
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection Lee Kong Chian School Of 
Business Lee Kong Chian School of Business 

2-2020 

Managing clinic variability with same-day scheduling, intervention Managing clinic variability with same-day scheduling, intervention 

for no-shows, and seasonal capacity adjustments for no-shows, and seasonal capacity adjustments 

Kum Khiong YANG 
Singapore Management University, kkyang@smu.edu.sg 

Tugba CAYIRLI 

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research 

 Part of the Business Administration, Management, and Operations Commons 

Citation Citation 
YANG, Kum Khiong and CAYIRLI, Tugba. Managing clinic variability with same-day scheduling, 
intervention for no-shows, and seasonal capacity adjustments. (2020). Journal of the Operational 
Research Society. 71, (1), 133-152. Research Collection Lee Kong Chian School Of Business. 
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/6504 

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at 
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research 
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at 
Singapore Management University. For more information, please email libIR@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6504&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6504&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Managing clinic variability with same-day scheduling, intervention
for no-shows, and seasonal capacity adjustments

Kum-Khiong Yanga and Tugba Cayirlib

aSingapore Management University, Lee Kong Chian School of Business, Singapore; bFaculty of Business, Ozyegin Universitesi,
Alemdag, Cekmekoy, Istanbul, Turkey

ABSTRACT
This study investigates demand and capacity strategies for managing clinic variability. These
include (i) same-day scheduling to control random walk-ins, (ii) no-show intervention, where
the clinic calls advance-booked patients a day before to identify and release cancelled slots
to same-day patients, and (iii) adjustments to daily number of appointments for advance-
booked patients to match seasonal variations in same-day demand. These strategies are
tested over the individual-block/fixed-interval (IBFI) and the Dome appointment rules. Our
results show that choosing the appropriate refinements in the order of appointment rules,
same-day scheduling, no-show intervention, and capacity adjustment provides maximum
improvement. The total cost benefit of demand strategies (i) and (ii) is 7 to 21%, whereas
the benefit of capacity strategy (iii) is as high as 6%. Our study affirms the universality of the
Dome rule to perform well when combined with the demand and capacity strategies across
different environments.
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1. Introduction

Many clinics serve two types of patients on a daily
basis – 1) patients who have booked their appoint-
ments in advance to consult the doctor at specific
times, called “advance-booked” patients and 2)
patients who need to consult the doctor on the
same day, labelled as “same-day” patients. Advance-
booked patients are usually non-urgent cases, and
such patients can book future appointments to con-
sult the doctor. In most cases, these are follow-up
patients with appointments booked according to
their treatment plans plus some new patients with
appointments for non-urgent conditions.

New or follow-up patients with urgent conditions
will generally need to consult the doctor immediately,
preferably on the same day. As more clinics become
increasingly patient-centered, the shift is towards serv-
ing such patients on the same day. There are two
open access options for same-day patients. In the trad-
itional approach, clinics allow patients to arrive
unscheduled or randomly as walk-ins. The other
option is to implement same-day scheduling, where
clinics ask patients to call at the start of each day to
schedule an appointment. The goal is to manage or
smooth demand through appointments by converting
random “walk-ins” into scheduled “call-ins.” The
potential benefit is shorter wait times for those who
are granted appointments; and if no slot is left in the
appointment book, they can still walk in randomly
but should expect longer wait times.

Another important demand-related variability in
appointment systems is the existence of no-shows
among advance-booked patients. It is well-docu-
mented that advance-booked patients do not always
show up for their appointments, and the probability
of no-shows increases with lead times to appoint-
ments (Gallucci, Swartz, & Hackerman, 2005; Green
& Savin, 2008; Liu, Ziya, & Kulkarni, 2010). Several
prior studies have investigated strategies on how to
best adjust the appointment schedules to alleviate
the disruptive effects of no-shows. Some options
include overbooking the appointment slots with
multiple patients or reducing the appointment inter-
val lengths in anticipation of no-shows. In this
study, the consideration of no-shows provides an
opportunity to identify potential no-shows of
advance-booked patients and release the cancelled
slots to same-day patients.

Finally, demand seasonality is an important phe-
nomenon commonly observed in practice, but is not
widely addressed in the literature (Gupta & Denton,
2008). For example, primary care clinics often face
higher demand during flu seasons while dermatol-
ogy clinics serve more patients during summer time.
This is documented in prior studies that report
changing patterns of same-day demand by the day
of the week, the month of the year, as well as the
hour of the day (Cayirli & Gunes, 2014; Cayirli,
Dursun, & Gunes, 2018; Forjuoh et al., 2001).
However, in contrast with seasonal demand of
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same-day patients, the demand of advance-booked
patients is relatively stable and could even be shaped
by the clinics. The appointment times of advance-
booked patients are often the result of treatment
cycles proposed by the doctors, and the actual
appointment times can be shifted within limits of
the treatment cycles, without affecting the patients’
quality of care. This means that a clinic can shift
and offer different number of daily appointment
slots to advance-booked patients to smooth out the
total patient load per day.

This research investigates strategies to manage
clinic variability that arises from the three above
sources of variability, ie, random walk-ins of same-
day patients, no-shows of advance-booked patients,
and demand seasonality. Specifically, we test alterna-
tive strategies that are combinations of (i) same-day
scheduling, (ii) intervention for no-shows, and (iii)
seasonal adjustments to daily capacity. First, we
study the impact of same-day scheduling in reduc-
ing the adverse effect of random same-day walk-ins.
Second, we study the impact of an intervention pol-
icy for no-shows that requires the clinic to call
advance-booked patients a day before their service
day and then release the free slots from cancella-
tions to same-day call-ins. Finally, we investigate
adjusting the daily appointment capacity for
advance-booked patients in order to better match
the seasonal variations in same-day demand. Both
strategies (i) and (ii) affect the demand, whereas
strategy (iii) affects the capacity, where the ultimate
goal is to match demand and capacity. As a result,
(i) and (ii) are grouped as “demand” strategies
whilst (iii) is grouped as “capacity” strategy. These
demand and capacity strategies are tested over two
appointment rules that define the basic template of
an appointment system in terms of block size and
appointment intervals (Cayirli & Veral, 2009). The
Individual-Block, Fixed-Interval (IBFI) rule is
included as a benchmark rule that is not only well-
studied in the literature, but also widely used in
practice; The Dome rule, introduced by Cayirli,
Yang, and Quek (2012) is included as a “universal”
rule, which has the advantage of providing a super-
ior appointment template for different clinic envi-
ronments defined in terms of no-shows, walk-ins,
number of appointments, variation of service-times,
as well as the cost ratio that reflects the preferred
trade-off between doctor’s time and patients’ time.

This study provides important guidance to
healthcare managers in prioritising their efforts to
improve the design of appointment systems.
Although it is generally advisable to address the
negative effects of all sources of clinic variability,
choosing the appropriate refinements in the right
order provides maximum gains. For the factor levels

tested in our simulation experiments, the largest
benefits are achieved by fine-tuning the appoint-
ment rule (ie, Dome vs. IBFI), followed by the
demand and capacity strategies tested.

Our results affirm and extend the universality of
the Dome rule to perform well across different envi-
ronments when it is combined with different
demand and capacity strategies. In terms of demand
strategies, the most significant gains are achieved by
implementing same-day scheduling to convert ran-
dom walk-ins into same-day call-ins. This reduces
variability by smoothing same-day demand through
appointments, resulting in significant improvements
in patients’ wait times, as well as doctor’s idle-time
and overtime. The second demand strategy based on
an intervention policy for no-shows is also recom-
mended in combination with same-day scheduling.
This strategy not only reduces variability due to no-
shows, but also offers a higher chance of accommo-
dating same-day demand through rescheduling the
open slots released by cancellations. Obviously, both
strategies require additional administrative costs in
calling advance-booked patients to check on possible
cancellations and handling call-ins from same-day
patients for appointments. These seem worthwhile
as the improvements are significant, even with low
proportions of same-day patients and no-shows. On
the other hand, our results do not favour capacity
strategies unless the demand seasonality is high and
the probability of same-day demand is at least 20%
of the total demand as tested in our simulation
experiments.

The rest of the paper is organised as follows. In
Section 2, we provide an overview of the related lit-
erature. Section 3 describes the appointment systems
tested in our study as combinations of appointment
rules with demand and capacity strategies for man-
aging variability. In Section 4, we present the experi-
mental design, simulation model, and performance
measures used to compare the alternative strategies
and scenarios. Section 5 discusses the results, and
Section 6 concludes the paper with a summary of
the findings, limitations of current work, and some
future directions.

2. Literature review

The reader is referred to surveys by Cayirli and
Veral (2009), Gupta and Denton (2008), and
Ahmadi-Javid, Jalali, and Klassen (2017) for com-
prehensive reviews on appointment scheduling.
Here, we limit our discussion to studies related to
adjusting the appointment systems to deal with vari-
ability associated with no-shows, walk-ins, and
demand seasonality (Sections 2.1 to 2.3). We also
include research related to open-access scheduling
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(Section 2.4), since we explicitly compare the trad-
itional approach of allowing random walk-ins versus
same-day scheduling which requires patients to call
ahead for appointments at the start of each day.

2.1. No-shows

A stream of papers has investigated different strat-
egies to reduce the disruptive effects of no-shows.
One approach is to keep the appointment intervals
fixed, while assigning multiple number of patients
to the same slot, such as double-booking. This
requires a subdecision on which particular slots to
overbook. Another approach is to shorten the length
of appointment intervals proportional to the
expected probability of no-shows, while limiting one
patient per slot. Vissers (1979) use simulation to
compare the two approaches and report that the lat-
ter is slightly better because of its sustained effect
throughout the clinic session. LaGanga and
Lawrence (2007a) investigate overbooking with com-
pressed appointment intervals as their goal is to
maximise the net utility of a clinic, balancing the
benefits of serving additional patients with the
potential costs of patients’ wait time and clinic over-
time. Their results show that the benefits of over-
booking increase for clinics with higher no-show
rates, larger clinic size (ie, shorter service times),
and lower service time variability In a later study,
LaGanga and Lawrence (2007b) use simulation to
test a large set of alternative rules that use multiple
bookings, as well as compressed appointment inter-
vals, and conclude that the latter approach is pre-
ferred due to lower patients’ wait times. Kim and
Giachetti (2006) develop a stochastic model to
determine the optimal daily number of patients’
bookings based on the probability density functions
of no-shows and walk-ins, yet the decision is not
extended to determining the actual appointment
times. Studies have also proposed and tested more
refined overbooking models that take into account
heterogeneous patients’ no-show probabilities
(Daggy et al., 2010; Muthuraman & Lawley, 2008;
Zacharias & Pinedo, 2014), and seasonal variations
of no-shows by the time of the day or the day of
the week (LaGanga, 2011; LaGanga & Lawrence,
2012). Recently, Liu, Xie, Yang, and Zheng (2018)
show that different patient groups exhibit different
no-show behaviours. Whilst new or urgent patients
are concerned over getting same-day appointments,
follow-up or advance-booked patients are more con-
cerned about appointments that match their per-
sonal schedules within their treatment cycles. This
suggests that a strategy that allows follow-up
patients choose their own appointment times and

same-day patients immediate access will help to
reduce overall no-show rates.

2.2. Walk-ins

Parallel to no-show adjustments, the literature sug-
gests two main approaches to adjusting the appoint-
ment schedule for random walk-ins – leave open
slots based on the expected number of walk-ins ver-
sus lengthen the appointment intervals proportion-
ally. The former approach requires a sub-decision
on which specific slots to leave open. Using simula-
tion, Rising, Baron, and Averill (1973) illustrate the
benefits of smoothing patient flow by scheduling
appointments to complement the arrival pattern of
walk-ins. Vissers and Wijngaard (1979) introduce
an interval adjustment procedure based on the
expected probabilities of walk-ins and no-shows, yet
each factor is considered independently. Extending
their approach, Cayirli et al. (2012) propose a pro-
cedure that adjusts for the combined probabilities of
no-shows and walk-ins, and this is incorporated
into the formulation of the universal Dome rule that
can be parameterised to perform well in different
environments. Klassen and Rohleder (1996) test
alternative open slot positions to reserve capacity for
same-day patients who call for appointments. In a
subsequent work, Klassen and Rohleder (2004)
expand the open slot analysis to a wider set of
options in a multi-period scheduling environment
using multiple measures of performance. Their
results indicate that the best open slot positions are
evenly-spread throughout the day. Morikawa and
Takahashi (2017) propose a dynamic method to
reduce the negative effects of stochastic walk-in
arrivals by assigning scheduled times to walk-ins at
the times of their arrivals. Our work is more closely
related to the paper by Cayirli and Gunes (2014),
which analyses a mixed system with scheduled and
walk-in patients, taking into account walk-in season-
ality. In a subsequent work, Cayirli et al. (2018) test
alternative open slot positions to reserve for walk-
ins and conclude that the dominant pattern is
evenly-spread with some shift towards the end of
the session for higher cost ratios.

2.3. Demand seasonality

Only a few studies have examined demand seasonal-
ity or proposed adjustments in the appointment sys-
tem design for this source of variability (Gupta &
Denton, 2008). Forjuoh et al. (2001) predict the
demand for same-day appointments in family prac-
tice clinics based on historical data organised by the
day of the week and month of the year. The authors
emphasise the importance of accurate prediction
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and the need for continuous refinements of demand
with seasonal variations. Rohleder and Klassen
(2002) address variations in the intra-weekly
demand when appointment scheduling decisions are
made in a rolling horizon. Their results show that
choosing the right scheduling rules depends on the
demand loads and choice of performance measures.
Koeleman and Koole (2012) model non-stationary
emergency arrivals and identify the optimal appoint-
ment schedule with a local search algorithm. Open
slots are reserved either in the middle or evenly or
at the end depending on the relative value of doc-
tor’s time to patients’ time. Kortbeek et al. (2014)
jointly consider the booking process for scheduled
patients and the daily in-clinic process that governs
the arrivals of scheduled and walk-in patients. They
develop a cyclic appointment schedule that accounts
for non-stationary walk-in arrivals. Similarly, Cayirli
and Gunes (2014) study an appointment system that
integrates the access and in-clinic processes, referred
to as the macro and micro levels. Using simulation,
they evaluate the benefits of seasonal adjustments to
daily capacity that vary the number of slots reserved
for seasonal walk-ins. Cayirli et al. (2018) extend the
model to fully integrate the macro and micro levels
for the combined analysis of direct and indirect wait
times. In a recent work, Schacht (2018) builds upon
Cayirli and Gunes (2014) to study the optimal
reconfiguration for seasonal adjustments of the
appointment system.

2.4. Open-access (same-day scheduling)

Our study is related to research on open access, also
known as same-day scheduling which demands
“doing today’s work today” (Murray & Tantau,
2000; Murray & Berwick, 2003). This alternative
paradigm has the expected benefits of reduced vari-
ability due to walk-ins as well as reduced no-show
rates given the empirical evidence on the positive
correlation between appointment lead times and no-
shows (Gallucci et al., 2005). Several studies have
addressed the design and implementation of open-
access systems (Green & Savin, 2008; Herriott, 1999;
Kopach et al., 2007). Robinson and Chen (2010)
compare traditional and open access scheduling, and
report that open access systems perform signifi-
cantly better when no-show probability increases
with the lead time to appointment and when value
of patients’ time is high. Chen and Robinson (2014)
further study the optimal sequencing and scheduling
of routine and same-day patients. Their results are
sensitive to the probability of no-shows, probability
of same-day patients, workload, and different rela-
tive costs of waiting for the two types of patients.
Tang, Yan, and Cao (2014) propose an optimal

schedule for routine and urgent patients under
deterministic service times and develop a heuristic
algorithm when service times are exponentially dis-
tributed. No-shows are also considered in their
model. Xiao, Dong, Li, and Sun (2017) study a simi-
lar problem with routine and same-day patients,
taking into account revisits by patients as another
common source of variability. The authors propose
a stochastic programming model to determine the
optimal appointment schedule for a given sequence
(eg, routine-first, etc.). A number of other studies
have also investigated the capacity allocation prob-
lem in mixed open access and advanced access sys-
tems where the goal is to optimise the ratio of
same-day to advance-booked patient slots in the
appointment book (Dobson, Hasija, & Pinker, 2011;
Gupta & Wang, 2008; Qu, Rardin, Williams, &
Willis, 2007; Qu & Shi, 2009, 2011; Wang & Gupta,
2011). Balasubramanian, Muriel, and Wang (2012)
and Balasubramanian, Biehl, Dai, and Muriel (2014)
study the impact of allowing some flexibility for
sharing same-day patients, extending open access to
a multi-doctor setting. Huang, Zuniga, and Marcak
(2014) use simulation to test a proposed dynamic
approach for same-day scheduling of urgent walk-
ins on top of a full schedule, taking into account the
no-show probabilities of individual patients and the
maximum number of urgent patients allowed. Based
on the operations of a primary care clinic, Chand,
Moskowitz, Norris, Shade, and Willis (2009) investi-
gate how to improve system performance by system-
atically identifying and reducing the sources of
variability in patient arrivals and service times.
Using simulation, the authors study the effect of
changing over from a traditional appointment sys-
tem to open access, and observe several improve-
ments, including reduced no-show rates from 40
to 3%.

As an integrative study, we investigate three strat-
egies to adjust the appointment templates, thereby
reducing the negative effects of same-day walk-ins,
no-shows of advance-booked patients, and seasonal
variation of same-day patients. Combining the two
demand strategies together integrates the benefits of
same-day scheduling with intervention for no-
shows. This can be further combined with the cap-
acity strategy to adjust daily capacity to match
seasonal changes in same-day demand. By investi-
gating the demand and capacity strategies in differ-
ent combinations, this study allows a comprehensive
analysis of the main and interaction effects of these
strategies in managing clinic variability. To the best
of our knowledge, this research is the first to
address all three sources of variability simultan-
eously with the goal of refining the appoint-
ment systems.
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3. Managing clinic variability

This study investigates how to manage clinic vari-
ability through adjustments of the appointment sys-
tems when several sources of variability exist.
Specifically, the three sources of variability include
(i) walk-ins of same-day patients, (ii) no-shows of
advance-booked patients, and (iii) demand
seasonality.

Our two proposed demand strategies include
same-day scheduling for “call-ins” with and without
no-show intervention. These are compared against
the baseline case, where same-day patients arrive
randomly as “walk-ins” with no appointments.
Capacity strategies refer to seasonal adjustments of
daily number of appointment slots, compared with
the case without any adjustments. These demand
and capacity strategies are tested using both Dome
and IBFI as the underlying appointment rules. In
Section 3.1, we discuss the appointment rules in
detail, followed by the demand and capacity strat-
egies in Sections 3.2 and 3.3, respectively.

3.1. Appointment rules

Past research has indicated extensively that no single
appointment rule performs well in all environments
(Cayirli & Veral, 2009; Gupta & Denton, 2008).
Instead, each clinic must evaluate its own environ-
ment to choose the right appointment rule. In this
study we use the universal Dome rule introduced by
Cayirli et al. (2012). Their results show that Dome
performs significantly better than some of the

popular traditional appointment rules across a wide
range of environments. A major advantage of the
Dome rule is its “universality”, which means that
once the levels of no-shows (PN), walk-ins (PW),
number of appointments (N), variation of service
times (Cv) and cost ratio of doctor’s time to
patients’ time (CR) are specified, it can be parame-
terised through a planning constant k using a simple
formula1. To the best of our knowledge, this is one
of the best rules in appointment scheduling litera-
ture that offer such flexibility; and its performance
is robust across other settings that include patient
unpunctuality and patient classification (Cayirli &
Yang, 2014).

In this study, besides the Dome rule, we include
the Individual-Block, Fixed-Interval (IBFI) rule as a
benchmark to test the efficacy of our proposed
demand and capacity strategies described in Sections
3.2 and 3.3. Combined with different strategies, a
traditional rule, such as IBFI, is expected to perform
well only in some environments; while Dome can
perform well universally because it can be parame-
terised for different environments. The inclusion of
IBFI as a benchmark is to validate the universality
of Dome when combined with the demand and cap-
acity strategies. The selected appointment rules
represent two alternatives for setting the template
of an appointment system in terms of block sizes
and interval lengths. While IBFI divides a schedule
into fixed, equal intervals, the Dome rule divides a
schedule into variable intervals following a dome
pattern, where intervals increase initially and then
decrease towards the end of a session. The

Table 1. Appointment rules tested.
Appointment
Rules Explanation

IBFI The Individual-Block, Fixed-Interval rule schedules patients individually at fixed intervals, equal to a revised mean
service time (l0). This rule is included as a benchmark, where appointment times (Ai) for i’th patient are calculated as:

A1 ¼ 0; then for i > 1; set Ai ¼ Ai�1 þ l0 for i ¼ 1; . . . ;N:

where l0¼ (1–PNþPW)l

Note that l’ is a revised mean service time adjusted to include the effects of probability of no-shows (PN) and probability
of walk-ins (PW).

Dome The universal dome rule, shortly Dome, introduced by Cayirli, Yang and Quek (2012) results in “dome-shaped” appointment
intervals, where appointment times are calculated as:

Ai ¼ max f0; kði–1Þl0–r0 � �ið Nþ iÞ=ðN–1Þg for i ¼ 1; . . . ;N:

The universality of the rule is achieved through the planning constant k, which is set to different values to control the time
intervals between appointments to represent different appointment rules for different clinics characterised by the
environmental factors, including no-shows (PN), walk-ins (PW), number of appointments per session (N), variability of
service times (Cv), and cost of doctor’s time to patients’ time (CR):

k ¼ f0:9973 – 0:103½0:005765CRð1–PNÞ þ ðCRð1–PNÞÞ–0:3481� – 0:10699½Cv1:257� – 0:627½ðNð1–PNÞÞ–0:8579�
– 0:007574½ðjCRð1–PWÞ –2:143jÞ0:9682– 0:622CRð1–PWÞ� þ 0:004855ðCR0:8913Þg–1:898

Note that both the mean and the standard deviation of service times are adjusted based on the
probabilities of no-shows and walk-ins, such that:

l0 ¼ ð1–PN þ PWÞl

r0 ¼ ð1–PN þ PWÞðr2 þ ðPN–PWÞ2l2Þþ PNð1� PNþ PWÞ2l2þ PWð2r2 þ ð1þ PN–PWÞ2l2Þ
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optimality of the dome pattern has been proven by
several prior optimisation studies (Denton &
Gupta, 2003; Hassin & Mendel, 2008; Kaandorp &
Koole, 2007; Klassen & Yoogalingam, 2009;
Robinson & Chen, 2003), and a recent work by
Jiang, Tang, and Yan (2019) affirms that the opti-
mal intervals remain as a dome pattern under
patient unpunctuality. Readers can refer to Table 1
for the formulae for IBFI and Dome rules to com-
pute the appointment times.

3.2. Demand strategies

In this study, we test alternative strategies for manag-
ing demand variability in clinics, using same-day
scheduling with and without an intervention policy
for no-shows. To illustrate the strategies and their
effects on the underlying appointment templates, we
use a scenario of a clinic with a target to serve T¼ 12
patients per session. The mean service time m per
patient is 15minutes, and the session length (SL)
equals 180minutes to serve 12 patients, ie,
12� 15minutes. The mean numbers of same-day and
advance-booked patients served per session are
assumed as 4 and 8 patients, respectively. Thus the
mean percentage of same-day patients served (PS) –
either as walk-ins or call-ins – is 1/3, ie, 33.3%. The
total number of slots in the appointment book, N,

depends on the demand strategy that allocates the
capacity between the two types of patients. The book-
ing limit (B) is the number of slots set aside for
advance-booked patients, whereas the reservation level
(R) is the number of slots set aside for same-day
patients as call-ins, such that N¼BþR. Assuming a
probability of no-shows (PN) for advance-booked
patients as 20%, B¼ 10 appointments per session are
required for advance-booked patients to serve a mean
of 8 advance-booked patients per session with a mean
of 2 no-shows. Note that PN is calculated over B,
whereas PS is calculated over T. The latter may also
be calculated over B, in which case it is denoted as
PS�¼ 40% to differentiate it from PS. In the case of
same-day patients arriving as walk-ins, no appoint-
ment slots are reserved or set aside for walk-ins such
that R¼ 0 and N¼B. On the other hand, when
same-day scheduling exists, R appointment slots are
reserved and set aside in the appointment book in
anticipation of same-day call-ins.

In the following, we present three alternative
demand strategies using the above scenario and the
benchmark Individual-Block, Fixed-Interval (IBFI)
appointment rule as an example. Figure 1 illustrates
how the IBFI appointment template is altered in
terms of the number of appointment slots and fixed
interval length under each demand strategy, as dis-
cussed in detail below:

Figure 1. Demand strategies illustrated for the IBFI Rule.
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3.2.1. Baseline case (BL)
The baseline case represents the traditional approach
where only advance-booked patients are granted
appointments while same-day patients arrive ran-
domly as walk-ins. The only decision variable in
this case is the booking limit (B) for advance-booked
patients, which is calculated as:

B ¼ T 1� PSð Þ= 1� PNð Þ: (1)

For the scenario with T¼ 12 patients, PS¼ 33%
and PN¼ 20%, B¼ 10 appointment slots are created
daily for advance-booked patients such that a mean of
8 advance-booked patients are served with a mean of
2 no-shows per day. Since same-day patients arrive as
random walk-ins in the baseline case, no reserved slots
are created in the appointment book (R¼ 0) for
same-day patients, such that a total of N¼B¼ 10
appointment slots are created. Figure 1(i) illustrates
the baseline case with the IBFI appointment rule. In
this example, the IBFI appointment rule divides the
session length equally into 10 slots for advance-booked
patients, such that each appointment has a fixed inter-
val of 18minutes (ie, session length SL¼ 180minutes
divided by N¼ 10 appointments). This combination
of IBFI appointment rule with Baseline demand strat-
egy is shortly labelled as IBFI-BL.

3.2.2. Same-day scheduling (SD)
As an improvement over the baseline case, same-
day scheduling controls the clinic variability arising
from random walk-ins. In this implementation, the
appointment schedule adds open slots in anticipa-
tion of same-day patients, who are asked to call for
appointments at the start of each day. This repre-
sents a switch from random walk-ins to scheduled
appointments for same-day call-ins. The total num-
ber of slots (N) for each day includes the booking
limit (B) for advance-booked patients, plus the reser-
vation level (R) for same-day patients calculated as:

R ¼ PS � T: (2)

Using the same scenario in Figure 1, the total
number of slots is computed as N¼BþR¼ 14.
This means that 14 slots are created in the

appointment book, with B¼ 10 slots for advance-
booked patients and R¼ 4 open slots for same-day
call-ins. In this example illustrated in Figure 1(ii),
using the IBFI appointment rule, the session length
is divided equally into 14 slots such that the fixed
interval between appointments equals 12.86minutes,
ie, session length SL¼ 180minutes divided by the
total N¼ 14 appointments. The 4 open slots for
same-day call-ins are reserved and spread evenly
starting from the end slot, such that slots #4, 7, 11,
and 14 are kept open for call-ins. This open slot
strategy is similar to the patterns proposed in prior
studies, where the best slot positions are usually
evenly-spread with some shift towards the end when
high cost ratios are included (Cayirli et al., 2018;
Klassen & Rohleder, 2004). On any day, if there are
three callers, slots #4, 7, and 11 are assigned con-
secutively based on patients’ call times while the last
slot #14 remains open. If there are more than 4 call-
ers, the first four callers are assigned slots #4, 7, 11,
and 14 based on their call times, and subsequent
callers are asked to arrive as walk-ins. This combin-
ation of IBFI appointment rule with Same-Day
scheduling demand strategy is shortly labelled as
IBFI-SD.

3.2.3. Same-day scheduling with intervention for
no-shows (SDI)
This is a more advanced demand strategy that com-
bines same-day scheduling with an intervention pol-
icy for no-shows. This policy requires the clinic to
call advance-booked patients before the start of each
session, eg, one day before, to confirm their
appointments. Cancelled appointments (ie, advance-
booked slots with intended no-shows) are then open
to same-day patients, who are asked to call the
clinic prior to arrivals. As a result, only the expected
shortfall in number of slots to match the expected
same-day demand is added as open slots for call-ins.
The revised reservation level (R0) is calculated as:

R0 ¼ max 0;R–PN � Bf g (3)

where the difference is truncated to zero when the
expected no-shows exceed the expected same-day

Figure 2. Capacity strategies illustrated for the IBFI-SDI–SeasN rule.
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demand (ie, PN> PS�). Using the same scenario in
Figure 1, the booking limit B¼ 10 for advance-booked
patients remains the same as before using Equation
(1). Given that the expected number of same-day
patients is 4 and the expected number of cancelled
slots is 2, the revised reservation level R0 ¼ 2. Hence,
only two open slots are added and reserved for same-
day call-ins as slots #6 and 12, which are evenly-
spread starting from the end slot as illustrated in
Figure 1(iii). This results in a total number of
N¼BþR0 ¼ 12 appointment slots. Using the IBFI
appointment rule, these 12 slots are spread evenly
through the session length of 180minutes, with a fixed
interval of 15minutes each.

On a particular day, after calling the
advance–booked patients to confirm or cancel their
appointments, slot #2 may become available in add-
ition to the added slots #6 and 12. If five patients call
for appointments on that day, the sequencing of avail-
able slots to call-ins are such that slots #2, 6 and 12
are assigned to the first three callers based on their
call times, and the last two callers are asked to arrive
randomly as walk-ins. As illustrated in this example,
the actual numbers of same-day patients and cancella-
tions can vary every day, even though the averages are
4 and 2 patients per day, respectively. This study tests
both cases where the average number of same-day
patients is more or less than average no-shows or can-
cellations. In both cases, the goal is to match the
expected number of same-day call-ins to the expected
total number of cancelled and added open slots, and
thus reduce the chance of random walk-ins. As such,

this strategy addresses both sources of variability -
walk-ins and no-shows simultaneously, and is hypoth-
esised to further improve the clinic performance. This
combination of appointment rule and demand strategy
is shortly labelled as IBFI-SDI.

3.3. Capacity strategies

The proposed capacity strategies for managing clinic
variability involve seasonal adjustments to the daily
capacity, ie, the number of appointments, for same-
day and advance-booked patients. To cater to the
seasonal variations of same-day demand, there are
two alternatives. One alternative is to simply ignore
the seasonal fluctuation and fix the daily number of
appointments for same-day patients and advance-
booked patients, based on the mean demands. This
capacity strategy is shortly labelled as FixN strategy.
This means that no seasonal adjustment is made,
with the “mean” booking limit B for advance-
booked patients, and the “mean” reservation level R
(or R0) for same-day patients fixed for the entire
planning horizon (ie, t¼ 1,2, ., H). For the illus-
trated scenario in Section 3.2 with T¼ 12,
PS¼ 33.3% (or PS�¼40%), and PN¼ 20%, this
means that the three demand strategies in Figure 1
offer a fixed B¼ 10 daily appointments for advance-
booked patients and a fixed reservation level of
R¼ 0 or 4 (or R0¼ 2) daily slots for same-day
patients without (or with) the no-show intervention.

The second alternative is to adjust the appoint-
ment schedule daily in order to better match the

Table 2. Demand and capacity strategies proposed.
Demand Strategies Explanation

Baseline (BL) Baseline strategy where same-day patients arrive randomly as walk-ins (ie, without appointments).
Booking limit (B) for advance-booked patients is calculated as:

B ¼ Tð1� PSÞ=ð1� PNÞ (1)

A total N¼B slots are created in the appointment book.
Same-day Scheduling (SD) Same-day patients are scheduled as “call-ins”, instead of arriving randomly as walk-ins. In addition to the book-

ing limit (B) for advanced-booked patients [Eq. 1], some slots are added and left open for same-day patients,
called the reservation level (R), calculated as:

R ¼ PS � T (2)

A total of N¼Bþ R slots are created in the appointment book to accommodate both types of patients.
Same-day Scheduling with

Intervention (SDI)
Same-day scheduling is combined with an intervention policy for no-shows. Advance-booked patients are called

a day before their appointments to confirm their attendance, and cancelled appointments are released to
same-day call-ins. This additional information is included by revising the reservation level R0 in Eq. 2 as follows:

R0 ¼ maxf0; R–PN � Bg (3)

where the difference is truncated to zero when expected no-shows exceed expected same-day call-ins. A total of
N¼Bþ R0 slots are created in the appointment book to accommodate both types of patients.

Capacity Strategies Explanation

No Seasonal Adjustments of
Capacity (FixN)

The capacity in terms of the booking limit B for advance-booked patients and the reservation level (R or R0) for
same-day patients is fixed for all days, regardless of the seasonal variations in same-day demand. The mean
value of PS is used in Eq. 1–3 above.

Seasonal Adjustments of
Capacity (SeasN)

Booking limit for advance-booked patients (Bt) and reservation level (Rt or Rt0) for same-day patients are adjusted
daily for day t based on the seasonal variations in proportion of same-day patients (PSt) over the planning
horizon t¼ 1,2, .., H. This means N, B, PS, R (or R0) in Eq. 1–3 are computed daily as Nt, Bt, PSt, Rt (or Rt0) for
day t. Given that the target number of patients per session (T) is fixed, allocating more capacity for
advance-booked patients means less capacity for same-day patients on day t (or vice versa).
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capacity with the seasonal same-day demand (See
Figure 2). This capacity strategy is shortly labelled
as SeasN strategy. For the same scenario in Section
3.2, the number of available appointment slots for
advance-booked patients, ie, the booking limit is
adjusted daily as Bt ¼ T(1�PSt)/(1�PN) to set aside
different daily capacity for the varying mean num-
ber of same-day patients, with a mean of PSt �T,
where PSt is the mean proportion of same-day
patients on day t. With same-day scheduling, differ-
ent numbers of open slots are also added daily for
same-day patients depending on whether no-show
intervention is implemented. When same-day sched-
uling is implemented without no-show intervention,
Rt¼ PSt �T slots are added for same-day call-ins on
day t. When same-day scheduling is implemented
with no-show intervention, R0

t ¼ max{0, Rt–PN�Bt}
slots are added for same-day call-ins on day t.
Given that the target number of patients served per
session (T) is fixed, allocating more slots Bt to
advance-booked patients leaves less capacity for
same-day patients on day t, and vice versa. Our
approach is to allocate the fixed daily capacity T in
favour of same-day patients by changing Bt against
the direction of same-day demand such that the
number of slots for advance-booked patients is
reduced (increased) during high (low) seasons of
same-day demand. Using the SeasN capacity strat-
egy with IBFI appointment rule and intervention for
no-shows demand strategy in Figure 2 with T¼ 12
patients, PN¼ 0.2, but seasonal probability of same-
day patients PS1¼0.4, and PS2¼0.2 for days t¼ 1
and 2, B1¼12(1� 0.4)/(1� 0.2)¼9 appointments for
advance-booked patients and R0

1¼max{0,
4.8� 0.2�9}¼ 3 open slots for same-day call-ins are
created for day t¼ 1. Similarly, B2¼12(1� 0.2)/
(1� 0.2)¼12 and R0

2¼max{0, 2.4� 0.2�12}¼ 0
appointments are created for advance-booked
patients and same-day call-ins, respectively, for day
t¼ 2. Obviously, this adjustment reduces (increases)
the number of slots Bt for advance-booked patients
during high (low) seasons of same-day demand.

The above demand and capacity strategies are
tested using the two appointment rules in Table 1,
namely the IBFI and Dome rules. Once the total
number of appointments N (or Nt) are determined
for different demand and capacity strategies, either
appointment rule can be used to set the appoint-
ment times. Table 2 provides a quick summary of
the 3 demand strategies and 2 capacity strategies
proposed in this study.

4. Methodology

4.1. Experimental design

As discussed in Section 3, our decision factors
include demand and capacity strategies for manag-
ing variability, and these are tested using the IBFI
and Dome rules. The resulting appointment systems
are tested with a common dataset. Pilot simulation
runs are used to identify the environmental factors
that should be included in the dataset. These factors
include demand seasonality (SEAS), probability of
same-day demand (PS), probability of no-shows or
cancellations (PN), and the cost ratio (CR) that indi-
cates the clinic’s preference in terms of the relative
valuation of doctor’s time to patients’ time. Clinic
size and service time variability are excluded as they
do not significantly affect the relative performance
or choice of the appointment systems. The environ-
mental factors and factor levels are carefully chosen
to cover the full range of environments reported in
past studies (Cayirli, Veral, & Rosen, 2008; Cayirli
& Gunes, 2014; Klassen & Rohleder, 1996), and fur-
ther justification for the factor levels is discussed in
Sections 4.2 and 4.3. Table 3 summarises the com-
plete experimental design, including the decision
rules and environmental factors, as well as the factor
levels and abbreviations used. In total, twelve
appointment systems are tested (combinations of 2
appointment rules � 3 demand strategies � 2 cap-
acity strategies) under 24 scenarios (2 SEAS� 4PS-
PN� 3 CR) in the dataset.

Table 3. Experimental design.
i. Appointment Systems

Demand strategy - Capacity strategy Abbreviations

Baseline (BL) - Fixed N IBFI-BL-FixN Dome-BL-FixN
Same-day scheduling (SD) - Fixed N IBFI-SD-FixN Dome-SD-FixN
Same-day scheduling with intervention (SDI) - Fixed N IBFI-SDI-FixN Dome-SDI-FixN
Baseline (BL) - Seasonal N IBFI-BL-SeasN Dome-BL-SeasN
Same-day scheduling (SD) - Seasonal N IBFI-SD-SeasN Dome-SD-SeasN
Same-day scheduling with intervention (SDI) - Seasonal N IBFI-SDI-SeasN Dome-SDI-SeasN

ii. Environmental factors

Seasonality of same-day demand (SEAS)a Low (Cv¼ 0.175) High (Cv¼ 0.304)
Probabilities of same-day demand & no-shows (PS-PN)b 20–0%, 20–20%, 10–20%, 20–10%
Cost ratio (CR) 1, 5, 20
aSee Table 4 for details on SEAS.
bPS if calculated over T, PS� if calculated over N. PN is the probability of advance-booked patients to can-
cel or miss an appointment; it is assumed that same day call-ins always show up (PN¼ 0).
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4.2. Simulation model

We use computer simulation to test the appoint-
ment systems under a variety of environments. The
simulation model is developed with ARENA. The
clinic is simulated with a target session length of
225minutes, representing a single-server system
where patients see a doctor for consultation. The
target number of patients is fixed at T¼ 15 per ses-
sion. Lognormal service times are assumed for both
advance-booked and same-day patients with a mean
service time m of 15minutes and a coefficient of
variation of 0.5 (ie, r¼ 7.5min.), consistent with
empirical data in past research (Cayirli et al., 2008;
Klassen & Rohleder, 1996). Our simulation model is
run over 120,000 daily sessions for each of environ-
ments tested.

All advance-booked patients and same-day call-
ins are assumed to arrive punctually for their
appointments. The mean no-show or cancellation
probability PN of advance-booked patients is tested
between 0 to 20%, representative of a fairly
respected and well-operated appointment system. In
contrast, the no-show probability of same-day call-
ins is realistically zero or close to zero as it is highly
unlikely that a patient granted an immediate
appointment will result in a no-show. This is in par-
allel with empirical studies that documented signifi-
cant reduced no-show rates for clinics that shifted
towards same-day scheduling (Johnson, Mold, &
Pontious, 2007; Murray & Tantau, 2000).

The mean probability, ie, proportion, of same-
day demand PS is tested at 10% and 20% as most
clinics have more follow-up (ie, advance-booked)
patients on average than urgent (ie, same-day)
patients. This study tests both scenarios with (PS��
PN and PS�� PN), where the average number of
same-day patients is larger or smaller than the aver-
age number of no-shows or cancellations. In line
with the growth of open access systems, it is
assumed that all walk-ins who arrive before the clos-
ing-time of the clinic are accepted. No walk-ins are
denied entry, even though they are given lower pri-
ority in the queue compared to booked patients.
Before he or she is served, a walk-in is made to wait
for a maximum of three booked patients served
from the queue. However, if only walk-ins are wait-
ing when the doctor becomes idle, they will be seen
on a first-come, first-served basis. We believe that
this policy is close to what is applied in practice.

Furthermore, it is assumed that there is no reneging
or balking of patients. This means that all patients,
advance-booked and same-day, are served on their
day of arrival using overtime, if necessary.

ln our simulation model, demand is modelled at
the time of patients’ arrivals at the clinic, and not at
the time when appointments are requested. This
simplification allows a comprehensive analysis at
micro level, but ignores the indirect wait times for
appointments due to seasonal capacity adjustments.
Given a fixed daily target number of patients, when
higher capacity is reserved for same-day patients at
peak demand, the indirect wait times of advance-
booked patients for available appointment slots may
increase, and vice versa. Investigation of both in-
clinic and indirect wait times simultaneously in a
fully-integrated model is a possible future extension.

In this study, same-day demand is modelled as a
Poisson process with a seasonal pattern that varies
by the day of the year, consistent with past research
(Cayirli & Gunes, 2014). The mean number of
same-day patients for day t is calculated as kt¼ k �
Ii
m � Ij

w, where Ii
m and Ij

w represent the monthly
and weekly seasonality indices for month i of the
year, and day j of the week. We simulated a plan-
ning horizon of one year, with H¼ 240 days
(i¼ 12months a year, j¼ 5 work-days a week,
assuming a seasonal pattern that repeats itself over
the four weeks in each month). Table 4 tabulates
the details on the intra-weekly and monthly season-
ality indices that are used for modelling the demand
seasonality. These are based on the same seasonal
indices observed and tested by Cayirli and Gunes
(2014), including the two extremes of intra-weekly
and monthly seasonality; ie, IW, MO¼ 1, 1 and 2,
2. This results in “low” and “high” demand season-
ality with coefficients of variation Cv¼ 0.175 and
0.304, respectively. The following example illustrates
how the demand is derived for an environment with
same-day demand of “low” intra-weekly (IW) and
monthly (MO) seasonality levels (SEAS¼ 1,1). Given
the daily target number of patients T¼ 15 and
PS¼ 0.2, the mean number of same-day patients
k¼ 3 per day. For day t¼ 15 which corresponds to
the third Friday of January (i¼ 1 and j¼ 5), the
daily expected same-day demand is computed as
k15¼3.2775, using indices I1

m¼1.15 and I5
w¼0.95

from Table 4. The proportion of same-day patients
expected on day t¼ 15 can then be computed as
PS15 ¼ k15/T¼ 0.2185.

Table 4. Monthly (MO) and intra-weekly (IW) indices for modeling demand seasonality.
SEAS Low (1, 1) with Cv5 0.175:

MO: Ii¼ 115-110-120-100-85-90-80-85-95-100-105-115% for months, I¼ 1, … , 12; and
IW: Ij ¼ 120-95-85-105-95% for days, j¼ 1, … , 5 of the week.
High (2, 2) with Cv5 0.304:
MO: Ii ¼ 125-115-140-110-75-80-70-75-85-105-100-120% for months, i¼ 1, … , 12; and
IW: Ij ¼ 130-85-75-117.5-92.5% for days, j¼ 1, … , 5 of the week.
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4.3. Performance measures

To evaluate the performance of the appointment
systems, this study uses the total cost of the clinic
represented as follows:

MinTC ¼ E W½ �Þ þCR pE O½ � þ E I½ �ð Þ (4)

where E[W] is the mean wait time per patient
(advance-booked and same-day patients combined),
E[I] is the mean doctor’s idle-time per patient and
E[O] is the mean doctor’s overtime per patient. The
wait time of a booked patient - either booked in
advance or same-day is calculated from the time of
appointment, given that all booked patients are
assumed to be punctual. On the other hand, the
wait time of a walk-in is calculated from the time of
his or her arrival since there is no appointment time
for walk-in. Idle-time is the time that the server is
not serving during session and overtime is the extra
time required to serve all patients beyond the target
session length. Both physician-related measures, E[I]
and E[O], are on a per patient basis where the total
idle-time (or overtime) in a session is divided by the
number of patients seen. The parameter CR repre-
sents the relative value of the doctor’s time to
patients’ time. In this study, we use cost ratios
CR¼ 1, 5 and 20 to represent clinics with different
preference, in terms of the relative value of doctor’s
time to patients’ time. Patient-centred clinics with
CR closer to 1 would favour reducing the patients’
wait times, whereas physician-centered clinics with
CR closer to 20 would prefer reducing the doctor’s
idle-time and overtime. Between the two extremes,
clinics with CR closer to 5 would favour a more bal-
anced approach reducing both patients’ wait time
and doctor’s idle-time and overtime. The chosen
cost ratios are similar to those used in prior litera-
ture (Cayirli & Gunes, 2014). The other cost param-
eter, p, is the cost premium of overtime and is fixed
at 1.5 in this study to represent the common prac-
tice where overtime is penalised 50% over regular
time. The overall objective is to minimise the total
system cost (TC) including all trade-offs between
patients’ wait times and doctor’s idle-time
and overtime.

5. Results and discussion

We present and discuss our results in three parts. In
Section 5.1, we compare the performance of the two
appointment rules, namely IBFI and Dome. In
Section 5.2, we compare the performance of the
demand and capacity strategies. As described in
Section 3, demand strategies include a baseline case
(BL), same-day scheduling without or with the no-
show intervention (ie, SD and SDI), whereas
capacity strategies indicate whether seasonal adjust-
ments are made on the daily number of slots in
expectation of seasonal demand (FixN vs. SeasN
policies). Finally, in Section 5.3, we evaluate the
impact of the environmental factors (ie., SEAS, PS,
PN, and CR) on the improvements from the
demand and capacity strategies.

5.1. Performance of IBFI and Dome rules

First, we compare the performance of the IBFI and
Dome rules, and observe that the environments and
capacity strategies affect only the relative perform-
ance but not the dominance of Dome over IBFI.
The results for the eight environments and two cap-
acity strategies are aggregated to simplify the pres-
entation. Table 5 tabulates the total cost
performance of the IBFI and Dome rules under the
three cost ratios, namely TC1, TC5, and TC20 for
CR¼ 1, 5 and 20, respectively. The results are sepa-
rated by different demand strategies to reveal any
possible interactions with appointment rules.

As shown in Table 5, Dome performs better than
IBFI across all three demand strategies, with
improvements, ranging from 0% to 19% across dif-
ferent scenarios. There are some interaction effects
with the cost ratio as well as the demand strategy.
The results show that the total cost improvements
due to Dome occur with higher percentages at the
extreme cost ratios. This suggests that patient- and
physician-centered clinics with extreme cost ratios
(CR¼ 1, 20) generally have more to benefit by
switching to the Dome rule, compared with clinics
with moderate cost ratio (CR¼ 5). The only excep-
tion where Dome and IBFI perform almost equally

Table 5. Total cost performance of IBFI vs. Dome Rulea (All Environments).
Demand strategy Appointment system TC1 TC5 TC20

i. Baseline Case (BL) IBFI-BL 20.95 39.68 109.91
Dome-BL 18.65 37.51 89.54
% Imp (Dome/IBFI) 10.99% 5.46% 18.53%

ii. Same-Day Scheduling (SD) IBFI-SD 19.45 35.76 96.96
Dome-SD 16.00 34.65 85.09
% Imp (Dome/IBFI) 17.73% 3.13% 12.24%

iii. Same-Day Scheduling w/ Intervention (SDI) IBFI-SDI 18.07 33.39 90.84
Dome-SDI 15.28 33.48 82.03
% Imp (Dome/IBFI) 15.46% –0.28% 9.70%

Overall Improvement of Dome over IBFIb Avg. % Imp (Dome/IBFI) 14.73% 2.77% 13.49%
aAll values are averaged across the capacity strategies: FixN and SeasN.
bAveraged across the demand strategies: BL, SD, and SDI.
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well occurs under SDI demand strategy when CR ¼
5. Apart from this particular case, Dome always out-
performs IBFI significantly and it is the preferred
appointment rule for all scenarios tested in
our study.

In sum, our results affirm the universal domin-
ance of the Dome rule tested under different cap-
acity and demand strategies. The magnitude of the
improvement depends mainly on the cost ratio
chosen for the valuation of doctor’s time relative to
patients’ time, as well as the demand strategy; yet it
is not sensitive to the choice of the capacity strategy
used. The overall improvements due to Dome aver-
aged across all demand and capacity strategies are
14.73%, 2.77%, and 13.49% for TC1, TC5, and
TC20, respectively (see Table 5). Unlike IBFI which
performs well in specific scenarios, the Dome rule
performs well across different environments and
exhibits its dominance over the traditional appoint-
ment rules.

5.2. Performance of demand and
capacity strategies

In this section, we evaluate changes in clinic per-
formance due to the demand and capacity strategies
implemented over the Dome rule, given its domin-
ance over IBFI in Section 5.1. Table 6 presents the
aggregated total cost results averaged over the eight
environments for the appointment systems, namely
Dome-BL, Dome-SD and Dome-SDI, for both FixN
and SeasN capacity strategies. The total cost
improvements (%) due to capacity adjustments are
indicated as Seas/FixN, comparing Dome-SeasN vs.
Dome-FixN under the three different demand strat-
egies, ie, BL, SD, and SDI. The percentage improve-
ments are provided for each level of demand
strategy, ie, same-day scheduling over the baseline
case (SD/BL), and the incremental improvement

due to implementing the intervention policy for no-
shows over same-day scheduling(SDI/SD). The total
improvement due to same-day scheduling with no-
show intervention over the baseline case (SDI/BL) is
also provided for the total benefit of implementing
both demand strategies together.

As shown in Table 6, the improvements due to
capacity adjustments are very small around 1–2%. It
is observed that implementing capacity adjustments
is increasingly beneficial under the more advanced
demand strategies (ie, SDI> SD>BL), indicating
some interaction effects between demand and cap-
acity strategies. There are also some variations in
improvements due to the effect of cost ratio, yet the
overall variations are minor and practically insignifi-
cant. The overall percentage improvements for cap-
acity adjustments averaged over the three demand
strategies are 1.71%, 1.33%, and 1.47%, indicating
the largest benefits for patient-centered clinics
with CR¼ 1.

In terms of demand strategies, larger improve-
ments are observed for shifting from the baseline
case to more advanced strategies with same-day
scheduling. As shown in Table 6, the overall total
cost improvements for shifting from the baseline
case to same-day scheduling (SD/BL) are around
14.18%, 7.64%, and 4.97% as the cost ratio increases
(averaged across the FixN and SeasN capacity strat-
egies). Our results show that same-day scheduling is
always better than the baseline case under all scen-
arios when implemented with the Dome rule.
Therefore, rather than letting same-day patients
walk into a clinic randomly, advising them to call
for same-day appointments improves clinic per-
formance significantly. The incremental benefits due
to the intervention policy for no-shows (SDI/SD)
are around 3–4%, such that the combined benefits
(SDI/BL) are 18.07%, 10.74%, and 8.39% for CR¼ 1,
5 and 20, respectively (See Table 6). This suggests

Table 6. Total cost performance of demand and capacity strategies using Dome rule.
(All Environments)
Demand strategy Appointment system TC1 TC5 TC20

i. Baseline (BL) Dome-BL-FixN 18.77 37.68 90.09
Dome-BL-SeasN 18.52 37.34 88.99
% Imp (Seas/FixN) 1.35% 0.90% 1.21%

ii. Same-Day Scheduling (SD) Dome-SD-FixN 16.13 34.81 85.68
Dome-SD-SeasN 15.88 34.49 84.49
% Imp (Seas/FixN) 1.56% 0.92% 1.38%

iii. Same-Day Scheduling w/ Intervention (SDI) Dome-SDI-FixN 15.45 33.85 82.78
Dome-SDI-SeasN 15.10 33.12 81.28
% Imp (Seas/FixN) 2.23% 2.17% 1.81%

Overall Improvement of Capacity Strategiesa Avg. % Imp (Seas/FixN) 1.71% 1.33% 1.47%
Overall Improvement of Demand Strategiesb Avg. % Imp (SD/BL) 14.18% 7.64% 4.97%

Avg. % Imp (SDI/SD) 4.53% 3.36% 3.59%
Avg. % Imp (SDI/BL) 18.07% 10.74% 8.39%

Total Improvement of Demand & Capacity
Strategies Combined

19.55% 12.11% 9.78%

Total Improvement of Demand & Capacity
Strategies plus Dome Combined

28.33% 16.94% 26.36%

aAveraged across demand strategies: BL, SD and SDI.
bAveraged across capacity strategies: FixN and SeasN.
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that fine-tuning the appointment systems through
more advanced demand strategies is beneficial in
improving clinic performance. However, these
improvements show diminishing returns as the cost
ratio increases. It also indicates that patient-centered
clinics (CR¼ 1) have the most to benefit from the
demand strategies tested over the Dome rule.

Finally, the total improvement achieved in total
cost due to switching from Dome-BL-FixN to
Dome-SDI-SeasN, including the benefits of both
demand and capacity strategies, is 19.55% (ie,
TC1¼ 18.77 vs. 15.10), 12.11% and 9.78% for cost
ratios CR¼ 1, 5 and 20, respectively. If we extend to
include the benefits of Dome, ie, switching from
IBFI-BL-FixN to Dome-SDI-SeasN, the total cost
improvements are 28.33%, 16.94%, and 26.36% as
the cost ratio increases.

Although omitted for sake of brevity, the same
analysis is conducted using the IBFI rule. The total
improvement due to both demand and capacity
strategies, measured as the change from IBFI-BL-
FixN to IBFI-SDI-SeasN is 14.88%, 16.92%, and
18.37% for CR¼ 1, 5 and 20, respectively. Thus the
improvements are more uniform under the IBFI
rule. Similar to Dome, improvements due to cap-
acity adjustments are only marginal around 1–2%
for IBFI. These findings affirm the advantages of
demand and capacity strategies regardless of the
underlying appointment template used. Overall, we
conclude that the largest improvements occur by
combining Dome with demand strategies, whereas
capacity adjustments provide relatively marginal
benefits for the scenarios investigated in our study.

5.3. Impact of environmental factors

We expand the analysis in Sections 5.1 and 5.2 to
individual environments in order to analyse the
impact of different environmental factors, including
demand seasonality (SEAS), probability of same-day
demand (PS), and probability of no-shows or can-
cellations in case of intervention (PN), and cost
ratio (CR). The goal is to identify the environments
under which the more advanced appointment sys-
tems are most beneficial and thus worthwhile to
implement despite their added complexity. We
hereby limit our environmental analysis to the
Dome rule, which has consistently outperformed
IBFI under all scenarios, as discussed in Section 5.1.
The results for the demand and capacity strategies
are presented in Sections 5.3.1 and 5.3.2, respect-
ively, for the eight clinical environments tested in
our simulation experiments. Tables 7 and 8 tabulate
the corresponding results for specific combinations
of SEAS, PS-PN that define a specific environment
(eg, Env#1: SEAS¼High, PS¼ 20% and PN¼ 0%).

5.3.1. Impact of environmental factors on
demand strategies
In Table 7, we present the total cost (%) improve-
ments due to the demand strategies calculated for
the effects of same-day scheduling over the baseline
case (SD/BL), same-day scheduling with no-show
intervention over the baseline case (ie, SDI/BL), as
well as the incremental effect of no-show interven-
tion over same-day scheduling (ie, SDI/SD). For
sake of simplicity, the results for the two capacity
strategies (ie, FixN and SeasN) are aggregated as
their interactions with the demand strategies and
environmental factors are parallel. We discuss the
effects of the environmental factors (SEAS, PN-PS,
CR) on each demand strategy separately as follows:

5.3.1.1. Demand strategy: Same-day scheduling
(SD). Same-day scheduling is beneficial under all
environments tested in our simulation experiments,
although the benefits vary widely depending on the
specific environment. The total cost improvements
(SD/BL) range from 2% to 18% (See Table 7 and
Figure 3(i)). As one would expect, the higher the
probability of same-day demand (PS), the higher the
benefits. However, the effect of PS is also mitigated
by the existence of no-shows (PN). This is observed
in the ranking of SD/BL improvements from highest
to lowest in environments with PS-PN levels of
20–0%, 20–10%, 20–20%, and 10–20%. Thus there
is more value in same-day scheduling when higher
number of patients are switched from walk-ins to
call-ins, especially when there is little or no relief
from no-shows to absorb the random congestion
from walk-ins. Furthermore, these improvements
decrease as the cost ratio (CR) increases, and this is
parallel for all environments tested (Figure 3(i)).
This suggests that it is more beneficial to implement
same-day scheduling with the Dome rule in patient-
centered clinics that place high value on patients’
time, relative to doctor’s time. On the other hand,
the effect of demand seasonality (SEAS) on the
impact of same-day scheduling is very minor and
practically insignificant. Overall, we conclude that it
is most beneficial to implement same-day schedul-
ing in clinics, where the expected PS-PN difference
is high and CR is low, yet SEAS matters little.

5.3.1.2. Demand strategy: Same-day scheduling
with no-show intervention (SDI). The second
demand strategy is same-day scheduling implemented
with no-show intervention. Table 7 tabulates the
incremental benefits of no-show intervention calculated
over same-day scheduling (ie, SDI/SD), as well as the
cumulative effect of same-day scheduling with no-show
intervention over the baseline case (ie, SDI/BL). Since
SD/BL is already discussed in Section 5.3.1.1, we hereby
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focus our discussion on the incremental benefits (see
Figure 3(ii)). First of all, the incremental benefits due to
no-show intervention are around 3–7% (SDI/SD) with
the combined benefits around 7% to 21% over the
baseline case (SDI/BL). Note that this excludes Env#1
and #5, where the effect of no-show intervention is
zero since appointment systems with or without inter-
vention converge when PN¼ 0. Environments with
PS-PN¼ 10–20%; 20–20%, and 20–10% result in
decreasing benefits from no-show intervention,
although some interaction is observed with the effect of
the cost ratio. When PS-PN¼ 10–20% and 20–20%, all
call-ins are buffered solely by released slots from cancel-
lations, with no open slots added. PS-PN¼ 10–20%
also leads to higher benefits from no-show intervention
than 20–20%, as the chance of matching demand and
capacity improves when there are more expected can-
celled slots than call-ins (PN>PS). This decreases the
probability of (excess) same-day demand arriving as
random walk-ins, considering the daily fluctuations
around the average PN and PS. On the other hand,
when PS-PN¼ 20–10%, half of the expected call-ins are
buffered by added open slots and the other half by

possible cancellations. The benefit of no-show interven-
tion is thus lower when PN is lower, and when PS>PN
as part of the call-ins is buffered by added open slots.
The effect of CR on no-show intervention is fairly uni-
form, although exceptions occur for CR¼ 5, where the
benefits are lowest for PS-PN¼ 20–20% instead of
20–10% (see Figure 3(ii)). Finally, the effect of SEAS on
the improvements due to no-show intervention is not
significant. These findings suggest that the choice of
no-show intervention policy is mainly dependent on
PS-PN combination, and it can be made independent
of SEAS and CR.

5.3.2. Impact of environmental factors on capacity
strategies
Table 8 presents results on the value of capacity
strategies under all environments and across all
demand strategies (ie, BL, SD, SDI). The total cost
(%) improvements due to implementing seasonal N
are shortly denoted as SeasN/FixN. This approach
allows a complete analysis of the interaction effects
among the environmental factors and decision fac-
tors. Our findings indicate that there are lower

Figure 3. Total cost ımprovements (%) due to demand strategies (by Environment). i. Effect of same-day scheduling over base-
line case (SD/BL). ii. Incremental effect of no-show intervention (SDI/SD).
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benefits from implementing capacity strategies com-
pared with demand strategies for the factor levels
tested in our study. Specifically, the percentage
improvements in total cost (ie, SeasN/FixN) range
from around 0 to 6%. Consistent with our aggregate
results discussed in Section 5.2, seasonal capacity
adjustment is increasingly more beneficial under the
more advanced demand strategies (see Table 8 and
Figure 4). The improvements due to seasonal cap-
acity adjustments also increase in environments
with high SEAS and high PS, regardless of the
demand strategy used. This is expected as higher
variations of seasonal demand2 offer greater
potential to seasonally adjust the daily capacity for
same-day patients. On the other hand, total cost
improvements are generally negligible in scenarios
with low SEAS and/or low PS. In such cases, it is best
not to over-react and implement capacity adjustment
to small seasonal changes in PS, which can, in turn,
lead to negative improvements (as in Env#5).

We next focus our attention on scenarios where
seasonal capacity adjustments provide significant
improvements of larger than 1–2%. Specifically,
these include Env#1, #2 and #4 (high SEAS, high

PS) under all three demand strategies plus Env#6
(low Seas, PS-PN¼ 20–20%) under SDI. Figure 4
shows that implementing a more advanced demand
strategy, such as SDI versus BL, can reinforce the
benefits of seasonal capacity adjustments in environ-
ments with high demand uncertainty due to high
probability of same-day patients and/or no-shows.
This can be explained by the fact that demand strat-
egies, such as SD and SDI, address only the demand
variability of same-day patients and no-shows; and
thus combining it with seasonal capacity adjust-
ments address both demand and capacity variability.
With less advanced demand strategies such as BL
and SD, environments Env#2 and #6 with
PS-PN¼ 20–20% may still suffer excessive residual
volatility from walk-ins and/or no-shows, and thus
realise much lesser benefit from capacity adjust-
ments relative to SDI in Figure 4(ii).

In summary, we observe that PS and SEAS are
the most critical factors for determining the success
of capacity adjustments in appointment system
design. In contrast, the cost ratio of doctor’s to
patients’ time has a less definite influence on the
capacity strategies. In environments with high

Figure 4. Total cost improvements (%) due to capacity strategies (by Environment). i. Baseline case (BL) demand strategy. ii.
Same-day scheduling with no-show intervention (SDI) demand strategy.
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seasonal variations and high probabilities of same-
day patients and no-shows, combining same-day
scheduling and no-show intervention with capacity
adjustment offers the greatest benefits.

6. Conclusions

The main goal of this study is to investigate strategies
for managing clinic variability in order to better match
demand and capacity through refinements in appoint-
ment systems by implementing demand and/or cap-
acity strategies. Demand strategies include same-day
scheduling with or without intervention for no-shows.
Same-day scheduling requires the clinic to ask same-
day patients to call for appointments before arrivals,
as opposed to letting them arrive as random walk-ins.
No-show intervention requires the clinic to call
advance-booked patients a day before their appoint-
ments and use cancelled slots for same-day demand.
Finally, capacity strategies require that seasonal adjust-
ments are made to the daily number of slots allocated
between same-day and advance-booked patients.
These demand and capacity strategies are illustrated
over two different appointment rules, IBFI and Dome,
and the resulting appointment systems are evaluated
based on the expected total cost of the system, meas-
ured as a weighted sum of patients’ wait times and
doctor’s idle-time and overtime.

Using simulation, we tested twelve appointment
systems as different combinations of appointment
rules, demand and capacity strategies, under eight
environments and three cost ratios. Our results indi-
cate that the choice of an appointment rule, which
sets the template defining the combination of block
size and appointment interval, is a major decision.
The universal Dome rule developed by Cayirli et al.
(2012), which is by design adjustable to specific
characteristics of any clinic, always outperforms
IBFI, and thus provides a solid foundation upon
which more advanced demand and capacity strat-
egies can be built. This affirms the universality of
the Dome rule to be easily parameterised to perform
well across a wider range of environments than
tested originally. The second major decision to
improve clinic performance is to reduce random
walk-ins as much as possible through same-day
scheduling. Extra, but smaller gains are achievable
through implementing same-day scheduling with
no-show intervention, a combined strategy that suc-
ceeds in reducing the demand variability further.
Finally, capacity strategies help improve the system
performance, albeit with diminishing benefits for
the factor levels tested in our experiment.

An extended analysis is provided on the effects of
different environmental factors on the improve-
ments from different demand and capacity

strategies. Demand strategies (ie, same-day schedul-
ing and intervention for no-shows) are mainly
affected by the probability of same-day demand
and/or the probability of no-shows or cancellations,
and are much less affected by demand seasonality.
On the other hand, capacity strategy is mainly
affected by the probability of same-day demand and
demand seasonality, with some interfering effect by
no-show probability. Cost ratio does affect the
expected benefits from both the demand and cap-
acity strategies, although its effect is not always easy
to generalise across different environments. Finally,
there are some interaction effects between the
demand and capacity strategies, which indicate that
maximum benefits occur when the most advanced
demand strategy combining same-day scheduling
and no-show intervention is implemented together
with seasonal capacity adjustments for environments
with high same-day demand and high seasonality.

In sum, our findings show that the healthcare man-
agers have several levers to manage clinic variability
and thus improve performance. This may require
decision-makers to think beyond the traditional
appointment rules, and adopt more invasive
approaches for matching demand to capacity. Fine-
tuning the appointment rules by adding open slots for
same-day appointments and/or adjusting daily capacity
for seasonal demand will naturally result in more
complex appointment systems. Some of these
approaches, like the intervention policy for no-shows,
will also require extra efforts and resources in imple-
mentation. Therefore, when determining the best strat-
egies, each clinic has to carefully evaluate the expected
benefits and costs, given its own clinical environment.
Future work may test new appointment systems under
a wider set of environments, including patient and
physician unpunctuality, heterogeneous service times,
different no-show or walk-in rates for different patient
classes, and patient’s preferences. Multi-server and
multi-phase systems could also be modelled to test the
suggested appointment systems under more complex
clinical environments.

Notes

1. An online tool for the Dome rule can be reached at
http://www.appointmentschedulingtool.com/.

2. Variation or standard deviation of seasonal demand
is a product of the seasonal Cv and probability of
same-day patients PS.
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