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ABSTRACT 

 FOXP3, encoded on X chromosome and mainly regulated epigenetically, plays a 

critical role in the development of regulatory T cells (Treg), essential for maintenance of 

immune tolerance and homeostasis, and is a widely used Treg-specific marker. Several 

regions on FOPX3 locus, such as enhancer, promoter and three Conserved Noncoding 

DNA Sequences (CNS 1-3) were identified as important for epigenetic control. 

Specifically, promoter and CNS 2, also known as Treg Specific Demethylated Region 

(TSDR), contribute to FOXP3 expression via demethylation of their CpG islands. 

Differences in TSDR methylation levels can help distinguish Tregs from conventional T 

lymphocytes (Tcon). In addition, CAMTA1, encoded on chromosome 1, was shown to 

be the only other molecular marker that may help differentiate these T cell populations 

as its demethylation pattern is somewhat similar to that of TSDR. Currently, studies 

correlate autoimmune diseases (AID) and allergies with decreased function of Tregs and 

higher methylation levels of FOXP3 locus. Interestingly, females are more susceptible 

than males to AID which has been suggested to be due to X chromosome inactivation. 

The aim of this study was to compare the methylation pattern of FOXP3 promoter, 

TSDR, and CAMTA1 between Tregs and Tcons of random healthy male and female 

donors. 

CD4+ T cells, isolated from peripheral blood, were sorted into CD4+CD25brightCD127low 

FOXP3+CD45RA+CD15s- naïve Treg cells and CD4+CD25lowCD127+ Tcon cells by 

FACS. Bisulphite converted genomic DNA was PCR-amplified, cloned into pGEM-T 

vector and sequenced. Sequences were analysed and levels of methylation defined.  

We demonstrate that donors of both genders have higher demethylation levels in 

CAMTA1 in Tregs than in Tcons compared to previously undescribed methylation 

patterns of FOXP3 promoter and TSDR. CAMTA 1 showed two different patterns of 

demethylation in Tregs: demethylation of the first eight-ten CpGs or demethylation of 

CpGs 2 and 11. 

In conclusion, CAMTA1 seems to be a more reliable marker differentiating between 

Tregs and Tcons. In future, methylation patterns of male and female donors with AID 

and allergies must be analysed to understand the impact of both X chromosome 

inactivation and clinical conditions in the methylation of FOXP3 locus and compared to 

that of CAMTA1 gene region. 

Keywords: Epigenetics, Methylation; Treg; FOXP3; CAMTA1 
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RESUMO 

O gene FOXP3, codificado no cromossoma X e principalmente regulado por vias 

epigenéticas, apresenta um papel fundamental no desenvolvimento de células T 

reguladoras (Treg), essenciais à manutenção da tolerância imunitária e homeostase, 

sendo amplamente utilizado como um marcador específico das células Treg. Existem 

diversas regiões no locus do FOXP3 reconhecidas pela sua importância no controlo 

epigenético: enhancer, promotor e três Sequências Conservadas de DNA Não 

Codificante (CNS), CNS 1-3. Especificamente, o promotor e o CNS2, também 

denominado de Região Desmetilada Específica de células Treg (TSDR), são 

responsáveis por este controlo através da desmetilação de ilhéus CpG das suas 

sequências.  

Diferenças nos níveis de metilação da região TSDR contribuem para a distinção entre 

células Treg e linfócitos T convencionais (Tcon). A par da região TSDR, verificou-se 

que o gene CAMTA1, localizado no cromossoma 1, apresentava variações dos padrões 

de desmetilação semelhantes às verificadas no TSDR, apresentando-se como o outro 

marcador molecular que poderia contribuir para a distinção entre as duas populações.  

Disfunções das células Treg e um padrão de elevada metilação do locus do FOXP3, têm 

sido correlacionados com doenças autoimunes e alergias. Notar ainda que as mulheres 

apresentam uma maior suscetibilidade para doenças autoimunes comparativamente aos 

homens, o que poderá ser explicado pela inativação do cromossoma X.  

Propôs-se comparar os padrões de desmetilação do promotor do FOXP3, TSDR e do 

gene CAMTA1 entre células Treg e Tcon de homens e mulheres saudáveis.  

Foram isoladas células T CD4+ a partir de sangue periférico, tendo sido sujeitas a 

citometria de fluxo (FACS) e separadas células Treg naïve CD4+CD25brightCD127low 

FOXP3+CD45RA+CD15s- e células Tcon CD4+D25lowCD127+. O DNA genómico, após 

tratamento com bissulfito, foi amplificado por PCR, clonado em vetores pGEM-T e 

sequenciado. As sequências foram analisadas e os níveis de metilação estabelecidos.  

Foi demonstrado que, quer em dadores do sexo feminino quer do sexo masculino, a 

região do gene CAMTA1, nas células Treg, apresentou um padrão consistente de maior 

desmetilação comparativamente ao das células Tcon. Por outro lado, resultados 

inconsistentes e não descritos até à data foram apresentados para o promotor do FOXP3 

e TSDR. O gene CAMTA1 apresentou ainda dois padrões diferentes de desmetilação 

nas células Treg: desmetilação das primeiras oito/dez posições CpG e desmetilação do 

segundo e décimo primeiro CpG.  
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Deste modo, a desmetilação do gene CAMTA1 poderá ser um marcador molecular 

adicional mais fidedigno para a distinção entre células Treg e Tcon quando a expressão 

de FOXP3 possa estar afectada. No futuro, será fundamental estudar os padrões de 

metilação em dadores com doenças autoimunes ou alergias com o objetivo de 

compreender o impacto que quer estas condições clínicas quer a inativação do 

cromossoma X poderão ter no padrão de metilação do locus do FOXP3 

comparativamente à possível independência do gene CAMTA1 para com as condições 

supramencionadas.  

 

 

O Trabalho Final exprime a opinião do autor e não da FMUL.  

Palavras-chave: Epigenética, Metilação; Treg; FOXP3; CAMTA1  



Focusing on the epigenetic control of regulatory T cells 

6 
 

CONTENTS 
 

CONTENTS ............................................................................................................................. 6 

LIST OF ABBREVIATIONS ................................................................................................... 7 

INTRODUCTION .................................................................................................................... 8 

METHODS............................................................................................................................. 13 

RESULTS............................................................................................................................... 17 

DISCUSSION......................................................................................................................... 24 

AKNOWLEDGMENTS ......................................................................................................... 27 

REFERENCES ....................................................................................................................... 28 

APPENDIX I – RESUMO EXTENSO EM PORTUGUÊS ...................................................... 35 

 

  



Focusing on the epigenetic control of regulatory T cells 

7 
 

LIST OF ABBREVIATIONS 

 

anti-h - anti-human antibody  

AID - autoimmune diseases 

AP-1 - activator protein 1  

aTreg - activated regulatory T cell 

CAMTA1 – calmodulin 

binding transcription factor 1 

CD3 - cluster of differentiation 3 T cell 

co-receptor 

CD4 - cluster of differentiation 4 

CD15s – sialyl Lewis x 

CD25 – interleukin – 2 receptor alpha 

chain 

CD45RA - cluster of differentiation 

45RA 

CD127 - interleukin-7 receptor-α 

CNS - conserved noncoding DNA 

sequence 

CREB/ATF - cAMP response element 

binding protein / Activating 

transcription factors 

DNA - deoxyribonucleic acid 

eTreg - effector regulatory T cell 

FACS - fluorescence-activated cell 

sorting 

FOXP3 - forkhead box transcription 

factor 3 

gDNA - genomic DNA  

GVHD - graft-versus-host disease  

HTLV-1 - human T lymphotropic virus 

– 1 

IPEX - immune dysregulation, 

polyendocrinopathy, enteropathy X -

linked syndrome  

iTreg - induced regulatory T cell 

LKB1 - serine-threonine kinase 11 

NFAT - nuclear factor of activated T-

cells 

nTreg - natural regulatory T cell 

PCR - polymerase chain reaction 

RNA - ribonucleic acid 

rTreg - resting regulatory T cell 

STAT-5 - signal transducer and 

activator of transcription 5  

Tcon - conventional CD4+ T cell 

TCR - T cell receptor 

TeT family - ten-eleven-translocation 

family 

Treg - regulatory T cell 

TSDR - Treg specific demethylated 

region 
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INTRODUCTION 

 

Regulatory T cells (Treg), a subtype of CD4+ T cells, have a crucial role in response to 

autoimmune stimuli, self-tolerance and immune homeostasis [1, 2], and have also been 

considered as a negative prognostic marker for numerous solid tumours [3-6]. 

 

Treg cells constitutively express interleukin – 2 receptor alpha chain (CD25) and 

forkhead box transcription factor 3 (FOXP3). FOXP3, located on the Xp11.23 

chromosome, plays a critical part in Treg cell development, differentiation and function, 

and is widely used as a Treg-specific marker [7,8]. However, it is now known that it is 

not exclusively expressed in Treg cells but also in other human T cells, such as 

conventional CD4+ T cells (Tcon) after their activation [9-12]. 

FOXP3 expression is mainly regulated by epigenetic processes [1], such as DNA 

methylation, histone modifications, nucleosome positioning and microRNAs [13]. 

These processes are reversible and alter chromatin structure but not the nucleotide 

sequence [13-15]. The focus of this project is on DNA methylation, where methylation 

of cytosines within CpG islands is usually responsible for gene silencing while 

demethylation is associated with opening of the locus [8], active transcription and 

expression [1,8].  

 

Baron et al. identified several regions within FOXP3 locus with variable DNA 

methylation patterns [16]. Subsequent studies demonstrated that several regions on the 

FOPX3 locus were important for its epigenetic control: enhancer [17], promoter [18] 

and three evolutionary Conserved Noncoding DNA Sequences (CNS elements), CNS 1-

3 [8, 16-20]. Enhancer [17], promoter [18] and CNS 2, also known as Treg Specific 

Demethylated Region (TSDR), are involved in this process via DNA methylation [8, 

16-20]. 

More specifically, methylation levels of TSDR can help to distinguish Treg cells from 

Tcon cells, as it is usually more demethylated in Treg cells and methylated in Tcon cells 

[8,16]. Also, it can help to differentiate several maturation stages of lymphocytes: 

I. thymocites showed incomplete demethylation of TSDR;  

II. natural Treg (nTreg) cells, which proliferate from the thymus, showed complete 

demethylation of TSDR; 
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Figure1 - Transcriptional factors binding to FOXP3 locus  

                (adapted from Nie, J. et al., 2015) [26]. 
 

FOXP3 

III. Treg cells induced in periphery from Tcon cells (iTreg cells), through a TGF-β 

dependent process associated with a suboptimal TCR triggering, showed 

incomplete demethylation despite high FOXP3 expression [8,19]; 

IV. Although FOXP3 can be transiently expressed in Tcon cells, TSDR remains 

methylated [19]. 

 

The fact that demethylation of CpGs in TSDR seems to maintain stability of FOXP3 

expression [8, 19, 21-23] means that TSDR is used as a molecular biomarker that helps 

to measure Treg lineage commitment and quantify Treg cells [21].  

It was also demonstrated that Treg cell development can be achieved by two 

independent processes, both induced by TCR stimulation: FOXP3 expression and 

TSDR hypomethylation. Demethylation of this region begins in the thymus and 

continues in periphery. It can be established without FOXP3 expression and, at the same 

time, demethylation of TSDR is not required for initiation of FOXP3 expression [24]. 

While FOXP3 expression can be used as a specific marker for Treg cells, demethylation 

of TSDR is an epigenetic marker better correlated with and required for lineage stability 

that results in a full suppressive phenotype [24,25].  

 

 

 

 

 

 

Transcriptional activity (see Figure1) of this gene is dependent both on TCR stimulation 

and TSDR demethylation. After triggering of TCR, several NFAT and AP-1 

transcriptional factors bind to FOXP3 promoter, and in turn are positively regulated by 

FOXP3 expression [27]. During nTreg development, TSDR demethylation and FOXP3 

stability involve the upregulation of Ten-eleven-translocation (TeT) family [28-30], 

Lkb1[31], and hydroxylation of methylated cytosines [28]. When TSDR is 

demethylated, CREB/ATF and STAT-5 bind to this region [18] to promote its 

transcription.  

 

Mutations in FOXP3 result in severe autoimmune diseases (AID) as can be observed in 

IPEX syndrome (Immune dysregulation, Polyendocrinopathy, Enteropathy), a rare X -

FOXP3 
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linked syndrome [32]. Decreased number and functional deficiency of Treg cells have 

been also associated with myasthenia gravis, ulcerative colitis and multiple sclerosis 

[33-36]. Nowadays, studies correlate AID, allergies and even some viral infections not 

only with a decreased number and function of Treg cells but also with a higher 

methylation level of the FOXP3 locus. This was shown for tropical spastic paraparesis 

associated with HTLV-1 retrovirus infection [37] and ankylosing spondylitis [38]. 

Moreover, FOXP3 demethylation was significantly lower in children with cow's milk 

allergy [39] and may help predict atopic dermatitis [40,41]. As part of the 

physiopathology of certain diseases, iTreg cells, with a methylated TSDR, were 

increased in Diabetes type I [42]. 

Focusing on the predictive value of Treg cells, the increased number of cells and TSDR 

demethylation were correlated with a worse survival in colon cancer [43] and adult T-

cell leukemia [44].  On the other hand, demethylated TSDR contributes to a positive 

outcome in sepsis early-phases [45]. 

Hypermethylation of FOXP3 locus was also linked to air pollution and a higher carbon 

exposure, increasing asthma morbidity [46, 47] meanwhile hypomethylation of the 

locus was associated with more physical activity [47].  

 

Females are more susceptible than males to AID and it is hypothesized that these 

differences may be contributed to the influence of X-linked genes, including hormonal 

differences [21]. It is known that X chromosome inactivation affects approximately 85% 

of X-linked genes [48].  

The majority of published studies which focused on TSDR methylation pattern used 

samples obtained from male human donors or mice in order to avoid bias related to X 

chromosome inactivation. However, Baron et al. observed hemi-methylation of female 

FOXP3 locus [16] and Stockis et al., while looking for Treg clones with a demethylated 

TSDR, observed that 80% were derived from male patients whereas only 23-45% from 

females [26]. 

 

In addition to TSDR, Baron et al. investigated other human genes that could be used as 

potential Treg markers. Calcium-dependent calmodulin-binding transcription factor 1, 

CAMTA1, encoded on chromosome 1, was shown to be the only other molecular 

marker that may help to distinguish Treg cells from Tcon cells as its demethylation 



Focusing on the epigenetic control of regulatory T cells 

11 
 

pattern is similar to that of FOXP3 TSDR [16]. The role of CAMTA1 in T cell 

development and function has not been studied until now [1].  

It is known that calcium plays a crucial role in gene transcription. Calcium-dependent 

transcription mechanisms are numerous and include various signal transducers, such as 

calmodulin. They contribute to the activity of a number of transcriptional factors. 

Therefore, the interaction of CAMTAs with co-activators and co-repressors is important 

for induction of gene expression and regulation [49]. 

Moreover, calcium also has a critical role in CD4+ T cells especially in TCR signalling, 

essential for their effector function: TCR stimulation promotes calcium intracellular 

depletion and activates calcium entry to raise the intracellular calcium concentration 

[50]. 

 

FOXP3+CD4+T cells are a heterogeneous population in terms of phenotype and function 

[51]. Miyara et al. divided this population in three phenotypically and functionally 

distinct subpopulations: CD45RA+FOXP3low resting Treg cells (rTregs); CD45RA-

FOXP3hi activated Treg cells (aTregs); and cytokine secreting CD45RA-FOXP3low 

nonsuppressive T cells. Most of aTreg cells derive from the thymus from recently 

activated rTreg cells, although a minority of them can arise from nonTreg cells for an 

undefined time in periphery [52]. In addition to CD45RA, they also discovered that 

CD15s was expressed in CD15s+CD45RA-FOXP3hi effector Tregs (eTregs), among 

aTreg cell population. eTreg cells are the most terminally differentiated and the most 

suppressive FOXP3+ Treg population [53]. Finally, Myiara et al. showed, once more, 

that CD127 remained the most discriminative down regulated marker in Treg cells [53], 

as previously described [54].   

 

In our research, we were interested in comparing the demethylation patterns of FOXP3 

promoter, TSDR, and CAMTA1 between Treg and Tcon cells of random male and 

female human donors as we hypothesized that differences seen in the methylation 

pattern of the FOXP3 locus might be related to imbalances between genders while in 

CAMTA1 should not. In order to distinguish Treg from Tcon cells, in our project, we 

used CD4+CD25brightCD127lowFOXP3+CD45RA+CD15s- naïve Treg cells and 

CD4+CD25lowCD127+ Tcon cells.  

One of the main research areas in João Forjaz Lacerda Lab is post-transplant 

complications, such as graft-versus-host disease (GVHD), and therapeutic strategies that 
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improve patient survival. In GVHD, a therapy with adoptive transfer of donor Treg cells 

is currently being investigated. Therefore, the aim of this project is not only to get 

insight into gender differences in the epigenetic control of Treg cell differentiation but 

also, in a long-term, to allow the optimization of therapies and contribute to a better 

patients’ quality of life.  
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Bisulphite 

METHODS 

 

 

1. Patient and sample collection  

Blood samples were obtained from six male (M1 – M6) and five female (F1 – F5) young 

healthy volunteers with an unknown personal and family clinical history of AID and 

allergies. 

 

2. Isolation of cells and fluorescent activated cell sorting (FACS) 

Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll gradient.  

Tcon and Treg cells were then isolated from a negative fraction of CD34+ cell selection 

using EasySepTM Human CD34 Positive Selection kit (STEMCELL Technologies). For 

25 minutes, cells were incubated at room temperature in PBS (2% human serum) with 

pre-titrated antibodies: 

 anti-hCD3 (-PerCP, clone OKT3, eBiosciences); 

 anti-hCD4 (-APC, clone RPA-T4, eBiosciences); 

 anti-hCD45RA (-FITC, Myltenyi Biotec); 

 anti-hCD25 (-Pe-Cy7, BD Biosciences); 

 anti-hCD127 (-APC-Cy7, clone eBioRDR5, eBiosciences); 

 CD15s (-PE, BD Biosciences).  

Cells were then washed in PBS and sorted on a BD FACSARIAIIu. For intracellular 

staining for FOXP3, in addition to the antibody combination described above, cells 

Figure2 - Methods: A schematic presentation of the workflow
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were stained with anti-hFOXP3 (PE 470 from eBioscience) using FOXP3 Staining 

Buffer Set (e-Bioscience).  

Data was analysed with FlowJo ® LLC. 

 

3. Genomic DNA isolation 

Genomic DNA (gDNA) from the two populations of CD4+ T cells was isolated using 

Quick-gDNA MiniPrep kit (Zymo Research). Cells were resuspended in 100 μL of PBS 

and lysed in 400 μL of Genomic Lysis Buffer for 10 minutes. Zymo-Spin columns were 

loaded with samples and centrifuged at 12000 rpm for 1 minute. Columns were then 

washed with 200 μL of DNA Pre-Wash Buffer and 500 μL of gDNA Wash Buffer.  

gDNA was eluted from the columns in 45 μL of DNA Elution Buffer. 

 

4. Bisulphite conversion treatment 

Bisulphite conversion treatment modifies all nonmethylated cytosines into uracils while 

methylated cytosines remain unchanged. To avoid potential biased results, gDNA from 

Treg and Tcon cell populations was isolated and bisulphite treated at the same time 

followed by polymerase chain reaction (PCR) and cloning of the three gene regions 

(CAMTA1, FOXP3 promoter and TSDR). 

gDNA from the two cell populations was converted using EZ DNA Methylation 

Lightning Kit (Zymo Research), shown to convert 99.5% of nonmethylated cytosines to 

uracils while 99.5% of methylated cytosines remained unmodified. 20 μL of gDNA 

were mixed with 130 μL of Lightning Conversion Reagent and the samples were 

incubated at 95°C for 8 minutes followed by 54°C for 60 minutes. The samples were 

then loaded into Zymo-Spin IC Columns containing 600 μL of M-Binding Buffer, 

mixed well and centrifuged at 12000 rpm for 30 seconds. Columns were then washed 

with 100 μL of M-Wash Buffer and incubated with 200 μL of M-Desulphonation Buffer 

at room temperature for 15 minutes. Then, columns were washed twice with 200 μL of 

M-Wash Buffer. Bisulphite-treated gDNA was eluted in 12 μL of M-Elution buffer and 

used as a template. 

 

5. Polymerase chain reaction (PCR) 

 FOXP3 promoter, TSDR and CAMTA1 were PCR amplified with gene-specific 

primers (Table1) using the following optimized conditions [Initial denaturation: 98º - 
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30seconds »» 45cycles at: 98º (10seconds) – 60/58º (20seconds) – 72º (45seconds) »» 

72º (8minutes) »» 4º (∞)]. 

PCR products were then run on 1% agarose gel, bands of appropriate size excised and 

DNA purified using NZY GelPure Kit (NZYTech).  

 

 

Table1 – Primers sequences used in this research. FOXP3 promoter, TSDR and 

CAMTA1 gene regions were PCR amplified with specific primer sets yielding 

amplicons of different sizes. 

 

6. Bacterial Transformation and Plasmid DNA isolation 

Both PCR products and pGEM®-T Easy Vector (Promega) were prepared for cloning 

by digestion with Nco I and Nsi I restriction enzymes (NEB) for 1.5 hours at 37ºC, 

according to manufacturer’s requirements, and purified using NZY GelPure Kit. 

Ligation reactions were set up overnight at 4ºC with T4 DNA ligase (Promega). NZY 

Star Competent Cells were transformed by incubating on ice for half an hour, followed 

by 45 second heat shock at 42ºC and incubation with LB media in the shaker at 37ºC.  

Bacterial cultures were plated on LB agar plates supplemented with ampicillin 

(100mg/1mL), IPTG (0.5mM) and X Gal (40mg/mL).  

 

7. Selection of positive clones 

Minimum 20 white colonies, expected to contain inserts, were picked from each plate. 

4mL of LB media containing ampicillin (100mg/mL) were inoculated with one white 

colony and grown overnight in a shaker at 37ºC.  

Isolation of plasmid DNA was performed using NZYMiniprep kit (NZYTech). 

Bacterial pellets were resuspended in 250µL of buffer A1 and transferred to an 

eppendorf tube. 250µL of lysis buffer A2 were added by mixing 2-3 times. Finally, 
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350µL of Buffer A3 were added to neutralize the reaction and the samples were 

centrifuged for 7 minutes at 13000 rpm. The supernatant was loaded into a spin column 

and centrifuged for 1 minute at 12 000 rpm. The columns were washed first with 500µL 

of Buffer AY and then with 600µL of buffer A4.  

Plasmid DNA was eluted in 45 µL of elution buffer. 4µL of pasmid DNA were digested 

with restriction enzymes Nco I and Nsi I to confirm the identity of clones.  

Restriction digestion reactions were run on 1% agarose gel and positive clones were 

identified by the presence of inserts based on the size of DNA products. Correct clones 

had two bands: vector (3.5kb) + insert (see table 1).  

 

8. Sequencing and definition of methylation levels  

10µL of DNA were sequenced with 3µL of reverse SP6 sequencing primer (see table 1) 

by StabVida. 

Obtained sequences were aligned to the respective reference sequences of CAMTA1, 

FOXP3 promoter and TSDR using SeqMan software (DNA Star Lasergene 8).  

In sequence alignments, methylated cytosines were presented as cytosines and 

demethylated cytosines as thymidines. The percentage of the methylation in each CpG 

position was determined by defining the proportion of methylated cytosines in the total 

of 20 sequences.   
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A B C 

RESULTS 

 

In order to compare the methylation patterns of FOXP3 promoter, TSDR, and 

CAMTA1 in Treg and Tcon cells of male and female donors, eleven random healthy 

donors were chosen: six male (M1 – M6) and five female (F1 – F5).  

Using FACS, cells were sorted into CD4+CD25brightCD127lowFOXP3+CD45RA+CD15s- 

naïve Treg cells and CD4+CD25lowCD127+ Tcon cells. gDNA from these cell 

populations was then isolated and subjected to bisulphite conversion. Bisulphite-

converted DNA was PCR-amplified and cloned into pGEM-T vector. Bacterial 

competent cells were transformed with ligation reactions and plated onto LB plates to 

allow for individual colonies to grow, as can be observed in Figure3. At least twenty 

white colonies were picked, expected to contain DNA inserts, and their plasmid DNA 

was isolated.  

 

 

 

 

 

 

 

Figure3 – LB agar plates with grown colonies. White colonies were expected to 

contain vectors with inserts while blue colonies contain an empty vector. At least 

twenty white colonies were picked for each gene from each cell population of each 

donor. Plates with colonies with FOXP3 promoter (A), TSDR (B) and CAMTA1 gene 

region (C), from Treg cells of donor M1 are shown as an example. 

 

After, plasmid DNA was subjected to restriction digestion and positive clones were 

selected after the analysis of the reaction digestion patterns in agarose gel, as explained 

in Figure4.  
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Figure4 – Selection of positive clones based on the electrophoresis pattern in 1% 

agarose gel. A. Positive clones were identified by the presence of two bands: the first, 

heavier band, corresponds to the vector with molecular weight of 3.5kb. The second 

band is the cloned insert: TSDR (700bp) or CAMTA 1 gene region (470bp). B. Clones 

that did not contain a DNA insert could be identified by the presence of only one band – 

an empty vector (3.5kb). Red arrows show clones without inserts during the screen for 

CAMTA1.  

 

Finally, DNA from the positive clones was sequenced and aligned with the respective 

reference sequence, as shown in Figure5. 

 

 

 

 

 

 

 

Figure5 – Sequence alignment (SeqMan software). Five DNA sequences (CAMTA1 

gene region of Treg cells of donor M1) were aligned to the respective reference 

sequence (R). The yellow square shows cytosines which remained unmodified after 

bisulphite conversion treatment meaning that all cytosines in the first CpG position of 

the original sequence are methylated. The red square shows that CpG position 2 in 

sequences 1, 2, and 4 contains a thymidine instead of a cytosine which means that a 

cytosine in the original sequence is not methylated. 
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In order to define the methylation levels of each CpG position, for each gene from each 

cell population (Treg and Tcon cells), the proportion of methylated cytosines was 

determined in the total of 20 sequences. This number was considered as representative 

of the entire cell population. Methylation patterns within three gene regions of one 

representative donor M1 are shown in Figure6.   

 

 

 

 

 

 

 

 

 

 

Figure6. Methylation patterns of FOXP3 promoter, TSDR, CAMTA1 in Treg cells 

and Tcon cells of male donor 1 (M1). A. Analysed CpG positions from 20 DNA 

sequences of FOXP3 promoter, TSDR and CAMTA1 gene regions in Treg and Tcon 

cells. Each horizontal line represents one DNA and each column represents one CpG 

position. B. Merged methylation rates for each CpG position of each gene region of 

each donor. Darker colours represent higher methylation percentage while lighter 

colours represent higher demethylation percentage. 

 

1. Methylation pattern of FOXP3 promoter region 

FOXP3 promoter region is 450bp long and contains 10 CpG positions which were all 

studied in order to define their methylation status. As it can be observed in Figure7A, 

donors M1, M2 and F1 presented a more methylated rate of FOXP3 promoter region in 

Tcon cells than in Treg cells. More specifically, the average methylation rate for Treg 

cells was 12,5%, 5,5%, and 0% for M1, M2 and F1 donors respectively. On the other 
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hand, Tcon cells showed higher methylation rates of 65,5%, 50,5% and 38,5%, 

respectively.  

This data supports previously published data on the methylation patterns of FOXP3 

promoter in healthy donors.  

However, promoter region remained completely demethylated in both Treg and Tcon 

cells in the majority of the remaining donors, showing no differences in the methylation 

pattern between these two cell populations (Figure7B). 

Interestingly, no differences were found between male and female donors with average 

methylation levels of 0% in both cell populations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure7. Methylation pattern of FOXP3 promoter. A. Merged CpG methylation 

rates of FOXP3 promoter region of male donors 1 and 2 (M1, M2) and female donor 1 

(F1). B. Merged CpG methylation rates of FOXP3 promoter region of male donors 3-6 

(M3 – M6) and female donors 2 and 3 (F2, F3).  

B 
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2. Methylation pattern of FOXP3 TSDR region  

The longest region that was studied was FOXP3 TSDR which is 700bp long and 

contains 15 CpG positions. As can be seen in Figure8A, M1 and M4 donors showed a 

pattern similar to that described in literature for healthy donors. FOXP3 TSDR in Tcon 

cells was more methylated compared to Treg cells: for M1 the average methylation rate 

for Treg cells was 25,7% as compared to 91% for Tcon cells. Moreover, M4 presented a 

complete methylation pattern for Tcon cells in contrast to an average methylation rate of 

65,7% for Treg cells.  

However, unexpected methylation patterns were found within TSDR region of other 

donors (Figure8B). High methylation levels in FOXP3 TSDR region were observed in 

both cell populations and in both genders, showing no significant differences.  
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Figure8. Methylation pattern of FOXP3 TSDR. A. Merged CpG methylation rates of 

FOXP3 TSDR region of male donors 1 and 4 (M1, M4). B. Merged CpG methylation 

rates of FOXP3 TSDR region of male donors 2, 3, 5 and 6 (M2, M3, M5, M6) and female 

donors 1 to 5 (F1 – F5).  

 

 

3. Methylation pattern of CAMTA1 gene region  

Thirteen CpG positions within the 470bp region of CAMTA1 gene, located on 

chromosome 1, were analysed in this study.  

As can be observed in Figure9, two patterns of methylation were present. The first 8 to 

10 CpGs positions were more demethylated in Treg than in Tcon cells of the majority of 

donors (Figure9A). At the same time, interestingly, CpG positions 2 and 11 remained 

significantly more demethylated in Treg than in Tcon cells in donors that showed 

overall higher methylation rates in other CpG positions (Figure9B). 

The average methylation rates for all CpG positions within the entire CAMTA1 region 

are presented in Figure9. In first group of donors (Figure9A), the average methylation 

rate for CpGs 1 to 10 was 19-53,5% in Treg cells and 37,5-90% in Tcon cells. In second 

group of donors (Figure9B), the average methylation percentage for CpGs 2 and 11 was 

2.5-47,5% for Treg and 45,5- 87,5% for Tcon cells.  

Overall, CAMTA1 gene region of Treg cells was more demethylated than that of Tcon 

cells. Once again, no significant differences were found between genders except the fact 

that male donors were more prone to display the first pattern (Figure9A).  
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Figure9. Methylation pattern of CAMTA1 gene region. A. Merged CpG methylation 

rates of CAMTA1 gene region of male donors 1 to 4 and 6 (M1 -M4, M6) and female 

donors 1 and 2 (F1, F2). B. Merged CpG methylation rates of CAMTA1 gene region of 

male donor 5 (M5) and female donors 3 to 5 (F3 – F5). 
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DISCUSSION 

 

Following the isolation of CD4+CD25brightCD127low FOXP3+CD45RA+CD15s- naïve 

Treg cells and CD4+CD25lowCD127+ Tcon cells and bisulphite treatment of gDNA from 

these cell populations, bisulphite converted DNA was amplified with gene-specific 

primers and cloned into pGEM-T vector. Twenty sequences from positive clones were 

then analysed to define the methylation status of individual CpG positions within each 

gene region.  As shown in Figures 7, 8 and 9, methylation rates were defined for each 

CpG position of each gene region in study (FOXP3 promoter, FOXP3 TSDR and 

CAMTA1 gene region) from two cell populations of six male and five female random 

healthy donors.   

 

M1 and M2 donors can be considered as standard donors based on the published 

literature: their Treg cells showed a more demethylated pattern not only in FOXP3 

promoter region but also in TSDR region compared to Tcon cells, which would allow 

for the expression of FOXP3 protein in Treg cells. Similarly, CAMTA1 gene region, 

was more demethylated in Treg cells than in Tcon cells.  

 

Interestingly, we observed two demethylation patterns in Treg cells of CAMTA 1 gene 

region: demethylation of the first eight-ten CpG positions (Figure9A), present in more 

donors, and demethylation of only two CpG positions: second and eleventh (Figure9B).  

Despite what was observed in the other two studied gene regions, and following the two 

patterns described above, CAMTA 1 remained significantly more demethylated in Treg 

cells than in Tcon cells in the majority of donors. It is, therefore, reasonable to state that 

compared to FOXP3 promoter and TSDR region, CAMTA1 seems to be a more reliable 

marker that differentiates Treg from Tcon cells.  

 

In remaining male and female donors, FOXP3 promoter region showed complete 

demethylation in Treg and Tcon cells with no differences not only between the two 

subpopulations but also between genders. We hypothesize that promoter may have to be 

demethylated to allow the binding of transcription factors and the induction of 

transcription and expression. This could explain the existing phenomenon of FOXP3 

expression in Tcon cells in transitory conditions while TSDR is completely methylated 
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or induction of a transient Treg phenotype (iTreg cells) with an incomplete 

demethylation of TSDR [8,19].  

 

On the other hand, methylation of TSDR appears to be a more complicated process 

compared to what we initially gathered from literature. In fact, in most donors and 

without differences between the two genders, TSDR presented a complete methylation 

pattern not only in Treg cells but also in Tcon cells (Figure8B). These results were 

unexpected and did not confirm what has been published so far. 

Remarkably, it came to light in preliminary work of our lab that followed this research 

that the demethylation of TSDR could be strand-dependent. In our recent findings (data 

not shown), the opposite strand of TSDR is significantly more demethylated in Treg 

cells than in Tcon cells and also shows differences between the two genders 

(unpublished data) that might be linked with X chromosome inactivation.  

 

In order to have a more sustained conclusion for this study, it would be important to 

have a higher number of donors. Also, it would be interesting to know the exact family 

and personal clinical history of our donors as they were known so far as healthy and 

some clinical situations might have an impact on the epigenetic regulation and function 

of Treg cells [32-47]. 

 

In conclusion, the demethylation of CAMTA1 gene region in Treg cells is a gender 

independent process. Therefore, methylation pattern of CAMTA 1 gene region may be 

used to distinguish Treg cells from Tcon cells even when other specific molecular 

markers, such as TSDR, do not show any epigenetic differences.  

 

In the future, the study of the epigenetic control of Treg cells will allow to understand 

exactly how and when the methylation mechanism occurs along the different 

maturations stages. Moreover, understanding the impact of the X chromosome 

inactivation on the methylation of FOXP3 locus and FOXP3 expression may contribute 

to understanding possible differences in clinical phenotypes between males and females 

in certain diseases, especially in AID. 

Studying the methylation patterns of FOXP3 locus and CAMTA 1 gene region among 

patients with AID and allergies will be crucial not only in confirming recently published 

data on methylation of FOXP3 locus in Tregs of patients with these diseases but also in 
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understanding the role that CAMTA1 may have as an independent marker in these 

clinical situations.  

In essence, these follow-up studies will allow us to better understand the epigenetic 

regulation mechanisms of Treg cells. This will open doors to finding new therapy 

targets focusing on Treg cells and also to optimizing cell therapies such as the ones 

already used in GVHD patients leading to a clinical outcome improvement in a wide 

range of diseases.  
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APPENDIX I – RESUMO EXTENSO EM PORTUGUÊS 

 

O gene FOXP3, codificado no cromossoma X e principalmente regulado por vias 

epigenéticas, apresenta um papel fundamental no desenvolvimento de células T 

reguladoras (Treg), essenciais à resposta a estímulos autoimunes, à manutenção da 

tolerância imunitária e homeostase, sendo amplamente utilizado como um marcador 

específico das células Treg. Existem diversas regiões no locus do FOXP3 reconhecidas 

pela sua importância no controlo epigenético, o qual consiste em alterações reversíveis 

na estrutura da cromatina sem haver alterações na sequência de nucleótidos de DNA: 

enhancer, promotor e três Sequências Conservadas de DNA Não Codificante (CNS), 

CNS 1-3. Especificamente, o enhancer, o promotor e o CNS2, também denominado de 

Região Desmetilada Específica de células Treg (TSDR), são responsáveis por este 

controlo através da desmetilação de ilhéus CpG das suas sequências.  

Diferenças nos níveis de metilação da região TSDR contribuem para a distinção entre 

células Treg e linfócitos T convencionais (Tcon). Além disso, os níveis de metilação 

desta região poderão ainda contribuir para a distinção entre diversos estadios de 

maturação dentro da população das células Treg, por exemplo, os timócitos apresentam 

uma incompleta metilação do TSDR enquanto as nTreg (células Treg que proliferam a 

partir do timo), têm a região do TSDR completamente desmetilada.  

Foi ainda demonstrado que, enquanto o FOXP3 é um marcador específico das células 

Treg, a desmetilação do TSDR é responsável pela manutenção da expressão do FOXP3, 

pelo que pode ser considerada como um marcador da estabilidade da linhagem de 

células Treg e compromisso das células para com a mesma. Tal observação poderá ser 

complementada pelo facto de ser possível termos populações de células Tcon a 

expressarem transitoriamente FOXP3 com o TSDR completamente metilado. 

A par da região TSDR, verificou-se que o gene Calcium-dependent calmodulin-binding 

transcription factor 1, também denominado, CAMTA1, localizado no cromossoma 1, 

apresentava variações dos padrões de desmetilação semelhantes às verificadas no 

TSDR, apresentando-se como o outro marcador molecular que poderia contribuir para a 

distinção entre as duas populações de células. Até à data, o papel do gene CAMTA1 não 

foi estudado nas células T, apesar de se saber que o cálcio apresenta um papel 

importante na transcrição, especialmente nos mecanismos de transdução. 

Disfunções das células Treg e um padrão de elevada metilação do locus do FOXP3, têm 

sido correlacionados com doenças autoimunes e alergias e também com um pior 
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prognóstico e morbilidade. Notar ainda que as mulheres apresentam uma maior 

suscetibilidade para doenças autoimunes comparativamente aos homens, o que poderá 

ser explicado pela inativação do cromossoma X, um processo que afeta cerca de 85% 

dos genes ligados ao X. 

Tendo como hipótese que possíveis diferenças nos padrões de desmetilação do gene do 

FOXP3 possam estar relacionadas com as desigualdades clínicas observadas entre 

géneros, propôs-se comparar os padrões de desmetilação do promotor do FOXP3, 

TSDR e do gene CAMTA1 entre células Treg e Tcon de seis homens e cinco mulheres 

saudáveis com uma história clínica e familiar, até à data, desconhecida, no que diz 

respeito a doenças autoimunes e alergias. 

Foram isoladas células T CD4+ a partir de sangue periférico, tendo sido sujeitas a 

citometria de fluxo (FACS) e separadas células Treg naïve CD4+CD25brightCD127low 

FOXP3+CD45RA+CD15s- e células Tcon CD4+D25lowCD127+. O DNA genómico, após 

tratamento com bissulfito, foi amplificado por PCR, clonado em vetores pGEM-T e 

sequenciado. As sequências foram analisadas e os níveis de metilação estabelecidos.  

Foi demonstrado que, quer em dadores do sexo feminino quer do sexo masculino, a 

região do gene CAMTA1, nas células Treg, apresentou um padrão consistente de maior 

desmetilação comparativamente ao das células Tcon. Por outro lado, resultados 

inconsistentes e não descritos até à data foram apresentados para o promotor do FOXP3 

e TSDR.  

No caso do promotor do FOXP3, apesar da existência de dadores que apresentavam 

resultados comparáveis ao que está escrito na literatura, ou seja, onde as células Treg 

apresentavam esta região mais desmetilada em relação às células Tcon, a maior parte 

dos dadores, quer em células Treg quer em células Tcon tinha o promotor do FOXP3 

desmetilado. 

No que diz respeito à região do TSDR, também existem dadores que confirmam a 

informação já apresentada na literatura recente. No entanto, a maior parte dos dadores 

apresentou esta região completamente metilada.  

O gene CAMTA1 apresentou dois padrões diferentes de desmetilação nas células Treg: 

um primeiro padrão, com desmetilação das primeiras oito/dez posições CpG, e um 

segundo padrão, com a desmetilação do segundo e décimo primeiro CpG mantendo-se 

as restantes posições CpG com altos níveis de metilação. No entanto, as células Treg 

apresentaram esta região significativamente mais desmetilada que as células Tcon. 

Em qualquer um dos três genes não foram observadas diferenças entre géneros.  
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Assim sendo, podemos afirmar que existem dadores que podemos considerar “dadores 

standard” dado que apresentam resultados sobreponíveis aos que têm vindo a ser 

publicados acerca deste tópico.  

Além disso, será interessante mencionar que, o facto de a região do promotor do 

FOXP3 se ter apresentado mais desmetilada na maioria dos dadores, sem quaisquer 

diferenças entre as populações de células Treg e Tcon, poderá ser justificada pela 

necessidade de esta região estar desmetilada para permitir a ligação de fatores de 

transcrição e consequente expressão. Assim, só desta forma se poderá compreender o 

porquê de, transitoriamente, termos células Tcon, que apresentam o TSDR metilado, a 

expressar FOXP3 ou a própria existência de células iTreg, células Treg induzidas de 

Tcon na periferia em resposta a estímulos autoimunes periféricos, que apresentam a 

metilação do TSDR incompleta.  

Quanto à região do TSDR no gene do FOXP3, através dos inesperados resultados, é 

possível compreender que o processo de metilação do locus do FOXP3 mais complexo 

do que se pensava ao início. Dado a maioria dos dadores ter apresentado o TSDR 

completamente metilado em ambas as populações de células, impulsionou novas 

investigações no nosso laboratório onde foi analisado o padrão de desmetilação da fita 

de DNA oposta que demonstraram que o processo de metilação desta região poderá ser 

“dependente da fita de DNA” em questão. Neste recente estudo do nosso laboratório, a 

fita de DNA oposta encontrava-se mais desmetilada nas células Treg do que nas células 

Tcon e apresentou diferenças entre homens e mulheres, resultados esses que poderão vir 

a ser associados ao processo de inactivação do cromossoma X (resultados não 

apresentados). 

Concluindo, a desmetilação do gene CAMTA1 é um processo independente de género e 

o padrão de metilação deste gene poderá ser considerado um marcador molecular 

adicional mais fidedigno para a distinção entre células Treg e Tcon quando a expressão 

de FOXP3 possa estar afetada e a região do TSDR não apresenta diferenças 

epigenéticas. 

 No futuro, é importante continuar a estudar o controlo epigenético das células Treg 

para que seja compreendido como exatamente ocorre e em que momentos da vida destas 

células acontece. Além disso, o impacto da inativação do cromossoma X no padrão de 

metilação do locus do FOXP3 poderá contribuir para justificar o desequilíbrio de 

prevalências de doenças autoimunes existente entre homens e mulheres. Por fím, o 
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estudo dos padrões de desmetilação em doentes com AID ou alergias poderá corroborar 

os dados já expressos na literatura recente em relação à região TSDR mas também 

perceber se o gene CAMTA1 pode ter algum papel como um marcador independente 

nestas situações clínicas. Tais descobertas abrirão portas para a pesquisa de novos alvos 

terapêuticos, otimização de terapias celulares já existentes, em buscar de melhores 

outcomes clínicos para múltiplas doenças.  

 


