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a b s t r a c t

Context: SQL injection (SQLI) and cross site scripting (XSS) are the two most common and serious web
application vulnerabilities for the past decade. To mitigate these two security threats, many vulnerability
detection approaches based on static and dynamic taint analysis techniques have been proposed. Alter-
natively, there are also vulnerability prediction approaches based on machine learning techniques, which
showed that static code attributes such as code complexity measures are cheap and useful predictors.
However, current prediction approaches target general vulnerabilities. And most of these approaches
locate vulnerable code only at software component or file levels. Some approaches also involve process
attributes that are often difficult to measure.
Objective: This paper aims to provide an alternative or complementary solution to existing taint analyz-
ers by proposing static code attributes that can be used to predict specific program statements, rather
than software components, which are likely to be vulnerable to SQLI or XSS.
Method: From the observations of input sanitization code that are commonly implemented in web appli-
cations to avoid SQLI and XSS vulnerabilities, in this paper, we propose a set of static code attributes that
characterize such code patterns. We then build vulnerability prediction models from the historical infor-
mation that reflect proposed static attributes and known vulnerability data to predict SQLI and XSS vul-
nerabilities.
Results: We developed a prototype tool called PhpMinerI for data collection and used it to evaluate our
models on eight open source web applications. Our best model achieved an averaged result of 93% recall
and 11% false alarm rate in predicting SQLI vulnerabilities, and 78% recall and 6% false alarm rate in pre-
dicting XSS vulnerabilities.
Conclusion: The experiment results show that our proposed vulnerability predictors are useful and effec-
tive at predicting SQLI and XSS vulnerabilities.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

According to Open Web Application Security Project (OWASP)
[25], SQL injection (SQLI) and cross site scripting (XSS) are the
two most common and critical web application vulnerabilities.
To address these security threats, many vulnerability detection ap-
proaches based on static and dynamic taint analysis techniques
[13,15,17,18,42,44] have been proposed. Though these taint analy-
sis-based approaches have been shown to be effective at detecting
SQLI and XSS vulnerabilities, static approaches [13,17,44] generally
produce too many false alarms. Dynamic approaches are usually
more accurate. But while dynamic analysis typically requires com-
plex analysis frameworks such as concolic execution [15], full
implementations of some of these approaches [15,18,42] are

neither commercially nor publicly available. As a result, software
development teams face difficulties in adopting these existing ap-
proaches. The growing numbers of vulnerability reports in security
databases such as BugTraq [4] further support the need to find
alternative or complementary solutions.

On the other hand, recently, the applications of machine learn-
ing techniques in software defect prediction and vulnerability pre-
diction have achieved promising results. In this domain,
researchers correlate software attributes with defects [40,45] or
vulnerabilities [33]. In general, they build prediction models that
categorize software modules/components/programs, represented
by a set of software attributes, into one of the classes (e.g., defec-
tive and non-defective) by using classifiers that are trained on
the same set of attributes obtained from software modules with
known defect or vulnerability information [28]. The advantage of
these techniques is that commonly-used static code attributes such
as size, Halstead [12], and cyclomatic complexity [19] attributes
can be easily collected. The availability of open source data mining
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tools such as the Weka tool described in Witten and Frank [43] also
allows software engineers to readily apply required machine learn-
ing methods.

Hence, prediction methods could provide a cheaper and yet effi-
cient way of mitigating web application security issues. As men-
tioned by Menzies et al. [21], these data miners may not
accurately identify vulnerabilities like sophisticated vulnerability
detection methods. But they would be useful at providing probabi-
listic remarks about the vulnerabilities of code sections. Software
testers could then save time and effort by focusing on the code sec-
tions predicted to be vulnerable. However, there are still develop-
ments required to improve existing vulnerability prediction
approaches. Some of these approaches require process attributes
(such as developer activity) to build vulnerability predictors [33].
Unlike static code attributes, process attributes are often difficult
to be collected and data collected may not be consistent across
projects [3,22]. And some of these approaches locate vulnerable
code only at component level [11,24], which makes vulnerability
auditing hard for software testers.

An application that accesses database via a SQL language is vul-
nerable if an unrestricted input is used to build the query string be-
cause an attacker might craft the input value to have unauthorized
access to the database and perform malicious actions. This security
issue is called SQLI vulnerability. An application that sends HTTP
response data to a web client is vulnerable if an unrestricted input
is included in the response data because an attacker might inject a
malicious JavaScript code in the input value. The injected code
when executed by the client’s browser could perform malicious ac-
tions to the client. This security issue is called XSS vulnerability.

Web developers generally implement input sanitization
schemes to prevent these two vulnerabilities [25]. An application
is vulnerable if the implementation of input sanitization is inade-
quate or there is no such method implemented. Consequently,
the characteristics of input sanitization routines implemented in
a program could be useful for predicting the program’s
vulnerability.

The above observations serve as our main motivation for this
study. In this paper, we propose input sanitization code attributes
which can be statically collected. From these attributes, we aim
to build SQLI and XSS vulnerability predictors which provide high
recalls and low false alarm rates so that the predictors can be used
alternatively or in combination with existing taint-based ap-
proaches. Compared to current vulnerability prediction ap-
proaches, we only use static code attributes and we target
vulnerable code at statement level.

Our proposal could be easily extended to address other web
application vulnerabilities such as buffer overflow, path traversal,
and URL redirects/forwards. These vulnerabilities are caused by
the common weakness of web applications in handling user inputs
properly. But we shall limit this paper to only SQLI and XSS vulner-
abilities due to the readily-available vulnerability information and
the prevalence of these two vulnerabilities in many web
applications.

This paper is an extension of our initial work [31], which briefly
presented the idea and provided preliminary results based on the
experiments on three test subjects. This paper extends and en-
hances our previous work in the following ways:

� We provide in details the techniques for building vulnerability
predictors.
� We present the prototype tool called PhpMinerI which is pub-

licly available at the first author’s website [26]. The tool helps
to automatically extract the data of our proposed input sanitiza-
tion code attributes from PHP programs while the user has to
manually tag the extracted data with vulnerability labels.

� Comprehensive experiments have been conducted on a total of
eight PHP-based web applications. The test subjects are hetero-
geneous and their sizes vary from small to large scales.
� A data preprocessing step is introduced to ensure that our pre-

diction framework is consistent across datasets with different
data distributions.
� Statistical inference methods and additional performance mea-

sures have also been used to ensure rigorous evaluations.
� An attribute ranking technique has also been used to identify

the attributes that are most informative and verify if omitting
the attributes that are less informative could improve the pre-
dictive performance of our models.
� We also provide a comparison between our best predictor and a

taint-based vulnerability detector and discuss strengths and
weaknesses of the two related techniques based on the results.

The organization of the paper is as follows. Section 2 presents
the classification schemes that characterize input sanitization
methods. Section 3 presents our proposed vulnerability prediction
framework. Section 4 provides our research hypotheses. Section 5
describes the prototype tool and evaluates the performance of vul-
nerability predictors. Section 6 compares our work with related ap-
proaches. Section 7 provides conclusions and future work.

2. Classification

Static code attributes that we propose are based on the control
flow graph (CFG) of web application program. Each node in the CFG
represents a single program statement. Therefore, we shall use the
program statement and the node interchangeably depending on
the context.

Though it is not difficult to extend the logic presented in this
paper to other programming languages, our proposed approach
and discussion here is limited to PHP programs because SQLI and
XSS vulnerabilities are widespread in PHP applications. One could
adapt our approach to languages like Java by predefining language
built-in functions and operations according to our classification
schemes described in this section. And since our approach only re-
quires simple data flow analysis, data collection can be easily
implemented using program analysis tools such as Soot [36].

To explain our approach, we shall use the sample vulnerable
PHP code in Fig. 1 extracted from one of our test subjects—Utopia
News Pro. The code was slightly modified for illustration purpose.

2.1. Input and sink classification

Typically, a web application program accesses user inputs and
propagates them via its program variables for further processing
of the application’s logics. These processes may often include sen-
sitive program operations (sensitive sinks) such as database up-
dates, HTML outputs, and file accesses. If the program variables
propagating the input data are not checked before being used in
those sinks, security violations may occur if an attacker has crafted
the input values. A variable is said to be tainted if it is assigned by a
user input. Hence, in security, it is important to first identify the
sources from which tainted variables are defined and the sinks that
reference tainted variables.

Hence, we call a node u in a CFG at which the data submitted by
an external user is accessed an input node. The nodes which refer-
ence data from HTTP request parameters, database, and XML files
are some examples of input nodes. According to different natures
of input sources, we classify inputs into the following types:

(1) Client: Data submitted via HTML forms and URLs (e.g., _GET,
_POST).
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(2) File: Data accessed from external files such as cookies and
XML files (e.g., _COOKIE, fgets). The contents in these files
may have been tempered by malicious users.

(3) Database: Data retrieved from database that is updated by
programs with unknown vulnerabilities (e.g., mys-

ql_fetch_array). As the data retrieved from database
could be of different data types, we further classify the data-
base inputs into two sub-types—Text and Other. This is to
reflect the fact that string data from database are often
exploited to cause second order security attacks such as sec-
ond order SQLI [2] and stored XSS [15]. Therefore, Text-data-
base inputs represent ‘String’ type data (e.g., varchar, text,
and blob). Other-database inputs represent data of any other
data types such as ‘Numeric’ (e.g., int) and ‘Date and Time’
(e.g., timestamp).

(4) Session: Data accessed from persistent data objects that may
have been defined by programs with unknown vulnerabili-
ties (e.g., _SESSION).

(5) Uninit: Variables which may not have been initialized in the
program before referenced in sensitive sinks. In program-
ming languages like PHP, ‘Uninit’ variables are often refer-
enced in program operations because it is possible to
configure settings such as register_global so that any unini-
tialized variable is automatically assigned by data from
HTTP request parameters.

It is clear that ‘Client’, ‘File’, and ‘Uninit’ are direct user inputs
that would definitely cause SQLI and XSS vulnerabilities if used
immediately without any checks. ‘Database’ and ‘Session’ represent
data originated from usually different programs (or different user

(b) (c)

(a)

Fig. 1. (a) Sample web application program that contains vulnerable and non-vulnerable sinks (modified code snippet from utopia/users.php). (b) Data dependence graph of
statement 10. (c) Data dependence graph of statement 15.
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sessions) and hence, their tainted-ness is usually unknown or hard
to be tracked. A naïve taint analysis-based vulnerability detection
approach (such as [13,17]) might result in many false negatives if
users assume that such inputs are safe and in false positives if
users assume otherwise. This is the area where our proposed vul-
nerability predictors are expected to perform better because the
prediction is not based on user assumptions and instead based
on historical information.

We call a node k in the CFG of a web program a sensitive sink if
the execution of k may lead to harmful operations. Throughout the
paper, we shall address k as a sensitive sink. For this study, we use
two types of sensitive sinks:

(1) SQL: Database operations that are susceptible to SQLI attacks
(e.g., mysql_query).

(2) HTML: HTML output operations that are susceptible to XSS
attacks (e.g., print and echo).

For example, in the program shown in Fig. 1a, variable site-

title referenced in statement 1 is an Uninit input. Statements 3,
4, 8, 12, and 14 are Client inputs. Statement 9 is a File input. State-
ments 1, 10, and 16 are vulnerable HTML sinks and statements 13,
17, and 18 are non-vulnerable HTML sinks. Statements 5 and 15 are
non-vulnerable SQL sinks. Statement 15 is also a Database input.

2.2. Input sanitization classification

To prevent SQLI and XSS vulnerabilities, web applications gener-
ally adopt various input sanitization routines. Input sanitization re-
moves, replaces or escapes malicious characters from user inputs
according to the context of sensitive program operation so that
those characters may not cause the program to perform unintended
operations. As such, whether or not a sensitive program operation is
vulnerable is dependent on the effectiveness of sanitization meth-
ods applied with respect to the context of that particular operation.
In consequence, static code attributes that reflect the characteristics
of these methods could be used to predict vulnerability.

By default, inputs to web application programs are strings. As
such, input sanitization operations performed in a program are
mainly string operations. Our concept is to classify the natures of
string operations applied according to their potential effects on
the tainted-ness of the variables referenced in sensitive sink k.
Intuitively, such operations can be found in the data dependence
graph DDGk of k. A data dependence graph of a node in the CFG pro-
vides reaching definitions, that is, it contains all the nodes in the
CFG that define the values of the variables used in the node [7].
For instance, the data dependence graphs of HTML sink node 10
and SQL sink node 15 are shown in Fig. 1b and c respectively.

A variety of input sanitization operations may be found in the
nodes in DDGk. For example, a node (or a set of nodes) in DDGk

may ensure that an input representing a client’s age contains only
numeric values and another node may remove some predefined
characters from an input. Different operations may serve different
purposes and may have different effects on the tainted-ness of an
input. Hence, we shall classify the nodes in DDGk such that the clas-
sifications reflect the potential input sanitization operations per-
formed on k. For each node n in DDGk, classification is carried out
by analyzing the types of the language-built-in functions invoked,
and program parameters and operators used in n. The classification
of input sanitization methods is as follows:

(1) SQLI-sanitization: standard (language-provided) functions
designed to prevent SQL injection issues (e.g., addslashes,
mysql_real_escape_string). Functions that implement
parameterized queries (e.g., dbh- > prepare) are also
included in this type.

(2) XSS-sanitization: standard (language-provided) functions
designed to prevent XSS issues (e.g., htmlspecialchars).

(3) Encoding: functions that encode an argument according to a
specific encoding format (e.g., urlencode).

(4) Encryption: encryption or hashing functions designed to
ensure secure data transfer (e.g., crypt).

(5) Replacement: string-based substring replacement functions
(e.g., substr_replace).

(6) Regex-replacement: regular expression-based substring
replacement functions (e.g., preg_replace).

(7) Numeric-conversion: functions that process one or more
arguments and return a numeric value (e.g., floatval) or
numeric type casting operations (e.g., x = (int)

_GET[‘id’]).
(8) Un-taint: functions or operations that return predefined

information (e.g., a = ‘text’), information derived from
configuration settings (e.g., localeconv), or numeric infor-
mation derived from program operations (e.g., mys-

ql_field_len). These functions or operations may not be
intended as input sanitization but are considered as one
because the resulting data is generally benign.

It is apparent that as ‘SQLI-sanitization’ and ‘XSS-sanitization’
functions are standard methods, they would be commonly used
in web applications to defend against SQLI and XSS. But as shown
by Anley [2] and Fogie et al. [9], there are many ways to use inputs
in SQL and HTML output statements (contexts). For some contexts,
language-provided sanitization methods are inadequate, or they
are not suitable. Hence, it is also common that developers imple-
ment (additional) custom sanitization methods using string func-
tions like ‘Replacement’ functions.

As shown in statements 20–21 of the program in Fig. 1a,
‘Replacement’ functions or ‘Regex-replacement’ functions can be
used to filter potentially dangerous characters. ‘Encryption’ and
‘Encoding’ functions can also play a role in input sanitization (in
this paper, input sanitization is generally referred to as sanitization
of inputs to prevent SQLI and XSS issues). For example, urlen-

code(ipid) in statement 17 in Fig. 1a is sanitized enough to be
safely used as a URL parameter. ‘Numeric-conversion’ method is
the most effective way to prevent SQLI and XSS when the input
is intended to be numeric. For example, getip[‘ip’] in state-
ment 16 in Fig. 1a which causes the XSS vulnerability can be prop-
erly sanitized by applying the ‘Numeric-conversion’-type function
as follows: intval (getip[‘ip’]). ‘Un-taint’ functions or opera-
tions are those that may not be intended as input sanitization,
but since those functions or operations only propagate benign
information, they are also important indicators of vulnerabilities.

Some nodes contained in DDGk may also perform ordinary oper-
ations that do not serve any security purpose. They may simply
propagate the input data. From the empirical studies, we observed
that the above input sanitization types are commonly imple-
mented to prevent web vulnerabilities. However, there may
also be other types of preventive measures that we did not observe.
Furthermore, functions invoked at n could also be library functions
or user-defined functions as input sanitization is often customized
to users’ needs. Consequently, we classify the remaining nodes in
DDGk that are not classified as any of the above types into one or
more of the following types:

(1) Propagate: functions or operations that may convert argu-
ments into different representations but return part or
whole of the original arguments (e.g., substr, trim, explode,
str = str.‘abc’); functions that unquote or decode argu-

ments (e.g., html_entity_decode, urldecode,
stripslashes).
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(2) Custom: library or user-defined functions with unknown
vulnerabilities.

(3) Other: functions or operations that are not classified as any
of the above types.

Since a node may include different program parameters, opera-
tors, and functions, there may be multiple classifications for a
node. For example, in Fig. 1c, from the properties of node 15, the
string function addslashes can be extracted, hence, it would be
classified as the type ‘SQLI-sanitization’. As the node also invokes
the function mysql_query function, it would also be classified
as the type ‘SQL’ sink.

3. Proposed vulnerability prediction framework

Based on the classification scheme presented in Section 2, in
this section, we present the static code attributes that reflect the
classifications. We then provide the vulnerability prediction mod-
eling techniques.

3.1. Static code attributes

As shown in Table 1, we propose 21 static code attributes that
reflect the characteristics of common input sanitization methods.
Our unit of measurement is a sensitive sink. The last attribute
Vulnerable? in Table 1 is the target attribute which indicates the
vulnerability of the sink. Each sink is to be represented by a
21-dimensional attribute vector. Hence, attribute vectors collected
for HTML sinks and SQL sinks in a web program are instances that
can be used to learn XSS and SQLI vulnerability predictors respec-
tively if their vulnerability information is available, or instances for
which their vulnerability can be predicted by the learned
predictors.

To illustrate, for the program in Fig. 1a, we have computed the
data dependence graphs for HTML sink 10 and SQL sink 15 as
shown in Fig. 1b and c. Similarly, if computed, the data dependence
graphs of other HTML sinks 1, 13, 16, 17, and 18 shall be formed
with the sets of nodes {1}, {12, 13, 19, 20, 21, 22}, {14, 15, 16},
{14, 17}, and {18} respectively. Whereas, the data dependence
graphs of SQL sink 5 shall be formed with the set of nodes {3, 4,
5}. Table 2 shows the sample attribute vectors of HTML sinks 1,
10, 13, 16, 17, and 18 extracted from their respective data depen-
dence graphs.

3.2. Prediction models

3.2.1. Data preprocessing
In Section 3.1, we proposed 21 attributes. Eighteen attributes

are numeric. These numeric attributes could have arbitrary and
different data distributions (see Fig. 4 in Section 5). Depending
on program requirements and developer’s style of programming,
our attributes that characterize input sanitization functions may
be defined on different numeric scales. Hence, a data preprocessing
step is required so that classifiers are not biased towards some
attributes. We use min–max data normalization technique to stan-
dardize our data. Normalization maps a given numeric value to a
value within a specified range. A range of zero to one is used for
our prediction framework. All numeric attributes of both training
and test data are to be normalized.

3.2.2. Data reduction
When proposing a set of attributes that characterize the quality

of software, it is important to identify the attributes that best cap-
ture it. This process is known as feature selection or attribute rank-
ing. It can also be used to identify irrelevant or redundant

attributes. Various attribute ranking techniques, such as informa-
tion gain, gain ratio, chi-square, and symmetrical uncertainty, have
been investigated in literature [10]. These techniques indepen-
dently rank attributes regardless of the classifier used. In this
study, we shall use gain ratio method to find best attributes (i.e.,
attributes which contribute most to a classifier’s performance)
and check if data reduction (i.e., using only the best attributes)
could improve performances.

3.2.3. Classifiers
We use classifiers as the base data miners for building vulnera-

bility prediction models. Based on different characteristics of clas-
sification algorithms, classifiers can be grouped into different
categories such as tree-based approaches, neural networks, sup-
port vector machines, nearest-neighbor approaches, statistical pro-
cedures, and ensembles [16]. Literature studies [3,21] have shown
that different classification algorithms may produce different per-
formances. Therefore, in this study, we use three different classifi-
ers, C4.5, Naïve Bayes (NB), and Multi-Layer Perceptron (MLP), for
predicting SQLI and XSS vulnerabilities. This allows us to use the
algorithm that performs best in our context.

C4.5 is a decision tree-based classifier that recursively parti-
tions the training data by means of attribute splits at each node
of the tree. The splitting criterion is the information gain that re-
sults from choosing an attribute for splitting the data. For example,
C4.5 executing on the attribute vectors of six HTML sinks from
Table 2 (presented in Section 3.1) results in a tree:

SQLI-sanitization6 0: Non-Vulnerable.

SQLI-sanitization > 0: Vulnerable.

which can be interpreted as ‘‘a sensitive sink is vulnerable if the
number of nodes classified as SQLI-sanitization is more than 0’’.
Such a predictor could be especially useful when a programmer
misuses SQL injection-specific escaping procedures to protect
HTML sinks. The use of inadequate escaping procedures causing
XSS vulnerabilities is fairly common in practice.

NB is a simple statistical classifier that estimates the posterior
probability of each class of the target attribute (in our case, Vulner-
able or Non-Vulnerable) based on the values of the training data so
that a given module (in our case, a module is a sensitive sink) can
be assigned to the class label with the highest probability.

MLP is a sophisticated classifier which depicts a neural network
structure of the human brain. It consists of an input layer, one or
more hidden layers, and an output layer. The data of training in-
stances are fed to the units in the input layer. Weighting, aggrega-
tion, and thresholding functions are then iteratively applied to the
data propagated along the units in the layers to predict the class
label of an instance which is presented in the output layer.

Equations and detailed information of these classification algo-
rithms can be found in data mining books such as Witten and
Frank [43].

3.2.4. Model training and testing
We shall use 10 � 10 cross-validation method for training and

testing the three classifiers. This test design has been used by many
software defect prediction studies [10,20,21]. The dataset is ran-
domly divided into 10 folds. The classifier is trained on the 9 folds
and then tested on the remaining fold, rotating each fold as the test
fold. This entire process is iterated ten times.

Fig. 2 provides the pseudocode of our model evaluation proce-
dure. To control threats to validity of the results, model training
and testing method has to conform to holdout test design and
needs to be immune to order effects [21]. Order effects are exhib-
ited when a certain ordering of training and test data results in a
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significant change in performance. Holdout test design is impor-
tant for assessing the classifiers’ capability to predict unknown vul-
nerabilities. As shown in Fig. 2, our procedure is immune to order
effects due to randomization [8] and it also conforms to holdout
test design because it only uses certain amount of available dataset
for training, and best attribute selection is only performed on train-
ing data [35], and it sets aside some for testing.

3.2.5. Performance measures
As used by many research works [3,10,16,20,21,40] in software

defect prediction, a typical and common confusion matrix [1] can
be used to assess the performance of learned predictors. Fig. 3
shows the matrix. The following performance measures can be de-
rived from this matrix:

� Probability of detection (pd) = tp/(tp + fn).
� Probability of false alarm (pf) = fp/(fp + tn).
� Precision (pr) = tp/(tp + fp).
� Accuracy (acc) = (tp + tn)/(tp + fp + fn + tn).

Pd measures how good our prediction model is in finding actual
vulnerable sinks. Pr measures the actual vulnerable sinks that are
correctly predicted in terms of a percentage of total number of
sinks predicted as vulnerable. Pf is generally used to measure the
cost of the model, that is, increasing pd or pr by tuning the predic-
tion model may, on the other hand, cause more false alarms. In an
ideal situation, pd should be close to 1 and pf should be close to 0.
That is, the vulnerability prediction model neither misses actual
vulnerabilities nor throws false alarms. Acc measures the number
of times the model predicted correctly in terms of a percentage

of total number of sinks. In this study, we shall assess the perfor-
mance of our learned predictors based on all these measures.

4. Research hypotheses

In this section, we provide the three hypotheses that we shall
formally investigate to evaluate the usefulness and effectiveness
of our proposed static code attributes and prediction method pre-
sented in Section 3.

4.1. Hypothesis for discriminative power

Our first hypothesis (H1) is that each of our proposed static code
attributes has discriminative power (the ability to distinguish vul-
nerable sinks and non-vulnerable sinks) in general. We use Welch
t-test [6] to prove the statistical difference between the means of
the attribute values for vulnerable sinks and non-vulnerable sinks
in each test subject. That is, we test the discriminative power of
each attribute for each test subject. Since different web applica-
tions have different programming characteristics, it is unrealistic
to perform Welch t-test on all the test subjects together. And we
should expect different attributes having discriminative powers
for different test subjects.

For example, if a programmer tends to use regular expressions
to sanitize user inputs, we should expect the attribute ‘Regex-
replacement’ to have significant discriminative power for his partic-
ular application. Similarly, another programmer may only use lan-
guage-provided sanitization functions to sanitize user inputs. In
that case, we expect the attribute ‘SQLI-sanitization’ or ‘XSS-saniti-
zation’ to have significant discriminative power.

Table 1
Proposed static code attributes.

Attribute Description

Client The number of nodes which access data from external users
File The number of nodes which access data from files
Database The number of nodes which access data from database
Text-database Boolean value ‘TRUE’ if there is any text-based data accessed from database; ‘FALSE’ otherwise
Other-database Boolean value ‘TRUE’ if there is any data except text-based data accessed from database; ‘FALSE’ otherwise
Session The number of nodes which access data from persistent data objects
Uninit The number of nodes which reference un-initialized program variable
SQL The number of SQL sink nodes
HTML The number of HTML sink nodes
SQLI-sanitization The number of nodes that apply language-provided sanitization functions for preventing SQLI issues
XSS-sanitization The number of nodes that apply language-provided sanitization functions for preventing XSS issues
Encoding The number of nodes that encode data
Encryption The number of nodes that encrypt data
Replacement The number of nodes that perform string-based substring replacement
Regex-replacement The number of nodes that perform regular-expression-based substring replacement
Numeric-conversion The number of nodes that convert data into a numerical format
Un-taint The number of nodes that return predefined information or information not influenced by external users
Propagate The number of nodes that propagate the tainted-ness of an input string
Custom The number of user-defined functions
Other The number of nodes that are not classified as any of the above types
Vulnerable? Target attribute which indicates a class label—Vulnerable or Non-Vulnerable

Table 2
Sample attribute vectors.

HTML sink Attribute

Client File Other-database Uninit SQLI-sanitization Encoding Replacement Custom Vulnerable?

1 0 0 0 1 0 0 0 0 Vulnerable
10 1 1 0 0 1 0 2 1 Vulnerable
13 1 0 0 0 1 0 2 1 Non-vulnerable
16 1 0 1 0 1 0 0 0 Vulnerable
17 1 0 0 0 0 1 0 0 Non-vulnerable
18 0 0 0 0 0 0 0 0 Non-vulnerable
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Welch t-test compares one variable (independent attribute) be-
tween two groups (vulnerable sinks and non-vulnerable sinks).
This test is suitable since the attribute values of vulnerable sinks
and non-vulnerable sinks have unequal variances (see Fig. 4 in Sec-
tion 5). Our null hypothesis is that the means of the attribute val-
ues for vulnerable sinks and non-vulnerable sinks are equal. We
consider that an attribute has discriminative power for a test sub-
ject if the null hypothesis is rejected at 95% confidence level.

For completeness, we also compared the means to determine
the correlation direction between the independent attribute and
the vulnerability (positively or negatively correlated). However,
we should expect the correlation direction to be inconsistent
across test subjects. Therefore, in our work, the correlation ‘direc-
tion’ is of no interest. We should only pay attention to the correla-
tion. The reason is explained below.

For example, if the above programmer uses regular expressions
correctly, the inputs would be properly sanitized and the sinks
which use those inputs would be non-vulnerable. Hence, the corre-
lation direction of the attribute ‘Regex-replacement’ with the vul-
nerability would be ‘‘negative’’. Conversely, the correlation
direction would be ‘positive’ if he uses regular expressions incor-
rectly resulting in vulnerable sinks.

4.2. Hypothesis for predictability

Our next hypothesis (H2) is that the proposed static code attri-
butes can predict vulnerable sinks, that is, the prediction models
presented in Section 3 can achieve good prediction accuracy. There
is no universal standard for the threshold of good prediction accu-
racy. In recent software defect prediction [16,20–22,40] and

vulnerability prediction [33] studies, the prediction accuracy
(pd = 70% and pf = 25%) has generally been benchmarked. There-
fore, to investigate H2, we shall compare our result (achieved by
our best prediction model) with this benchmark result. As sug-
gested by Demšar [5], we apply Wilcoxon signed-rank test to eval-
uate the hypothesis. This statistical method is non-parametric and
is suitable for pair-wise comparison of prediction models.

4.3. Hypothesis for usefulness

We claimed that our predictors could be an alternative or com-
plementary solution to vulnerability detection approaches. This
leads us to our last hypothesis (H3): Our proposed prediction ap-
proach can complement existing static analysis-based vulnerabil-
ity detection approaches.

To investigate H3, we shall compare our predictors with Jova-
novic et al. [13], which is a static analysis-based vulnerability
detection approach based on taint tracking. We shall again apply
Wilcoxon signed-rank test to compare the vulnerability detection
results from the two approaches. Jovanovic et al.’s approach iden-
tifies tainted data accessed from various input sources, tracks the
propagation of these inputs along program paths, and determines
if an input is subjected to any form of input sanitization (defined
as adequate by user) before it is used in security-sensitive program
statements such as SQL statements and HTML output statements.

5. Evaluation

This section evaluates our vulnerability prediction framework.
Section 5.1 describes our prototype tool and the datasets. Section
5.2 presents the results of discriminative power tests for the pro-
posed attributes. Section 5.3 presents the results of our predictors
built from all the proposed attributes. Section 5.4 compares our
predictors with a taint-based vulnerability prediction approach.
Section 5.5 discusses threats to validity of our results.

5.1. Prototype tool and data collection

The data of our proposed attributes are collected from eight
open source PHP-based web applications of different sizes ranging

Fig. 2. Pseudocode for model evaluation.

Fig. 3. A typical confusion matrix.
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from 1 k LOC to 44 k LOC. Table 3 shows the information of these
test subjects. It shows the PHP files from which the data of our pro-
posed attributes are collected. It also shows the lines of code (LOC)
of each test file (LOC count includes PHP include files). As listed in
the last column of Table 3, their vulnerability information is known
to public and accessible in various security advisories such as Bug-
Traq [4]. The test subjects are obtained from SourceForge [37]. All
these benchmark applications have also been used in evaluating
some vulnerability detection approaches [13,15,42,44].

For each sensitive sink in each test PHP file, one attribute vector
was collected. Every vector contains the data of our proposed attri-
butes shown in Table 1. For collecting the data from PHP programs,
we implemented an automated data collection tool called PhpMi-
nerI. In the following, we describe our prototype tool.

PhpMinerI is based on Pixy [13], which is a static taint analysis
tool for PHP programs. Using Pixy’s APIs, PhpMinerI generates con-
trol flow graph and data dependence graphs of sensitive program

points in a given PHP program. It then classifies the nodes in the
data dependence graph of each sensitive sink by checking the func-
tions invoked and the operators used. Currently, we have config-
ured over 300 PHP built-in functions and 30 PHP operators in
PhpMinerI for classification.

Since Pixy identifies inputs and sensitive sinks based on the con-
figuration files, in Pixy’s configuration, we defined the input
sources of Client, File, Database, Session, and Uninit (un-initialized
variables) so that Pixy could identify the input types classified by
us. However, in order to differentiate the two sub-types of Data-
base inputs—Text and Other, we needed to implement an indepen-
dent database schema analysis and a data flow analysis of Database
inputs. Database schema analysis (database schema of the test sub-
ject is required) is carried out first to provide PhpMinerI with the
classifications of Text and Other database table columns. Thereafter,
whenever PhpMinerI finds Database inputs in the PHP program un-
der test, it uses data flow analysis to verify the column name or the

Fig. 4. Comparison of attribute values for vulnerable and non-vulnerable sinks collected from CuteSite1.2.3.

Table 3
Statistics of the test subjects used in this study.

Test subject Description Tested PHP files LOC Security advisories

SchoolMate 1.5.4 A tool for school administration Index 8145 No formal advisory available but its
vulnerability information
can be found in groups.csail.mit.edu/pag/ardilla/

FaqForge 1.3.2 Document creation and
management tool

Index, adminnindex 790, 1448 Bugtraq-43897

WebChess 0.9.0 Online chess game Mainmenu, chess 2205, 3236 Bugtraq-43895
Utopia News Pro

1.1.4
News management system Index, login, postnews, users, 1294, 1174, 1570,

1699
BugTraq-15028

Yapig 0.95b Image gallery View 4748 BugTraq-413255
PhpMyAdmin

2.6.0-pl2
A tool for handling MySQL database
operations

select_server.lib, left 89, 952 PMASA-2005-01, PMASA-2005-05

PhpMyAdmin
3.4.4

MySQL database management display_export.lib, db_import,
server_synchronize

44628 PMASA-2011-14 – PMASA-2011-20

CuteSite 1.2.3 Content management framework All the files 11441 CVE-2010-5024 CVE-2010-5025
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column index of the database table being accessed. It then uses
information provided by database schema analysis to further clas-
sify the input type. We also configured in Pixy the two types of sen-
sitive sinks: SQL sink and HTML sink. This configurable nature of
Pixy allows us to define various types of sinks that are sensitive to
different types of security vulnerabilities; and thus, PhpMinerI
could support a variety of vulnerability predictors.

Hence, like size and code complexity attributes, our proposed
attributes can also be easily collected through an automated tool.
As our technique only requires definition/use analysis on CFG,
any other program analysis tool could also be used. Table 4 shows
the 12 datasets collected by PhpMinerI for this study. Eight datasets
are collected from data dependence graphs of HTML sinks and four
datasets are collected from data dependence graphs of SQL sinks.
For each sink collected, we manually inspected the source code
to examine the vulnerability. To ease our workload, we also made
use of the data dependence graphs and the information provided
by security advisories. We did not use the datasets of SQL sinks
for some applications as we have not checked the vulnerability
regarding to SQLI. Fig. 4 shows the boxplots of comparisons of
(non-normalized) values between vulnerable and non-vulnerable
sinks for a few selected attributes collected from CuteSite1.2.3.

In our website [26], we provide the complete package of col-
lected datasets and the detailed workings of PhpMinerI. The tool
can also be downloaded at the site. We also use the Weka Java
package provided by Witten and Frank [43] to implement our
model evaluation algorithm in Fig. 2. This implementation is incor-
porated into PhpMinerI as well.

5.2. Discriminative power test results

As discussed in Section 4.1, to evaluate our first hypothesis, H1,
we analyzed the discriminative power of each proposed static code
attribute using Welch t-test. Table 5 shows the results. The plus
sign indicates positive correlation, that is, vulnerable sinks have
higher attribute values than non-vulnerable sinks. As expected
(discussed in Section 4.1), different sets of attributes are significant
for different applications. Although some attributes appear to have
discriminative power for most applications and some do not, a very
different set of applications could have produced different results.
Considering that an attribute has discriminative power if it is sig-
nificant for at least one application under test, our results shown
in Table 5 support H1.

Regarding correlation direction, as we predicted, we observed
inconsistent directions for some attributes across applications.
The correlation directions were dependent on the nature of the
applications and the developers’ coding styles. The task of our pre-
dictors is to learn on these attributes and the available vulnerabil-
ity information such that the predictors are able to predict the new
instances (possibly from different programs or modules) from the
same application.

5.3. Prediction results

Using the APIs provided by Weka [43], PhpMinerI was config-
ured to run each of our three chosen classifiers on each dataset.
The model training and testing was carried out according to the
procedure described in Fig. 2. Our tool was run on a Pentium
3.4 GHz 4GBRAM Windows XP machine. Both C4.5 and NB took
less than a second to complete each run (i.e., process a dataset)
whereas MLP took nearly a minute to complete each run.

Table 6 shows the performance of XSS vulnerability predictors
and Table 7 shows the performance of SQLI vulnerability predic-
tors. The average and the standard deviation of each cross-valida-
tion process are shown in the tables. Overall results are also
averaged. We focus on analyzing the performances of the predic-
tors built from all attributes rather than predictors built from best
attributes selected by gain ratio method because we did not ob-
serve the performance improvement for MLP and C4.5 after data
reduction is applied (overall performance of MLP and C4.5 de-

Table 4
Datasets.

Dataset #HTML
sinks

#Vuln. sinks
(%Vuln.)

#SQL
sinks

#Vuln. sinks
(%Vuln.)

Schoolmate 172 138 (80%) 189 152 (80%)
Faqforge 115 53 (46%) 42 17 (40%)
Webchess 73 22 (30%) 53 24 (45%)
Cutesite 239 40 (17%) 63 35 (56%)
Utopia 74 17 (23%) – –
Yapig 21 6 (29%) – –
Myadmin2.6 58 16 (28%) – –
Myadmin3.4 305 20 (7%) – –

Table 5
Results of discriminative power test using Welch t-test.

Attribute Test subject

Schoolmate Faqforge Webchess Cutesite Utopia Yapig Myadmin2.6 Myadmin3.4

Client
p

(+)* p
(+)

p
(+)

p
(+)

File
p

(+)
Database

p
(+)

p
(+)

p
(+)

Text-database
p

(�)
p

(�)
p

(+)
Other-database

p
(+)

p
(+)

p
(+)

Session
p

(+)
p

(+)
Uninit

p
(+)

p
(�)

p
(+)

p
(+)

p
(+)

p
(+)

SQL
p

(+)
HTML

p
(�)

SQLI-sanitization
p

(+)
XSS-sanitization

p
(�)

p
(�)

p
(�)

Encoding
p

(+)
p

(+)
Encryption

p
(+)

Replacement
p

(�)
Regex-replacement

p
(+)

Numeric-conversion
p

(+)
Un-taint

p
(+)

p
(+)

p
(�)

p
(+)

p
(+)

Propagate
p

(+)
p

(+)
p

(+)
p

(+)
Custom

p
(+)

Other
p

(+)
p

(+)
p

(+)
p

(+)

* The sign
p

indicates statistical significance at p < 0.05. The sign (+) or (�) indicates the correlation direction between the attribute and the vulnerability.
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graded slightly after data reduction although pd of NB increased by
3%).

Overall, our vulnerability predictors achieved very good results.
MLP was our best predictor based on the average results. For pre-
dicting XSS vulnerabilities, on average, MLP achieved pd = 78% and
pf = 6%. For predicting SQLI vulnerabilities, on average, MLP
achieved pd = 93% and pf = 11%. We also observed that SQLI vulner-
ability predictors generally performed better in terms of pd but
produced higher false alarm rates than XSS vulnerability predictors
did. C4.5’s results also closely followed MLP’s. Although NB

classifier performed the worst among the three classifiers, it still
detected 92% of SQLI vulnerabilities and 65% of XSS vulnerabilities.
Its relatively high false alarm rates could be due to some redundant
attributes or some relations that might exist among the proposed
static code attributes. Both of these issues are known to hurt NB
classifier’s performance because of its strong independence
assumptions [16].

Lessmann et al.’s study [16] reported that additional data min-
ing activities such as data reduction could be used to improve sim-
ple classifiers like NB. In our experiments with gain ratio attribute

Table 6
Results on XSS vulnerability prediction.

Data and classifier Measure (%)

Mean Standard deviation

Pd Pf Pr Acc Pd Pf Pr Acc

Schoolmate NB 76 5 99 79 1.2 2.4 0.7 1.2
C4.5 99 4 99 99 0.0 2.4 0.6 0.4
MLP 99 2 100 99 0.0 2.4 0.6 0.4

Faqforge NB 87 14 85 87 2.9 1.1 0.9 1.2
C4.5 91 2 97 95 2.9 1.8 2.1 1.7
MLP 90 5 94 92 3.4 1.4 1.6 1.7

Webchess NB 46 22 48 69 5.3 1.0 2.8 1.4
C4.5 82 5 87 91 7.0 1.0 2.7 2.4
MLP 77 7 83 89 7.6 1.8 4.5 3.0

Cutesite NB 47 1 92 90 4.2 0.5 4.4 0.7
C4.5 71 6 72 91 1.3 0.9 3.4 0.8
MLP 84 6 74 92 6.2 0.6 1.5 0.8

Utopia NB 94 5 84 95 0.0 0.0 0.0 0.0
C4.5 85 5 84 93 4.7 1.1 3.2 1.5
MLP 88 5 85 94 5.8 1.4 4.3 1.9

Yapig NB 45 15 55 74 7.7 4.0 6.1 3.2
C4.5 35 19 42 68 11.7 2.7 9.5 3.7
MLP 53 13 61 77 10.0 0.0 4.7 2.9

Myadmin2.6 NB 77 10 76 87 2.8 1.1 2.2 1.1
C4.5 76 11 73 86 2.5 1.6 2.9 1.3
MLP 77 10 75 86 2.8 1.4 2.5 0.9

Myadmin3.4 NB 51 1 82 96 2.0 0.2 4.0 0.3
C4.5 60 1 89 97 3.5 0.2 4.6 0.3
MLP 55 1 80 96 0.0 0.2 2.4 0.1

Average NB 65 9 78 85 3 1 3 1
C4.5 75 7 80 90 4 1 4 2
MLP 78 6 82 91 4 1 3 1

Table 7
Results on SQLI vulnerability prediction.

Data and classifier Measure (%)

Mean Standard deviation

Pd Pf Pr Acc Pd Pf Pr Acc

Schoolmate NB 89 31 92 85 1.4 6.8 1.6 1.8
C4.5 95 24 94 91 1.3 4.4 1.0 1.2
MLP 90 15 96 89 0.5 4.8 1.2 1.0

Faqforge NB 97 3 95 97 3.0 1.6 2.3 1.5
C4.5 88 3 96 94 0.0 1.8 2.8 1.1
MLP 94 3 96 96 1.8 1.8 2.7 1.4

Webchess NB 96 23 77 86 1.3 1.4 1.0 0.9
C4.5 100 24 77 87 0.0 0.0 0.0 0.0
MLP 100 19 82 90 0.0 1.7 1.4 0.9

Cutesite NB 84 6 95 88 2.2 2.4 2.0 1.8
C4.5 94 7 94 94 0.0 0.0 0.0 0.0
MLP 89 7 94 91 2.8 0.0 0.2 1.6

Average NB 92 16 90 89 2 3 2 2
C4.5 94 15 90 92 0 2 1 1
MLP 93 11 92 92 1 2 1 1
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selection, NB improved its pd by 3% on average over 12 datasets
and hence, this result supports Lessmann et al.’s findings. However,
as our focus is to report how useful the proposed input sanitization
attributes are for predicting web application vulnerabilities, we did
not compare the performance among classifiers using statistical
tests such as Friedman test [5].

As discussed in Section 4.2, to evaluate our second hypothesis,
H2, we compared the results achieved by MLP with a benchmark
result of (pd = 70% and pf = 25%). The test showed that both in
terms of pd and pf, our best predictor achieved statistically better
results than the benchmark results (significant at 98%). Its 10 out
of 12 pd results were better than the benchmark pd of 70% and
all the pf results were better than the benchmark pf of 25%.

In terms of accuracy and precision, on average, MLP and C4.5
achieved acc P 90% and pr P 80%. These results can be interpreted
as at least 9 out of 10 predictions are correct and at least 8 out of 10
vulnerable cases reported by our predictors are worth investigat-
ing for security audits.

Although the results are promising, our predictors are not with-
out flaws. There are cases that our predictors may not appropri-
ately handle. In web applications, it is common that regular-
expression-based string replacement routines are used to sanitize
inputs. But as observed by Jovanovic et al. [13] and Xie and Aiken
[44], these custom sanitization routines are often incorrect. For
example, consider the following sanitization code:

sanitize ¼ preg replaceð\=n < scriptð: � ?Þn > ð: � ?Þn
< n=scriptð: � ?Þn > =i"; \"; inputÞ;

The regular expression looks for the closing script tags
(/script>) to detect malicious JavaScript code in a user input.
However, as some web browsers accept malformed documents, a
malicious input such as <script>hack();< would still circum-
vent this sanitization. We did not encounter any such incorrect
string replacement routines in our experiments. But if the applica-
tion under test contains such similar mistakes all over its pro-
grams, our predictors would still predict well because, say other
attributes are irrelevant, the predictor would classify an instance
as vulnerable if there is regular-expression-based-replacement.
But when such mistakes are inconsistent, there is a danger of high
false alarm rates. This is because, as predictors are trained on past
data, they inherently struggle when the instance to be predicted is
represented with inconsistent data. Intuitively, this problem can be
alleviated by more precise classification methods. For example, we
could refine the abstracted classification of regular-expression-
based replacement (‘Regex-replacement’ attribute) with more
in-depth classifications such as regular-expression-based allHTML-
tags-replacement, regular-expression-based OnlyClosingTags-replace-
ment, etc. However, this task shall require complex pattern
matching techniques.

In summary, our Wilcoxon test result supports H2, proving that
the proposed static code attributes can predict XSS and SQLI vul-
nerabilities. To use a simple classifier like NB, data reduction could
be applied to improve the predictive power. But, based on our re-
sults here, we advise to the use of all the proposed attributes as dif-
ferent set of attributes could have discriminative power for
different applications (discussed in Section 5.2) and the use of an
advanced classifier like MLP which could effectively learn from
all available information.

5.4. Comparison with a static analysis-based vulnerability detection
approach

One drawback of our prediction method compared to taint-
based vulnerability detection methods is that sufficient amount
of historical information including vulnerability data is required

to train the predictors. We discussed above that our method gen-
erally worked for the datasets used in this experiment. And we
can observe that the amount of information required to use our
predictors is not a lot. As shown in Table 4, the size (number of
sinks) of our smallest dataset is twenty-one in which the number
of vulnerable sinks is six. This vulnerability data required is reason-
able for many vulnerable applications because, once an application
is vulnerable due to a weak input sanitization routine, it typically
contains a number of vulnerabilities as applications tend to deploy
a common sanitization routine to sanitize the sinks.

To evaluate the usefulness of our approach, we investigated our
third hypothesis, H3. As explained in Section 4.3, we evaluated
Jovanovic et al.’s approach [13]. Their vulnerability detection tool,
Pixy, is open source and available to public. We ran Pixy on the
same datasets and computed pd and pf from its detection results.
Results are shown in Table 8. We then used Wilcoxon signed-rank
test to compare our MLP’s results with Pixy’s, based on all the 12
datasets.

On average, Pixy detected 95% of both XSS and SQLI vulnerabil-
ities whereas our best predictor, MLP, detected 78% of XSS and 93%
of SQLI vulnerabilities respectively (Tables 6 and 7). Wilcoxon test
also shows that Pixy’s pd results were significant (at 99%). But, this
result is not surprising because, in principal, static analysis-based
approach can detect all vulnerabilities by simply reporting any sus-
picious cases as vulnerable. Pixy did not achieve pd = 100% in our
experiments because it lost track of some of the tainted data stored
into complex data structures like arrays. It may perform worse in
practice in terms of pd because, as we explained in Section 4.3,
to use Pixy, a user has to pre-define adequate input sanitization
routines. We were able to define this information properly because
of our expert knowledge in XSS and SQLI issues. As our approach
does not require such knowledge, it could be alternatively used
by developers or auditors who are not security-expert.

On the other hand, it should also be expected that an approach
reporting any suspicious cases as vulnerable would generate many
false positives. On average, Pixy produced high false alarm rates of
30% and 24% in predicting XSS and SQLI vulnerabilities respec-
tively. Wilcoxon test shows that this is significantly high (at 99%)
compared to our MLP predictor’s achievement (6% and 11% respec-
tively). Noticeably, Pixy’s pf for PhpMyadmin3.4 was 86%.

From these results, we can conclude that an overlapped use of a
static analysis-based detector and our vulnerability predictor could
achieve high detection rates and low false alarms, thus supporting

Table 8
Results of a taint-based vulnerability detection approach (a) on XSS vulnerability
detection (b) on SQLI vulnerability detection.

Data Measure (%)

Pd Pf

(a)
schoolmate 97 4
faqforge 87 13
webchess 95 43
cutesite 100 26
utopia 100 23
yapig 100 25
myadmin2.6 97 21
myadmin3.4 87 86
Average 95 30

(b)
schoolmate 94 4
faqforge 100 15
webchess 100 47
cutesite 86 30
Average 95 24
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H3. And as both methods are static-based, this solution would be
easy to use.

5.5. Threats to validity

For every empirical study, it is important to be aware of the po-
tential threats to the validity of the obtained results. In this section,
we discuss two types of threats to validity—internal validity and
external validity [34], which might affect empirical studies like
ours. Threats to internal validity refer to factors that may influence
the results without our knowledge. Threats to external validity re-
fer to factors which might prevent the generalization of our results.

5.5.1. Internal validity
Training and testing procedure influences the outcomes of the

experiments. We used cross-validation method which is a well-
established approach for data mining experiments. Weka also pro-
vides split-sample set up which is another data sampling method
commonly used in many software defect prediction studies
[3,16,20,40,45]. We ran our dataset with this setup as well. How-
ever, as the differences between the results are minimal, we re-
sorted to using only one data sampling method.

5.5.2. External validity
We discuss issues regarding generalizability across samples and

settings. Data sampling bias could affect the generalization of our
results. In our experiments, classifiers are trained using data from
a set of applications which are all vulnerable. However, these
applications have been tested and verified for required functional-
ities before their releases and it is also hard to find web-based
applications that are without SQL and/or XSS vulnerabilities. Fur-
thermore, all applications except SchoolMate are real-world pro-
jects developed by professionals not by students. As such, we
believe that the proposed predictors are practical and would be
useful for real-world applications.

In our data preprocessing step, we used min–max normaliza-
tion approach so as to standardize the distributions of our attri-
butes. Although we did not encounter in our experiment, this
approach in practice may throw an ‘‘out-of-bounds’’ error if a fu-
ture instance to be predicted has a value that falls outside the
range of the values in the training instances. A solution is to map
values in future instances exceeding the largest value and the
smallest value in training instances to the upper limit (one) and
the lower limit (zero) respectively.

There are many types of data preprocessing methods. We used a
data normalization method. Other methods such as logarithmic
data filtering might produce different results. Similarly, there are
also many types of data reduction methods. We used gain ratio-
based data reduction method, but it was effective only for Naïve
Bayes classifier. We might obtain different results if other data
reduction methods are applied. The choice of classifiers might also
affect our empirical study because classification algorithms we
used may over-fit or under-fit the datasets. Therefore, we have
used 3 classifiers with different learning models. Interested
researchers may try data mining methods different from our cur-
rent settings or use more data mining activities in order to validate
or improve our results.

Our classification schemes may not always be adequate for all
cases. For example, functions such as similar_text are classified
as un-taint based on our observations that such functions do not
cause security attacks. But there may be exceptions (which we
are not aware of) that some sophisticated attackers make use of
the information returned from such functions to generate success-
ful security attacks. Still, the advantage of using data miners is that
when such cases become significant, they can be easily re-trained

with newly reported vulnerability information to become aware of
similar cases in future.

For all the above threats, the best way to prove or refute our re-
sults is to replicate the experiments. Researchers could do so since
we have clearly defined our experiment methods and we also pro-
vide both the dataset used in the experiment and the tool used to
collect the data in our web site [26].

6. Related work

This study explores the use of machine learning techniques in
finding SQLI and XSS vulnerabilities in web applications. In com-
parison, our work is related to defect prediction, vulnerability pre-
diction, and vulnerability detection approaches.

6.1. Defect prediction

In this domain, researchers [3,16,20,21,39] have investigated
the performance of several classification algorithms, such as C4.5,
neural networks, Naïve Bayes, support vector machine, rain forest,
and logistic regression, for predicting defects in software modules.
Most of these approaches used static code attributes which include
LOC counts, Halstead [12], code complexity [19], and other miscel-
laneous attributes, and applied performance measures such as re-
call, probability of false alarm, precision, and accuracy.

Although results are encouraging, researchers such as Menzies
et al. [23] observed that information contents available from size
and code complexity attributes are limited. Zimmermann and
Nagappan [45] proposed network attributes that measure depen-
dencies between binaries. Tosun et al. [40] further validated and
endorsed their results [45] based on the experiments on public
datasets [27]. Arisholm et al. [3] also reported that the use of pro-
cess attributes (such as developer experience) combining with
code complexity attributes could significantly improve the perfor-
mance of prediction models. However, they also reported that de-
spite the improvement, it is very expensive to collect process
measures. Menzies et al. [22] also showed that tuning the classifier
according to a user-specific goal (e.g., finding the fewest modules
that contain the most errors) improves the classifier’s performance
without the help of process or other types of attributes. They stated
that static code attributes are one of the few measures that can be
consistently collected across systems. Tosun and Bener [39] also
reported that up to 71% of the software engineering effort could
be saved by first identifying possibly-defective software compo-
nents with data miners before performing manual code audits for
debugging and software maintenance purposes.

In summary, their works showed that static code attributes are
useful in practice and predictors with pd > 70% and pf < 25% could
save much software engineering effort. Like these defect prediction
approaches, our approach is also built on similar data mining mod-
els. Motivated by their findings, we only use static code attributes
so that our models are practical. But we use static attributes that
characterize input sanitization code patterns.

6.2. Vulnerability prediction

Neuhaus et al. [24] predicted vulnerabilities in software compo-
nents of Mozilla open source project. Their vulnerability predictors
are built from file imports and function calls attributes. Basically,
they mine header files and function calls in known vulnerable soft-
ware components to predict the vulnerability of new components
by analyzing their file imports and function calls information. They
achieved pd > 45 and pr > 70.

Gegick et al. [11] used static analysis-based fault alerts, code
churn, LOC counts to predict vulnerable software components. Like
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our approach, they also used static program analysis to collect
attributes. However, their static analysis only generates program-
ming-fault alerts and manual audition is required to determine
whether those alerts could be warnings of security vulnerabilities.
This task requires a security expert and might be error-prone. By
contrast, our attribute collection process is fully automated.

Walden et al. [41] investigated the association between the
security resource indicator (SRI) and the vulnerabilities in PHP
web applications. SRI is derived from publicly available security
information such as documentation of security implications
regarding system configurations, past vulnerabilities, and secure
development guidelines. In contrast to our work, their method
does not focus on locating vulnerable code at any level as their tar-
get is in the vulnerability of the application.

Shin et al. [33] used code complexity, code churn, and developer
activity attributes to predict vulnerable files in Firefox web brow-
ser and Enterprise Linux kernel. They achieved pd > 80 and pf < 25.
Their concept of vulnerability prediction is based on the hypothe-
ses such as the more complex the code, the higher chances that the
code is vulnerable. But from our observations, many of the vulner-
abilities arise from simple code such

mysql_query(‘‘SELECT � FROM user WHERE id=’’._GET

[‘user_id’]);

If a program file does not employ any input sanitization rou-
tines, the program code could become simpler but would contain
many vulnerabilities. Furthermore, Shin et al. [33] requires process
attributes whose measurements may not be consistent across pro-
jects [3,22]. By contrast, our predictors are built from only static
code attributes.

The major and general differences between the above vulnera-
bility prediction approaches and ours are (1) we focus on SQLI and
XSS vulnerabilities instead of general vulnerabilities; (2) hence, we
propose and use static code attributes that reflect the patterns of
defensive code against SQLI and XSS; and (3) most importantly,
we direct auditors to specific program statements rather than soft-
ware components or program files in reporting vulnerability.
Although their results cannot be generalized to ours due to differ-
ent prediction levels and different benchmarks used, because of
our specialization, we achieved significantly low level of false
alarm rates in our experiments (6% and 11% false alarm rates on
predicting XSS and SQLI vulnerabilities respectively).

In our preliminary evaluation [31], data analysis was performed
on all the test subjects together (i.e., cross-validated on all datasets
combined). When the test subjects with more data can be easily
predicted, this may result in better performance due to over-fitting
of data. Such data analysis may not be ideal for heterogeneous set
of web applications. Furthermore, previous study only used 5 data-
sets for experiments. By contrast, this study uses a total of 12 data-
sets. Data analysis is performed on each individual dataset to avoid
over-fitting. Still, our current predictors have displayed good pre-
dictive performances. Shar et al. [32] also proposed vulnerability
prediction models based on hybrid program analysis. Similar to
this work, their work also analyzes input sanitization code pat-
terns. But the major difference is that their work includes dynamic
program analysis and focuses on code patterns extracted from dy-
namic execution traces. They aim to achieve higher accuracy
through dynamic analysis whereas the aim of this study is to
achieve both good accuracy and usability by using only static
analysis.

6.3. Vulnerability detection

These approaches identify the locations of vulnerabilities in
program source code using taint analysis methods. Jovanovic

et al. [13], Livshits and Lam [17], Xie and Aiken [44] used
prominent static analysis techniques such as flow-(in)sensitive,
interprocedural, and context-(in)sensitive analyses to implement
tainted-information-flow tracking. Their approaches track the flow
of user inputs and check if any of input data reaches sensitive sinks
without passing through input sanitization routines. Such ap-
proaches provide a quick detection of potential vulnerabilities in
web programs. But these approaches also tend to produce many
false alarms as they do not check the correctness of input sanitiza-
tion routines. By contrast, our vulnerability predictors learn from
available vulnerability information and associated input sanitiza-
tion code patterns. And, vulnerability predictions on new instances
are based on the probabilities that the implemented input sanitiza-
tion routines are correct or incorrect.

To improve the accuracy, recent approaches incorporated
dynamic analysis techniques. Martin and Lam [18] used model
checking, and Kie _zun et al. [15] and Wassermann et al. [42] used
concolic (concrete + symbolic) execution to generate concrete test
inputs that are likely to result in genuine security attacks. As their
approaches generate concrete attack vectors, there is no false posi-
tive. However, the performance of these approaches depends on
their underlying model checkers or string constraint solvers such
as [14] and [29] because program operations generally involve
many string operations which are often complex (e.g., character
manipulation, numeric-string interaction). To the best of our knowl-
edge, there is no open source concolic execution tool that could
sufficiently handle such string operations. By contrast, our work ap-
plies only static analysis methods to collect attribute vectors and
uses light-weight modeling methods to predict vulnerabilities. In
theory, our static vulnerability predictors may never identify vul-
nerabilities with the same precision as those dynamic approaches.
But adoption of those approaches would require dynamic analysis
frameworks which may be computationally expensive. By contrast,
our approach could easily be used. And being a data mining-based
approach, it also has the advantage of being able to process many
data instances, and thus, it provides an alternative, cheaper, and
efficient mode of finding many vulnerabilities.

Thomas et al. [38] and Shar and Tan [30] proposed approaches
that automatically remove SQLI and XSS vulnerabilities respec-
tively by inserting secured code in place of identified vulnerabili-
ties. However, their approaches do not obviate the need of our
approach because their approaches rely on static analysis-based
vulnerability detectors to identify vulnerabilities. Therefore, our
work complements their approaches.

7. Conclusion

The goal of this work is to aid web security testing by providing
vulnerability prediction models that are easy to use and accurate.
We proposed a set of static code attributes that characterize input
sanitization code patterns and analyzed if these attributes can indi-
cate program statements that are vulnerable to SQLI or XSS. We
showed that the attributes can be easily collected via simple static
analysis techniques.

In the experiments across 8 test subjects, each of the proposed
attributes showed discriminative power between vulnerable and
non-vulnerable program statements for at least one test subject.
Our best prediction model (MLP) built from all the proposed attri-
butes achieved, on average, (pd = 93, pf = 11) and (pd = 78, pf = 6)
for predicting SQLI and XSS vulnerabilities respectively. These
results show that our proposed prediction method is useful and
effective. We do not claim that vulnerability prediction method
is the complete replacement of existing vulnerability detection
methods because predictors could only provide probabilistic
conclusions based on past data. In fact, our experiments with an
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existing vulnerability detection approach show that these methods
complement each other. But, much work still needs to be done in
integrating these different approaches effectively.

As many prediction studies have observed that predictors built
with static code attributes do not produce consistent performances
across studies, we intend to conduct further experiments on differ-
ent set of systems and re-evaluate current findings. We also hope
that researchers repeat our experiments possibly with more data
mining activities and unearth better vulnerability predictors. We
aim to identify and propose attributes that reflect defensive code
patterns against other types of vulnerabilities such as path tra-
versal and URL redirects to further enhance our predictors.
Furthermore, as our current predictors are not designed to predict
across applications, we shall also explore the use of other types of
attributes such as process attributes to address this problem.

References

[1] E. Alpaydin, Introduction to Machine Learning, MIT Press, Massachusetts, 2004.
[2] Anley, C., 2002. Advanced SQL Injection in SQL Server Applications. Next

Generation Security Software Ltd., White Paper.
[3] E. Arisholm, L.C. Briand, E.B. Johannessen, A systematic and comprehensive

investigation of methods to build and evaluate fault prediction models, Journal
of Systems and Software 83 (1) (2010) 2–17.

[4] BugTraq. <http://www.securityfocus.com/archive/1> (accessed March 2011).
[5] J. Demšar, Statistical comparisons of classifiers over multiple data sets, Journal

of Machine Learning Research 7 (2006) 1–30.
[6] M.W. Fagerland, L. Sandvik, Performance of five two-sample location tests for

skewed distributions with unequal variances, Contemporary Clinical Trials 30
(5) (2009) 490–496.

[7] J. Ferrante, K.J. Ottenstein, J.D. Warren, The program dependence graph and its
use in optimization, ACM Transactions on Programming Languages and
Systems 9 (3) (1987) 319–349.

[8] D. Fisher, L. Xu, N. Zard, Ordering effects in clustering, in: Proceedings of the
9th International Workshop on Machine Learning, Aberdeen, Scotland, 1992,
pp. 163–168.

[9] S. Fogie, J. Grossman, R. Hansen, A. Rager, XSS Exploits: Cross Site Scripting
Attacks and Defense, Syngress, 2007, pp. 395–406.

[10] K. Gao, T.M. Khoshgoftaar, H. Wang, N. Seliya, Choosing software metrics for
defect prediction: an investigation on feature selection techniques, Software
Practice and Experience 41 (5) (2011) 579–606.

[11] M. Gegick, L. Williams, J. Osborne, M. Vouk, Prioritizing software security
fortification through code-level metrics, in: Proceedings of the 4th ACM
Workshop on Quality of Protection, Alexandria, Virginia, 2008, pp. 31–38.

[12] M. Halstead, Elements of Software Science, Elsevier, New York, 1977.
[13] N. Jovanovic, C. Kruegel, E. Kirda, Pixy: a static analysis tool for detecting web

application vulnerabilities, in: Proceedings of the IEEE Symposium on Security
and Privacy, Berkeley/Oakland, CA, 2006, pp. 258–263.

[14] A. Kie _zun, V. Ganesh, P.J. Guo, P. Hooimeijer, M.D. Ernst, HAMPI: a solver for
string constraints, in: Proceedings of the 18th International Symposium on
Testing and Analysis, Chicago, IL, 2009, pp. 105–116.

[15] A. Kie _zun, P.J. Guo, K. Jayaraman, M.D. Ernst, Automatic creation of SQL
injection and cross-site scripting attacks, in: Proceedings of the 31st
International Conference on Software Engineering, Vancouver, BC, 2009, pp.
199–209.

[16] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classification
models for software defect prediction: a proposed framework and novel
findings, IEEE Transactions on Software Engineering 34 (4) (2008) 485–496.

[17] V.B. Livshits, M.S. Lam, Finding security errors in Java programs with static
analysis, in: Proceedings of the 14th USENIX Security Symposium, Baltimore,
MD, 2005, pp. 271–286.

[18] M. Martin, M.S. Lam, Automatic generation of XSS and SQL injection attacks
with goal-directed model checking, in: Proceedings of the 17th USENIX
Security Symposium, San Jose, CA, 2008, pp. 31–43.

[19] T. McCabe, A complexity measure, IEEE Transactions on Software Engineering
2 (4) (1976) 308–320.

[20] T. Mende, Replication of defect prediction studies: problems, pitfalls and
recommendations, in: Proceedings of the 5th International Conference on
Predictor Models in Software Engineering, Timisoara, Romania, 2010, pp. 1–10.

[21] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes to learn
defect predictors, IEEE Transactions on Software Engineering 33 (1) (2007) 2–
13.

[22] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, A. Bener, Defect prediction
from static code features: current results, limitations, new approaches,
Automated Software Engineering 17 (4) (2010) 375–407.

[23] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, Y. Jiang, Implications of ceiling
effects in defect predictors, in: Promise Workshop (Part of the 30th
International Conference on Software Engineering), Leipzig, Germany, 2008,
pp. 47–54.

[24] S. Neuhaus, T. Zimmermann, A. Zeller, Predicting vulnerable software
components, in: Proceedings of the 14th ACM Conference on Computer and
Communications Security, Alexandria, Virginia, 2007, pp. 529–540.

[25] OWASP. Top Ten Project 2010. <http://www.owasp.org> (accessed January
2012).

[26] PhpMinerI. <http://sharlwinkhin.com/phpminer.html>.
[27] PROMISE. Software Engineering Repository. <http://promise.site.uottawa.ca/

SERepository/> (accessed November 2011).
[28] N.F. Schneidewind, Methodology for validating software metrics, IEEE

Transactions on Software Engineering 18 (5) (1992) 410–422.
[29] K. Sen, G. Agha, CUTE and jCUTE: concolic unit testing and explicit path model-

checking tools, Lecture Notes in Computer Science 4144 (2006) 419–423.
[30] L.K. Shar, H.B.K. Tan, Automated removal of cross site scripting vulnerabilities

in web applications, Information and Software Technology 54 (5) (2012) 467–
478.

[31] L.K. Shar, H.B.K. Tan, Mining input sanitization patterns for predicting SQLI and
XSS vulnerabilities, in: Proceedings of the 34th International Conference on
Software Engineering, Zurich, Switzerland, 2012, pp. 1293–1296.

[32] L.K. Shar, H.B.K. Tan, L.C. Briand, Mining SQL injection and cross site scripting
vulnerabilities using hybrid program analysis, in: Proceedings of the 35th
International Conference on Software Engineering, San Francisco, USA, in
press.

[33] Y. Shin, A. Meneely, L. Williams, J.A. Osborne, Evaluating complexity, code
churn, and developer activity metrics as indicators of software vulnerabilities,
IEEE Transactions on Software Engineering 37 (6) (2011) 772–787.

[34] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahasanović, N.-K.
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