exactly know to what degree the focal team indeed relied on 
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the knowledge captured in a specific patent document. Secondly, we see the technological 

landscape as rugged with unknown peaks and troughs (Baumann, Schmidt & Stieglitz, 2019; 

Levinthal, 1997). In such a landscape, patents demarcate areas of legal exclusion, granted to 

the assignee. Under the assumption that the IPC categorization schema is meaningful and 

useful, in that patent officers categorize related inventions under the same class or subclass, a 

single IPC class (e.g. A01) represents a coherent area in the technological landscape. Then, 

prior art assigned to the same technology class(es) as a focal patent is more likely to closely 

relate to the focal patent (i.e. it is reused). By relying on prior art that is categorized in the 

same IPC classes, the focal patent is essentially more constrained by the prior art because its 

‘area of exclusion’ is closer to (and thus more strongly limited by) a patent with high 

technological similarity than by a patent with weak technological similarity. Our 

operationalization of reuse excludes those prior art citations that are sought and included but 

are assigned to entirely different IPC classes.   

 Internal embeddedness. Knowledge exchange is easier when inventors are proximate 

so that prior connections between focal inventors and the inventors of cited prior art serve as 

meaningful proxies for embeddedness. To measure our specialized form of internal 

embeddedness, we look at the direct and indirect ties between the focal team members and 

the members of all internal prior art citations, excluding team self-citations (Balland , Belso-

Martinez & Morrison, 2016). We weigh these collaborative ties so that each tie indicates how 

many patents two inventors collaborated on before the application date of the focal patent. 

This is consistent with Uzzi’s (1996) finding that embedded ties develop primarily from 

existing personal relations. It also acknowledges the notion that “the existence of common 

third-party ties around a focal bridge substantially changes the nature of the bridging 

relationship through which knowledge flows”, so that the sharing of a third party tie is more 

likely to lead to successful innovation (Tortoriello & Krackhardt, 2010: 168). While much 
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network research differentiates between direct and indirect ties, we subsume them in one 

measure because in our invention-specific micro-networks, their correlation is 0.87.  

----------- Insert figure 2 about here ----------- 

Figure 2 shows an example. Inventors T and D are directly connected through two 

prior collaborations, while R and A are indirectly connected through M and L. Let internal 

embeddedness be represented by Em (pf). We define a patent pair index for each <pf , pi> 

where pi represents a prior art citation from within the firm (without overlapping inventors). 

Let Tf and Ti be sets of inventor team members of the focal and a cited patent respectively. 

Em1 (pf, pi) captures direct prior collaborators across the teams, while Em2 (pf, pi) considers 

indirect connections among inventors. Em (pf) is defined as follows: 

𝐸𝑚 (𝑝𝑓) = 2/3 ∗
∑ 𝐸𝑚1(𝑝𝑓 , 𝑝𝑖)

|𝑁𝐸|
𝑖=1

|𝑁𝐸|
+ 1/3 ∗

∑ 𝐸𝑚2(𝑝𝑓 , 𝑝𝑖)
|𝑁𝐸|
𝑖=1

|𝑁𝐸|
 

To determine the values for Em1 (pf, pi) and Em2 (pf, pi) we need to define inventor 

pair variables Em1 (ta, tb) and Em2 (ta, tb) for each pair <ta, tb> where ta is from the focal team 

Tf and tb is from a cited team Ti. The patent pair indexes Em1 (pf, pi) and Em2 (pf, pi) are 

calculated as averages over all inventor pair indexes. To calculate inventor pair indexes Em1 

(ta, tb) and Em2 (ta, tb), we take into account both the number of paths connecting ta and tb and 

the strength of those paths. Em1 (ta, tb) is calculated as the number of patents ta and tb worked 

on together before the application date of the focal patent. Em2 (ta, tb) is calculated as follows: 

𝐸𝑚2 (𝑡𝑎,  𝑡𝑏) =  ∑ 0.5 ∗ (𝑥1𝑖 + 𝑥2𝑖) 
𝑀

𝑖=1
 

In this formula, M is the number of indirect paths between inventors ta and tb, x1 and 

x2 are the weights (i.e., number of patents) of 1st edge and 2nd edge of each path. Figure 3 

shows an example inventor collaboration network for a focal patent and a single prior art 

citation. Em2 (R, A) is 0.5*(5+3) + 0.5*(10+2) = 10, the first part is for path “R-L-A” and the 

second part is for path “R-M-A”. Em2 (S, D) is 0.5*4+0.5*3=3.5, based on path “S-O-D”. 
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Em1 (pf, pi) is 2/15 = 0.133, where 2 is the summation of weights of direct paths connecting 

any inventor pair of focal and cited patent, and 15 is the number of possible inventor pairs (3 

in the focal team times 5 in the cited team). Finally, Em (pf, pi) is then 2/3 * 2/15 + 1/3 * 

(10+3.5)/15 = 4 + 13.5/45 = 0.3. We winsorized this variable at mean plus three standard 

deviations to control excessive skewness. 

Network centrality is operationalized as the team members’ average degree centrality 

in the annually expanding 1990 – t-1 collaboration network 𝐺𝑆 =< 𝑉𝑆, 𝐸𝑆 > where  𝑉𝑆 is a 

node set (each node represents an inventor) and 𝐸𝑆 is an edge set (formed when two inventors 

collaborated on an invention). Degree centrality is a useful measure for a situated knowledge 

construction process (like invention) and defined “as the number of ties incident upon a 

node” or “the number of paths of length one that emanate from a node” (Borgatti, 2005: 62). 

Following Wang et al. (2014) we then operationalize degree centrality of a team as the sum 

of the number of collaborators each team member has, divided by team size. 

Search orientation is operationalized in the following steps. First, we determine for 

each invention in our sample the fraction of firm self-backward citations over the total 

number of prior art citations. Next, we aggregate and average those fractions per firm-year to 

give us an idea of how heavily a firm in any given year relies on self-citations. In the 

following step, we compare the firm-year average to the industry average and define an 

inward-looking firm as a firm that relied more on self-citations in a specific year than the 

industry average and an outward-looking firm in the opposite way. We then create a simple 

dummy for inward- or outward-looking, which facilitates the split sample approach used in 

our analysis. For example, Micron Technologies and Qualcomm are well-known firms that 

are consistently inward-looking in our sample, while Texas Instruments and Intel are 

consistently outward-looking.  
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Controls 

We add controls at the level of the firm, the knowledge network, the team, and the 

patent. First, we create variables for external knowledge reuse in the same way as we created 

internal knowledge reuse and control for both the main and the quadratic effect. At the firm 

level, we control for size (assets), productivity (# patents applied for per year). We also use 

firm fixed effects to control for differences in patenting behavior between firms. In addition 

we control for network measures studied by Guan and Liu (2016) and Wang et al. (2014) 

which are constructed in a way similar to the above description. We determine the structural 

holes’ value and degree centrality of the patent’s knowledge elements in the 1990-1999 

knowledge component network but include only the former to reduce multicollinearity. We 

also add a team’s average degree centrality in the knowledge component co-occurrence 

network. 

At the level of the team, we control for team size (Singh & Fleming, 2010), team 

diversity, team similarity (omitted to reduce collinearity), and team mutual knowledge. We 

use the following steps to determine team diversity: First, we create a binary vector of length 

N with N ≤ Nmax =129 (maximum number of IPC classes) for each team member based on 

their own historical patent portfolio’s subclass assignments. If the team member has patents 

assigned to 1 of the N classes, this vector element will be marked as “1”, otherwise “0”. We 

call the number of classes in which a team has invented before N ≤ Nmax (N = 9 in table 1). 

Next, we calculate how many team members have experience in each subclass Sc and divide 

this number by M which equals the sum of all team members’ experience across all patent 

classes (M = 13 in table 1). We then calculate a Herfindahl-Hirschman Index to capture the 

concentration of knowledge in specific subclasses (HHI = ∑ 𝑠𝑁
𝑖=1 i

2 and s = vertical sum per 

subclass divided by N). Our eventual measure is 1 – HHI so that a higher value indicates that 

the team’s knowledge is more diversified while a lower value indicates that the team’s 
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knowledge is more concentrated in specific subclasses.  

Team Diversity = 1 - HHI 

For clarity, consider the table below which provides a simple example of this measure 

for a team of three inventors that have a joint portfolio breadth M = 9. Inventor 1 (inv1) has 

one prior patent that is assigned to subclasses 1 and 3. Inventor 2 (inv2) has 10 prior patents 

that are assigned to all subclasses except subclass 6. Finally the third team member (inv3) has 

four prior patents and all are assigned to subclasses 1, 6 and 8. Note that we exclude the 

number of different patents each inventor has in a particular subclass and merely focus on the 

diversity. HHI is determined by 6*(1/13)2 + 2*(2/13)2 + 1*(1/13)2 = 0.136 

--------- Insert Table 1 about here --------- 

Team similarity is measured using the same inventor vectors as described above. 

Now, we average the pairwise cosine similarity value for each unique member pair in the 

team. Thus, for each team consisting of K members whose individual portfolio breadth is 

characterized by a vector Vk (k: 1 → K) of length M, the averaged cosine similarity measure 

is captured by the following equation derived from the Euclidian dot product formula applied 

to every unique pair in a team with K members divided by the number of unique pairs: 

Team Similarity = 
∑

𝑉𝑘.𝑉𝑙

||𝑉𝑘||||𝑉𝑙||

𝑘=𝐾,𝑙=𝐾−1
𝑘=2,𝑙=1

𝐾!/(2!∗(𝐾−2)!
  

Team mutual knowledge is measured by the member’s collaboration strength in a 

collaboration network. The measurement is similar to embeddedness but here we only look at 

the focal team, its prior direct ties to one another and the indirect prior ties that broker the 

relationships of the team. At the patent level, we control for number of claims, self and non-

self-prior art citations, breadth (# subclasses to which the patent is assigned), and time lag 

between application and grant date (Fleming, 2001). We add dummies for application and 

grant year and technological category effects that could influence the incidence of forward 



 

23 
 

 

citations (Marco, 2007).  

RESULTS 

Our response is a count variable, which calls for a non-linear regression technique. 

We analyze our data in Stata using Poisson regression, which is preferred because it is more 

robust than the negative binomial (e.g. clustering of standard errors), and because the 

overdispersion of our dependent variable is moderate (µ = 9.84, σ = 14.49). In choosing to 

conduct within-firm fixed effect or random effects regressions, we need to control for firm-

specific aspects that could influence knowledge transfer (Levin & Cross, 2004). Because 

some of our explanatory variables are possibly correlated with firm effects, a random effect 

regression would be inconsistent. The Hausman (1978) test confirmed this suspicion hence 

we deploy fixed effects (note that running negative binomial regressions would disable the 

use of real fixed effects). To check for collinearity, we ran an OLS regression without 

indicator variables, quadratic terms, and interactions as they artificially inflate the variance 

inflation factors (Allison, 2012). We removed a few controls (knowledge stock, number of 

employees, team similarity) with VIF above 4 (Wooldridge, 2014).  Including those variables 

in the regression did not affect our results. Table 2 presents descriptive statistics, including 

quadratic terms and interactions (Haans et al., 2016).  

-------- Insert Table 2 about here -------- 

Hypothesis 1 suggests a concave, inverted U-shaped, relationship between knowledge 

reuse and invention impact. Model 1 in Table 3 suggests this cannot be rejected, as all 

coefficients are significant in the expected directions. To verify the ∩-shape, the simplest 

way is to rerun the models as OLS regression (with the natural logarithm of the number of 

forward citations + 1 as the response) and then run a U-test and a Fieller test (Haans et al., 
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2016; Lind & Mehlum, 2010)3. Running this test supports the hypothesized inverted U-shape. 

---------- Insert Table 3 about here ---------- 

Hypothesis 2a proposes that the curvilinear relationship between knowledge reuse and 

invention impact is moderated by internal embeddedness as depicted in figure 2c. Model 2 

depicts the results for the entire sample and the significant interactions between internal 

knowledge reuse and internal embeddedness appear to be supportive of a steepening. Model 2 

also shows significant interactions with network centrality, suggesting support for hypothesis 

2b, but it is not possible to confirm hypotheses from only the regression table due to the 

model’s non-linearity. We therefore implement the following procedure that is largely 

described in Haans et al. (2016). Our regression is a Poisson model with two distinct 

moderators of a quadratic predictor and this creates specific complexities. Let β0 represent all 

the controls, X is internal knowledge reuse, Y is the number of forward citations and K and Z 

are the two moderators. The model can then be written as: 

Y = exp(β0 + β1X + β2X
2 + β3KX + β4KX2 + β5K + β6ZX + β7ZX2 + β8Z) 

 

 To assess what actually happens with the concave relationship between internal 

knowledge reuse and invention impact, we need to determine the entire curve at different 

values of K and Z and look at the resulting effects. In addition, we need to determine the 

inflection point to verify whether or not it shifts as predicted in hypothesis 2a. The inflection 

Xtp is derived by setting the derivative of Y equal to zero (dY/dX = 0). The resulting formula 

clearly shows that the inflection point (and consequentially the entire curve) depends on both 

K and Z.  

Xtp =  
−(β1 +  β3K +  β6Z)

2 ∗ (β2 + β4K +  β7Z)
 

Keeping all controls fixed, we determine the shape of the curve for four permutations 

 
3 ssc install utest ; xtreg fwd X a a2 b b2 c c2, fe ; utest a a2, fieller  
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of both moderators at mean values and mean plus 1 standard deviation. For each permutation 

we calculate the inflection point and then graph the entire figure by allowing X to move from 

0% reuse to 100% reuse. Figure 3 therefore depicts four curves. Let’s start by looking at the 

black lines. The dotted black line gives the base scenario of both internal embeddedness (K) 

and network centrality (Z) at mean value. The solid black line shows what happens when K 

increases. Consistent with hypothesis 2a, an increase internal embeddedness will steepen the 

concave relationships between internal knowledge reuse and invention impact. We can derive 

the same insight from the grey lines. For high network centrality, an increase in internal 

embeddedness (solid grey line) leads to a steepening of the curve. 

For hypothesis 2b, the picture is less clear. We need to look at either the solid or the 

dotted lines to investigate the effect of a change in network centrality. Looking at the solid 

lines means we start from high internal embeddedness. The grey solid line is below the black 

one, suggesting a flattening of the curve. Calculations show that the inflection points for both 

solid lines are virtually identical (0.50 and 0.51), suggesting a negligible shift in the inflection 

point. When we look at the dotted lines (for mean internal embeddedness) however, a clearer 

image emerges. Again, there is some flattening but the inflection point now jumps from 0.68 

to 1.47 (beyond the actual values of internal reuse), which is consistent with our hypothesis. 

This suggests we find partial support for hypothesis 2b. The real effect therefore depends on 

the value of internal embeddedness: the inflection point is shifting to the right as predicted 

but the size of that shift is less meaningful for high values of internal embeddedness. 

----------- Insert figure 3 about here ----------- 

Models 3 to 6 compare the results, sampled on search orientation. Hypothesis 3 

suggested that inward-looking firms would be better at internal knowledge reuse (higher 

apex). However, we find that the inflection points for both samples are virtually identical at 

Xtp = 0.48, suggesting that inward-looking firms are not better at reusing internal knowledge 
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than their counterparts. Nonetheless, it is also clear that inward-looking firms have the 

optimum within reach as it is about half a standard deviation away from the mean (0.48 ≈ 

0.31 + ½ *0.35). For outward-looking firms however, the optimum is about 1.44 standard 

deviations away from the mean (0.48 ≈ 0.14 + 1.44 * 0.25). Hypothesis 3 is not supported. 

When comparing models 4 and 6, it appears that inward-looking firms are indeed 

significantly more sensitive to the effects of internal embeddedness than outward-looking 

firms for which the interaction effects are insignificant, while the betas in model 4 are higher 

in absolute value than in model 2. This provides some support for hypothesis 4a but given the 

non-linearity of the model, even non-significant interaction terms are no guarantee of non-

significant effects. To further investigate these results, we follow Haans et al. (2016) and 

determine the slopes at different distances (between 0 and 0.30 in increments of 0.05) from 

the inflection point for each sample. For ease of comparison, we keep network centrality at 

mean value and look at what happens with the slopes (derivatives of the concave relationship) 

as internal embeddedness moves from mean value to a high (mean + 1 SD) value. Figure 4 

shows that for outward-looking firms, an increase in internal embeddedness has virtually no 

effect on the slopes (and thus no steepening effect) while there is a clear steepening effect for 

inward-looking firms (the light grey line is significantly steeper than the dark grey line). This 

supports hypothesis 4a. 

----------- Insert figures 4 and 5 about here ----------- 

Finally, we investigate whether inward-looking firms experience a stronger flattening 

of the reuse – impact relationship when their teams are highly central. In our discussion of 

hypothesis 2b, we found that for all firms some flattening was indeed visible while the 

inflection point shifted to the right as hypothesized. Using the same visualization approach, 

this time holding internal embeddedness at its mean, we check the slopes at mean and high 

values of network centrality in both samples. Figure 5 shows the results and shows 
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significantly flatter slopes for inward-looking firms (the solid lines) compared to the outward-

looking firms. An increase in network centrality even leads to the slopes becoming negative, 

from which we can infer at least significant flattening and possibly even shape-flip, 

something we did not expect. However, the flattening effect of a one standard deviation 

increase in centrality seems rather similar based on the graph such that we cannot rule out 

that hypothesis 4b may be rejected.  

We conduct a couple of additional tests to find more clarity regarding the likelihood 

of asymmetric effects in the two subsamples. A coarse approach can be based on the nested 

model comparison approach proposed by Clogg, Petkova and Haritou (1995). These authors 

propose to create a Z-value for different betas for nested models as follows: 

𝑍 =  
𝛽1𝑎 −  𝛽1𝑏

𝑠𝑞𝑟𝑡(𝑆𝐸𝛽1𝑎2 + 𝑆𝐸𝛽1𝑏2)
 

In the above formula, β1a and SEβ1a represent the coefficient and standard error of the 

full model whereas β1b and SEβ1b represent the coefficients of the subsample. If our 

hypotheses are correct, we should observe differences in the Z-values. Of course, we cannot 

directly compare the outward- and inward-looking firms with this approach because they are 

not nested, so we can only compare each subsample with the entire sample. Using this 

approach reveals significant differences in the Z-values for the main effect, the interaction 

effects with internal embeddedness, and the independent effect of network centrality, but not 

for the interaction effect between internal knowledge reuse and network centrality, suggesting 

the latter moderation may not be significantly different.  

A second approach is to run the full regression but differentiate all moderation effects 

for inward- and outward-looking firms so that we can find separate coefficients to establish 

differential impact. These results are consistent with our findings and available upon request. 

Finally, a third approach is to run the full model and add all relevant interaction effects for 

either inward- or outward looking firms, so that the betas for these effect represent a 
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difference between both types of firms. Using this approach. We can then run a Likelihood 

ratio test (although this means we cannot cluster the error terms) and a Wald test on the 

coefficients of the added interaction effects, both of which are highly significant. These 

findings add support for our hypotheses, although the complexity of hypothesizing between 

samples makes it impossible to simply use a p-value to determine statistical difference – a 

practice that is coming under increasing scrutiny (Amrhein, Greenland, McShane, 2019; 

Wasserstein, Schirm, & Lazar, 2019).  

Robustness and Limitations 

To ensure that our results are not spurious or driven by how we split the sample we 

conducted robustness checks. First, we ran the analysis again but determined search 

orientation this time based on the absolute number of self-citations rather than the fraction of 

firm self-citations. While this reduced the number of inward-looking observations to 10,318, 

the results held. We also excluded from the sample all the firms that were not consistently 

inward- or outward-looking over the focal five-year period. The results did not change. 

Results also remained consistent when standard-normalizing network centrality for each 

subset of inward- or outward-looking firms. We also ran OLS regression on the log-

transformed number of forward citations, and ran two negative binomial regressions in Stata, 

one with quasi fixed effects (xtnbreg, fe) and one with robust standard errors (nbreg i.firm, 

robust) all of which gave substantively similar results (available from the authors). 

We wanted to verify whether our findings would hold if we would exclude self-

citations from the impact variable. Given our interest in inward-looking firms, it is relevant to 

find out whether these inward-looking firms also achieve outside impact. With the exception 

of the interaction effect between internal knowledge reuse and network centrality, all results 

are consistent when excluding self-citations from the impact variable. As expected, for 

outward-looking firms, the results remain the same. Finally, there are some endogeneity 
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concerns. In particular, it is possible that embeddedness drives reuse, as teams with strong 

connections to knowledgeable colleagues may be more likely to build on the prior inventions 

of those colleagues. To control for this, we regressed internal knowledge reuse on a variety of 

predictors that capture selection variables including team similarity, team size, the number of 

team, firm, and external backward citations, the average number of inventors on those team, 

firm, and external prior art citations as well as time, technology class, and search orientation 

dummies (results available upon request). We also regress the quadratic term for internal 

knowledge reuse on the same predictors. This is required because the linear projection of the 

square is not the same as the square of the linear projection (Haans et al., 2016). The residuals 

of these two regressions capture variance in internal knowledge reuse that is not driven by 

selection. Using these residuals in our regression instead of the original variable gives us 

consistent results with the ones in models 2, 4 and 6 in table 3. 

Finally, we attempt an instrumental variable (IV) approach. We use team mutual 

knowledge, team diversity (both insignificant in model 2) as well as the average size of cited 

inventor teams in which team members or firm colleagues were involved as instruments for 

both internal knowledge reuse terms, after which the instrumented variables are replaced. In 

this GMM regression, the F-tests are above the critical value of 12, the Hansen-J statistic is 

rejected suggesting the instruments are coherent and the curvilinear effect of internal 

knowledge recombination is found with β1 = .73 (p ≤ 0.05) and β2 = -.73 (p ≤ 0.10). This 

provides support that endogeneity may not be detrimental in our analysis (results available 

upon request). While these are imperfect solutions to endogeneity, they provide reasonable 

support for the validity of our findings.   

DISCUSSION AND IMPLICATIONS 

This study expands our understanding of how inventor teams recombine and reuse 

knowledge components to create impactful inventions and how this process is influenced by 
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the team’s embeddedness in collaboration networks and the firm.  

Doubly Embedded: Knowledge and Inventor Networks 

Like Wang and colleagues (2014: 508), our study highlights the multilevel nature of 

inventors’ embeddedness in networks of both social relationships (internal embeddedness and 

network centrality) and knowledge components (reuse). To this, we add a third form of 

embeddedness by recognizing that teams are deeply embedded within their own firms, and 

that firms with opposing search orientations (inward- or outward-looking) can derive 

divergent benefits from their position in the inventor network. By using a longitudinal, non-

dichotomous design and by focusing on the complementarities among the networks rather 

than their decoupled nature, we extend previous work by Wang and colleagues and posit that 

knowledge component reuse drives invention impact in an inverse U-shaped way.  

We theorize the ∩-shape as a multiplicative combination of two latent mechanisms, 

thereby following best practices to ground the observed quadratic effects (Haans et al., 2016). 

We proffer that increasing knowledge reuse generally is associated with higher absorptive 

capacity because reuse implies components have been tried and tested before which reduces 

mistakes while it also enhances the usefulness of technologically related knowledge (Argote 

& Miron-Spektor, 2011; Kim, 1998). Reusing internal knowledge moreover evidences 

component competence and combinative capabilities (Henderson & Cockburn, 1994; Kogut 

& Zander, 1992). These arguments support a positive relationship between reuse and 

absorptive capacity leading to higher impact. 

Yet, increasing internal knowledge reuse is also associated with lower novelty 

creation as there may be objectively less novelty to explore or because high reuse suggests a 

tendency to favor marginal over radical improvements (Dosi, 1982; March, 1991). Reusing 

such knowledge can also be hampered by rigid mental models and the relatively small 

knowledge base of the firm, which limits the team’s vantage points in the technological 
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landscape (Kim, 1993; Fleming & Sorenson, 2004). These arguments support a negative 

relationship between reuse and novelty creation, leading to lower impact. Combined, these 

mechanisms result in an inverted U-shaped effect. While theorizing in terms of latent 

mechanisms takes up more journal space, we nevertheless do so because it enables better 

predictions and facilitates falsification at the level of the mechanism. 

While we did not form explicit hypotheses about external knowledge reuse, in 

unreported regressions we found that most of our results hold there as well. It is particularly 

interesting that inward- and outward-looking groups reuse on average the same amount of 

external knowledge and that the mean degree of actual external knowledge reuse is almost 

perfectly on the apex. This suggests both groups are close to optimal in their external 

knowledge reuse but both fall short when it comes to internal knowledge reuse.  

Next, we showed that access to colleagues who are domain experts, a specialized 

form of internal embeddedness, generally improves the team’s capacity to create high impact 

inventions, which we attribute to improved information flow and content, which strengthen 

the team’s absorptive capacity. The effect of internal embeddedness on novelty creation is 

more complex. While internal embeddedness may give access to recent knowledge (Katila, 

2002), it also exacerbates the mental barriers that reduce explorative search and increase 

insularity (George et al., 2008; Knudsen & Srikanth, 2014). The net result is a steepening of 

the concave relationship between reuse and invention impact. We found partial evidence only 

for our hypothesis that network centrality will shift the inflection point of the concave reuse-

impact relationship to the right and explained that this is a consequence of the non-

independence of the two moderators in a non-linear model. By demonstrating that there are 

contingencies between the two moderators that only become clear through an in-depth 

analysis of the inflection point, we contribute to more granular testing as well as theory 
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formation. 

Triply Embedded: Inward and Outward-Looking Firms 

Perhaps our most interesting insights are rooted in our separation of inward- and 

outward-looking firms. A key contribution is that findings for the average firm (by 

investigating the entire sample) can obfuscate fundamental differences in how teams create 

successful inventions. First, despite long-standing beliefs that firms favor local search, our 

data reveal that the majority of inventions does not rely sufficiently on internal knowledge. 

Although we find, to our surprise, that the optimum level of reuse for inward-looking firms is 

identical to that of outward-looking firms, we do find evidence that the two types of firms 

have asymmetric benefits to knowledge reuse when considering team collaborative ties. 

Inward-looking firms are very sensitive to internal embeddedness while outward-

looking firms are not. This implies that the capacity to create high impact inventions of teams 

in inward-looking firms is strongly influenced by the team’s connections with colleagues who 

are domain experts, while the same does not hold for firms with an outward-looking search 

orientation. For inward-looking firms, our empirical results could even imply that if internal 

knowledge reuse becomes high, R&D managers may benefit from reducing communication 

between the team and expert colleagues, to diminish the downsides of transferring mental 

maps and imposing search limits (i.e. the dark side of embeddedness) that may be 

experienced by engaging with knowledgeable colleagues. Such effect is absent for outward-

looking firms.  

Regarding centrality in the collaborative network the findings are less clear and 

require further study. The first surprising finding is already that overall in this sample, 

centrality does not seem to have strong positive effects on invention impact which goes 

against much prior work. More specifically, teams in inward-looking firms actually become 

less successful if their centrality increases. We postulate that teams can take up structurally 
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equivalent positions in a collaborative network but that the quality and diversity of the nodes 

to whom they are connected differs. This provides a counterweight to structuralist network 

perspectives that argue structural network characteristics in and of themselves explain 

invention outcomes. On the contrary, we find that the same network position in terms of 

degree centrality may have diverging effects on the success of knowledge reuse, depending 

on the firm’s historical search orientation. Our explanation is that the same structural 

characteristics may imply either a distracting echo chamber or a rich pool of diverse and 

useful ideas, depending on the search orientation of the firm in which the node is embedded. 

Future work on the idiosyncratic properties of nodes (inventors / teams), firms (beyond 

search orientation), their connections and structural network characteristics (beyond 

centrality) could shine further light on the results here.   

Patterns of Knowledge Reuse 

A puzzling implication of our study is that all teams, even those in inward-looking 

firms, do not reuse sufficient internal knowledge while they do use sufficient external 

knowledge. Empirically, we established an ∩-shaped relationship that peaks at a cosine 

similarity value of about 0.48 (for external knowledge reuse), while mean internal knowledge 

reuse is around 0.20 (0.31 for inward-looking firms and 0.14 for outward-looking firms). 

63.1% of the inventions in our sample do not reuse internal knowledge at all and this effect is 

not primarily driven by small firms that lack internal knowledge to recombine. Firms like 

Broadcom, Texas Instruments, National Semiconductor, and Intel possess large knowledge 

stocks and reuse significantly less internal knowledge than the sample average while 

Qualcomm, Advanced Micro Devices, and Micron Technologies reuse significantly more 

internal knowledge than average.  

We do not find similar differences in external knowledge reuse. When comparing 

Micron Technologies and Intel for instance, we find that the former searches significantly 
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more in general (an average of 29.5 versus 12.9 backward citations), and that over 25% of 

those citations are self-citations, while for Intel that is only 13.5%. While we explored how 

these differences can influence invention impact through network characteristics, future 

research could look deeper into how search orientation influences other determinants of the 

inventive process. Such research could investigate whether different firms are associated with 

different optimal search strategies and could consider the possibility that when it comes to 

recombination, reuse, and/or technologically local and distant search, teams with similar 

expertise may have different comfort zones in terms of exploration depending on their firm’s 

search routines, habits, and competencies.  

One possible explanation may be that inward-looking firms favor personalization over 

knowledge codification (Hansen, Nohria & Tierney, 1999). Such firms rely more heavily on 

person-to-person knowledge transfer and thus for them the influence of embeddedness would 

be expected to be more significant than for firms preferring codification strategies (Prencipe 

& Tell, 2001). Future research can investigate more deliberately whether specific firm 

characteristics, such as the search orientation, warrant separate analyses and theorizing as 

they did in this case. Not only would this open up research avenues, it would also make our 

findings relevant for managerial practice. The dominant ‘single sample approach’ inevitably 

makes it hard to uncover whether theoretically convincing relationships hold for all or only 

for a, perhaps small, majority of cases.  

In an unreported regression, we created a dummy variable for firms with an 

ambivalent search orientation (i.e. the 21 firms - good for 2,784 inventions - that were not 

consistently above or below the industry average over the five-year period we investigated). 

We found that these ambidextrous firms on average created higher impact inventions, 

supporting claims that ambidexterity is important for innovation (Gupta, Smith & Shalley, 

2006; March, 1991). These ambidextrous firms did not however benefit more or less from 
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knowledge reuse than their non-ambidextrous competitors. It would be interesting if other 

researchers could explore in more detail whether inward-looking, outward-looking, and 

ambidextrous firms develop networks of different type and quality, and how they use those 

networks to boost performance. 

Finally, we invite other researchers to investigate whether our findings hold at the 

level of the individual inventor. Prior literature that looked at the interplay of the knowledge 

component and the collaboration network has focused on the individual or the firm (e.g. Guan 

& Liu, 2016; Paruchuri & Awate, 2017; Wang et al., 2014). In this article, we have taken the 

invention as unit of analysis and focused on the team that creates that invention as a driver of 

its impact. It is possible that, when looking at an inventor’s annual productivity and success, 

embeddedness in the firm and the collaborative network play a different role than at the 

invention-team level. This could be studied specifically for sole inventors or for teams from 

which members are randomly drawn for inclusion in the sample. We hope our study inspires 

researchers to explore how inventions and inventors are triply embedded in knowledge 

component networks, collaborative networks, and firm practices, and how these jointly affect 

the invention process and its outcomes. 

CONCLUSION 

Our theory and findings contribute to explanations of knowledge recombination 

(Galunic & Rodan, 1998; Messeni Petruzzelli & Savino, 2014), tacit knowledge and 

knowledge transfer (Ancori, Bureth & Cohendet, 2000; Cowan et al., 2000), and 

embeddedness in social and knowledge component networks (Guan & Liu, 2016; Uzzi, 1996, 

1997; Wang et al., 2014) within the broad literature on organizational learning and innovation 

(Cohen & Levinthal, 1990; Levitt & March, 1988). We find that internal knowledge reuse 

relates curvilinearly to invention impact, regardless of the firm’s search orientation. For 

inward-looking firms, this relationship is reinforced by a specialized form of internal 
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embeddedness and slightly weakened by network centrality. Outward-looking firms, on the 

contrary, are less susceptible to these network effects suggesting that outward-looking firms 

are less reliant on their network when reusing internal knowledge. In so doing, our study 

illuminates a previously unstudied aspect of the paradox of embeddedness by suggesting that 

the effects of embeddedness may depend on node attributes in such a way that the same 

structural network characteristic can have asymmetric effects. Finally, we show that teams 

are truly triply embedded in networks of knowledge components, inventor networks, as well 

as in their own firm with its idiosyncratic search orientation and that these three forms of 

embeddedness are all important to understand how teams create high impact inventions. 

 



 

37 
 

 

REFERENCES 

Agarwal, R., Ganco, M., & Ziedonis, R. H. 2009. Reputations for toughness in patent enforcement: 

Implications for knowledge spillovers via inventor mobility. Strategic Management Journal, 30: 

1349-1374. 

Ahuja, G. 2000. Collaboration networks, structural holes, and innovation: A longitudinal study. 

Administrative Science Quarterly, 45: 425-455. 

Albert, M. B., Avery, D., Narin, F., & McAllister, P. 1991. Direct validation of citation counts as 

indicators of industrially important patents. Research Policy, 20: 251-259. 

Alcácer, J., & Zhao, M. 2012. Local R&D strategies and multilocation firms: The role of internal 

linkages. Management Science, 58: 734-753. 

Allison, P. 2012. When can I safely ignore multicollinearity. Statistical Horizons. 

Alnuaimi, T., & George, G. 2016. Appropriability and the retrieval of knowledge after spillovers. 

Strategic Management Journal, 37: 1263-1279. 

Amrhein, V., Greenland, S., & McShane, B. (2019). Scientists rise up against statistical significance. 

Nature 567: 307-307 

Ancori, B., Bureth, A., & Cohendet, P. 2000. The economics of knowledge: the debate about codification 

and tacit knowledge. Industrial and Corporate Change, 9: 255-287. 

Appleyard, M. M. 1996. How does knowledge flow? Interfirm patterns in the semiconductor industry. 

Strategic Management Journal, 17: 137-154. 

Argote, L., & Miron-Spektor, E. 2011. Organizational learning: From experience to knowledge. 

Organization Science, 22: 1123-1137. 

Arts, S., & Veugelers, R. 2014. Technology familiarity, recombinant novelty, and breakthrough 

invention. Industrial and Corporate Change, 24: 1-32. 

Asakawa, K., Park, Y., Song, J., & Kim, S.-J. 2017. Internal embeddedness, geographic distance, and 

global knowledge sourcing by overseas subsidiaries. Journal of International Business Studies, 

49: 743-752. 

Balland, P.-A., Belso-Martínez, J. A., & Morrison, A. 2016. The dynamics of technical and business 

knowledge networks in industrial clusters: Embeddedness, status, or proximity? Economic 

Geography, 92: 35-60. 

Baumann, O., Schmidt, J., & Stieglitz, N. 2019. Effective Search in Rugged Performance Landscapes: A 

Review and Outlook. Journal of Management, 45: 285-318. 

Björk, J., & Magnusson, M. 2009. Where do good innovation ideas come from? Exploring the influence 

of network connectivity on innovation idea quality. Journal of Product Innovation Management, 

26: 662-670. 

Borgatti, S. P. 2005. Centrality and network flow. Social Networks, 27: 55-71. 

Bothner, M. S., Kim, Y.-K., & Smith, E. B. 2012. How does status affect performance? Status as an asset 

vs. status as a liability in the PGA and NASCAR. Organization Science, 23: 416-433. 

Burt, R. S. 2004. Structural holes and good ideas. American Journal of Sociology, 110: 349-399. 

Carnabuci, G., & Operti, E. 2013. Where do firms' recombinant capabilities come from? 

Intraorganizational networks, knowledge, and firms' ability to innovate through technological 

recombination. Strategic Management Journal, 34: 1591-1613. 



 

38 
 

 

Cohen, W. M., Goto, A., Nagata, A., Nelson, R. R., & Walsh, J. P. 2002. R&D spillovers, patents and the 

incentives to innovate in Japan and the United States. Research Policy, 31: 1349-1367. 

Cohen, W. M., & Levinthal, D. A. 1990. Absorptive capacity: a new perspective on learning and 

innovation. Administrative Science Quarterly, 35: 128-152. 

Coleman, J. S. 1988. Social capital in the creation of human capital. American Journal of Sociology, 94: 

S95-S120. 

Cowan, R., David, P. A., & Foray, D. 2000. The explicit economics of knowledge codification and 

tacitness. Industrial and Corporate Change, 9: 211-253. 

DiMaggio, P. J., & Powell, W. W. 1983. The iron cage revisited: Institutional isomorphism and collective 

rationality in organizational fields. American Sociological Review: 147-160. 

Dosi, G. 1982. Technological paradigms and technological trajectories: a suggested interpretation of the 

determinants and directions of technical change. Research Policy, 11: 147-162. 

Dosi, G. 1988. Sources, procedures, and microeconomic effects of innovation. Journal of Economic 

Literature, 26: 1120-1171. 

Edmondson, A. C., & Lei, Z. 2014. Psychological safety: The history, renaissance, and future of an 

interpersonal construct. Annual Review of Organizational Psychology and Organizational 

Behavior, 1: 23-43. 

Fleming, L. 2001. Recombinant uncertainty in technological search. Management Science, 47: 117-132. 

Fleming, L., & Sorenson, O. 2004. Science as a map in technological search. Strategic Management 

Journal, 25: 909-928. 

Galunic, D. C., & Rodan, S. 1998. Resource Recombinations in the Firm: Knowledge Structures and the 

Potential for Schumpeterian Innovation. Strategic Management Journal, 19: 1193-1201. 

George, G., Kotha, R., & Zheng, Y. 2008. Entry into insular domains: A longitudinal study of knowledge 

structuration and innovation in biotechnology firms. Journal of Management Studies, 45: 1448-

1474. 

Gilsing, V., Nooteboom, B., Vanhaverbeke, W., Duysters, G., & van den Oord, A. 2008. Network 

embeddedness and the exploration of novel technologies: Technological distance, betweenness 

centrality and density. Research Policy, 37: 1717-1731. 

Giuri, P., Mariani, M., Brusoni, S., Crespi, G., Francoz, D., Gambardella, A., Garcia-Fontes, W., Geuna, 

A., Gonzales, R., & Harhoff, D. 2007. Inventors and invention processes in Europe: Results from 

the PatVal-EU survey. Research Policy, 36: 1107-1127. 

Gore, C., & Gore, E. 1999. Knowledge management: the way forward. Total Quality Management, 10: 

554-560. 

Grant, R. M. 1996. Toward a knowledge-based theory of the firm. Strategic Management Journal, 17: 

109-122. 

Griliches, Z. 1998. Patent statistics as economic indicators: a survey. In Z. Griliches (Ed.), R&D and 

productivity: the econometric evidence: 287-343. Chicago: University of Chicago Press. 

Gruber, M., Harhoff, D., & Hoisl, K. 2013. Knowledge recombination across technological boundaries: 

scientists vs. engineers. Management Science, 59: 837-851. 

Guan, J., & Liu, N. 2016. Exploitative and exploratory innovations in knowledge network and 

collaboration network: A patent analysis in the technological field of nano-energy. Research 

Policy, 45: 97-112. 



 

39 
 

 

Guan, J., Zhang, J., & Yan, Y. 2015. The impact of multilevel networks on innovation. Research Policy, 

44: 545-559. 

Gulati, R. 1998. Alliances and networks. Strategic Management Journal, 19: 293-317. 

Gupta, A. K., Smith, K. G., & Shalley, C. E. 2006. The interplay between exploration and exploitation. 

Academy of Management Journal, 49: 693-706. 

Haans, R. F., Pieters, C., & He, Z.-L. 2016. Thinking about U: Theorizing and testing U-and inverted U-

shaped relationships in strategy research. Strategic Management Journal, 37: 1177-1195. 

Hall, B. H., & Ziedonis, R. H. 2001. The patent paradox revisited: an empirical study of patenting in the 

US semiconductor industry, 1979-1995. RAND Journal of Economics, 32: 101-128. 

Hansen, M., Nohria, N., & Tierney, T. 1999. What’s your strategy for managing knowledge. Harvard 

Business Review, March-April: 55-69. 

Harhoff, D., Narin, F., Scherer, F. M., & Vopel, K. 1999. Citation frequency and the value of patented 

inventions. Review of Economics and Statistics, 81: 511-515. 

Hausman, J. A. 1978. Specification tests in econometrics. Econometrica: Journal of the Econometric 

Society, 46: 1251-1271. 

Henderson, R., & Cockburn, I. 1994. Measuring competence? Exploring firm effects in pharmaceutical 

research. Strategic Management Journal, 15: 63-84. 

Hoever, I. J., Van Knippenberg, D., van Ginkel, W. P., & Barkema, H. G. 2012. Fostering team 

creativity: Perspective taking as key to unlocking diversity's potential. Journal of Applied 

Psychology, 97: 982 - 996. 

Hoopes, D. G., Madsen, T. L., & Walker, G. 2003. Guest editors' introduction to the special issue: why is 

there a resource‐based view? Toward a theory of competitive heterogeneity. Strategic 

Management Journal, 24: 889-902. 

Johnson, S. B. 2011. Where good ideas come from: The Natural History of Innovation. New York: 

Riverhead Books, the Penguin Group. 

Kaplan, S., & Vakili, K. 2015. The double‐edged sword of recombination in breakthrough innovation. 

Strategic Management Journal, 36: 1435-1457. 

Katila, R. 2002. New product search over time: Past ideas in their prime? Academy of Management 

Journal, 45: 995-1010. 

Keijl, S., Gilsing, V., Knoben, J., & Duysters, G. 2016. The two faces of inventions: The relationship 

between recombination and impact in pharmaceutical biotechnology. Research Policy, 45: 1061-

1074. 

Kim, D. H. 1993. The link between individual and organizational learning. Sloan Management Review, 

1993: 37-50. 

Kim, D.-J., & Kogut, B. 1996. Technological platforms and diversification. Organization Science, 7: 283-

301. 

Kim, L. 1998. Crisis construction and organizational learning: Capability building in catching-up at 

Hyundai Motor. Organization Science, 9: 506-521. 

Knudsen, T., & Srikanth, K. 2014. Coordinated exploration organizing joint search by multiple specialists 

to overcome mutual confusion and joint myopia. Administrative Science Quarterly, 59: 409-441. 



 

40 
 

 

Kogan, L., Papanikolaou, D., Seru, A., & Stoffman, N. 2012. Technological Innovation, Resource 

Allocation, and Growth. Working Paper Series: 1 - 62. Cambridge, MA, USA: National Bureau 

of Economic Research. 

Kogut, B., & Zander, U. 1992. Knowledge of the firm, combinative capabilities, and the replication of 

technology. Organization Science, 3: 383-397. 

Kotha, R., George, G., & Srikanth, K. 2013. Bridging the mutual knowledge gap: Coordination and the 

commercialization of university science. Academy of Management Journal, 56: 498-524. 

Levinthal, D. A. 1997. Adaptation on rugged landscapes. Management Science, 43: 934-950. 

Levitt, B., & March, J. G. 1988. Organizational learning. Annual Review of Sociology, 14: 319-338. 

Leydesdorff, L., Kogler, D. F., & Yan, B. 2017. Mapping patent classifications: portfolio and statistical 

analysis, and the comparison of strengths and weaknesses. Scientometrics, 112: 1573-1591. 

Lind, J. T., & Mehlum, H. 2010. With or without U? The appropriate test for a U-shaped relationship. 

Oxford Bulletin of Economics and Statistics, 72: 109-118. 

Mabey, C., & Zhao, S. 2017. Managing five paradoxes of knowledge exchange in networked 

organizations: new priorities for HRM? Human Resource Management Journal, 27: 39-57. 

MacAulay, S., Steen, J., & Kastelle, T. 2017. The search environment is not (always) benign: Reassessing 

the risks of organizational search Industrial and Corporate Change. 

March, J. G. 1991. Exploration and exploitation in organizational learning. Organization Science, 2: 71-

87. 

Marco, A. C. 2007. The dynamics of patent citations. Economics Letters, 94: 290-296. 

Mathews, J. A., & Cho, D. S. 1999. Combinative capabilities and organizational learning in latecomer 

firms: The case of the Korean semiconductor industry. Journal of World Business, 34: 139-156. 

Matusik, S. F. 2002. An empirical investigation of firm public and private knowledge. Strategic 

Management Journal, 23: 457-467. 

Messeni Petruzzelli, A., & Savino, T. 2014. Search, recombination, and innovation: Lessons from haute 

cuisine. Long Range Planning, 47: 224-238. 

Nahapiet, J., & Ghoshal, S. 1998. Social capital, intellectual capital, and the organizational advantage. 

Academy of Management Review, 23: 242-266. 

Nelson, R. R., & Winter, S. G. 1982. An Evolutionary Theory of Economic Change. Cambridge, 

Massachusetts: The Belknap Press of Harvard University Press. 

Nonaka, I. 1994. A dynamic theory of organizational knowledge creation. Organization Science, 5: 14-

37. 

Nooteboom, B., Van Haverbeke, W., Duysters, G., Gilsing, V., & Van den Oord, A. 2007. Optimal 

cognitive distance and absorptive capacity. Research Policy, 36: 1016-1034. 

Polanyi, M. 1966. The logic of tacit inference. Philosophy, 41: 1-18. 

Polanyi, M. 2009. The Tacit Dimension. Chicago, USA: The University of Chicago Press. 

Prahalad, C. K., & Hamel, G. 1990. The core competence of the corporation. Harvard Business Review, 

68: 79-97. 

Prencipe, A., & Tell, F. 2001. Inter-project learning: processes and outcomes of knowledge codification 

in project-based firms. Research Policy, 30: 1373-1394. 



 

41 
 

 

Reagans, R., & McEvily, B. 2003. Network structure and knowledge transfer: The effects of cohesion and 

range. Administrative Science Quarterly, 48: 240-267. 

Savino, T., Messeni Petruzzelli, A., & Albino, V. 2017. Search and recombination process to innovate: a 

review of the empirical evidence and a research agenda. International Journal of Management 

Reviews, 19: 54-75. 

Schillebeeckx, S. J. D., Lin, Y., & George, G. 2019. When do expert teams fail to create impactful 

inventions? Journal of Management Studies, 56(6): 1073-1104. 

Schumpeter, J. A. 1934. The theory of economic development: An inquiry into profits, capital, credit, 

interest, and the business cycle. University of Illinois at Urbana-Champaign's Academy for 

Entrepreneurial Leadership Historical Research Reference in Entrepreneurship. 

Singh, J., & Fleming, L. 2010. Lone inventors as sources of breakthroughs: Myth or reality? Management 

Science, 56: 41-56. 

Skilton, P. F., & Dooley, K. J. 2010. The effects of repeat collaboration on creative abrasion. Academy of 

Management Review, 35: 118-134. 

Sørensen, J. B., & Stuart, T. E. 2000. Aging, obsolescence, and organizational innovation. Administrative 

Science Quarterly, 45: 81-112. 

Srinivasan, R., Haunschild, P., & Grewal, R. 2007. Vicarious learning in new product introductions in the 

early years of a converging market. Management Science, 53: 16-28. 

Stuart, T. E. 2000. Inter-organizational Alliances and the Performance of Firms: A Study of Growth and 

Innovation Rates in a High-Technology Industry. Strategic Management Journal, 21: 791-811. 

Tortoriello, M., & Krackhardt, D. 2010. Activating cross-boundary knowledge: the role of Simmelian ties 

in the generation of innovations. Academy of Management Journal, 53: 167-181. 

Tsai, W. 2001. Knowledge transfer in intraorganizational networks: Effects of network position and 

absorptive capacity on business unit innovation and performance. Academy of Management 

Journal, 44: 996-1004. 

Uzzi, B. 1996. The sources and consequences of embeddedness for the economic performance of 

organizations: The network effect. American Sociological Review: 674-698. 

Uzzi, B. 1997. Social structure and competition in interfirm networks: The paradox of embeddedness. 

Administrative Science Quarterly, 42: 35-67. 

Wang, C., Rodan, S., Fruin, M., & Xu, X. 2014. Knowledge networks, collaboration networks, and 

exploratory innovation. Academy of Management Journal, 57: 484-514. 

Wang, H., & Chen, W.-R. 2010. Is firm-specific innovation associated with greater value appropriation? 

The roles of environmental dynamism and technological diversity. Research Policy, 39: 141-154. 

Wang, H., Choi, J., Wan, G., & Dong, J. Q. 2016. Slack resources and the rent-generating potential of 

firm-specific knowledge. Journal of Management, 42: 500-523. 

Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019). Moving to a world beyond “p< 0.05”. American 

Statistician, 73: 1-19  

Wooldridge, J. 2014. Mulitcollinearity with Fixed Effects Resulting in Inflated VIFs for Dummies. In 

Stata (Ed.), Statalist, the Stata Forum: Online forum for help with Stata: Stata. 

Yayavaram, S., & Ahuja, G. 2008. Decomposability in knowledge structures and its impact on the 

usefulness of inventions and knowledge-base malleability. Administrative Science Quarterly, 53: 

333-362. 



 

42 
 

 

Zack, M. H. 1999. Managing codified knowledge. Sloan Management Review, 40: 45-58. 

Zahra, S. A., & George, G. 2002. Absorptive capacity: A review, reconceptualization, and extension. 

Academy of Management Review, 27: 185-203. 

Zander, U., & Kogut, B. 1995. Knowledge and the speed of the transfer and imitation of organizational 

capabilities: An empirical test. Organization Science, 6: 76-92. 

Zou, T., Ertug, G. & George, G. 2018. The capacity to innovate: A meta-analysis of absorptive capacity, 

Innovation: Organization & Management, 20(2): 87-121. 

 

  



 

43 
 

 

TABLES AND FIGURES 

 

Table 1: Determination of Team Diversity 

 

 Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sum 

Inv1 1 0 1 0 0 0 0 0 0 2 

Inv2 1 1 1 1 1 0 1 1 1 8 

Inv3  1 0 0 0 0 1 0 1 0 3 

s 3/13 1/13 2/13 1/13 1/13 1/13 1/13 2/13 1/13 N=13 
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Table 2: Descriptive Statistics and Correlation Matrix 

 
 μ σ Min Max 1 2 3 4 5 6 7 8 9 10 11 

1 Impact 9.38 11.09 0 65            

2 Ln (assets) 7.21 2.77 0 10.09 -0.03           

3 Firm pat prod 868 732 1 1966 -0.04 0.55          

4 KN str hole  1.46 0.69 0 1.91 -0.01 0.02 0.03         

5 KN Cent 37.44 19.02 0 100 0.01 0.04 0.12 0.04        

6 Team size 2.39 1.53 1 19 0.06 -0.03 -0.11 0.01 -0.03       

7 Team diversity 0.44 0.26 0 0.95 0.00 -0.03 0.01 -0.01 -0.30 0.10      

8 Team Mutual Knowledge 1.52 1.4 0 6.05 0.00 0.05 0.25 0.01 0.03 -0.20 0.11     

9 Pat claims 22.26 15.59 1 418 0.11 0.01 0.09 -0.03 -0.05 0.01 0.05 0.04    

10 Pat classes 4.48 3.31 1 44 0.06 -0.04 0.01 0.00 0.14 0.03 -0.07 0.08 0.00   

11 Time lag 2.67 1.3 0 8 -0.06 0.04 0.02 -0.02 -0.06 0.05 -0.06 -0. 19 0.07 0.01  

12 Internal Knowledge Reuse 0.21 0.31 0 1 0.02 0.09 0.18 0.33 0.08 0.03 -0.07 0.25 0.04 0.08 -0.09 

13 (Internal Knowledge Reuse)2 0.14 0.26 0 1 0.01 0.09 0.18 0.26 0.07 0.03 -0.07 0.24 0.03 0.08 -0.08 

14 External Knowledge Reuse 0.54 0.39 0 1 0.00 0.00 -0.01 0.64 0.08 0.01 -0.15 0.00 -0.04 0.01 -0.02 

15 (External Knowledge Reuse)2 0.44 0.39 0 1 0.00 0.01 -0.02 0.53 0.11 0.01 -0.18 -0.01 -0.05 0.02 -0.03 

16 Internal Embeddedness 0.38 0.85 0 3.67 0.02 0.07 0.22 0.02 0.02 0.00 0.03 0.44 0.07 0.11 -0.10 

17 Network Centrality 9.06 10.57 0 98 0.00 0.15 0.24 0.03 0.02 0.06 0.06 0.63 0.00 0.10 -0.15 

18 Internal Knowledge Reuse * Internal Embeddedness 0.19 0.56 0 3.67 0.01 0.06 0.19 0.18 0.02 0.01 -0.02 0.35 0.04 0.10 -0.08 

19 (Internal Knowledge Reuse)2 * Internal Embeddedness 0.15 0.5 0 3.67 0.00 0.06 0.18 0.16 0.02 0.01 -0.03 0.32 0.03 0.09 -0.08 

20 Internal Knowledge Reuse * Network Centrality 2.69 6.52 0 91 0.00 0.09 0.20 0.22 0.02 0.04 -0.02 0.41 0.01 0.09 -0.10 

21 (Internal Knowledge Reuse)2 * Network Centrality 1.92 5.7 0 91 0.00 0.08 0.18 0.18 0.02 0.04 -0.04 0.35 0.01 0.09 -0.09 
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  12 13 14 15 16 17 18 19 20 21 

13 (Internal Knowledge Reuse)2 0.94          

14 External Knowledge Reuse 0.33 0.29         

15 (External Knowledge Reuse)2 0.29 0.26 0.97        

16 Internal Embeddedness 0.43 0.43 0.01 0.00       

17 Network Centrality 0.26 0.26 0.03 0.03 0.51      

18 Internal Knowledge Reuse * Internal Embeddedness 0.63 0.68 0.17 0.15 0.78 0.42     

19 (Internal Knowledge Reuse)2 * Internal Embeddedness 0.61 0.71 0.17 0.15 0.69 0.39 0.97    

20 Internal Knowledge Reuse * Network Centrality 0.69 0.70 0.21 0.19 0.57 0.62 0.78 0.77   

21 (Internal Knowledge Reuse)2 * Network Centrality 0.66 0.73 0.19 0.18 0.54 0.54 0.79 0.82 0.96  
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Table 3: Internal and External Knowledge Reuse for Inward- and Outward-looking Firms  
 M1 All M2 All M3 Inward M4 Inward M5 Outward M6 Outward 

 Base Full Base Full Base Full 

Ln (assets) -0.05* -0.05* 0.01 0.01 -0.05** -0.05** 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

Firm patent productivity -0.00* -0.00* -0.00*** -0.00*** -0.00 -0.00 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Knowledge Network -0.05 -0.05 0.07 0.07 -0.11 -0.11 

 Structural Hole (0.05) (0.05) (0.05) (0.05) (0.07) (0.07) 

Team Degree Centrality 0.00 0.00 0.00 0.00 0.00 0.00 

Knowledge Network (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Team Size 0.04*** 0.04*** 0.03*** 0.03*** 0.04*** 0.04*** 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Team Diversity 0.01 0.01 0.10 0.10 -0.03 -0.03 

 (0.06) (0.06) (0.15) (0.15) (0.05) (0.05) 

Team Mutual Knowledge 0.01 0.01 0.05*** 0.05*** -0.04** -0.04** 

  (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) 

Patent Claims 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Patent Subclasses 0.02*** 0.02*** 0.03*** 0.03*** 0.02*** 0.02*** 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Time Lag 0.00 0.00 -0.33** -0.34** 0.03 0.03 

 (0.11) (0.10) (0.12) (0.12) (0.11) (0.11) 

External Knowledge Reuse 0.30*** 0.30*** 0.32* 0.31* 0.29*** 0.30*** 

  (0.07) (0.07) (0.14) (0.13) (0.08) (0.08) 

External Knowledge Reuse 2  -0.28*** -0.27*** -0.29** -0.28** -0.28*** -0.28*** 

  (0.06) (0.06) (0.10) (0.10) (0.07) (0.07) 

Internal Knowledge Reuse 0.27*** 0.21* 0.23* 0.06 0.28*** 0.38** 

  (0.06) (0.09) (0.11) (0.14) (0.08) (0.14) 

Internal Knowledge Reuse2  -0.27*** -0.13 -0.24** 0.09 -0.29*** -0.47† 

  (0.06) (0.13) (0.08) (0.14) (0.08) (0.25) 

Internal Embeddedness 0.02* 0.01 0.02* 0.00 0.03 0.01 

  (0.01) (0.01) (0.01) (0.01) (0.03) (0.03) 

Social Network Centrality -0.00 0.00 -0.004** -0.00* 0.01* 0.01* 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Internal Knowledge Reuse X   0.27***  0.35***  0.05 

  Internal Embeddedness  (0.04)  (0.04)  (0.15) 

Internal Knowledge Reuse2 X  -0.32***  -0.43***  0.01 

  Internal Embeddedness  (0.05)  (0.07)  (0.18) 

Internal Knowledge Reuse X  -0.01*  -0.01*  -0.01 

 Social Network Centrality  (0.01)  (0.01)  (0.01) 

Internal Knowledge Reuse2 X  0.01*  0.01*  0.01 

 Social Network Centrality  (0.01)  (0.01)  (0.02) 

Number of Observations 39,785 39,785 15,596 15,596 24,189 24,189 

Number of Firms 127 127 36 36 115 115 

Chi2 30,105.07 32,331 7.53e+08 20,388,922 33,181 36,067 

Log Likelihood -244,608 -244,479 -99,044 -98,871 -144,343 -144,320 
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Figure 1: Model Overview and Hypotheses 
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Figure 2: Example Inventor Network  
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Figure 3: Moderating Effects of Internal Embeddedness (K) and Network Centrality (Z) on 

Invention Impact 

 

 
 *µ = mean value of K (internal embeddedness) or Z (network centrality) 

*σ = standard deviation of K (internal embeddedness) or Z (network centrality) 
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Figure 4: Comparison of Inward-and Outward-looking Firms at Mean and High Internal 

Embeddedness 
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Figure 5: Comparison of Inward-and Outward-looking Firms at Mean and High Network 

Centrality 

 

 

i Our epistemological stance is that prior art citations and their classifications are an imperfect proxy for the actual knowledge 

that inspired an inventor. Relevant instantiations of that knowledge can be added by USPTO officers (or the firm’s patent 

attorneys) to facilitate the delineation of the current invention and to narrow down patent claims. To us, this does not imply 

that the focal inventor was not aware of the knowledge encapsulated in the added prior art. She may have known about it 

through different means not captured in the patent documentation. We do not see recombination (and reuse) of knowledge as 

perfectly corresponding to a “Lego-like” process in which an inventor reads through prior art, gets inspired, and decides to 

invent something in the domain of that prior art (although this is a possible form of search used by some organizations). We 

acknowledge the process is more complex and that the available measures are incomplete and imperfect proxies for the 

inventive process. We understand a prior art citation as a reference to (an instantiation of) one or multiple knowledge 

domains within the real knowledge structure that is also accessible through different means (conferences, conversations, and 

sometimes even luck). When we discuss recombination and reuse, it is in reference to these parts of the real knowledge 

structure, for which prior art citations and their classification form useful, yet imperfect proxies. Note also that even if an 

inventor was ex ante not aware of a specific instantiation (e.g. a patent) of the knowledge the inventor recombines (the ideas 

encapsulated in the knowledge domain of the patent), and becomes aware of the patent during the patent application process 

and will thus become formally knowledgeable about the specific knowledge instantiation ex post. The parallel in academic 

publications is clearly illustrative. It is imminently possible for an author to write a paper in the field of recombination and to 

be informed by a reviewer about a specific publication the author is ex ante not familiar with, but that seems relevant to the 

domain of the paper. We would thus claim that an author can recombine (and even reuse) knowledge embedded in 

publication X, even if she was not aware of the existence of that publication prior to the publication process. This is simply 

because publication X is also an instantiation of a underlying real knowledge structure that may have been accessed by the 

author through different means. 
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