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Resumo

O avanço tecnológico e a crescente disponibilidade de dados públicos levaram ao desenvolvimento

de metodologias robustas de predição de atividade de compostos com base em aprendizagem automática.

Estas metodologias apresentam maior rapidez, eficiência e menores custos que os métodos tradicionais

de descoberta de fármacos.

Fibrose Quı́stica (FQ) é uma doença autossómica progressiva para a qual existe urgente necessidade

de surgimento de novas terapias. Mutações no gene CFTR nos pacientes de FQ levam à produção defi-

ciente do canal de membrana de transporte de aniões CFTR, gerando desequilı́brios iónicos e transporte

anormal de fluidos. FQ afeta vários órgãos, os pulmões com mais gravidade, sendo normalmente de-

vido a problemas nestes a causa de morte prematura. A mutação mais prevalente e relevante em FQ é

a deleção da fenilalanina 508 (F508del-CFTR). Por esta razão, os principais esforços de descoberta de

novos fármacos são direcionados a corrigir ou amenizar os efeitos desta mutação.

Foi criada uma metodologia com recurso a modelos de aprendizagem automática de classificação

e regressão baseada em máquinas de vetores de suporte e Random Forests para descoberta de compos-

tos com potêncial terapêutico em FQ a partir de bases de dados de compostos de acesso público. Os

compostos mais promissores foram selecionados e testados em laboratório através de ensaios de imuno-

fluorescência com microscopia automatizada de triagem e análise de alto rendimento sobre o efeito na

F508del-CFTR, com base na eficiência de tráfego da F508del-CFTR para a membrana plasmática. Os

10 compostos com melhores resultados neste ensaio foram validados com Western Blot e comparados

com dois conhecidos compostos corretores da F508del-CFTR. 4 compostos foram identificados como

promissores compostos terapêuticos para FQ.

Palavras-chave: Aprendizagem Automática; Quı́mioinformática; Fibrose Quı́stica; Predição de

Fármacos; CFTR.
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Abstract

The recent technological advancements and growth in publicly available data led to the development

of robust methodologies of prediction of biological activity based on machine learning models. These

methodologies are typically faster, more efficient and less expensive than traditional drug discovery

approaches.

Cystic Fibrosis (CF) is an progressive autosomal recessive disease for which there is an urgent need

of new therapies. Mutations in the CFTR gene in CF patients lead to the production of a deficient CFTR

anion transport membrane channel, resulting in ionic imbalances and abnormal fluid transport. CF affects

many organs, but the typical cause of early death is due to lung complications. The most prevalent and

relevant mutation in CF is the deletion of phenylalanine 508 (F508del-CFTR), and for this reason, the

main efforts in drug discovery in CF are directed at correcting or reducing the effects of this mutation.

A pipeline for drug discovery in CF was developed, based on classification and regression machine

learning models using Support Vector Machines and Random Forests and public access databases of

compounds. The most promising compounds were selected and studied in vitro in a high-throughput

screening immunofluorescence assay with automated microscopy. The traffic efficiency of F508del-

CFTR to the plasma membrane was assessed and the 10 best compounds were validated with Western

Blot. 4 compounds were identified as promising therapeutics for CF.

Keywords: Machine Learning; Chemoinformatics; Drug Discovery; Cystic Fibrosis; CFTR.
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Resumo Alargado

Com o avanço tecnológico e crescente disponibilidade de dados públicos, cada vez mais são procura-

dos meios mais rápidos, eficientes e menos dispendiosos nos processos de descoberta de novos fármacos.

Em paralelo, a crescente disponibilidade de dados e de recursos computacionais permite novas aborda-

gens a problemas de difı́cil resolução em biologia e medicina. Uma possı́vel abordagem baseia-se no

uso de modelos de predição de atividade biológica de compostos. Estes podem ser feitos com recurso a

modelos de aprendizagem automática e criação de espaços métricos de distâncias entre moléculas.

Uma patologia para a qual existe grande necessidade de descoberta de novas terapias é a Fibrose

Quı́stica (FQ). FQ é a doença autossómica recessiva progressiva com impacto negativo na esperança

média de vida que mais afeta caucasianos. Esta doença é causada por mutações no gene CFTR, que

levam à produção deficiente da proteı́na CFTR, um canal de membrana de transporte de aniões. Geram-

se desequilı́brios iónicos e de transporte de fluidos, afetando vários órgãos, mas mais gravemente os

pulmões.

A mutação do gene CFTR mais prevalente e com maior incidência nos doentes com FQ é a deleção

da fenilalanina 508 (F508del-CFTR), gerando uma proteı́na com problemas de conformação, ficando

em grande parte retida no retı́culo endoplasmático. Grande parte dos esforços de descoberta de novos

fármacos são direcionados a corrigir ou amenizar os efeitos desta mutação.

Este projeto teve como objetivos identificar potenciais novos fármacos para FQ através de bases de

dados públicas usando métodos computacionais e modelos de aprendizagem automática. Após identificação

de compostos promissores, testar em laboratório através de ensaios de imunofluorescência de triagem e

análise de alto rendimento sobre o efeito na F508del-CFTR. Os compostos com melhores resultados

neste ensaio seriam validados com Western Blot (WB).

A tarefa inicial foi encontrar um conjunto de dados apropriado e tratar os dados. O ensaio escolhido

foi um ensaio biológico funcional de supressão de fluorescência sobre o efeito de pequenos compos-

tos na função da F508del-CFTR, disponı́vel abertamente na base de dados PubChem com a referência

PubChem AID #743267.

As estruturas destes compostos foram recolhidas nas notações digitais simplified molecular-input

line-entry system (SMILES) e IUPAC International Chemical Identifier (InChi), acompanhadas de um

indicador de atividade (ativo ou inativo) e de um valor numérico de atividade, baseado na concentração

do fármaco que induz metade da resposta máxima (AC50).

A informação das estruturas em SMILES e InChi foi convertida para fingerprints (“impressões digi-

tais”) moleculares, em formato Morgan e Atom Pairs (“pares de átomos”) em várias configurações, em

ambiente de programação Python 3. Todos os processos computacionais consequentes foram executados

e programados em ambiente R. Para tarefas de previsão de atividade são usados modelos supervisiona-
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dos, isto é, o conjunto de dados de treino contém a informação a modelar e o resultado obtido. Estes

modelos podem ser de classificação, caso apresentem resultados em classes, neste caso, ativo ou inativo,

ou de regressão caso apresentem resultados numéricos, neste caso valores de atividade.

Para validação dos modelos de aprendizagem automática, a sua performance deve ser testada com um

conjunto de validação independente (CVI), de modo a que os resultados a prever sejam desconhecidos

para os modelos. Esta validação só deverá ser aplicada aos melhores modelos, que serão avaliados com

um processo de validação semelhante chamado de validação cruzada (VC). Em VC, o conjunto de dados

de treino é repartido em várias partes que serão iterativamente usados para avaliar a performance dos

modelos treinados com o somatório das restantes partes. Para avaliar a performance dos modelos de

classificação foi usada a métrica Coeficiente de Correlação de Matthews (CCM) e para os modelos de

regressão a raı́z do erro quadrático médio (REQM).

O conjunto de dados inicial foi repartido 1/10 para CVI e 9/10 para o conjunto de treino. Os algo-

ritmos de aprendizagem automática usados para criar os modelos foram máquinas de vetores de suporte

(MVS) e Random Forests (RF, “florestas aleatórias”). As variáveis usadas para prever atividade são cha-

madas de preditores. Neste contexto, inicialmente, foram usados como preditores os bits dos fingerprints.

O número de preditores usados afeta a performance dos modelos, especialmente MVS. Nem todos os bits

têm a mesma importância. Para determinar qual a importância de cada preditor foi usada a função de

importância do algoritmo de RF para todas as definições de fingerprints usadas. MVS foram escolhidas

para abordagem principal de modelagem por obterem melhor performance em avaliações iniciais com

seleção de preditores.

Foi escolhida uma abordagem de modelação em duas camadas, uma inicial de classificação e uma

segunda camada de regressão. O processo de seleção dos melhores modelos de classificação passou por

escolher quais as melhores definições de Morgan e Atom Pairs fingerprints e qual o número de preditores

a usar com MSV. Foram criados modelos para cada definição de fingerprints com um número crescente

de preditores. Os modelos que se destacaram foram 1024 bits with raio = 2, no interval entre 50 e 250

preditores, 1024 bits com raio = 3 no intervalo entre 50 e 500, 2048 bits e raio = e 2048 bits com raio =

3 no intervalo entre 50 e 500 preditores.

Foi criado um espaço métrico de distâncias entre compostos baseado nas distâncias de Tanimoto. Es-

tas distâncias foram calculadas com base nos Morgan Fingerprints. Foi aplicada a técnica de redução de

dimensionalidade de Análise de Coordenadas Principais, e as duas primeiras coordenadas principais fo-

ram projetadas num espaço métrico de duas dimensões com base em classificação. Não houve separação

clara entre ativos e inativos para nenhuma das definições. Foram também usadas as distâncias como pre-

ditores em modelos de MSV de RF. Estes modelos apresentaram uma performance inferior aos modelos

com Morgan Fingerprints como preditores.

Para selecionar os melhores modelos de regressão com MSV apenas foram usados os compostos

ativos para treino e validação. Os restantes processos foram análogos aos da escolha dos modelos de

classificação. Foi escolhido o modelo com Morgan Fingerprints em 1024 bits com raio = 2. Os melhores

modelos foram validados e usados para fazer triagem dos compostos mais promissores na base de dados

ZINC15, juntamente com outros passos de filtragem. 28 compostos foram selecionados para validação

experimental.

O primeiro ensaio experimental consistiu numa triagem de alto rendimento de imunofluorescência
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com microscopia automatizada. 3 concentrações de cada composto, juntamente com os moduladores

conhecidos de F508del-CFTR VX-661, VX-809 e VX-770, foram aplicadas a células CFBE expressando

F508del-CFTR acoplada com mCherry (uma proteı́na fluorescente) e FLAG-tag (antigénio). Foi medida

a CFTR total expressa nas células através da fluorescência caracterı́stica da mCherry e a fluorescência

na membrana plasmática (MP) através da ligação de anticorpos primários ao FLAG-tag e consequente

ligação de anticorpos secundários com fluorescência.

Os resultados foram obtidos automaticamente com o software CellProfiler e analisados com o script

ShinyHTM. Foi aplicada uma correção de gradiente de fluorescência por placa. Os tratamentos mais

promissores foram selecionados com base na mediana dos testes-Z do rácio entre a fluorescência da

CFTR na MP e a fluorescência de CFTR total, sendo uma medida de eficiência de tráfego de F508del-

CFTR comparativamente ao controlo.

10 tratamentos candidatos foram selecionados para validação com WB, juntamente com os modu-

ladores VX-661 e VX-809 para avaliar o Processamento de CFTR, a quantidade de CFTR maturada e

CFTR total. Neste ensaio todos os compostos apresentaram aumento de CFTR total comparativamente

ao controlo e aos VX-661 e -809, dos quais o C14 com significância. Os compostos C07, C14 e C25

apresentaram um aumento significativo na quantidade de CFTR maturada. O composto C17 embora não

tenha obtido significância estatı́stica, apresentou aumento de CFTR total no WB em duas concentrações

diferentes sendo por isso também considerado promissor.

Uma análise posterior foi feita aos resultados de fluorescência de CFTR total e de CFTR na MP,

confirmando a existência de compostos com aumento promissor e significativo nestas métricas. Como

conclusão, foi criada uma metodologia de descoberta de novos fármacos para FQ. Foram selecionados 4

compostos como especialmente promissores.
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Section 1

Introduction

1.1 Motivation

There is a clinical need to identify new candidate drugs for cystic fibrosis (CF). Even though a significant

amount of data is available on this subject there is a still a lack of sufficiently efficient treatments or

robust methodologies to discover or design them. These approaches should be fast and efficient, and a

possible methodology is to use machine learning models on datasets of previously made assays regarding

substances with potential for enhancing Cl- transport through CFTR.

The field of computational prediction of biological activity of molecules, also called quantitative

structure–activity relationship (QSAR), is rapidly evolving and showing great promise and accuracy in

drug discovery. There are no reports of QSAR pipelines or workflows being previously done in the

context of CF. This project was developed to create and apply a Machine Learning-based workflow for

discovery of candidate drugs for CF with experimental validation of their effect.

1.2 Background and State of the Art

1.2.1 Drug discovery and development

It is believed that the use of drugs for medicinal purposes started with prehistoric people, with the use of

naturally occurring substances that were collected from living organisms, such as plants, animals, algae,

fungi. Only in the late 17th century, theorizing in medicine started to be replaced with observation and

experimentation of the effects of drugs in study of disease. Advances in chemistry and physiology in the

late 18th century, 19th and early 20th century laid the foundation needed for isolating and identifying

the active compounds and understanding how drugs work at organ and tissue levels (Katzung, 2018). It

was only in the 1960’s, with the advances in the understand of the functioning of receptors, ion channels

and enzymes, that the process of drug discovery started to be more scientific and rational (Takenaka,

2008). The previous therapeutic claims started to be accurately evaluated, with the emergence of crucial

concepts of rational therapeutics such as the controlled clinical trial (Katzung, 2018).

Many of the currently available drugs have been discovered through classical pharmacology (also

called forward pharmacology), in which compound libraries are created and tested on cell cultures to

look for phenotypical changes, and in later stages tested in animals (Hacker et al., 2009). A more recent

approach, usually called reverse pharmacology, consists in testing these compound libraries directly

against purified target proteins and to look for conformational changes on these proteins (Hacker et al.,
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Section 1. Introduction 2

2009; Takenaka, 2008). The more promising compounds are then tested in cell cultures and later with

animal testing. This latter approach is more common nowadays, being considerably faster, usually takes

2 years, while classical pharmacology takes approximately 5 years (Takenaka, 2008).

After candidate substances are selected, there are also other factors to optimize, such as affinity,

potency, stability, bioavailability, forms of administration and whether it efficiently reaches the target,

for example, if it crosses the blood brain barrier for central nervous system (CNS) drugs.

In order to solve specific problems in medicine, the drug discovery process requires ever faster and

more efficient methods and with less nefarious consequences towards sentient beings. The current trend

is to reduce animal suffering through testing, its associated time-consuming protocols and high costs

(Rai and Kaushik, 2018).

Nowadays the array of synthesizable compounds available is vast. In order to solve more diffi-

cult biological problems, not only is it impractical to test all available compounds in different molec-

ular and cellular conditions, it is also very costly and time and resource consuming. in vitro High-

Throughput Screening (HTS) is an approach with much potential in drug discover and toxicity testing,

where concentration-response data can be generated simultaneously for up to thousands of compounds

and mixtures (Shockley, 2015). The most common measure for activity in pharmacological and toxicity

research is the concentration for half-maximal activity (AC50). It is derived from the Hill equation model

(Hill, 1910) and is widely used to assess approximate estimates for compound potency. AC50 is often

used to prioritize chemicals for further studies and is commonly used as the basis for prediction model-

ing (Shockley, 2015). There is however a large uncertainty associated with the AC50 parameter in many

concentration-response relationships (Shockley, 2016).

Rational drug design is the process of developing medications using the known information about a

molecular target (Katzung, 2018). The most common approaches are through computer-based modeling

and relying on the knowledge of the three-dimensional structure of the target. These compounds are

usually small molecules or peptides (Hacker et al., 2009).

1.2.2 Chemoinformatics and Machine Learning

Chemoinformatics is the use of computer science and information techniques in the field of chemistry.

A common application of chemoinformatics is, for example, to model chemical substances into digi-

tal information. This information can be used to perform complex tasks of information retrieval and

prediction analysis through machine learning. In recent years, great advancements have been made in

computational methods in modelling the biological activity of compounds in an accurate manner.

To work with representations of chemical structure, it is of great importance to choose a nomenclature

or notation that easily represents molecules in a clearly defined way. Two widely used such notations

using character strings are the Simplified Molecular Input Line Entry System (SMILES) (Weininger,

1988) and the IUPAC International Chemical Identifier (InChI) (Heller et al., 2015).

A commonly used method for modeling chemical molecules is to use molecular fingerprints, which

are bit maps that represent chemical structure (Rogers and Hahn, 2010). Morgan fingerprints (also called

circular fingerprints) (Morgan, 1965; Rogers and Hahn, 2010) and Atom Pairs fingerprints (Carhart et al.,

1985) are two such algorithms, both currently widely used as descriptors of molecular activity producing

robust results (Kausar and Falcao, 2019). These fingerprints are saved as text data. Each fingerprint bit
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corresponds to a fragment of the molecule and as such, it is safe to assume that molecules that are similar

have a lot of bits/fragments in common. Using algorithms and statistic models, computer systems can

learn how to improve their performance in a specific task. This method is called machine learning (ML)

and requires a training data set, that should represent the data for which the models will be used (Kuhn

and Johnson, 2013).

The digitally coded chemical data can be used by ML models to predict the activity of untested

compounds. This concept is usually called quantitative structure–activity relationship (QSAR). QSAR

applications and are rapidly evolving alongside the rise of large quantities of data from HTS studies in a

way that properties and biological activities of novel compounds can be rapidly predicted in silico, with

only a fraction of the costs, labor and resources of traditional lab-based approaches (Nantasenamat et al.,

2010). Although computational approaches are a great way to discover new drug candidates, it is still

required to validate their effect with experimental testing, first with in vitro studies, and in final stages,

in vivo.

These advances in drug discovery and compound screening methodologies show great promise in the

discovery of new therapies for challenging biological problems (Kausar and Falcao, 2018).

1.2.3 Cystic Fibrosis

One medical condition for which there is still no viable treatment is cystic fibrosis (CF). Although be-

ing classified as a rare disease, it is the most common life shortening monogenic disease in Caucasians

(Bell et al., 2015). Cystic fibrosis is a progressive autosomal recessive disease, caused by mutations in

the CFTR gene (Riordan et al., 1989), leading to a defective CFTR protein (cystic fibrosis transmem-

brane conductance regulator), a cAMP-regulated Cl- and HCO3
- channel located at the apical surface of

epithelial cells (Amaral, 2015).

The hallmark of the disease is disrupted Cl- transport through CFTR across epithelia (Welsh and

Smith, 1993). Despite being a disease that affects multiple organs, it primarily affects the lungs, being

the typical cause of mortality (Amaral, 2015). Patients suffering from this disease have less cellular

permeability to anions, resulting in disturbances in electrolyte and fluid transport. Typical symptoms of

these patients are a poor reabsorption of NaCl in the sweat glands (the most common diagnostic test)

and abnormalities in lung, pancreas and intestine function, caused by changes in the cells’ membrane

potential (Quinton, 1983). The ionic dysregulation leads to dehydration of the surface liquid of the

airways, excessive thickening of the mucus and impaired mucociliary clearance. This results in difficulty

in clearance of pathogens in the lungs, leading to a cycle of chronic pulmonary obstruction, infection,

inflammation and lung damage (Flume et al., 2009; Amaral, 2015).

The most common disease-causing mutation, among the more than 2000 variants already reported

(CFTR2.ORG, 2019), is the deletion of three nucleotides resulting in the deletion of phenylalanine

residue 508 (Phe508del or F508del). Approximately 85 % of patients with cystic fibrosis have at least

one allele for F508del-CFTR (Bell et al., 2015) and approximately 45 % to 70 % of patients with cystic

fibrosis are homozygous for this allele (Wainwright et al., 2016; Guggino and Stanton, 2006). When

initially described, CF was usually fatal in infancy or early childhood. More recently the median survival

from CF has increased dramatically to approximately 40 years, while premature death before 50 years

old remains the norm (Guggino and Stanton, 2006; Bell et al., 2015).
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Since this mutation is so prevalent, research and drug development efforts are mainly focused on

addressing F508del-CFTR. This mutation causes folding and processing defects in CFTR, leading to

retention in the endoplasmic reticulum and rapid degradation and thus severely reducing the amount of

this protein that correctly locates to the cell’s surface (Mogayzel and Flume, 2010). The few channels

that do reach the surface of the epithelium are functionally impaired, since the mutation disrupts the

channel’s opening (Wainwright et al., 2016).

One treatment strategy is to increase the amount of matured CFTR at the cell surface. Small

molecules that can promote the correct folding of F508del-CFTR are called “correctors” (Mogayzel

and Flume, 2010).

There is already FDA/EMA-approved medication to address this mutation, such as Lumacaftor

(VX-809) or Tezacaftor (VX-661) combined with Ivacaftor (VX-770) (Lommatzsch and Taylor-Cousar,

2019). Lumacaftor and Tezacaftor aim at correcting the misprocessing and increasing cell surface lo-

calized protein. VX-770 is a “potentiator”, which increases the probability of CFTR being open and

of reaching the surface of the cell (Wainwright et al., 2016). VX-770, has been shown to potentiate

chloride transport by both G551D- and F508del-CFTR proteins in vitro (Mogayzel and Flume, 2010).

While alone it is debatable if these agents have meaningful effects on F508del-CFTR in vivo, when

combined there is a small improvement of approximately 3 % in lung function and while it does not

dramatically improve symptoms, it does seem to have clinical significance in some cases (Deeks, 2016).

It is suggested that a combination of agents is necessary for full correction of F508del-CFTR (Farinha

et al., 2013), and recently, combinations of three agents (new modulators combined with Tezacaftor and

Ivacaftor) are also being considered for clinical use (Taylor-Cousar et al., 2019).

HTS initiatives have proven that F508del-CFTR correctors are much more difficult to identify than

potentiators (Farinha et al., 2015). Having these issues in mind, the main focus in drug development for

cystic fibrosis is in finding correctors, this is, getting the channels to locate to their correct location.

Parallel to the medication therapies, a primary therapy for patients with CF has been the clearance

of airway secretions, through a variety of clearance therapies. However, these are intrusive and require

considerable time and effort (Flume et al., 2009).

1.3 Objectives

The main aim of this project was to identify new candidate drugs for cystic fibrosis, using machine learn-

ing and computational methods.

After training, learning, testing and in silico validation, it was expected to perform in vitro validation

studies for the most promising candidate drugs for cystic fibrosis. The most promising compounds

would be tested in vitro for their effect on F508del-CFTR in a HTS immunofluorescence assay. Based

on the results of the immunofluorescence assay, the best scoring compounds would then be validated

with a Western Blot (WB).
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1.3.1 Specific Aims

• To use Support Vector Machines (SVM) and/or Random Forests ML models to predict activity of

commercially available compounds.

• To identify new candidate drugs for CF based on the predictions of the ML models.

• To test their effect on the trafficking levels of F508del-CFTR expressed in human bronchial ep-

ithelial cells in several concentrations through HTS with immunofluorescence microscopy.

• To identify the most promising compounds in the immunofluorescent assay.

• To validate the effect of the most promising compounds on F508del-CFTR using Western Blot.
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Section 2

Materials and Methods

2.1 Overview of Tasks

Figure 2.1: Overview of the project design.
(1) Finding and choosing datasets. (2) Data treatment and processing. (3) Creating Final datasets using
Molecular fingerprints with bits as predictors and Tanimoto distances as predictors. (4) Creating training
and testing partitions. (5) Determining importance of each predictor. (6) Determining optimal number
of predictors by training SVM and RF models. (7) Optimizing architecture & and repeat steps 5 and 6.
(8) Validating. (9) Screening. (10) Scoring and ranking those substances and order approximately the
30 most promising ones. (11) Testing substances’ effects on CFTR cellular localization through High-
throughput Microscopy Immunofluorescence assay in CFBE cells. (12) Testing substances’ effect on
F508del-CFTR through Western Blot assay in CFBE cells.

7
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The initial task was to find a suitable CF compound screening assay from which to extract the data

to use for modeling. This data was treated and processed into adequate formats in order to build appro-

priately structured datasets. The digital chemical structure and properties of the compounds was then

created in several formats. These formats were all based in molecular fingerprints, both Morgan Fin-

gerprints and Atom Pairs. From the Morgan Fingerprints, another type of dataset was created using

Tanimoto molecular distances.

From the entire dataset, the Training Sets and Independent Validation Sets were created through

random partitioning. The Training Sets were used in the process of training and choosing the best ML

models and settings and architecture.

After the selecting the best models, these were validated with the IVS and used to screen the ZINC15

database, along with other filtering methods and criteria.

The most promising compounds were selected and studied in vitro with an immunofluorescence

based HTS and with Western Blotting (WB).

An overview of the main tasks are represented in figure 2.1

2.2 Choosing Dataset

The chosen dataset was obtained from the functional cell-based confirmatory bioassay on defective

CFTR correction “Broad Institute Identification of Small Molecule Correctors of the Cystic Fibrosis

Transmembrane Conductance Regulator (CFTR) Delta508 Mutation Function in Human Bronchial Ep-

ithelial Cells. Probe Project” (The Broad Institute of MIT and Harvard, 2014), publicly available on

PubChem (Kim et al., 2018) with the PubChem AID #743267.

As the name indicates, in this assay the effect of small molecules on correcting defective CFTR was

studied, in Human Bronchial Epithelial Cells (CFBE). These cells expressed a halide (halogen element

such as F, Cl, I, Br) sensitive YFP, a yellow fluorescent protein whose fluorescence is quenched (de-

creased fluorescence intensity) in the presence of sodium iodide (NaI). It was expected that compounds

restoring F508del-CFTR function would allow mutated CFTR channels to be expressed at the cell sur-

face resulting in an enhanced anion transport and subsequent fluorescent quenching ability of the CFBE

cells.

The measurement used to determine the active concentration (AC) was the AC50, which estimates

the concentration at which a chemical produces the half-maximal response along a sigmoidal curve

(Shockley, 2016). Compounds reducing the fluorescence with AC50 lower than 5µM were considered as

active.

pAC was set to equal 1*log10(AC). The assay Score is calculated by formula 2.1,

Score = 10 ∗ pAC (2.1)

and as such, the Scores relate to AC in the following manner; 120 = 1 pM, 90 = 1 nM, 60 = 1 µM,

30 = 1 mM and 0 = 1 M. The assay then attributed to the aggregation of individual tests, an outcome of

Active if all tests were Active, Inactive when all tests were Inactive or Inconclusive if there were mixed

test results. If the outcome was considered Inactive or Inconclusive, the Score was set to 0.
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Figure 2.2: Density Plot of the Activity Scores of the
Molecules in the Assay “Broad Institute Identification of
Small Molecule Correctors of the Cystic Fibrosis Trans-
membrane Conductance Regulator (CFTR) Delta508 Mu-
tation Function in Human Bronchial Epithelial Cells.
Probe Project”.
Vertical lines just above the x axis represent the activity scores
of molecules in the assay. All Inactive molecules had a Score
of 0 and the Active molecules between 42 and 76.

All the data from the initial dataset

that was not relevant for this project

was removed, such as inconclusive re-

sults and redundant assay score data,

and a new dataset was created contain-

ing only the PubChem Substance ID

(SID), activity outcome (active or inac-

tive), activity score (a numerical value),

the SMILES and InChI.

From the total 1700 molecules, af-

ter excluding 6 molecules classified as

inconclusive, the final dataset contained

605 molecules classified as active and

559 as inactive, a final number of 1164

molecules. The activity values varied

between 0 and 76, being that all inac-

tive molecules were given a score of 0.

A density plot of the distribution of the

data points can be seen in figure 2.2.

It can be observed that there is a big

density of data points with a score of

0, the inactive molecules and the ac-

tive molecules are distributed between

42 and 76.

2.3 Data treatment, Processing and Creating Final Datasets

For an overview representation of the following procedures, see figure 2.3.

The chemical structure of the compounds was obtained in SMILES and InChi. SMILES is a line no-

tation for encoding molecular structures in a human readable way. A possible problem of using SMILES

is that there are several ways to represent the same molecules. An approach to this problem is the use of

algorithms that canonize SMILES (Weininger et al., 1989), this is, that produce SMILES that are unique

for each structure. InChI was designed to encode molecular information in a standard and unique way

that can be read by humans. The InChI format and algorithms are nonproprietary and free to use and can

be computed from structural information. InChI also express more information than SMILES, such as

stereochemistry and electronic charge information. The InChIkey is a 27-character representation of the

InChI that is not human-readable, however it can facilitate computation and web-searched because it is

usually much smaller.

The chemical structure in SMILES or InChI was converted to molecular fingerprints to use as pre-

dictors and assess molecular distances in the following computational procedures.
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Figure 2.3: Overview of the Dataset Creation Process and Their Usage on the Machine Learning
Tasks.
Data was obtained from PubChem and treated. The whole treated dataset was used for classification and
for the regression models only the active molecules were used. Data was split 9/10 for training and 1/10
for Independent Validation Set (IVS). 7-fold or 10-fold Cross Validation was used to score the models.
The best models were validated with the IVS and after validation were trained with the entirety of the
treated dataset (only the active molecules for the regression models) and used to screen ZINC15 database
of commercially available compounds.
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Two approaches to making molecular fingerprints were used, Morgan Fingerprints and Atom Pair

Fingerprints. The Morgan Molecular Fingerprints were made through a custom script in Python 3 envi-

ronment, using the RDKit package (Landrum, 2006). For each substance, a Morgan Molecular Finger-

print was made in the settings 128 bits and radius 2, 128 bits and radius 3, 256 bits and radius 2, 256 bits

and radius 3, 512 bits and radius 2, 512 bits and radius 3, 1024 bits radius 2, 1024 bits radius 3, 2048 bits

radius 2 and 2048 bits radius 3. Atom Pairs fingerprints were made for each substance through a custom

script in Python 3 environment using the RDKit package, 4415 bits both in binary and standard form,

and also in 985 bits by using the knime R© software (Berthold et al., 2007).

The following procedures were all made in R 3.4.3 environment. In order to have an independent

validation process, the molecules used to validate the models were previously separated into an inde-

pendent validation set (IVS). The remaining molecules formed the Training Set, the molecules used to

train and score the models. The dataset was randomly split in a 1:10 ratio, between IVS and training set.

This process was repeat using only the active models, to create a Training Set and IVS for the regression

models (fig 2.3). The IVS was only used after the best models were chosen for validation.

2.4 Creating and Evaluating the Machine Learning Models

Machine learning (ML) can be supervised, if the training data contains both the input and the desired

output or unsupervised, where data has only inputs and the models are used only to structure the data.

Supervised learning can be used for either classification or regression tasks. In classification the output

is discreet or in classes, for example classifying molecules as “Active” or “Inactive”. In regression the

outputs are continuous, for example values of binding affinity in Ki or numerical values of functional

activity in a fluorescence assay.

For validation of the models, their performance should be tested with an IVS, data for which the

inputs and outputs are known but wasn’t used in the training of the models. In order to score the models’

performance on the training procedures, a common method is to cross-validate (CV) the training data.

CV works by creating several partitions of the training data and iterate through each as the validation

set, while the remaining partitions are used to train the model with the same parameters. This approach

mimicks the use of an IVS for scoring how they perform.

There are many machine learning methods and algorithms. Two of the more widely used and versa-

tile algorithms are Support Vector Machines (SVM) and Random Forests, both supervised methods for

classification or regression tasks.

Support Vector Machines work by representing the data as points is a space of n-dimensions and map

them in a way that examples of different categories or range of values are separated by a clear gap, that is

as wide as possible. New examples are then predicted to belong to a certain category or to have a certain

value based on where they are mapped in the model (Cortes and Vapnik, 1995).

Random forests operate by constructing a multitude of decision trees at training. Decision trees

are a combination of mathematical and computational techniques for description, categorization and

generalization of a given set of data. Random Forests are a type of aggregated decision trees, where

multiple decision trees are built with random selection of features, by repeatedly re-sampling the training

data with replacement and voting and scoring the trees for a consensus prediction (Gama et al., 2012).
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ML models were created using the svm package and the randomForest package in R. The importance

of each predictor (the bits of the fingerprints) was estimated through the mean decrease in accuracy

parameter of the randomForest function of the randomForest package in R. 7-fold cross-validation was

made for estimating the optimal number of predictors to include in each machine learning model for each

fingerprint setting in the models using Morgan Fingerprints as predictors and 10-CV was used for the

models with distances.

The main score used to evaluate the classification machine learning models was the Mathews Corre-

lation Coefficient (MCC) using the classification of the predictions as true positives (TP), true negatives

(TN), false positives (FP) and false negatives (FN) (formula 2.2).

MCC =
(TP × TN − FP × FN)√

((TP + FP )× (TP + FN)× (TN + FP )× (TN + FN))
(2.2)

For training and testing the regression models, only the active molecules were used. The main

score used to evaluate the regression machine learning models was the root-mean-square error (RMSE)

(formula 2.3).

RMSE =

√√√√ 1

n

n∑
i=1

(obs− pred)2 (2.3)

For the models that used molecular distances as predictors, the distances were calculated through the

Jaccard/Tanimoto Coefficient (formula 2.4), which is a measure of the similarity between finite sample

sets (in this case, the bits of the molecular fingerprints). The distances were calculated between all

molecules.

DistanceA−B = 1 − SimilarityA−B = 1 − |A ∩B|
|A ∪B|

= 1 − |A ∩B|
|A|+ |B| − |A ∩B|

(2.4)

To create a metric space with projected distances, multidimensional scaling (Gower, 1966) was per-

formed by Principal Coordinates Analysis (PCoA) using the cmdscale function in R. The same trans-

formations were made for all the molecules not present in the training set, in order to project them into

the same metric space. This was done by calculating the linear projection (T), that can transform the

distance matrix (D) into the projected space (P), according to formula 2.5.

D × T = P => D−1 ×D × T = D−1 × P => T = D−1 × P (2.5)

This transformation was done by applying the Moore-Penrose Inverse on the distance matrix of the

Training Set with the ginv() function from the MASS package.
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2.5 Screening and Choosing Candidate Drugs

A screening dataset was created by obtaining the entirety of the in-stock commercially available com-

pounds in the ZINC15 database (Sterling and Irwin, 2015) in SMILES format and converting to Morgan

Fingerprints in 1024 bits with radius = 2 and = 3 and 2048 bits with radius = 2 and = 3 using the RDKit

(Landrum, 2006) package in Python 3 programming environment.

A kriging-based filtering step was applied as described next. The molecular similarity between all

molecules in the screening dataset and the initial dataset was calculated according to formula 2.4, with

Morgan Fingerprints in 1024 bits and radius = 3. For each molecule in the screening dataset, the 20 most

similar molecules in the initial dataset were gathered and used to train a RF classification model. The

screening compound would then be classified and kept for further consideration if predicted Active. If all

these 20 molecules from the initial dataset were Inactive, the screened compound would be automatically

classified as inactive, and inversely, if all 20 molecules were active, the screened compound would be

classified as Active.

Machine learning models using the SVM algorithm were created with the svm package in R pro-

gramming environment. The settings used to create the classification models were Morgan Fingerprints

as predictors in 1024 bits with radius = 2 and 132 predictors, 1024 bits with radius = 3 and 236 pre-

dictors, 2048 bits with radius = 2 and 226 predictors and molecular distance as predictors using Morgan

Fingerprints in 1024 bits and radius = 3 and 65 predictors and 2048 bits and radius = 3 with 89 predictors.

For the training of these classification models the entirety of the initial dataset after treatment was used.

The combination of these 5 classification models was used to score the screening compounds according

to the sum of the Active predictions (0 to 5). Compounds scoring less than 4 were excluded.

An SVM regression model was created using Morgan Fingerprints as predictors with 1024 bits and

radius = 2 with 210 predictors. The entirety of the Active molecules in the initial dataset after treatment

was used to train this model. Molecules scoring more than 48 were kept for further consideration.

The remaining screening compounds were individually studied in ZINC15 and ChEMBL (Gaulton

et al., 2016) for the presence of pan-assay interference compounds (PAINS) (Baell and Walters, 2014),

Lipinski’s rule of 5 (RO5) (Lipinski, 2004). Compounds with PAINS associated structures and with more

than 1 RO5 violation were excluded.
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2.6 Compound Screening with Immunofluorescence F508del-CFTR Traf-
fic Assay

Figure 2.4: Overview of Experimental Design of Immunoflu-
orescence Assay.
General pipeline of the immunofluorescence assay is described.
Cells were cultured, seeded, and after 24h, F508del-CFTR ex-
pression was induced and the compounds were added. 48h af-
ter, the cells were immunostained and the plates were imaged.
Main stock solutions, dilutions and media composition are de-
scribed, along with the antibodies and cell stains used. DMEM -
Dulbecco’s modified Eagle’s medium; FBS - fetal bovine serum;
PFA – paraformaldehyde.

This assay is based on the quan-

tification of the amount of CFTR

that reaches the plasma membrane

through quantification of immunoflu-

orescence. This assay was based on

the work described in Botelho et al.

(2015). A general overview of this

experiment is described in figure 2.4.

2.6.1 CFTR Constructs and
Cell Line Generation

Cystic Fibrosis Bronchial Epithe-

lial cells (CFBE 41o- cells, fur-

ther referred to as CFBE) were used

(Ehrhardt et al., 2006). These im-

mortalized cells were developed from

bronchial epithelial cells from an

F508del-CFTR homozygous CF pa-

tient and allowed the development of

other types of cells used on this work.

For the immunofluorescence assay,

the CFBE cells used were geneti-

cally engineered to express a double

tagged CFTR construct: an mCherry-

F508del-CFTR fusion molecule con-

taining a Flag tag insertion (Fig. 2.5).

This cell line has no expression of wt-

CFTR which enables the assumption

that all CFTR that localizes to the PM

is F508del-CFTR. The CFTR traffic

reporter construct had been previously built as described by Almaça et al. (2011), by fusing mCherry to

the N-terminus of F508del-CFTR via a small linker (QISSSSFEFCSRRYRGPT). A Flag tag sequence

was also inserted in the fourth extracellular loop of CFTR, between Asn901 and Ser902 (Fig.2.5). These

CFBE cells were stably transduced with lentivirus encoding the previously described constructs under the

regulation of a Tet-ON promoter (generated by ADV Bioscience LLC, Birmingham, AL, USA). The use

of a Tet-ON promoter allows for an inducible expression of the construct upon addition of doxycycline

in the culture medium.
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2.6.2 Cell Culture

Figure 2.5: Double Tagged CFTR vari-
ant.
Representation of the F508del-CFTR
construct contained in the used CFBE cell
line, tagged with mCherry and Flag tag.
The Flag tag resides in the fourth extracel-
lular loop and only becomes extracellular
if the protein successfully traffics to the
membrane. Figure adapted from Amaral
et al. (2016).

CFBE with mCherry-Flag-F508delCFTR were cultured in

Dulbecco’s modified Eagle’s medium (DMEM) high glucose

(Gibco #41965) supplemented with 10 % (v/v) heat inacti-

vated fetal bovine serum (FBS) (Gibco #10106), 10 µg/mL

blasticidin (Invivogen #ant-bl) and 2.5 µg/mL puromycin

(Sigma-Aldrich #P8833) at 37oC and 5 % CO2. Uncoated

10 cm plastic petri dishes were used.

2.6.3 Preparation of the screening compounds

All the screening compounds are mostly non-polar and for

this reason had to be solubilized in DMSO. Stock solutions

of the screening compounds were prepared in DMSO in a

10 mM concentration. The stock solutions were placed in

a 96-well polypropylene plate (Supplementary Figure S1-A)

to facilitate pipetting with a Xplorer R© multichannel pipette

(Eppendorf #4861000112, #4861000139, #4861000155).

2.6.4 Seeding, Induction of CFTR expression and
Adding the Compounds

CFBE cell line with mCherry-Flag-F508delCFTR were cultured to confluence and split 24h before the

experiment. On the following day, the cells were trypsinized to antibiotic-free DMEM supplemented

with 10 % (v/v) of FBS. 100µl of medium containing approximately 10000 cells in suspension were

seeded on each well of a 96-well microscopy plate using a Multidrop Combi Reagent Dispenser (Thermo

ScientificTM #5840300).

24h after seeding the screening compounds were added and CFTR expression was simultaneously

induced (through addition of doxycycline). The medium was prepared by supplementing DMEM with

0.1 % FBS and 1 µg/mL doxycycline (Sigma #9891). Each of the 28 screening compounds were sep-

arately solubilized in the previously described medium to a 0.1, 1 and 10 µM concentration. 3 other

compounds for which there is described activity in CFTR studies were also prepared. VX-661 at a 5 µM

concentration, 3 µM VX-809 and 3µM VX-770.

For consistency of results, all wells should have the same concentration of DMSO. The treatments

with 10 µM concentration contained 0.1% (v/v) of DMSO, the highest value for all preparations. For this

reason, the appropriate amount of DMSO was added to each treatment preparation with a concentration

of compound lower than 10 µM, to increase the amount to 0.1 % (v/v) of DMSO. DMEM with 0.1 %

FBS, 1 µg/mL doxycycline and 0.1 % (v/v) DMSO was prepared as control treatment.

The detailed design and description of the procedure is described in Supplementary Figure S3.

The medium in the cells was removed and the medium with the compounds and DMSO only control

was added using a multichannel pipette. The layout of each treatment can is detailed in Supplementary

Figure S1-C.
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2.6.5 Immunostaining

48h after adding the compounds and inducing F508del-CFTR expression (72h after seeding), extracellu-

lar Flag-tags were immunostained in non-permeabilized cells. The present media was aspirated, and the

cells were washed once with ice-cold phosphate buffered saline (PBS) and incubated with monoclonal

anti-Flag antibody (2 µg/mL Sigma-Aldrich #F1804) for 1h at 4oC.

Cells were then washed 3 times with ice cold PBS, incubated for 20 min with 3 % (w/v) paraformalde-

hyde (PFA) on ice. The remaining procedures were done at room temperature. Cells were washed 3 times

with PBS and afterwards incubated with anti-mouse Alexa Fluor c© 647 conjugated secondary antibody

(2 µg/mL Molecular Probes #A31571). Cells were then washed 3 times with PBS and incubated with a

Hoechst 33342 solution (200 ng/mL, Sigma #B2261) for 1h. The cells were washed 3 times for a last

time with PBS and left immersed in PBS. The plates were kept at 4oC overnight until imaging.

All previous solutions were prepared immediately before use in PBS supplemented with 0.7 mM

CaCl2 and 1.1 mM MgCl2. Antibody solutions contained 1 % bovine serum albumin (BSA, Sigma-

Aldrich #A9056). All manipulations of solutions on the plates were performed using a HydroSpeedTM

plate washer (Tecan #INSTHS-02). Solution volumes were 30 µl/well for antibodies and 50 µl/well for

PFA and Hoechst.

2.6.6 Image Acquisition

Imaging was made using an automated inverted widefield epifluorescence microscope for high-throughput

screening at room temperature. The microscope used was a DMI6000 B (Leica) equipped with a mercury

metal halide light source (EL6000), with an Orca-Flash4.0 camera (Hammamatsu) with 16 bit 2048 x

2048 pixel resolution, 6.5 µm x 6.5 µm pixel size and a HC PL APO objective (Leica) with a numerical

aperture of 0.4. The Hoechst channel was used for contrast-based autofocus. Imaging was made on

96-well plates, in 5 positions per well.

2.6.7 Image Analysis

The quantification of CFTR was made by assessing the amount of CFTR localized to the PM and the

amount of total CFTR in the cell, as previously described by Botelho et al. (2015). PM CFTR is propor-

tional to the Alexa Fluor c© 647 integrated fluorescence and total CFTR is proportional to the mCherry

integrated fluorescence. By dividing the PM CFTR with the Total CFTR, a measurement of CFTR traffic

efficiency is obtained (formula 2.6).

CFTR traffic efficiency = PM CFTR
Total CFTR = AlexaFluor c© 647 integrated fluorescence

mCherry integrated fluorescence (2.6)

Automatic image analysis was performed using the CellProfiler open source software (Kamentsky

et al., 2011) and the shinyHTM custom script (Botelho et al., 2019) in R programming environment. Ini-

tially the cells with an undesired phenotype were excluded, by determining a minimum and a maximum

radius for cell nucleus and abnormal nuclear shapes (e.g. apoptotic cells).

A flat-field/dark-frame background correction was performed. Initially images with background flu-

orescence and illumination were taken with the same microscope and image acquisition setup. These

(flat-field and dark-frame) images were used for correcting the illumination and subtracting the fluores-

cence baseline for each image.
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Figure 2.6: Quality Control with shinyHTM.
(A) Image quality and focus. Measure used was powerloglogSlope of nucleus images. Points with values
under -2.5 were excluded. Note that no higher limit was chosen, all excluded points in the region with
values superior to -1.25 belong to plate 2. (B) Intensity of plasma membrane fluorescence (PM intensity)
by plate. Measure used was median of cell final integrated intensity of PM with background correction.
Points with values under 0 were excluded. Note that no higher limit was chosen, still all outlier data
points with positive values were excluded by other criteria.

Another QC filter included a maximum number of saturated pixels. For each image, the CFTR traffic

efficiency was considered to be the median CFTR traffic efficiency for all cells in the image. After

imaging the 5 image fields for each condition in 5 replicates, shinyHTM was used analyze the data and

to exclude images based on QC filters (Fig. 2.6).

Out of focus images were excluded based on the value of the PowerLogLogSlope, the slope of

the image log-log power spectrum. According to CellProfiler’s resources, the power spectrum contains

the frequency information of the image. The slope gives a measure of image blur, with higher slopes

indicating more lower frequency components, and hence more blur, being a metric recommended for

blur detection in most cases. Images with a PowerLogLogSlope <-2.5 were excluded (Fig. 2.6-A).

Also excluded were images not reaching a minimum of 20 identified cells (not shown) and not reach-

ing a minimum level of PM CFTR fluorescence of 0 (Fig. 2.6-B).

Fluorescence gradient was corrected on a plate by plate basis, using the median polish methodology

in shinyHTM. Median polish can be used as a normalization by utilizing the medians from the rows and

the columns of a 2-way table to calculate the row effect and column effect on the data. The overall effect

is calculated by finding the row medians for each row and calculating the median of the row medians.

This is followed by a subtraction of the row median to each element in that row for all rows. The overall

effect is then subtracted to each row median. The same procedure is then done for the columns, and the

overall effect of the columns is added to the previous overall effect. These steps are repeated until the

change within row or column medians is negligible.

For each replicate, after averaging the CFTR traffic efficiency for all images related to the same



Section 2. Materials and Methods 18

treatment, the effect of each treatment was compared with the DMSO control using a Z-score (formula

2.7):

Z − Score = (Mean, i−Mean, ctrl)

SDctl
(2.7)

2.7 Western Blot Immunocytochemistry Assay

Figure 2.7: Overview of experimental design of Western Blot
assay.
Stock solutions, dilutions and media composition for induction
of CFTR expression in the presence of compound.

This assay is based on the quantifi-

cation of the amount of total CFTR

and F508del-CFTR that is properly

folded by the action of a correc-

tor (the drug candidate compounds)

as detected after electrophoresis and

transfer by an anti-CFTR specific an-

tibody. The quantification is made

by chemiluminescence. CFBE cells

are used, which express either wt- or

F508del-CFTR. An overview of this

experiment is represented in figure

2.7.

2.7.1 CFTR Constructs and
Cell Line Generation

CFBE cells stably overexpressing

wt-CFTR or F508del-CFTR (CFBE

wt-CFTR or CFBE F508del-CFTR)

were used.

2.7.2 Cell Culture, Seeding
and Adding the Compounds

CFBE cells were cultured in EMEM

supplemented with 10 % (v/v) FBS and 2.5µg/mL of puromycin (Sigma-Aldrich #P8833) at 37oC and

5 % CO2. Cells were trypsinized and approxi-mately 200,000 cells were seeded into each well of 6-

well plates in 2 mL of EMEM supple-mented with 10 % (v/v) FBS and 2.5 µg/mL of puromycin. 24h

after seeding the screening compounds were prepared in antibiotic-free EMEM supplemented with 0.1

% (v/v) FBS and added to the cells. The compounds and concentrations prepared were 3 µM VX-809,

5 µM VX-661, 10 µM C7, 0.1 µM C8, 10 µM C14, C16 in 1 µM and in 10 µM, C17 in 0.1 µM and in

1 µM, 10 µM C18, 0.1 µM C24 and 1 µM C25. Similarly to what was done in the immunofluorescence

assay, all wells had the same concentration of DMSO, for consistency of results. EMEM with 0.1 % FBS

and 0.1 % (v/v) DMSO was prepared as control treatment, both for wt-CFTR CFBE and F508del-CFTR

CFBE.
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2.7.3 Sample Extraction, Quantification and SDS-PAGE

A detailed description of this protocol, including reagents, equipment and techniques is in Annex A.

SDS-PAGE (sodium dodecyl sulfate–polyacrylamide gel electrophoresis) gels were made by stacking a

4 % (v/v) acrylamide for separation above a 7 % (v/v) acrylamide for resolving the protein samples. 48h

after adding the screening compounds, the cells were washed 2 times with ice-cold PBS and lysed using

a sample extraction buffer (SB, see Annex A), collected to tubes and kept on ice during the following

procedures. Quantification of protein in the samples was assessed with a Bradford Assay (see Annex A).

The loading samples were prepared with the same amount of protein in all samples for replicate (ideally

more than 10 µg) and 1:4 (v/v) of loading buffer (see Annex A). Each gel was loaded with DMSO (wt-

and F508del-CFTR) and VX661 and VX809 controls. Approximately 50 µL of sample were loaded onto

the SDS-PAGE gel. The gels ran at 60-75V to concentrate the samples and separated with 100-120V,

on ice. The content of the gels was transferred to PVDF (Polyvinylidene fluoride or polyvinylidene

difluoride) membranes at 400 mA for 1h30min on ice.

2.7.4 Immunostaining

Membranes were blocked in 5 % (w/v) Non-fat-milk (powder) PBS-T for 30 min at room temperature.

Membranes were then incubated with anti-CFTR 596 mouse primary antibody (1:3000 (v/v), Cystic Fi-

brosis Foundation Therapeutics, Bethesda, MD; USA, #A4) and with Calnexin mouse primary antibody

(1:3000 (v/v), BD Transduction LaboratoriesTM #610523)(as loading control) in 5 % (w/v) Non-fat-milk

(powder) PBS-T overnight at 4oC. After primary antibody incubation the membrane was washed 3 times

for 10 min with PBS-T with agitation. The membrane was then incubated with Goat Anti-Mouse IgG (H

+ L)-HRP Conjugate secondary antibody (1:3000 (v/v), Bio-Rad #1706516) in 5 % (w/v) Non-fat-milk

(powder) PBS-T for 1h at room temperature. The membrane was washed 3 times for 10 min with PBS-T

with agitation and kept on PBS-T at 4oC.

2.7.5 Imaging

Signal was developed with the Immun-StarTM WesternCTM Chemiluminescence Kit (Bio-Rad #1705070).

Detection was performed with the Chemidoc XRS+ system (Bio-Rad). Quantification was performed us-

ing the ImageLabTM software (Bio-Rad).
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Section 3

Results and Discussion

3.1 Machine Learning Models – Determining Optimal Number of Predic-
tors

In this machine learning context, the predictors (sometimes called features or attributes), the variables

used to predict biological activity values, are the array of bits of the fingerprints. The number of predic-

tors used affects the performance of the machine learning models (Carhart et al., 1985). Also important

to note, is that not all predictors have the same importance for predicting a molecules activity. Parallel

to what happens in vivo and in vitro, not all parts of a molecule have the same importance in exerting

a certain activity or reaction. In machine learning modeling, this is called feature selection (Kuhn and

Johnson, 2013). In most cases, some of the bits have variance = 0 for the entire dataset, offering no

information for the modelling and being an added computational cost and in the same logic as before,

reducing the accuracy of the machine learning models, and as such, should be removed.

The first approach to this part of the modeling was to choose a good and not exceedingly time-

consuming algorithm to determine importance of predictors. The algorithms tested were the importance

function within the randomForest function of the randomForest package, the varImp function from the

Caret package (Kuhn, 2008) using both Random Forests and SVM models, and recursive feature elimi-

nation (RFE) with the rfe function of the caret package. RFE works by using a Random Forest algorithm

on each iteration to evaluate the modeling in a way that explores all possible subsets of the attributes.

These algorithms were tested on several different fingerprint settings on the dataset. A representation of

their performance on 128 bits and 2 radius Morgan Fingerprints is on fig 3.1.

randomForest, varImp with RF and RFE all performed similarly, and markedly better than varImp

with SVM. A control with the predictors with a random order of importance was used (Scrambled). By

comparing the importance prediction algorithms with the scrambled control, it can be clearly seen how

choosing an optimal number of predictors enables a more accurate prediction from the SVM models,

while all the scores converge to the same values when the number of predictors approaches the complete

set of bits of the fingerprints.

A similar performance was reported for all fingerprint settings. randomForest was chosen based on

being the fastest algorithm and because of its familiarity, know reliability and good performance from

previous studies within this research group (Teixeira et al., 2013). RFE is also a fast algorithm that per-

formed remarkably but its use requires that the user be familiarized with Caret’s particular methodology

and use of functions, which could be an obstacle for future users of this methodology.

21
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Figure 3.1: Comparison of algorithms for determining predictor importance.
Models were constructed with SVM using Morgan Fingerprints with 128 bits and radius = 2. For each
algorithm of determining predictor importance, models were created with all possible numbers of predic-
tors (variables). Models were scored with the MCC metric, with 7-CVx2. Scrambled order of predictors
was used as control.

3.2 Choosing the Best Models and Architecture

The two machine learning algorithms chosen to use were SVM and RF. Initial tests using a smaller dataset

for predicting biological activity of small molecules on the Sigma1 receptor, using Morgan Fingerprints,

indicated that while RF performed better without predictor selection, SVM with selection of number of

predictors based on performance had better and more consistent results. It is also noteworthy that SVM

are considerably faster than RF. Having these preliminary results in mind, the focus of this work was on

mainly using SVM, while still testing the performance of RF on instances where it seemed appropriate.

After choosing the algorithm for determining predictor importance, models were constructed for each

fingerprint setting. An overall preliminary look comparing SVM against RF showed again that SVM

seemed to perform better than RF when selecting an optimal number of predictors, which is especially

noticeable in settings with higher number of bits (fig 3.2).

The initial approach to this project was to make regression machine learning models to predict ac-

tivity for the entire dataset. This approach was proven to be flawed due to the nature of the dataset. The

inactive molecules all had a score of 0, and the active molecules showed scores between 42 and 76 (fig

2.2). This is a big gap of data for a regression model that predicts activity based on continuous values.
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Figure 3.2: Initial Comparison of RF and SVM.
Models were constructed using Morgan Fingerprints with radius = 2, with 128 bits (A), 256 bits (B) and
2048 bits (C). Models were scored with the MCC metric, with 7-CVx2.

These models had unsatisfactory scores with a minimum RMSE of approximately 20. To address this

issue, it was chosen to create a 2-layer model with a first layer consisting of one or several classification

models and a second layer with a regression model to predict quantitative activity for only the molecules

classified as active.

3.3 Classification - Choosing Best Setting for SVM with Morgan Finger-
prints

Two types of molecular fingerprints were chosen as the most promising to model the chemical structure,

Morgan Fingerprints and Atom Pairs. Atom Pairs can be created under two types of configurations,

binary or “standard”.

Atom Pairs fingerprints as created by RDKit, in a simplistic way, code chemical structure into bit
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Figure 3.3: Scoring SVM Classification Models Using Molecular Fingerprints as Predictors.
SVM was used to create the models and MCC was used as score metric. For each fingerprint setting,
the importance of the predictors was estimated, and the models were trained with increasing numbers of
predictors.

vectors by attributing a particular bit to a simple attribute, like a structure or feature (Carhart et al.,

1985). If this attribute is absent in the structure, it will be coded as an off-bit, which is a 0, and if it is

present it will be registered as an on-bit. An on-bit in binary is always a 1, while in “standard” Atom

Pairs it can be any positive integer value, usually corresponding to the amount of times that feature is
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present. This seems to imply that for most applications, Atom Pairs fingerprints in binary would have a

loss of information. Initial training and scoring of the ML models confirmed this, showing that models

trained with binary Atom Pairs fingerprints always scored worse than their not-binary equals, and for this

reason were excluded from further analysis.

For Morgan fingerprints this is not an issue, since its algorithm always codes chemical structure

as binary vectors. The main choice with this type of fingerprints is which number of bits to code the

structure in and with which radius. While it seems logical that higher bit vectors would code the structure

with a higher resolution, this does not always translate into better predictions with the machine learning

algorithms. As it was explained before, with some machine learning algorithms, such as SVM, prediction

accuracy tends to decrease as the number of predictors used to construct the model (in this case the

fingerprint bits) is increased past a certain optimal region.

Before scoring the models, an Independent Validation Set (IVS) was created, by randomly sorting

1/10 of the dataset for IVS and the remaining 9/10 substances of the dataset for the training data (Training

Set). Only the Training Set was used for training and scoring the models. The IVS was only used after

the best models were chosen, for validation. This ratio was chosen so that it was high enough for a

reliable validation while minimizing the risk of excluding a particular cluster of activity present in the

molecules of the dataset.

The training set was randomly sorted into 7 parts, used for a 7-fold Cross Validation (7-CV), the

procedure used to score the models. This procedure works by iterating through each of the 7 partitions

of the Training Set as the validation set, while the remaining 6 partitions are used to train the model. In

each iteration, the activity of the molecules in the validation set was predicted by the model created as

Active (positive) or Inactive (negative). This result is then categorized as a either a true positive (TP, if

the molecule is active and was predicted as being active), false positive (FP, if the molecule is inactive

and was predicted as being active), true negative (TN, if the molecule is inactive and was predicted as

such) or false negative (FN, if the molecule is active and was predicted as inactive).

All the results throughout the 7-CV were combined and the Mathews Coefficient Correlation metric

was used to score the models, which rates the performance of the model by weighing all the previously

described type of results (TP, TN, FP and FN), being a more balanced metric than the accuracy (% of

correct predictions).

The focus was then directed to choosing the best combinations between fingerprint setting and num-

ber of predictors to use for that setting. To analyze the general performance of the ML models using

SVM and Morgan Fingerprints, a graphical approach was chosen. For each setting, a ML model was

created with an increasing number of predictors, for which the importance was previously calculated and

sorted from highest to lowest. Each score was then plotted, enabling a view of how the models performed

by number of predictors, in each setting (Fig 3.3).

The highest scoring settings were 1024 bits with radius = 2, in the range between 50 and 250 pre-

dictors used, 1024 bits with radius = 3 in the range between 50 and 500, 2048 bits and radius = 2 in

the range between 50 and 500 predictors and 2048 bits and radius = 3 in the same range of number of

predictors.

It is important to note that it is not critical to be precise in choosing the absolute best number of

predictors to use for each setting, since there is an inherent random component associated with the
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IVS and cross-validation procedure, which means that if the process is repeated, the scores would vary

slightly. The focus was then to identify the region with the highest consistency of best results, create

models for all numbers of predictors within that range, score them and choose a number of predictors

within that seems best and validate with the IVS.

3.4 Creating a Chemical Metric Space and using Molecular Distances to
Predict Activity

An alternative approach to using molecular fingerprints directly as predictors of activity is to use Tani-

moto distances to create a metric space for the substances. In these models, the fingerprints are treated as

vectors, and the distance (or dissimilarity) between each molecule of the dataset is calculated in a matrix

and mapped into an n-dimension abstract cartesian metric space.

Figure 3.4: Projected Distances of the Molecules of the Dataset in a 2-Dimensional Plane.
Tanimoto distances were calculated between all molecules of the Training Set using with Morgan Fin-
gerprints with radius = 3, with 1024 bits (A), 2043 bits (B) and Atom Pairs with 4415 bits (C). Distances
between molecules are shown as coordinates in the first two Principal Coordinates (PCoA). Blue points
represent the Active molecules of the Training Set and black points the Inactive. Molecules of the IVS
were projected onto the same metric space and are shown as red points.
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One advantage of using distance models is that through multidimensional scaling it is possible to

map or project the distance between molecules on a 1-, 2- or 3-dimensional plane, using for example

Principal Coordinate Analysis (PCoA) (Zuur et al., 2007). The algorithm maximizes the correlation of

the distances with the number of dimensions in a way that the first Principal Coordinate explains the

most variation of the data, the second Principal Coordinate explains the most variation of the data after

the first dimension, so on and so forth. This means that by projecting the data on a 2-dimension plane

metric space, one can observe in a simplistic way how the data is distributed (Fig. 3.4). Ideally in

these 2-dimensional projections of data points, there would be a clear separation between the different

classes (for example Active vs Inactive). This does not seem to be the case. In figure 3.4, it is shown the

distance projections in 2-dimensions for the higher bit resolution fingerprint settings that better resolved

the distances. Except for the Atom Pairs Fingerprints, the molecules grouped in a generally similar way,

having a big cluster of molecules, and 1 or 2 smaller ones.

Figure 3.5: Comparison of RF and SVM in Distances Models.
Models were constructed using SVM and RF algorithms with distances calculated with Morgan Finger-
prints with radius = 3, with 1024 bits (A), 2043 bits (B) with Atom Pairs with 4415 bits (C). Principal
Coordinates (PCoA) were used as predictors. Models were scored with the MCC metric, with 10-CV.

If the dataset has n molecules, the number of dimensions on which the vectors are mapped can be

increased up to n-1, which is the number of dimensions for which the distances between the n molecules
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are faithfully represented. While for visually observing the projected molecules an increasing the number

of dimensions makes understanding the data more difficult, it usually enhances the predicting capability

of the ML learning models. In this context, the dimensions, or Principal Coordinates, are the predictors,

and as such, there is an optimal range of dimensions that maximizes the prediction capability of the

models, similarly to what was described previously for the SVM models with Morgan Fingerprints as

predictors. To assess which type of model, the fingerprint setting to calculate the distances and the

number of predictors to use, SVM and RF models were created with an increasing number of Principal

Coordinates as predictors for distances between the molecules in the Data Set. The classification models

were scored with the MCC metric in a 10-CV, and representative plots can be seen in (fig 3.5).

For all settings, SVM scored better than RF. For both 1024 and 2048 bits, radius = 3 scored better

than radius = 2 (not shown), and Atom Pairs scored slightly lower than these settings. The region with

more consistent MCC seems to be between 50 and 100 predictors and after that region there is a de-

creasing trend. While it cannot be said that these models performed poorly, most models using Morgan

Fingerprints as predictors have clearly scored better.

3.5 Regression - Choosing Best Models

Before making the regression models, the Inactive molecules were removed from the initial dataset. An

analogous process was made to the modeling of the classification models. This dataset was split 9/10

and 1/10 between Training Set and IVS respectively and 7-CV was used to score the models. The metric

used for scoring regression models was the Root Mean Square Error (RMSE).

RMSE is a measure of the distance between predicted values and the observed values. It is the

squared root of the average of squared errors (formula 2.3).

This measures serves to aggregate the magnitude of the errors in many predictions into a single

measure (prediction errors can be described as the distance of the observed points from the regression

line or curve). In other words it is a measure of how spread out the data points are from the line of best fit

of the model. An ideal RMSE of 0 would mean that there would be a perfect fit between the predictions

and observed values, and usually a lower value indicates a better performance on a model. This measure

is sensitive to ouliers, since each error’s effect on the score is proportional to its squared value. RMSE

should only be used to compare models within the same dataset, as it is scale dependent.

A representation of the performance of the models using Morgan Fingerprints as predictors is shown

in figure 3.6 Morgan Fingerprints with 1024 bits was chosen because for both radius = 2 and = 3, as

their scores were among the best in a most consistent way and for a wider range of number of predictors,

suggesting some optimization of SVM in regression tasks for this bit rate, in the region around 200

predictors. Radius = 2 was chosen because between both radius settings it had a region with the lowest

RMSE of approximately 5.5.

The distance models didn’t perform as well on regression, all scoring above approximately 5.9 RMSE

in the best performance settings.
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Figure 3.6: Scoring SVM Regression Models Using Molecular Fingerprints as Predictors.
SVM was used to create the models and RMSE was used as score metric. For each fingerprint setting,
the importance of the predictors was estimated, and the models were trained with increasing numbers of
predictors.



Section 3. Results and Discussion 30

3.6 Validation of the Most Promising Models

After identifying the most promising models, their performance was tested against molecules in the IVS

for validations. The final models chosen, their correspondent settings and scores can be seen in table 3.1.

Table 3.1: Validation of the Best Models.
Description of the type, settings and scores of the chosen models. CV is the type of cross-
validation used to score the models in training and IVS is the score with independent validation set.

The validation of the distance models wielded a bigger difference from the CV scores. An in depth

look at the results showed that this different was not sufficient to exclude these models, as it was only

evident in specific ranges of numbers of predictors. It does however reinforce the notion that the distance

models do not perform as well as the models using Morgan Fingerprints in this dataset.

3.7 Screening the ZINC15 Database

Following the task of choosing the general architecture and choosing the best models, the aim was to use

these models to screen the free database for commercially available compounds ZINC15 (Sterling and

Irwin, 2015) for the most promising drug candidates for CF.

For screening, the models were trained with the entire dataset, instead of only the Training Set. Once

the best settings were determined, training the models with the complete dataset provides the whole

available chemical information of the dataset from which to predict activity.

The initial task step was to convert the entire dataset of compounds in-stock from SMILES format

to Morgan Fingerprints. This task was considerably resource consuming, since this dataset contained

13,123,788 substances and the models used 4 different settings of Morgan Fingerprints, 1024 bits with

both radius = 2 and = 3 and 2048 bits with radius = 2 and = 3. The resulting data accounted for approx-

imately 200 GB of text data. Managing the size of the files and how the data was processed by the R

scripts was taken into account, since it was easy to occupy the entire RAM of the available servers if this

aspect was overlooked.

Preliminary results on fractions of the screening dataset indicated that additional filtering steps were
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necessary. The sheer number of compounds classified as Active by a single ML models was too high,

around 30-45%. This suggested two problems; first was that the amount of results was inherently too

high, and second, the models were classifying too many compounds as actives. One explanation for

this is that ML algorithms are designed to always provide results. The training data used for modelling

corresponds only to a tiny fraction of all the structures of available compounds. This implies that models

must decide how to classify molecules that are very different from what was modelled as either an Active

or Inactive molecule. Even if these molecules are bad fits to the model, they will be classified as Actives,

if they happen to fit the model closer to what is modeled as an Active molecule.

There were several possible approaches to these problems. Since the number of drug candidates

needed to be drastically reduced, to under 100 at least, it was decided to include several filtering steps to

the screening process.

One possibly approach could be to create a set of dummy structures with Inactive classification. This

could also be accompanied with generating a projection of possible values for the regression tasks in In-

active molecules, between 0 and 42. This would allow the regression models to fit the inactive molecules

along a much wider range of scores, filling the gap of scores in the initial dataset (see chapter 2.3). While

interesting and likely result wielding, this approach wasn’t followed, since a problem with this approach

is that it introduces a lot of artifacts into the modelling and could reduce the capacity of the models to

correctly identify true positives.

A first filtering step was introduced, with molecular structure-based kriging, based on the approach

described in Teixeira and Falcao (2014). Similar structured molecules tend to have similar properties.

The procedure relied on structure Jaccard/Tanimoto similarity, with Morgan Fingerprints with 1024 bits

and radius = 3.

For each molecule in the screening dataset, the 20 most similar molecules in our dataset were gath-

ered. These 20 molecules were used to train a RF model. The screened model would then be classified

with this model, and if predicted Active, was kept for further steps. RF was chosen because they inher-

ently perform better without predictor selection, due to the inclusion of bootstrapping in their algorithm.

This step greatly reduced the number of screened substances classified as Active, to approximately 100.

The remaining compounds were then subjected classification by the 5 ML models previously vali-

dated (table 3.1), and a score of 0 to 5 was attributed based on the sum of the results classified as active.

Molecules scoring under 4 were excluded.

The regression model (in table 3.1) was then applied and the compounds scoring over 48 were se-

lected for final analysis. A total of 59 compounds remained, 39 of which were equal to compounds

present in our initial dataset. Although 59 compounds were already a feasible amount for in vitro screen-

ing, manual curation of these compounds was still advised. Each compound was manually checked in

ZINC15 and ChEMBL (a manually curated database for bioactive drug-like small molecules) (Gaulton

et al., 2016) for a combination of known or predicted properties. The presence of structures attributed

to pan-assay interference compounds (PAINS) (Baell and Walters, 2014), was a criterion for exclusion.

PAINS are compounds that are typically present in assay screens, that contain structures that tend to

produce false positive results. These structures are well characterized. ChEMBL has an online tool that

identifies or predicts their presence and compounds containing them are best left out of screening assays.
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Another aspect that was assessed was the likeness of the compound for being an orally administered

drug with the Lipinski’s rule of 5 (RO5) (Lipinski, 2004). RO5 is a rule of thumb for the chemical

and physical properties that most bioactive oral drugs share, such as size and lipophilicity. Is it usually

applied by assessing the number of violations to the criteria of not having more than 5 hydrogen bond,

not having more than 10 hydrogen bond acceptors, having a molecular mass less than 500 Daltons and

an octanol-water partition coefficient (log P) that does not exceed 5. Compounds with more than 1

violation were also excluded. There was a special interest on compounds already FDA approved, such

as Colchicine and Mestranol. Since these compounds have already been extensively tested for human

consumption, they were especially attractive for repurposing.

The final step was choosing the suppliers, amounts and in which form to order. Preference was given

to compounds already in solution, for reduction of human manipulations, which induce uncertainty in

the final concentrations and increase the risk of contamination. Not all these compounds were available,

and some seemed to correspond to the same compounds, due to redundancies or presence or salts. 28

compounds were selected and ordered.

3.8 Compound Screening with Immunofluorescence F508del-CFTR Traf-
fic Assay

Figure 3.7: Immunostaining characterization under microscopy of the CFBE cell lines expressing
mCherry-Flag-F508del-CFTR and automated image analysis using CellProfiler software.
Cells were grown in the presence of 1 µg/mL Dox to induce expression of CFTR with C16 compound at
1 µM concentration. (A) Nuclei stained with Hoechst 33342. (B) mCherry fluorescence is proportional
to the total amount of expressed CFTR. (C) Alexa Fluor c© 647 immunofluorescence is proportional to
the amount of Flag tags exposed extracellularly (i.e. CFTR localized to the PM). (D) Representation of
outline of cells and nuclei by CellProfiler software. Scale bar = 53 µm.

28 drug candidate compounds were obtained to perform a high-throughput screening with 3 different

concentrations, on the levels of CFTR expressed in CFBE cells stably transduced with Flag-mCherry-
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F508del-CFTR CFBE cells. It was also chosen to include the FDA approved CF therapeutics VX-770,

VX-661 and VX-809 in their optimal concentrations (Botelho et al., 2015; Matthes et al., 2016; Awatade

et al., 2019).

For a detailed description of the procedure, see Chapter 2.6.

The overall characterization of these cells under the epifluorescence microscopy settings used can be

seen in figure 3.7.

Figure 3.8: Total and Final Cell Count.
Automated cell count on 96-well plates by replicate (plates) through cell profiler and analyzed using
shinyHTM. (A) total cell count after initial nucleus size filtering. (B) final cell count, after all quality
control filters.

CellProfiler software was used for automated analysis of the microscope images. For each image

field, 3 images were taken, one of the nuclei (Fig. 3.7-A), one of the total CFTR fluorescence (Fig. 3.7-

B) and one of the PM CFTR fluorescence (Fig. 3.7-C). From the nuclei images, the CellProfiler software

would outline each identified cell nucleus and expand a second area selection, corresponding to the each

cell’s cytoplasm delimited by its plasma membrane (PM) (Fig. 3.7-D).

After fluorescence background correction and several QC steps, the data of the total CFTR fluores-

cence and PM fluorescence was exported and analyzed through the shinyHTM script. Standard QC con-

trol steps were performed in shinyHTM, such as Image focus, minimum number of cells and minimum

PM fluorescence. An analysis of the total and final cell counts by plate confirmed what was previously

observed during the experiment. DMSO has some toxicity towards animal cells (Galvao et al., 2014), so

all wells required the same concentration of DMSO. This toxicity is clearly exemplified in plate 2 (Fig.

3.8). The most likely cause for the markedly low number of cells in this replicate is due to pipetting
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Figure 3.9: Ratio of Fluorescence Between PM and Total Fluorescence by Plate.
Each point represents the ratio of fluorescence between PM and Total fluorescence (traffic efficiency) of
an image field in a well of a 96-well plate. The range of data points of the heatmap is not the same for
each plate. It was adapted in order to see how the fluorescence values vary according to the location of
the wells for each plate.
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errors, specifically, increased DMSO concentration, having a 1 % (v/v) DMSO instead of 0.1 %. For this

reason, plate 2 was excluded from further analysis.

Figure 3.10: Ratio of Fluorescence Between PM and Total Fluorescence by Plate after Median
Polish Normalization.
Each point represents the ratio of fluorescence between PM and Total fluorescence (traffic efficiency) in
a well of a 96-well plate after median polish normalization. The range of data points of the heatmap is
not the same for each plate. It was adapted in order to see how the fluorescence values vary according to
the location of the wells for each plate.

A preliminary summary of results was made, with the Median Z-score of the traffic efficiency (ratio

between PM and total CFTR fluorescence) as the main score for the treatments. Upon comparison of

the results with the disposition of the treatments on the 96-well plates (Supplementary Fig. S1), there

seemed to be a bias of higher scores towards the left edges of the plates. An initial look upon the

fluorescence results had been made through heatmaps of fluorescence by plate, however, without careful
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Figure 3.11: Extensive Scores of Ratio of Fluorescence Between PM and Total CFTR in F508del-
CFTR Immunofluorescence Assay.
Median of Z-scores of fluorescence ratio between Plasma Membrane and Total Fluorescence (traffic
efficiency) by treatment. Z-score of 1 is marked as a green line, being the threshold above which,
compounds with median Z-scores were considered promising (compounds marked as green). DMSO
only treatment was used as control. Ordered by median Z-score of traffic efficiency.
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Figure 3.12: Z-scores of Fluorescence Ratio Between Plasma Membrane and Total Fluorescence by
Treatment.
Z-score of fluorescence ratio between Plasma Membrane and Total Fluorescence (traffic efficiency) for
each compound is represented by concentration for each replicate, and the median Z-score for that con-
centration is represented as a horizontal bar. Z-score of 1 is marked as a green line, being the threshold
above which compounds with median Z-scores were considered promising. DMSO only treatment was
used as control.

adjustment of the range of data points represented in the color gradient (or LUT, look up table), the

fluorescence gradient can easily be overlooked. Upon adjusting the heatmap representations of the ratios

of fluorescence for each plate, it was noticed that there was in fact a gradient of fluorescence, according to

the disposition of the wells on each plate, in most cases with a bias of higher values towards the left side

and the edges of the plates (Fig. 3.9). The gradient of fluorescence by plate was also directly observable,

confirming the initial impression, as the result function of applying a 5x5 median normalization (which

was not the final normalization used) (Supplementary Fig. S2). Plate 2 was especially useful to confirm

the existence of this gradient, since it had such few cells, it would be hard to explain this fluorescence

gradient through biological activity.

To address this issue, a median polish normalization was applied to each plate individually, resulting

in what was thought as a compression of the 5 imaging positions per each well into one data value. The

corrected fluorescence ratio values can be visualized in a heatmap in figure 3.10.

Unfortunately, only after the whole pipeline of this project was performed, it was discovered that a

“bug” existed in the median polish normalization algorithm in shinyHTM, resulting not in a compression

of values (by a median or mean), but in excluding all image positions except one per well. This has

resulted in a loss of statistical significance in the analysis of this results, which is not critical, since the

“bug” has since been fixed and the fluorescence results were not lost and can be re-analyzed. What is

more unfortunate is that some hits might have been lost in this analysis, resulting in a WB assay not
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Figure 3.13: Hits from the Compound Screening Assay with CFBE cells Expressing the mCherry-
Flag-F508del-CFTR.
Cells were treated with DMSO as negative control, and 31 compounds, including VX-809 and VX-661
as positive controls. Representative images are shown of the compounds with a Z-score >1 or very close
to 1. Shown Z-scores are the median of the Z-scores of the traffic efficiency (PM fluorescence/Total
fluorescence) of each replicate for each treatment. Concentration is the concentration of each compound.
Nuclei stained with Hoechst 33342, mCherry fluorescence is proportional to the total amount of ex-
pressed CFTR and Alexa Fluor c© 647 immunofluorescence is proportional to the amount of Flag tags
exposed extracellularly (i.e. CFTR localized to the PM). Scale bar = 53 µm.

containing all promising compounds.

After this correction the Z-scores were calculated for the traffic efficiency for all treatments, com-

pared to DMSO only as control. The extensive results can be seen in supplementary tables S1 and S2.
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A plot of the median of the traffic efficiency Z-scores shows the treatments, ordered by Z-score (Fig.

3.11). The main criteria chosen to determine which compounds were chosen as hits, was having a traffic

efficiency Z-score of 1 or above, and n >= 3.

Some treatments didn’t reach a Z-score of 1 but were very close, such as C08 – 1 µM with a Z-score

of 0.98 (but only n=3), and it’s worth to note that C08 at 0.1 µM was considered hit with a Z-score of 1.59

(Fig. 3.11, descriptive and tratamentos) and the case of C18 – 10 µM with a Z-score of 0.93 (Fig. 3.13)

and a Z-score of PM CFTR of 0.73. For this reason, it was decided to also include C18 at 10 µM as a hit,

and it was also included in the WB assay. C28 – 0.1 µM would also have been an interesting compound

to test, with a Z-score of traffic efficiency of 0.87 and a Z-score of PM CFTR of 1.15, but for practical

and efficiency reasons in the design of the WB experiment only 10 screening treatments were chosen.

The treatments chosen for the WB assay were, 10 µM of C7, 0.1 µM C8, 10 µM C14, C16 in 1 µM and

in 10 µM, C17 in 0.1 µM and in 1 µM, 10 µM C18, 0.1 µM C24 and 1 µM C25. For positive controls

3 µM VX-809, 5 µM VX-661 and for negative control DMSO only 0.1 % (v/v), for both wt-CFTR and

F508del-CFTR CFBE cells (Fig. 3.14). Even though C16 at 1 µM has a traffic efficiency Z-score outlier

value of 11.46, this treatment was still considered a hit, given that 2 other replicates had values above 1.

Both assays were targeted at estimating the localization of F508del-CFTR to the membrane, either

directly (immunofluorescence) or indirectly though assessment of proper glycosylation (WB). However,

the assay for which the dataset on which the modeling of the machine learning models was made was

a functional assay. This means that the effects on Cl- transport observed could have been due to differ-

ent approaches to overcome CFTR dysfunction and not necessarily through increased processing (e.g.

increased total CFTR, increased CFTR on the membrane through overactivation of other proteins in

CFTR’s interactome, ENac inhibition (to decrease the characteristic sodium hyperabsorption) and also

activation of alternative chloride channels (Farinha and Matos, 2015). There can be many ways by which

there was an increased anion transport, not all directly related to CFTR function. It cannot be excluded

then, the possibility that there could still be a correction of the Cl- transport in a manner that could be

clinically significant, especially if combined with other correctors. Another possibility for false posi-

tives in the immunofluorescence assays is the overestimation of the mCherry (total CFTR) and Alexa c©
647 fluorescence (PM CFTR) due to innate fluorescence of the screening compounds. Many of these

compounds had color in solution (Supplementary Fig. S4), one of them being fluorescein (compound

C28), a known and widely used dye for biological assays, and another compound being molecularly

closely related (carboxyfluorescein, compound C10). Interestingly, carboxyfluorescein (C10) is noted

on ChEMBL as a Targets Solute carrier family 22 member 6, although neither of these compounds was

deter-mined a hit in the screening (this is, a traffic efficiency Z-score of 1 or higher). Fluorescein (C28) at

0.1 µM scored fairly positively with a Z-score of 0.87 (Supplementary Table S2). However, as the con-

centration was increased, there was a negative trend in the fluorescence values, so the data to support the

speculation that fluorescein’s innate fluorescence could significantly alter the results was not convincing.
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3.9 Western Blot Assay

After selecting the most promising drug candidates in the fluorescence assay, the effect of these com-

pounds in the appropriate concentration was assessed with a Western Blot (WB) assay. CFTR is synthe-

sized and folded in the endoplasmic reticulum (ER), undergoing traffic and processing through the Golgi

complex, and becoming functional at the PM (Amaral, 2015). wt-CFTR is detected by WB as both a ma-

ture, fully glycosylated (band C) and an immature, core-glycosylated (band B) forms. In F508del-CFTR,

only the immature core-glycosylated form of this protein, consistent with its ER retention, is present. In

a WB, the band B with approximately 135 KDa and the band C is detected at a higher molecular weight

of approximately 180 KDa (Farinha et al., 2013). This is visible in figure 3.14, where wt-CFTR is clearly

shown as two separate bands. In this assay two types of cells were used, wt-CFTR CFBE and F508del-

CFBE. wt-CFTR CFBE was included for comparative analysis (as it evidences both bands B and C) but

not used in quantification.

Calnexin was used as internal control, for normalizing protein levels between treatments. Treatment

of F508del-CFBE with DMSO only was used as negative control, for normalizing the CFTR quantity

levels. Three replicates were made under the same conditions.

The previous fluorescence results indicated that the positive controls used on this assay, VX-661 and

VX-809, were not being as effective as expected in increasing CFTR processing. The WB assay results

however showed otherwise. While not forming a clear band in the region expected to form CFTR’s band

C, there is some effect, visible as a smear in figure 3.14. This diffuse pattern is typical of band C CFTR,

and the appearance as smear when compared to the strong band visible in wt-CFTR probably derives

from the fact that the amount of processed protein is much lower.

It is also visible that some compounds present a smear comparable to the positive controls, in some

cases even more noticeable, such as C14 in 10 µM, C16 in 1 and 10 µM, C17 in 0.1 and 1 µM and C25

µM in figure 3.14. Also noteworthy is that some of the treatments seem to have increased expression

of total CFTR. To better understand these results, the CFTR and Calnexin levels were quantified and

presented in different metrics, Processing (ratio of band C over total CFTR), Matured CFTR (ratio of

band C to loading control) and Total CFTR (ratio of bands B and C to loading control), normalized to

DMSO only treatment as negative control (Fig. 3.15). The results were presented as the mean percentage

of effect compared to the control in all replicates. Processing is a measure similar to the traffic efficiency

in the fluorescence assay, that gives a ratio between mature CFTR (band C) and the total CFTR in

that condition (band C + band B). This measure estimates how much of the total F508del-CFTR was

processed to the PM. Matured CFTR estimates the presence of mature CFTR (band C), normalized to

Calnexin as an internal control of quantity of protein in the cells for that treatment. Total CFTR is the

sum of the band B with the band C, normalized to Calnexin as internal control of quantity of protein in

the cells for that treatment.

In the quantification the effects of VX-661 and VX-809 on CFTR (Fig. 3.15), even though the effects

are not as evident as expected, they are clearly observable. VX-661 increased the processing to 18 %

and VX-809 in 59 %, confirming the expected effect on CFTR processing described on the literature

(ref). All compounds seem to increase total CFTR, not only comparing to DMSO but also comparing to

VX-661 and VX-809. Of all the compounds, the only one that increased total CFTR with significance
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Figure 3.14: Representative Image of Western Blot of Drug Candidate Compounds.
F508del-CFBE cells were treated with 5 µM VX-661, 3 µM VX-809, 10 µM C7, 0.1 µM C8, 10 µM
C14, C16 in 1 µM and in 10 µM, C17 in 0.1 µM and in 1 µM, 10 µM C18, 0.1 µM C24 and 1 µM C25
(DMSO was used as a negative control) for 48 h. Calnexin was used as internal control and wt-CFBE
cells were used for molecular weight reference (n=3).

was C14 at 10 µM.

The only compound with a significant effect on the processing of CFTR was VX-809. The remaining

compounds either had a small increase, or a decrease in this metric. VX-809 is well characterized,

and one of its main effects is to increase the stability of the immature form of CFTR, leading to an

increase in total CFTR, and increased efficacy of rescue (Farinha et al., 2015). The initial focus of

the fluorescence analysis was mainly on traffic efficiency, however the WB results let to a rethinking

on the importance of relying solely on this measure on a CF drug screening assay. Compounds that

increase total CFTR or increase just the F508del-CFTR that reaches the membrane could be equally

effective in a clinical context. The reason for the initial criteria was that our main effort was to discover

candidate drugs through increase in traffic efficiency, through rescue of function of F508del-CFTR, and

this reflects on the proportion between total CFTR and CFTR that reaches the PM. Even if the traffic

efficiency/processing aren’t significantly increased, the fact that more CFTR localizes to the membrane

with some compounds is already a desirable outcome, and in those cases a small increase in CFTR

processing can be misleading, since there is an increase in the total amount of CFTR. Even in cases
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Figure 3.15: Quantification of Western Blot results.
F508del-CFBE cells were treated with 5 µM VX-661, 3 µM VX-809, 10 µM C7, 0.1 µM C8, 10 µM
C14, C16 in 1 µM and in 10 µM, C17 in 0.1 µM and in 1 µM, 10 µM C18, 0.1 µM C24 and 1 µM C25
(DMSO was used as a negative control) for 48 h. CFTR levels were assessed by western blotting. Results
are presented as CFTR processing (amount of band C normalized to total amount CFTR (band C+B)),
Matured CFTR (amount of band C normalized to Calnexin as internal control), and total CFTR (amount
of band C+B normalized to Calnexin as internal control). Data shown as a percentage of variation to
DMSO only treated cells. Data represent mean ± s.e.m. (n=6 for VX-661, VX-809 and DMSO and n=3
for the remaining treatments). . p < 0.1, * p < 0.05 and ** p < 0.01 (p-value of unpaired t-test).

where there isn’t a significant increase in CFTR localized to the PM, compounds that increase total

CFTR can also be interesting and useful. Increase in total CFTR can be due to effect on one or more of

many different levels of transcription and signal transduction pathways and protein interactions. Some

examples are increase in the production of CFTR, increase in stability and inhibition of degradation.

These results show a trend with borderline significance. It is fair to say that some of these compounds

have an effect that is comparable to VX-661 and VX-809, or even more prominent. The compounds C07,

C14 and C25 had significant effects on the quantity of mature CFTR and C14 had significant effects on

total CFTR. Even if separately the effects of these compounds is not enough in vivo, a combination of

these compounds with other correctors could prove to make a significant improvement in CF pathology,

such as been described before (Taylor-Cousar et al., 2019; Farinha et al., 2013).
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3.10 Revisiting the Immunofluorescence Assay

The importance of evaluating the total CFTR and PM CFTR was overlooked in the analysis of the

immunofluorescence results. Due to the functional nature of the data used to create the dataset, it was

not possible to know which molecular mechanism led to the increase on Cl- transport. For that reason,

one should not exclude the search for potential therapeutics that act on alternative processes to increasing

F508del-CFTR processing.

It is then suggested that on future assays following this pipeline, a more comprehensive criteria for

determining hits in the high-throughput screening is used, one that besides traffic efficiency, also takes

into account the total CFTR and PM CFTR. For a comprehensive representation of the fluorescence

results as median Z-scores of traffic efficiency, PM CFTR and total CFTR, see supplementary figure S7.

Interestingly, in this revised analysis of the fluorescence results, C07 in 10 µM does not seem like

a very effective treatment (Fig. 3.16). This treatment was chosen as a hit due to this compound hav-

ing positive traffic efficiency median Z-scores in all treatments and one surpassing the threshold value.

However, upon observing the decrease in values of total CFTR and the slightly increased values of PM

CFTR, the traffic efficiency value might seem a bit misleading. It is then interesting to note that in the

WB assay, this treatment faired fairly well in increasing the total CFTR (+143% ± 137) and also the

band C which corresponds to the PM CFTR (+133% ± 86), maintain a favourable traffic efficiency, here

represented as Processing (+30% ± 53), being the highest scoring drug candidate in this measure.
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Figure 3.16: Z-scores of Total CFTR Fluorescence, PM CFTR Fluorescence and Ratio Between
Plasma Membrane and Total Fluorescence by Treatment.
Data represented as Mean Z-scores ± SEM of total CFTR, PM CFTR and fluorescence ratio between
Plasma Membrane and Total Fluorescence (traffic efficiency) for each compound is represented by treat-
ment. Threshold Z-score of 1 is marked as a green line, above which compounds with median ratio
of fluorescence Z-scores were considered hits. DMSO only treatment was used as control for Z-score
normalization. * p <0.05 and ** p <0.01 (adjusted p-value t-test).



Section 4

Conclusions

A pipeline for discovery of new candidate drugs through chemoinformatics and machine learning activity

prediction models with in vitro testing was created.

The SVM machine learning algorithm performed better than RF for tasks of prediction of activity,

with estimation of predictor importance and choosing an optimal number of predictors to use. Morgan

Fingerprints with 1024 bits and 2048 bits seem to be the best type of predictors to use by these ML

models. To overcome inherent limitations of the ML models and of the dataset used to train them,

additional filtering steps were required when screening databases for candidate compounds.

Regarding the validation of the HTS fluorescence results with the WB (Fig. 3.15), all drug candidate

compounds seem to increase total CFTR, indicating that all have some effect on CFTR. Drug candidate

compounds were identified. The most promising compounds seem to be the C07, C14, C17 and C25.

C07, C14 and C25 were the only compounds with significant effects on the quantity of mature CFTR.

C14 was also the only compound with significant effects on total CFTR in the WB. All these compounds

seemed to increase total CFTR and matured CFTR more than VX-661 and VX-809, suggesting a com-

parable or better effect. It is then recommended that C07, C14, C17 and C25 are further analyzed as

potential correctors of F508del-CFTR. These results suggest that the predictive chemoinformatics pro-

cesses used had the ability to identify compounds with activity.

A greater effect was expected from VX-661 and VX-809. Even though VX-809 was the only com-

pound with significant effects in CFTR processing in the WB (Fig. 3.15) and also had significant effects

on total CFTR fluorescence (Fig. 3.16), it is not clear why there is not a distinct band C in the WB in

any of the replicates and why both performed poorly in the traffic efficiency metric in the immunoflu-

orescence assay. As such, it is suggested that this assay is repeated with a new batch of cells and new

preparations of the compounds.

Re-analysis of the immunofluorescence is also highly advised. None of the imaging data was lost,

however the “bug” in the median polish algorithm removed 4 out of every 5 image fields per well from

the analysis shown in this report. Although the HTS immunofluorescence pipeline was mostly optimized

from previous works, the fluorescence gradient correction was not commonly applied. Even though this

is an automated pipeline for the most part, every assay must be careful analyzed with critical thinking

for possible problems and overlooked details.

Although this project was directed at the pathology of CF, this pipeline is easily adjustable to other

contexts. The aspects to take into careful consideration when applying this pipeline to different biolog-
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ical contexts should be the choice and treatment of the initial dataset, the choice of the appropriate cell

models with adaptation of the fluorescence constructs and their imaging, tuning the automated analy-

sis pipeline for the size, shape and fluorescence of the cells and to the particular characteristics of the

imaging devices. The automated imaging and analysis is easily adaptable to plates with different well

numbers (i.e. 384 wells), and as such, can be used for testing higher amounts of treatment.



Section 5

Perspectives

An interesting alternative approach could to cluster molecules by presence of certain structures or prop-

erties and compare them to their effects. This approach could bring insights on the mechanisms of action

and open possibilities of integration new criteria for searching candidate drugs for CF.

Obvious limitations of this approach in the ability for discovery of new drug candidates are tied to

the dataset chosen to train the ML models. It is then suggested to build a dataset of known potentiators

or correctors of CFTR and of Cl- transport with different metrics of activity, including also the results

of the compounds in this assay and those found in publicly available data. The molecules known to not

have positive effects could also be highly valuable to avoid overfitting of the models to the data.

Other layers of retrieving screening hits could be included in this pipeline, such as similarity-based

approaches for molecules whose activity values do not fit the dataset chosen for modeling. These should

include all known substances that positively affect levels of matured CFTR, F508del-CFTR processing

and total CFTR.

There was a “bug” in the algorithm of correction of fluorescence and 4/5 of the imaging data was

discarded. It is highly advised to repeat the analysis of the fluorescence results. This would likely

increase the statistical significance of the results in this work and probably new hits will be found. If that

is the case, the WB analysis should also be repeated. It would also be of interest to test all promising

compounds at different concentrations with a WB assay, to estimate an ideal concentration.

To further advance the validation of the drug candidate compounds, future studies should assess

potential side effects of the most promising drug candidates, for example on cell survival.

In parallel, the most promising compounds should be tested in functional assays, to assess if the drugs

are increasing F508del-CFTR function. These assays could be for example using an Ussing Chamber, a

device that replicates epithelial function, and can be used to measure net ion transport (Clarke, 2009).

As previously mentioned, a common approach is to combine correctors and/or potentiators. The

effects on F508del-CFTR of the most promising compounds here described should be tested when com-

bined with each other and with the known correctors and potentiators, such as VX-770, VX-661 and

VX-809.
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Glossary and Abbreviations

10-CV – 10-fold cross-validation
7-CV – 7-fold cross-validation
CF – Cystic Fibrosis
Ctrl – Control
CV – Cross-validation
Del – deletion (mutation)
DMEM - Dulbecco’s modified Eagle’s medium
Dox – Doxycycline
EMEM - Eagle’s Minimum Essential Medium
F – Phenylalanine
FBS – fetal bovine serum (heat inactivated, Gibco #10106)
HTS - High-Throughput Screening
InChI - IUPAC International Chemical Identifier
IVS – Independent Validation Set
MCC – Mathews Correlation Coefficient
ML – Machine Learning
MW – Molecular Weight
PBS - Phosphate Buffered Saline
PBS-T - Phosphate Buffered Saline with Tween 20
PFA - paraformaldehyde
Phe – Phenylalanine
QC – quality control
QSAR – Quantitative Structure-Activity Relationship
RMSE – Root mean square error
SDS - sodium dodecyl sulfate
SDS-PAGE - sodium dodecyl sulfate–polyacrylamide gel electrophoresis
SMILES - Simplified molecular-input line-entry system
wt – wild-type
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Supplementary Figures

Figure S1: Layout of Preparation of Stock Solutions, Intermediate Dilutions and of Each Treatment
on the 96-well Plates of the Immunofluorescence assay for Recovery of F508del-CFTR.
(A) Preparation of stock solutions and intermediate dilutions. (B) Intermediate dilutions for replicates 3,
4 and 5. (C) Layout of disposition of treatments on the 96-well microscopy plate for the immunofluores-
cence assay.
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Figure S2: Fluorescence Gradient Obtained from Median 5x5 Normalization.
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Figure S3: Detailed Overview of Experimental Design of Preparation of Stock Solutions, Dilutions
and Media composition for Induction of CFTR Expression in the Presence of Drug Candidate
Compounds.
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Figure S4: Presence of color in Preparations of Stock and Intermediated Solutions of Screening
Compounds.
Stock solutions prepared in DMSO and intermediate dilutions in DMEM medium. Many of the com-
pounds presented color.
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Figure S5: Total Cell Count by Well in 96-well Plates.
Total cell count is represented by well for each replicate. The scale of the heatmap is not the same for
each plate. It was adapted in order to see how the cell number varies according to plate disposition for
each plate.
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Figure S6: Final Cell Count by Well in 96-well Plates.
Final cell count is represented by well for each replicate, after CellProfiler and ShinyHTM quality control
filters. The scale of the heatmap is not the same for each plate. It was adapted in order to see how the
cell number varies according to plate disposition for each plate.
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Figure S7: Extensive Z-Scores of Ratio of Fluorescence Between PM and Total CFTR, of Total and
of PM Fluorescence in F508del-CFTR Immunofluorescence Assay.
Median of Z-scores of fluorescence ratio between Plasma Membrane and Total Fluorescence (traffic effi-
ciency), of Total CFTR fluorescence and of PM CFTR fluorescence by treatment. Z-score of 1 is marked
as a green line, being the threshold above which, compounds with median Z-scores were considered
promising. DMSO only treatment was used as control. Ordered alphabetical by treatment.
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Supplementary Tables

Table S1: First Part of Summary of Results of the Ratio of Fluorescence Between PM and Total
Fluorescence of the Assay for Recovery of F508del-CFTR.
Treatment is the compounds and respective concentrations; Batches/Plates is the replicates for each
treatment that were not excluded by quality control; R 1-4 is the Z-score value for each replicate; SD is
the standard deviation for Z-score values; Median is the Median Z-score value for the treatments (used
as main score); T test with P value adjusted is the statistical test to assess statistical significance of the
Z-scores against DMSO only treatment as control. Sig. is significance of T-test,* p <0.05, ** p <0.01.
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Table S2: Second Part of Summary of Results of the Ratio of Fluorescence Between PM and Total
Fluorescence of the Assay for Recovery of F508del-CFTR.
Treatment is the compounds and respective concentrations; Batches/Plates is the replicates for each
treatment that were not excluded by quality control; R 1-4 is the mean Z-score value for each replicate;
SD is the standard deviation for Z-score values; Median is the Median Z-score value for the treatments;
T test with P value adjusted is the statistical test to assess statistical significance of the Z-scores against
DMSO only treatment as control.
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Annex A

Western Blot Protocol

Detailed protocol made in the context of studies using CFTR and F508Del-CFTR in CFBE
cell lines, with BioISI’s resources.

Paulo Sousa, 2019



 

Making the SDS-PAGE Gels: 
 
Each gel contains 2 mini-gels; one for concentration and one for resolving (see Recipes for 

detailed description). 
 

• Start by setting up the apparatus. You will need the main support, a rubber band for 

sealing, a glass holder and two glass panels (for 1,5mm gels), a bigger and a smaller 

one. 

• Place the glasses on the holder, bigger one facing the support and smaller one facing the 

user, with both glasses firmly against table surface to guarantee stability. 

• Place the holder+glasses on top of rubber bands on the support and confirm the lack of 

leakage by pipetting water inside the glass panels. Remove the water by pouring upside 

down, and soak remaining water with paper. 

 
Prepare the resolving gel first -> 7% acrylamide gel. 

 
• prepare the recipe according to its order, top-down, in an erlenmeyer flask. 

• mix gently. 

• Pour gently against the side of the glass until the first mark on the plastic of the holder. 

• Pour approximately 1 mL of isopropanol on top of the gel, to ensure that it polymerizes 

evenly. 

• Wait 30-60 min until polymerization. 

 
Preparing the 4% gel: 

 
• pour the isopropanol out of the gel. 

• prepare the recipe according to its order, top-down, in an erlenmeyer flask. 

• mix gently. 

• place on top of the 7% gel until the border of the glass. 

• place “colm” on the gel with the letters facing you, carefully, avoid making bubbles (it’s 

expected to leak some gel from the top). 

• wait until polymerization. 

• after polymerization, wrap in moistened paper and then in aluminum foil, refrigerate 

until use. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Preparing the samples 

 

Extraction: 
 

All the following steps are made on ice and with cold reagents. 

 
Prepare 1 mL of Sample Buffer (SB) from 2x Stock (in the freezer, see detailed recipe in 

Recipes): 
1. add 500 μL to the already present 500 μL 

2. add 40 μL of protease inhibitor (pic) 

3. add 2 or 3 μL of benzonase (in the ladder’s box)  

4. for each μL of benzonase, add 6.25 mL of MgCl2  0.5M (in the fridge) (18.75 μL) 

 
To collect samples (6-well plate), start by washing 2x with ice-cold PBS, then aspirate the wells 

and add ~150 μL of SB to each well, one plate at a time so the wells don’t dry. You can either 

use a P1000 pipette, scratching the bottom of the well to lysate the cells and collect by pipetting 

up & down a few times. If sample is too viscous, add another 50 μL of SB. Alternatively you 

can use a cell scraper to lysate the cells and collect the sample with a P1000 pipette. 
 
Keep samples on ice until use. If you don't want to use them on the same day store at -20ºC, or -

80ºC for long term storage. 

 

Quantification: 
 
Quantify approximately 30 μg of protein and the 

correspondent volumes from each sample using 

the Bradford Assay. 
 
Start by preparing the tubes with the contents of 

the calibration curve, using BSA 1,4 μg/mL 

(bovine serum albumin), Bradford Reagent and 

H2O as described on the right, and a sample of 

desired protein of unknown concentration from 

your assay. 

 
Wait for 5 min. 
 
Use the same cuvette for measuring the Abs595nm 

of all samples, start with the less concentrated 

ones. If there are outlier points, discard them before assessing your proteins’ concentration. 
 
All samples should have same volume in the end, calculate how much loading buffer 

and water/PBS each sample needs to even them out. Note that each sample will receive ¼ of the 

total volume in loading buffer. 
 
Note that the wells typically only hold about 50 μL of volume, so if the samples are not 

concentrated enough you might have to use less total amount of protein. 
 

Loading & Running: 

 
Loading Buffer is a 10:90 ratio of β-mercaptoethanol to Laemmli 4x stock solution (see detailed 

in Recipes). 
Prepare Loading Buffer for all samples in one tube in enough volume for 1:4 (V/V) with 

combined sample volumes (approximately the volume of desired protein / 3 or final volume/4 - 

different methodologies), count for a few extra volume to account for error. 
 
Start by preparing all the tubes and add the water to the tubes. 



 

Add loading buffer to all tubes 1:4 (V/V) and then the samples.

  
 
Assemble the gel in the WB tank and fill it with running buffer (RB) 1X. Gels are placed in the 

holder with the larger glass facing the outside. 
Fill space between gels with RB until it overflows, blow bubbles away, fill the rest of the tank 

with RB until holder is submerged. 
Take note of the number and position of each gel if you are using more than one. 
 
(optional) Place “training wheels” adaptor on top of the gel, to facilitate the loading on the 

correct wells without leakage. 
 

Load 8 μL of ladder NZYColour Protein Marker II with a P20 pipette with a P100 tip. 

 

For all the remaining samples, use a P100 pipette, and before loading, mix the Loading 

sample and then apply against the glass of the gel apparatus, feeling the resistance of the 

tip against both glass surfaces. 

 
Load all the samples on an SDS-PAGE gel. After loading remove “training wheels” if it was 

used. 

 
Make sure the gels are submersed on RB. 
  
After loading the samples run the gel at 60-75V in order to concentrate the samples and then 

change it to 100-120V to separate the proteins according to their molecular weight.  
• for CFTR, run until the 35 KDa marker 

• Calnexin has approximately 90 KDa 

• CTRF can produce 2 bands, B-band with approximately 110 KDa (DeltaF, misfolded) 

and C-band (properly glycosylated and folded) has approximately 135 KDa 

 

Transfer: 
 
Always use gloves and tweezers when contacting the membrane. 

 
Start preparing the transfer by cutting a PVDF membrane with the proper dimensions 

(according to the gel, for a 1,5mm gel it is advised to cut 6x9cm). 
Using a pencil, mark on the upper and bottom corner of the membrane the number of the gel on 

the side of the ladder, which is also the side that will contact the gel. 
 
Prepare a recipient large enough to place the transfer cassette by putting enough transfer buffer 

(TB) to submerge it, at least partially. 
 



 

Remove the gel from the glasses with the appropriate tool and cut and remove the concentration 

part of the gel. Take care to keep the gel hydrated with TB throughout the procedure so it 

doesn’t tear.  
 
Activate the membrane by submerging it in methanol for a few seconds.  

 
Assemble the sandwich:  
 

• 2 sponges  

• 4 papers  

• 1 membrane  

• 1 gel  

 
Make sure the gel is placed against the membrane according to the marks previously made. 
If you place membrane side underneath (red), you can see if there are bubbles between the gel 

and the membrane. 
 
Use the appropriate roll to ensure there are no bubbles between the membrane and the gel. 
 
Transfer at 400 mA (constant current) for 1h30 on ice.  

 

Antibody Incubation: 

 
Incubate membrane (blocking) in 5% PBS-T Non-fat-milk (NFM) for about 30 min.  
 
Cut each membrane in appropriate position to separate control from target protein  

• for CFTR assays with calnexin as control, cut right above the 100 KDa marker 

 
Incubate the membrane with primary antibody in 5% PBS-T Non-fat-milk with agitation, 

overnight at 4ºC or for 2h at RT.  
• in assays with CFTR, use 1:3000 for both primary and secondary antibodies. 

(note: some antibodies require TBST instead of PBS-T) 

 
Next day remove the primary antibody and wash the membrane 3x (every 10-15 min) on PBS-T 

with agitation. NOTE: the primary antibody can be re-used (2-4 times) if kept at -20ºC.  

 
Incubate the membrane with secondary antibody on 5% PBS-T Non-fat-milk with agitation for 

1h at RT.  
• Prepare about 9 mL (3μL of secondary anti-mouse-a.b.) 

 
Remove the secondary antibody and wash the membrane 3x (every 15 min) with PBS-T with 

agitation. 

 
To store the membranes, keep refrigerated on PBS-T. 
 

 



 

Developing: 

 
To develop the membrane use ChemiDOC software. 

 
Turn on equipment and PC, and put filter on “no-filter” posittion. 
 
Place a plastic sheet on top of the visualization glass. 

 
Mix the BioRad reagents 1:1 in a tube (don’t forget which one you put first). 
 
On ChemiDOC, choose gel imaging, go to Protocol -> Blots -> chemiHiResolution -> signal 

accumulation mode 
Choose the the time of exposure of first and last image, and the number of images to take. 
 
Put some reagent on top of the part of the membrane to analyse and remove excess reagent and 

spread evenly by turning membrane against the plastic sheet. 
 
Position the membrane adequately and acquire a colorimetric image. 
 

 

Quantification: 
 
To quantify your western blots, use ChemiDOC software. 
 

 

Safety 

 
Everything contaminated with acrylamide and β-mercaptoethanol should go into the red waste 

basket. 
Throw immediately away immediately after use everything contaminated with β-

mercaptoethanol. 

 

Recipes 

 

Laemmli Buffer 4x (for 10mL): 

 
• 62.5mM trisHCl pH 6.8 -> 625 μL 1M stock (fridge) 

• 10% glycerol -> 1 mL 100% stock 

• 2% SDS -> 2 mL 10% stock 

• bromophenol blue (to taste, just for color) -> ~200 μL 1% stock (shelf) 

• H2O to 10 mL 

 

Sample Buffer 2x (blue): 

 
• 1.25 mL stacking buffer 

• 3 mL 10 % SDS 

• 1 mL 100% glycerol 

• 0.2 mL 1% Bromophenol 

• 4.55 mL dH2O 

• 154 mg DTT 

 

 

 

 

 



 

Western Blot SDS-PAGE mini gels: 

(all volumes are for 2 gels) 

 
 

4% 7% 

Distilled H2O 7.4 mL 9.75 mL 

Separating Buffer 1.5M pH 8.8 - 4.5 mL 

Stacking Buffer 0.5M  

pH 6.8 

3 mL - 

Acrylamide 40% 1.2 mL 3.15 mL 

Glycerol 10% 120 μL 180 μL 

SDS 10% 120 μL 180 μL 

PSA (or APS) 10% 90 μL 135 μL 

TEMED 100% 20 μL 20 μL 

 

5% (m/v) Non-fat-milk (NFM): 

 
For 100 mL in small flask 

• weight 5 g of non-fat-milk powder and add to flask  

• add PBS-T to the 100 mL mark 

 

PBS-T: 

 
For 1 L 

• 100 mL PBS 10x 

• 900 mL H2O 

• 1 mL Tween20 (use a P1000 and cut off the tip before pipetting) 

 

 


	
	
	
	
	
	
	
	

	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	

