
I n biological systems,  iron exists in two main states,  
ferrous (+2) and ferric (+3),  and plays an essential 

role in normal cell homeostasis.  Iron orchestrates vari-
ous crucial physiological processes in cells,  such as cell 
respiration,  oxygen metabolism,  energy metabolism,  
and signaling.  Iron also plays an active part in DNA 
synthesis and repair,  cell growth,  and differentiation 
[1 , 2].  However,  iron is sometimes a double-edged 
sword.  Iron overload can induce carcinogenesis via 
oxidative stress.  More than 50 years ago,  many types of 
compounds containing iron were reported to induce 
carcinogenesis [3-6].

Iron metabolism is different in cancer cells than in 
normal cells.  Cancer cells require increasingly large 
amounts of iron to sustain their rapid division and cell 
growth [7].  Recent studies have hypothesized that can-
cer stem cells (CSCs) may be responsible for cancer 
recurrence and metastasis [8 , 9].  CSCs have self-re-

newal and differentiation abilities and may be a source 
of cancer.  Recent studies have investigated new roles for 
iron in CSCs [10].  In this review,  we provide an over-
view of iron’s roles in cancer and CSCs and present our 
expectation of a new therapeutic strategy.

The Roles of Iron in Cancer Cells

Iron is a vital trace element in the body and is neces-
sary to sustain life.  Iron plays a pivotal role in cell cycle 
regulation,  because it is integral to iron-containing 
ribonucleotide reductase,  which is a rate-limiting 
enzyme in DNA synthesis [11].  In addition,  iron plays 
an active part in various types of cell metabolism,  espe-
cially in cellular respiration and energy metabolism,  
which provide cells with sufficient ATP primarily 
through oxidative phosphorylation and the citric acid 
cycle [12].

However,  strict homeostasis is disrupted in malig-
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nant cells,  and such disruption is thought to occur in 
connection with iron.  A multitude of animal models 
have been made to elucidate the role of iron in carcino-
genesis,  and the results of studies with these models are 
consistent with those of epidemiological studies 
[3-6 , 13].  Cancer cells require increasingly large 
amounts of iron to sustain their rapid division and cell 
growth.  To meet their augmented iron requirement,  
malignant cells increase their uptake of iron from the 
microenvironment by upregulating pinocytosis and the 
expression of transferrin receptor 1 (TfR1) on the mem-
brane.  Cancer cells also secrete hepcidin (HP),  which 
can suppress ferroportin (FPN) on the neoplastic cell 
membrane to reduce the export of intracellular iron 
[14-17] (Fig. 1).  With an increase in available iron,  ROS 
generation increases according to the Fenton reaction,  

which catalyzes Fe2+,  leading to DNA damage that 
increases mutations and malignancy [18 , 19].  In addi-
tion,  as mentioned above,  cycle regulation and metab-
olism are enhanced,  which promotes the growth and 
proliferation of tumors [20-22] by promoting ATP gen-
eration and mitochondrial oxygen consumption [23].

The malignant phenotype of cancer cells is regulated 
by oncogenes.  Some oncogenes are associated with iron 
homeostasis.  Myc family proteins,  which are well-
known transcription factors from oncogenes,  are ele-
vated in a wide variety of human cancers [24].  They 
contribute to several aspects of cellular metabolism,  cell 
cycle regulation,  and macromolecule biogenesis 
[25 , 26].  Among them,  c-Myc is firmly correlated with 
iron homeostasis.  c-Myc increases the labile iron pool 
(LIP) via upregulation of iron regulatory protein 2 
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Fig. 1　 The role of iron in cancer cells.  In general,  cancer cells show increased levels of intracellular iron compared to normal cells.  
Two methods are employed by cells to take up iron.  1) Ferrous iron (Fe2+) is imported into cells directly by divalent metal transporter 1 
(DMT1),  especially in enterocytes.  2) Ferric iron (Fe3+) is transferred by transferrin (TF) present in the circulation,  combined with transfer-
rin receptor 1 (TfR1),  endocytosed via endosomes,  reduced by the six-transmembrane epithelial antigen of prostate (STEAP),  and 
exported through DMT1.  The newly imported Fe2+ is added to the active labile iron pool (LIP) and utilized mainly by mitochondria and the 
nucleus for metabolic processes such as DNA replication and repair,  energy metabolism,  and cell respiration.  LIP is also enhanced by 
upregulation of IRP2,  which is regulated by c-Myc.  Harmful reactive oxygen species are also generated by the increase in iron.  
Intracellular iron is stored in ferritin or exits the cell through ferroportin (FPN) and is oxidized by ferroxidase ceruloplasmin (CP) on the 
membrane.  Hepcidin (HP),  which is secreted by the liver,  (the iron-sensing organ),  acts as a negative regulator of FPN.  ROS is downreg-
ulated by cysteine,  an antioxidant molecule,  via the cystine/glutamic acid transportation system (System xc

-).  System xc
- consists of xCT 

and 4F2 heavy chain (CD98).



(IRP2),  an iron-responsive protein that is a master reg-
ulator of intracellular iron homeostasis [7 , 27].  LIP is 
strongly increased in cancer cells compared to normal 
cells with overexpression of TfR and HP,  low levels of 
FPN and ferritin (FT),  or both [28].

These findings are supported by epidemiological 
data.  Iron-rich foods such as red meat increase the risk 
of breast,  colorectal,  and lung cancers [29 , 30].  In 
short,  iron plays many roles in cancer cells,  from car-
cinogenesis to increasing the malignant phenotype.

The Role of Iron in CSCs

The theory of CSCs was proposed in the 1990s for 
acute myeloid leukemia based on experimental evidence 
[8 , 31].  Further research identified CSCs in solid 
tumors as well.  CSCs are considered the main reason 
for the relapse and metastasis of cancer.  CSCs are resis-

tant to conventional chemotherapy and radiotherapy,  
and their presence is correlated with a poor clinical 
prognosis [32].  The functions of CSCs are related to 
iron metabolism.  Recent studies revealed that iron 
induces not only carcinogenesis but also the stem cell 
phenotype in cancer cells.  Iron increases sphere forma-
tion ability,  which reflects self-renewal ability [33 , 34].  
The expression of TfR1 is higher in breast CSCs than in 
cancer cells [35] (Fig. 2).  CSCs are protected against 
ROS and maintain lower levels of intracellular ROS [36].  
Considering that ROS accumulation induces carcino-
genesis via oxidative stress,  these findings indicate that 
CSCs can be thought of as ROS-generated cancer cells 
that are strongly protected from ROS.

Iron also plays an important role by moderating 
ROS in stemness,  which is a main feature of CSCs.  
ROS moderates the redox balance and redox signaling.  
The redox balance affects self-renewal ability [37].  
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Fig. 2　 The role of iron in CSCs.  CSCs feature augmented dependence on iron and a higher accumulation of the labile iron pool (LIP) 
for active proliferation and stemness maintenance compared to normal cancer cells.  The increase in ferrous iron (Fe2+) enhances the 
expression of stem cell markers.  To increase LIP,  CSCs express high levels of transferrin receptor 1 (TfR1) and downregulate the expres-
sion of ferroportin (FPN),  increasing the import and decreasing the export of iron.  In addition,  hepcidin (HP) is also elevated to suppress 
FPN export by triggering degradation and internalization.  With the increase in intracellular iron,  ROS increases.  CSCs have a strong anti-
oxidative mechanism mediated by the CD44 variant isoform (CD44v).  CD44v stabilizes xCT and increases intracellular cysteine,  an anti-
oxidative substance,  and maintains the low level of intracellular ROS.  Compared to normal cancer cells,  CSCs with fewer intracellular 
ROS and more LIP proliferate and are more difficult to eliminate.



Redox signaling affects self-renewal and the differentia-
tion status of stem cells [38].  Stemness markers are 
often used to determine the stemness status and the 
existence of CSCs.  Several markers are related to CSCs,  
such as CD44,  CD133,  Nanog,  Epithelial cell adhesion 
molecule (EpCAM),  Leucine-rich repeat-containing 
G-protein-coupled receptor 5 (LGR5),  and Aldehyde 
dehydrogenase (ALDH) [39 , 40].  These markers are 
related to poor prognosis in clinical-pathological exam-
inations [41-45].  A CD44 variant,  which is a well-
known CSC marker,  works as an antioxidant molecule 
by enhancing the expression of cystine/glutamic acid 
transporter (system xc

-).  The CD44 variant stabilizes 
xCT,  a key molecule of system xc

-,  increases intracellu-
lar cysteine,  an antioxidative substance,  and maintains 
a low level of intracellular ROS,  which is thought to be 
a reason why CSCs can maintain lower levels of intra-
cellular ROS.  Moreover,  some stemness markers pro-
mote a metastatic phenotype that is regulated through 
ROS [45 , 46].  Together,  these recent studies have 
shown new roles for iron in CSCs and have revealed 
that ROS induction is a possible type of CSC therapy.

Iron Metabolism As a Therapeutic Target in 
CSCs

Iron metabolism has been targeted in cancer ther-
apy.  Phlebotomy was first considered to decrease inter-
nal iron levels as a cancer therapy [47 , 48].  Iron chela-
tors also have been proposed as anti-cancer drugs that 
target iron metabolism [49-52].  Many kinds of iron 
chelators,  such as deferaxamine,  deferasirox,  tachpyr-
idine,  di-2-pyridylketone-4,4-dimethyl-3-thiosemicar-
bazone,  and super polyphenol,  have shown anti-cancer 
effects [51-57].  These iron chelators also suppress 
metastasis [51 , 58].  In hepatocellular carcinoma,  defe-
raxamine showed a clinically significant effect in some 
cases [59].  However,  no iron chelation treatment for 
cancer has been established,  and there may be several 
plausible reasons for this: many other strong anti-pro-
liferative drugs have been developed that are not iron 
chelators; iron chelators have side effects because nor-
mal cells also use iron; and the complicated roles of 
iron chelators in cancer cells and the microenvironment 
have not been completely elucidated.  However,  recent 
progress in molecular biology has suggested a new use 
for iron chelators combined with molecular targeting 
drugs to treat intractable cancer [60-63].  Moreover,  
progress in stem cell research and an increased under-

standing of iron’s role in CSCs have provided new 
insight in this field.  We found that iron chelators sup-
press stemness in a CSC model derived from mouse-in-
duced pluripotent stem cells [64] (Fig. 3).  A similar 
phenomenon was confirmed in cholangiocarcinoma,  
esophageal cancer,  and pancreatic cancer cell lines with 
stemness potential [34 , 65].  Although the expectation 
of iron chelators as a new therapeutic modality for CSCs 
is increasing,  the underlying mechanism is still debat-
able.  Iron chelators generally induce apoptosis in can-
cer cells.  Some iron chelators induce another type of cell 
death,  called ferroptosis.  Sulfasalazine,  a traditional 
iron chelator,  induces ferroptosis in CSCs via suppres-
sion of xCT.  Salinomycin is also an iron chelator that 
induces ferroptosis by sequestering iron in lysosomes 
and inducing ROS generation [35].  However,  it 
remains to be determined which iron chelator and 
which mechanism are most important for CSC targeting 
therapy.  Tumor heterogeneity may affect the results 
[66].  Further studies are needed to establish CSC tar-
geting therapy using iron chelators.

Iron was present when the earth was formed.  Since 
all living things evolved in the presence of iron,  it is not 
surprising that iron is essential for the maintenance of 
stemness.  Adequate control of iron homeostasis will 
contribute to establishing CSC targeting therapy.
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Fig. 3　 Iron chelation therapy in CSCs.  Iron chelators are 
reported to be effective in CSCs.  Although CSCs are strongly pro-
tected from ROS,  both sulfasalazine and other iron chelators 
induce ROS accumulation and cell death in CSCs.  The detailed 
mechanism is known to be different.
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