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Abstract

In this dissertation we study two problems. In the first part of the dissertation we study the
multi-depot routing problem. In the multi-depot routing problem we are given a set of depots
and a set of clients and the objective is to find a set of routes with minimum total cost, one for
each depot, such that each route starts and ends at the same depot and all clients are visited in
one and only one route. The requirement that routes must start and end at the same depot is
modeled by so-called path elimination constraints. We present a formulation which includes a
newly developed set of multi-cut path elimination constraints and a branch-and-cut algorithm
based on the new formulation that it is able to solve both asymmetric and symmetric instances
with up to 300 clients and 60 depots. Additionally, we present other approaches to model path
elimination constraints, including a formulation which provides linear programming relaxation
values which are close to the optimal value in the instances tested.

In the second part of the dissertation we study the Hamiltonian p-median problem. In the
Hamiltonian p-median we are given a set of nodes and the objective is to find p circuits with
minimum total cost such that each node is in one and only circuit. We propose a formulation
based on the concept of acting depot which attributes the role of artificial depot to p of the nodes.
This formulation is a non-straightforward adaptation of the new model proposed for the multi-
depot routing problem and it is based on a novel idea in which the standard arc variables are
split into three cases depending on whether none or exactly one of its endpoints is an acting
depot. We present a branch-and-cut algorithm based on the new formulation which is able to
solve asymmetric instances with up to 171 nodes and symmetric instances with up to 100 nodes.

Keywords: multi-depot routing, Hamiltonian p-median, integer linear programming, projec-
tion, branch-and-cut
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Resumo

Nesta dissertação estudamos dois problemas de otimização. Na primeira parte da dissertação
abordamos o multi-depot routing problem. Dado um grafo cujos nodos são particionados num
conjunto de depósitos e num conjunto de clientes, o objetivo do multi-depot routing problem
é encontrar um conjunto de rotas, uma para cada depósito, tais que: (i) cada cliente é visitado
numa e numa só rota; (ii) cada rota começa e termina no mesmo depósito; e (iii) o custo das
rotas é o menor possível. Consideramos que o custo de uma rota é a soma dos custos dos arcos
utilizados, sendo que nesta dissertação permitimos custos assimétricos, isto é, o custo de ir de
A para B pode não ser o mesmo de ir de B para A. Assim sendo, os modelos que apresentamos
são baseados em grafos orientados.

A condição (ii) de que cada rota tem de começar e terminar no mesmo depósito é geral-
mente modelada com recurso a restrições que na literatura se designam por path elimination
constraints. Estas restrições garantem que qualquer caminho que ligue dois depósitos não é
admissível. Nesta dissertação propomos uma formulação baseada num novo conjunto de path
elimination constraints que podem ser vistas como restrições de corte num grafo com três níveis.
Além do nível dos clientes, o grafo com três níveis tem um nível para os depósitos e outro para
uma cópia de cada depósito, sendo que os arcos que entram no depósito no grafo original, entram
na sua cópia no grafo com três níveis. As novas restrições resultam da projeção no espaço das
usuais variáveis associadas a cada arco de um sistema de fluxos definido no grafo com três níveis
que garante que uma unidade de fluxo é enviada de cada depósito para a sua cópia. Esta relação
deriva do teorema de fluxo máximo/corte de capacidade mínima o que nos permite desenvolver
um algoritmo de separação exato e eficiente para as novas restrições.

Com base na nova formulação apresentamos um algoritmo de branch-and-cut que faz uso
da separação eficiente das novas path elimination constraints para resolver instâncias, tanto
com custos assimétricos como com custos simétricos, com até 300 clientes e até 60 depósitos.
O algorithm de branch-and-cut foi implementado em C++ e utiliza a framework do CPLEX
que é um software que permite a resolução de problemas de otimização com base em modelos
para problemas de programação inteira. O algoritmo de branch-and-cut incorpora técnicas para
garantir a sua eficiência, como a limitação do número de desigualdades violadas adicionadas
em cada iteração do algoritmo de planos de corte e a utilização de uma heurística simples, mas
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eficaz, que produz soluções admissíveis com base na relaxação linear em cada nodo da árvore
de pesquisa.

Nesta dissertação apresentamos também outras abordagens para modelar a restrição de que
cada rota tem de começar e terminar no mesmo depósito. Alguns dos modelos apresentados
têm por base um conjunto de variáveis que indicam se um dado cliente está ou não no circuito
de um dado depósito. Com base em igualdades simples é possível mostrar que estas variáveis
estão associadas às variáveis de fluxo do sistema de fluxos definido no grafo com três níveis,
logo, é possível estabelecer uma comparação com os modelos apresentados anteriormente, em
particular as novas path elimination constraints propostas. Apresentamos ainda outro modelo
baseado em dois sistemas de fluxo, um que garante que uma unidade de fluxo é enviada de
cada depósito para cada cliente que esteja no seu circuito e outro que garante o contrário, de tal
forma que, em conjunto, é garantida a existência de um circuito para cada depósito. Mostramos
também que estes dois sistemas de fluxo podem ser relacionados com o sistema de fluxos do
grafo com três níveis e, recorrendo a técnicas de projeção, mostramos que é possível definir um
modelo equivalente que não necessita dos sistemas de fluxo duplos e que é mais fácil de utilizar
na prática. Por fim, apresentamos um conjunto de resultados computacionais para avaliar a
qualidade dos valores da relaxação linear dos vários modelos apresentados e, em particular,
mostramos que o modelo que resulta dos sistemas de fluxo duplos é um modelo cujo valor da
relaxação linear está perto do valor ótimo nas instâncias testadas.

Na segunda parte da dissertação estudamos o Hamiltonian p-median problem. Para este
problema é-nos dado um grafo (que mais uma vez assumimos orientado) e uma função de custo
associada aos arcos do grafo. O objetivo do Hamiltonian p-median problem é encontrar p cir-
cuitos tais que: (i) cada nodo do grafo está num e num só circuito; e (ii) o custo dos p circuitos
é o menor possível. Começamos por apresentar um modelo genérico para o problema que é
baseado no conceito de depósito artificial, isto é, p dos nodos do grafo são escolhidos para atu-
arem como um depósito artificial e, por conseguinte, os restantes nodos são clientes artificiais.
Com base neste conceito estabelecemos a ligação ao multi-depot routing problem e apresenta-
mos um novo modelo que é uma adaptação do modelo baseado nas novas restrições de corte
associadas ao grafo de três níveis. Contudo, observamos que este modelo possui duas desvan-
tagens. Em primeiro lugar, não cremos que exista um algoritmo de separação eficiente para as
restrições de corte associadas ao grafo de três níveis adaptadas para o contexto do Hamiltonian
p-median problem. Em segundo lugar, a utilização do conceito de depósito artificial introduz
problemas de simetria dado que um circuito pode ser representado de forma equivalente tantas
vezes quanto o número de nodos que o compõem. Neste modelo não é possível resolver este
problema de forma intuitiva.

Assim, apresentamos um novo modelo para o Hamiltonian p-median problem baseado na
ideia de dividir as variáveis associadas aos arcos em três conjuntos distintos consoante nenhum
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dos seus extremos ou exatamente um dos seus extremos é um depósito artificial. A nova formu-
lação permite-nos na mesma adaptar (de forma não trivial) os modelos propostos para o multi-
depot routing problem e, mais importantemente, colmatar as duas desvantagens do primeiro
modelo proposto. Mais concretamente, é possível definir um conjunto de restrições semelhantes
às restrições de corte associadas ao grafo de três níveis apresentadas para o multi-depot routing
problem de tal forma que: (i) a sua separação pode ser feita em tempo polinomial; e (ii) po-
dem ser adaptadas para lidar com os problemas de simetria inerentes à utilização do conceito de
depósito artificial.

Para terminar, apresentamos um segundo algoritmo de branch-and-cut, desta feita para o
Hamiltonian p-median problem, que utiliza o mesmo tipo de técnicas que o apresentado para o
multi-depot routing problem. Este algoritmo de branch-and-cut permite resolver instâncias com
custos assimétricos com até 171 nodos e de instâncias simétricas com até 100 nodos. Fazemos
ainda uma comparação com um terceiro algoritmo de branch-and-cut baseado na adaptação
de uma formulação da literatura. Os resultados mostram que o algoritmo de branch-and-cut
baseado na nova formulação é bastante mais eficiente, em média, do que este terceiro algoritmo.
Por fim, mostramos ainda um conjunto de resultados que permitem comparar a nossa abordagem
com abordagens da literatura que resolvem uma variante do Hamiltonian p-median problem em
que circuitos com apenas dois nodos não são permitidos.

Palavras-chave: rotas com múltiplos depósitos, p-mediana Hamiltoniana, programação linear
inteira, projeção, branch-and-cut
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Introduction

The field of Operations Research is a thriving mathematics discipline with the main purpose of
proposing solution methods for optimization problems. One of the most important and widely
studied type of problems are routing problems. Routing problems usually stem from the area
of distribution logistics where one wishes to find a set of routes that visit given locations while
simultaneously minimizing some objective (e.g., operational costs). Often a route starts and
ends at a specific location denoted by depot and some companies may have several depots from
where their distribution vehicles depart.

In this dissertation we study routing problems in which there exists more than one depot
or, in other words, multi-depot routing problems. The dissertation is divided into two parts,
each one corresponding to a different optimization problem. In the first part of the dissertation
we study the multi-depot routing problem. In this optimization problem we are given a set of
depots and a set of locations that need to be visited. The objective is to find a set of routes, one
for each depot, such that: (i) each location is visited in one and only one route; (ii) each route
starts and ends at the same depot; and (iii) a given cost function is minimized. In the second part
of the dissertation we study the Hamiltonian p-median problem where, given a set of locations,
we must find p circuits such that: (i) each location is in one and only one circuit; and (ii) a
given cost function is minimized. Albeit different problems, we show in this dissertation that
the multi-depot routing problem can be seen as a particular case of the Hamiltonian p-median
problem.

We strongly believe that the additional condition in multi-depot routing problems that routes
must start and end at the same depot has not been given sufficient attention in the literature. Ad-
ditionally, we believe that the Hamiltonian p-median is lacking recent algorithmic development
given that most works in the literature address a variant of the problem. These two points justify
the work developed within the scope of this Ph.D. dissertation.

This dissertation has three distinct aims. The first aim is to present a number of different
mathematical models for the multi-depot routing problem focusing, in particular, on modeling
the restriction that routes must start and end at the same depot. The second aim is to provide an
efficient solution method which can provide good quality (hopefully, the best possible) solutions
for the multi-depot routing problem based on the theoretical models proposed. The third and
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INTRODUCTION

final aim is to establish a link between the multi-depot routing problem and the Hamiltonian
p-median problem which allows us to (not necessarily in a straightforward way) adapt both the
models and the solution methods proposed for the former to the latter.

This dissertation is organized in the following way. Part I is divided into four chapters. In
Chapter 1 we formally introduce the multi-depot routing problem. In particular, we present
notation used throughout the first part of the dissertation and a generic model for the problem.
In Chapter 2 we propose a model for the multi-depot routing problem which includes newly
developed constraints that guarantee that each route starts and ends at the same depot. In Chapter
3 we propose a branch-and-cut algorithm based on the model of Chapter 2 and a computational
experiment to evaluate its performance. Finally, in Chapter 4 we present additional models for
the multi-depot routing problem, once again focusing onmodeling the condition that routes must
start and end at the same depot.

In Part II of the dissertation we study the Hamiltonian p-median problem. In Chapter 5 we
introduce the problem and notation as well as two different generic models. One of these models
establishes a link to the multi-depot routing problem by introducing the concept of acting depot
which attributes the role of artificial depots to p of the locations in the problem. In Chapter 6 we
use this concept and present a newmodel for the Hamiltonian p-median problem which is a non-
straightforward adaptation of the model of Chapter 2. Finally, in Chapter 7 we present another
branch-and-cut algorithm to solve the Hamiltonian p-median problem and test its effectiveness.
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The multi-depot routing problem

3





Chapter 1

Introducing the multi-depot routing
problem

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 A generic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Introduction

In this chapter we introduce the problem studied in the first part of this dissertation, the multi-
depot routing problem (see, e.g., Laporte, Nobert & Arpin 1984, Laporte, Nobert & Taillefer
1988, Bektaş, Gouveia & Santos 2017). This problem arises in distribution logistics where
vehicles located at a set of depots are used to service a set of clients. The multi-depot routing
problem is an extension of more traditional routing problems which consider only a single depot
with a single vehicle, such as the traveling salesman problem (see, e.g., Lawler, Lenstra, Kan
& Shmoys 1985, Applegate, Bixby, Chvátal & Cook 2006), or a single depot with multiple
vehicles, which includes the multiple traveling salesman problem (see, e.g, Gavish & Graves
1978, Bektaş 2006) and the vehicle routing problem and its several variants (see, e.g., Toth &
Vigo 2014). In the multi-depot routing problem one assumes the existence of multiple depots,
each one with one or more vehicles. In this dissertation we will consider that there exist multiple
depots with a single vehicle in each but we will also provide some insight on how the discussion
can be extended to the case in which there are multiple vehicles in each depot. In addition, given
that there exist multiple depots, it is interesting to consider also the variant that allows choosing
which depots to use. We also show how to adapt the discussion for this variant. Our main focus,
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however, will be the case in which each depot has a single vehicle that must be used in a circuit
since this case ties in perfectly with the problem studied in the second part of this dissertation.

Most of the recent routing problems in the literature also take into account other restrictions
resulting from real-life applications (see, e.g., Toth & Vigo 2014, for some examples regard-
ing the vehicle routing problem). For instance, the use of multiple vehicles is usually required
whenever the vehicles have a maximum service capacity, time windows for servicing a partic-
ular client are also frequently considered, environmental issues are also important nowadays,
specially because of the growing use of electric vehicles or simply to minimize the pollution,
etc. This dissertation is focused on studying multi-depot routing problems in their most basic
setting, so we will not add any additional restrictions. The reason for this choice is that the
multi-depot routing problem in its most basic setting has not been studied in detail, specially
in what concerns the additional constraint of requiring that vehicles return to their original de-
parture depot, and, therefore, adding any additional restrictions would deviate from our original
purpose. Nevertheless, the study in this dissertation may serve as a base for future adaptations
that consider such additional restrictions on multi-depot routing problems.

The aim in most routing problems is usually to minimize a cost function that is related to
the routes that each vehicle must follow. The most often used cost function is the total distance
traveled by all the vehicles. However, in this dissertation we are going to assume that the costs
can be more general. In particular, the cost of going from a point A to a point B may not be
the same cost of going from B to A. For instance, due to the topology of the network, one of
the directions may be non-existent or it may take longer to traverse. This means that the cost
function is an asymmetric cost function. Consequently, it is important to distinguish whether
we are going from A to B or from B to A and, therefore, we will base our models on directed
graphs.

The two types of restrictions that must be satisfied in the multi-depot routing problem are:
(i) each client is serviced in one and only one route; and (ii) each route contains exactly one
depot. The latter set of constraints requires further elaboration. Firstly, a route that does not
contain a depot, is one of client nodes alone and disconnected from the depots. Inequalities
that prevent the formation of such routes are known as subtour elimination constraints. This
type of constraints has been widely studied in the context of single-depot routing problems and
their adaptation to multi-depot routing problems is usually straightforward. Secondly, if a route
contains two or more depots, this implies that there exists a vehicle traveling on a path between
two different depots. Since we assume that a vehicle needs to return to its original departure
depot after the travel, any such paths that exist between different depots are not acceptable.
Inequalities that disallow unfeasible paths are called path elimination constraints. Unfeasible
paths between different depots are non-existent in single-depot routing problems and, therefore,
the study of path elimination constraints is not as vast as the study of subtour elimination con-
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straints. For this reason, one of the main topics of this part of the dissertation is the study of
path elimination constraints. Note that the study of these constraints is relevant for any prob-
lem where multiple depots exist including, for example, location-routing problems (see, e.g.,
Laporte, Nobert & Arpin 1986, Laporte et al. 1988, Belenguer, Benavent, Prins, Prodhon &
Wolfler Calvo 2011, Albareda-Sambola 2015) and other variants (see, e.g., Laporte et al. 1984,
Bektaş 2012, Benavent &Martínez-Sykora 2013, Fernández & Rodríguez-Pereira 2016, Sundar
& Rathinam 2017).

The purpose of this part of the dissertation is two-fold. First, we propose a new formula-
tion for the multi-depot routing problem and devise an efficient and effective branch-and-cut
algorithm based on this formulation. More precisely, we present a formulation in the space
of the standard arc variables usually used in routing problems that includes a set of subtour
elimination constraints, a set of newly developed path elimination constraints and other valid
inequalities. The newly developed path elimination constraints are multi-cut constraints and
are one of the most important contributions of this dissertation. The multi-cut constraints result
from the projection in the space of the arc variables of a compact three-index variable based
formulation, which can be interpreted as a network flow formulation. For the branch-and-cut
algorithm, we start by explaining what a modern branch-and-cut algorithm implementation in
a commercial solver consists of. Then, we present some state-of-the-art techniques which we
use in our branch-and-cut algorithm, such as a basic but fast and effective heuristic and heuristic
separation algorithms for the inequalities in use. The branch-and-cut algorithm is then used to
solve a number of benchmark instances and some randomly generated instances.

The second purpose of this part of the dissertation is to provide a comparative study, both in
theory and in practice, of several modeling approaches for path elimination constraints. Several
of the sets of path elimination constraints proposed are based on modeling techniques similar to
the ones used in the precedence constrained (asymmetric) traveling salesman problem (see, e.g.,
Balas, Fischetti & Pulleyblank 1995, Gouveia & Pires 1999, 2001, Gouveia & Pesneau 2006,
Gouveia, Pesneau, Ruthmair & Santos 2018), namely in what concerns the use of variables that
are similar to the so-called precedence variables and that, in the multi-depot routing problem
setting, are interpreted as variables which assign clients to depots. These will be theoretically
compared to the compact three-index variable based formulations and the formulation using
the new multi-cut constraints. In addition, we use double network flow formulations similar to
the ones proposed by Wong (1980) for the traveling salesman problem to derive a new formu-
lation which implies all of the proposed subtour elimination constraints and path elimination
constraints presented in this part of the dissertation. This formulation is another important con-
tribution of this dissertation and we will show that it provides linear programming relaxation
values which are close to the optimal integer solution value in the instances tested.

This chapter is divided into two sections. In Section 1.2 we formally define the multi-depot
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CHAPTER 1. INTRODUCING THE MULTI-DEPOT ROUTING PROBLEM

routing problem and present notation to ease the writing of some mathematical expressions.
Afterwards, in Section 1.3, we present a generic integer linear programming formulation for the
multi-depot routing problem.

1.2 Definitions and notation

We define the multi-depot routing problem on a directed graph G = (V,A). The set of nodes
V = {1, 2, . . . , n} is partitioned into two sets D and C, where D is the set of nodes which are
depots, each one a departure point of a vehicle with unlimited service capacity, andC is the set of
nodes which are clients. Since traveling directly between two depots is forbidden, there exist no
arcs between depot nodes, however, we will assume that all arcs between depot nodes and client
nodes exist and that all arcs between client nodes exist, hence, the set of arcsA is complete apart
from the non-existing arcs between depots, that is, A = {(i, j) : i ∈ C or j ∈ C, i ̸= j}. Note
that the assumption of a (almost) complete graph does not lose any generality as the ensuing
exposition can easily be adapted to incomplete graphs by simply not considering the pairs (i, j)
such that (i, j) /∈ A in any mathematical expression. The arc set can be partitioned as follows:
let AC = {(i, j) ∈ A : i, j ∈ C, i ̸= j} be the set of arcs between client nodes; for all d ∈ D

let Ad
O = {(d, i) ∈ A : i ∈ C} be the set of arcs outgoing depot d; and for all d ∈ D let

Ad
I = {(i, d) ∈ A : i ∈ C} be the set of arcs ingoing depot d. Finally, we consider a general

non-negative cost function c associated with each existing arc.

Later in this part of the dissertation we will briefly consider two variants of the multi-depot
routing problem. In one case we will assume that there is a fixed number kd of vehicles available
at each depot d ∈ D and that at least one of them must be used. In another case we will consider
the possibility that the nodes of D are seen as potential depot locations and, consequently, they
may not need to be used. Mixing these two variants is possible, in which case we can decide
howmany vehicles from the kd available are to be used for each depot d ∈ D including choosing
to not use any. We believe that starting with the more general case would be counterproductive
since, as we have mentioned, we wish to study the multi-depot routing problem in its most
basic setting, particularly in what concerns path elimination constraints, and, therefore, it is
much easier to explain the intuitiveness of the modeling techniques in the simpler setting and
later show how to adapt the discussion to a more general case. For this reason, and with the
exception of Section 2.6, we will assume that a vehicle exists at every depot of D and that the
vehicle must be used.

The objective of the multi-depot routing problem is then to find a minimum cost set of |D|
circuits such that each circuit departs from and ends at the same depot and each client of C
is in one and only one circuit. Figure 1.1 shows an example of a feasible solution of a multi-
depot routing problem where the depots D = {1, 2} are represented as squares and the clients
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1

2

3

4

5

6

Figure 1.1: An example of a feasible solution of a multi-depot routing problem

C = {3, 4, 5, 6} are represented as circles. From depot 1 there is a vehicle that departs and
services client 3, then client 5 and then client 6, and returns to the depot 1. From depot 2 there
is another vehicle that services only client 4 before coming back to the depot from where it
originally left.

In order to simplify the mathematical expressions we will be using the following notation:

• For any general one-index variable u, we write u(S) =
∑

i∈S ui;

• For any general two-index variable v in which both indexes are subscripts, we write
v(S) =

∑
i,j∈S vij and v(S1, S2) =

∑
i∈S1,j∈S2

vij;

• For any general two-index variable w with one subscript index and one superscript index,
we write wS2

S1
=

∑
i∈S1,j∈S2

wj
i ;

• For any general three-index variable z with two subscript indexes and one superscript
index, we write zk(S) =

∑
i,j∈S z

k
ij and zk(S1, S2) =

∑
i∈S1,j∈S2

zkij;

• In the expressions above, for any singleton set {i} we write i instead of {i};

• Finally, we define S ′ = C \ S for any client subset S ⊆ C.

1.3 A generic model

The multi-depot routing problem can be modeled as an integer linear programming problem.
Consider a set of binary variables xij = 1 if arc (i, j) ∈ A is used in any of the circuits, and
xij = 0 otherwise. We will start by presenting a model using the x variables in which some sets
of constraints are defined in a generic way.

Minimize
∑

(i,j)∈A

cijxij (1.1)

subject to:
∑
j∈C

xdj = 1 ∀d ∈ D (1.2)
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∑
j∈C

xjd = 1 ∀d ∈ D (1.3)

∑
j∈V

xij = 1 ∀i ∈ C (1.4)

∑
j∈V

xji = 1 ∀i ∈ C (1.5)

{(i, j) ∈ A : xij = 1} contains no circuit with zero depots (1.6)

{(i, j) ∈ A : xij = 1} contains no circuit with two or more depots (1.7)

xij ∈ {0, 1} ∀(i, j) ∈ A. (1.8)

The model represented by (1.1)–(1.8) is a valid generic integer linear programming model
for the multi-depot routing problem. Notice that the system of inequalities (1.2)–(1.5) and (1.8)
is the integer linear programming formulation of the assignment problem if we reintroduce the
arcs between depots with a sufficiently high cost (see, e.g., Wolsey 1998) and, for this reason,
we will from now on call it the assignment relaxation.

Constraints (1.2) and (1.4) ensure that any depot and client must have an outdegree of 1,
respectively, whereas (1.3) and (1.5) ensure that the indegree is also 1. The only way this can
be satisfied is if the arcs chosen to be used form a set of disjoint circuits, that is, any feasible
solution of the assignment relaxation defines a set of disjoint circuits on graph G. However,
a feasible solution for the assignment relaxation may not be a feasible solution for the multi-
depot routing problem. On the one hand, every client is part of exactly one circuit but, on the
other hand, it is not guaranteed that all circuits have exactly one depot. For this reason we need
additional sets of constraints. More precisely, constraints (1.6) ensure that circuits with zero
depots, or equivalently client-only circuits, cannot exist, while constraints (1.7) guarantee that
circuits with more than one depot cannot exist.

Constraints (1.6) are common to all routing problems and are usually called subtour elimi-
nation constraints. For this reason, they have been widely studied in the context of other routing
problems and they will not be the main focus of this dissertation. Obviously they are still funda-
mental in any formulation for themulti-depot routing problem and sowewill discuss an effective
way of modeling them in Section 2.2 and also refer to adequate related literature. Constraints
(1.7) are specific to the multi-depot routing setting and are called path elimination constraints.
In this case, they ensure that a path between two different depots does not exist and, thus, pre-
vent the existence of circuits with more than one depot. One of the main objectives of this part
of the dissertation is the study of such constraints, since in our opinion there are not enough
comparisons in the literature between different ways of modeling path elimination constraints
in the multi-depot routing problem setting.

In the next chapter we present a valid integer linear programming formulation, defined in the
space of the x variables and based on this generic model, for the multi-depot routing problem.
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2.1 Introduction

In this chapter we propose a new formulation for the multi-depot routing problem defined in
the space of the arc variables x. More precisely, we use the generic formulation presented in
Section 1.3 with the addition of sets of constraints in the space of the x variables to model the
generic subtour elimination constraints (1.6) and the generic path elimination constraints (1.7).

In Section 2.2 we discuss subtour elimination constraints in general and provide references
to adequate literature. Recall that subtour elimination constraints have been extensively stud-
ied in more traditional routing problems and so they are not the main focus of this part of the
dissertation. For the purpose of defining the new formulation we will present, in particular, an
effective set of subtour elimination constraints.

In Section 2.3 we define a compact system of inequalities which models path elimination
constraints based on a set of variables which assign arcs to specific circuits, and discuss some
of its properties. In particular, we show that this system of inequalities can be interpreted as a
network flow formulation in an adequate graph.

In Section 2.4 we present a new set of path elimination constraints defined in the space
of the x variables which will be used in the new formulation. These newly developed path
elimination constraints are multi-cut constraints which are related to the compact systems of
inequalities of Section 2.3. This relationship will allow us to derive a generalization of the
multi-cut constraints, as well as devise separation algorithms for the basic multi-cut constraints
and their generalizations.

In Section 2.5 we present a set of path elimination constraints from the literature and compare
them to the multi-cut constraints of Section 2.4. Then, in Section 2.6 we show how to adapt the
new formulation to related problems involving multiple depots and, finally, we finish in Section
2.7 with some concluding remarks.

2.2 Subtour elimination constraints

Subtour elimination constraints have been widely studied in the literature in the context of rout-
ing problems. There exist a number of recent surveys (see, e.g., Öncan, Altınel & Laporte 2009,
Godinho, Gouveia & Pesneau 2011, Roberti & Toth 2012) on subtour elimination constraints
for the (asymmetric) traveling salesman problem that can be straightforwardly adapted for elim-
inating client-only circuits in other related problems. These surveys also include comparisons
of compact and non-compact formulations in practice and in theory. Therefore, we will not
perform a comparative study of these subtour elimination constraints in the multi-depot routing
problem setting and, instead, we will use one of the most effective set of subtour elimination
constraints in general due to Dantzig, Fulkerson & Johnson (1954), adapted to the context of the
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multi-depot routing problem.

Consider a client set S ⊂ C. Any circuit spanning all nodes of S necessarily uses |S|
arcs between nodes of S, hence, the following subtour elimination constraints eliminate these
unfeasible client-only circuits by limiting the number of arcs that can be used in any set S in
these conditions:

x(S) ≤ |S| − 1 ∀S ⊂ C : 2 ≤ |S| ≤ |C| − |D|. (2.1)

Note that, due to the depot outdegree constraints (1.2) and the fact that there exist no arcs
between depots, an upper limit on |S| is given by |C| − |D|. By using the client indegree
constraints (1.5), constraints (2.1) can be equivalently written in the following cut form:

x(D ∪ S ′, S) ≥ 1 ∀S ⊂ C : 2 ≤ |S| ≤ |C| − |D|. (2.2)

This second representation is useful in order to derive a separation algorithm, which is fun-
damental since these constraints are in exponential number. In Section 3.3.1 we will present a
polynomial-time exact separation algorithm for the subtour elimination constraints (2.2) which
is based on max-flow/min-cut computations in an adequate graph and which is an adaptation of
known separation algorithms in the context of other routing problems.

2.3 Path elimination constraints based on arc-depot assign-
ment variables

In this section we show how to model path elimination constraints by using a set of arc-depot
assignment variables zdij = 1 if arc (i, j) ∈ A is used in the circuit of depot d ∈ D, and zdij = 0

otherwise. We start by presenting a compact system of inequalities in Section 2.3.1, which is
similar to ones used in other related problems (see, e.g., Albareda-Sambola, Díaz & Fernández
2005, Bektaş 2012, Fernández & Rodríguez-Pereira 2016, Hill & Voß 2016).

In Section 2.3.2 we show that this compact system of inequalities can be interpreted as a
network flow model in an adequate graph, which will be fundamental in Section 2.4 when we
relate this system of inequalities to a set of constraints in the space of the x variables. In Sec-
tion 2.3.3 we show how to strengthen the linear programming relaxation of the base compact
system of inequalities, and then further strengthen the resulting system of inequalities, by using
arguments based on the disjointness of the circuits.

Finally, in Section 2.3.4 we present a property of the systems of inequalities based on the
arc-depot assignment variables which is related to the linear programming relaxation value for
symmetric cost instances.

13
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2.3.1 A base model in the space of the x and the z variables

In this section we define a compact system of inequalities which models path elimination con-
straints by using the arc-depot assignment variables. First, notice that an arc with an endpoint
in a depot d ∈ D cannot be used in the circuit of another depot d′ ∈ D \ {d} or else we could
have a path between depots d and d′, hence, we define variables zdij , for any d ∈ D, only for
arcs (i, j) ∈ AC ∪Ad

O ∪Ad
I . Consider, then, the following system of inequalities, which we will

denote by 3I:∑
j∈C

zddj = 1 ∀d ∈ D (2.3)

∑
j∈C

zdjd = 1 ∀d ∈ D (2.4)

∑
j∈{d}∪C

zdji =
∑

j∈{d}∪C

zdij ∀d ∈ D, ∀i ∈ C (2.5)

zdij ≤ xij ∀d ∈ D, ∀(i, j) ∈ AC ∪ Ad
O ∪ Ad

I (2.6)

zdij ∈ {0, 1} ∀d ∈ D, ∀(i, j) ∈ AC ∪ Ad
O ∪ Ad

I . (2.7)

Constraints (2.3) and (2.4) state that for each depot d ∈ D there must be an arc outgoing
d and an arc ingoing d which is used in the circuit of depot d, respectively. Constraints (2.5)
ensure that the outdegree and the indegree of each client node is the same for every circuit. In
particular, if the indegree of a client i ∈ C in the circuit of a given depot d ∈ D is 1, then its
outdegree must also be 1. Otherwise, if the indegree of i in the circuit of depot d is 0, then its
outdegree must also be 0. Finally, constraints (2.6) link the z and the x variables by ensuring
that if an arc is used in a given circuit then the corresponding x variable for that arc must be
equal to 1. Conversely, if an arc is not used, then it cannot be used in any circuit. Intuitively,
the 3I system guarantees that there must exist a path starting at each depot d ∈ D and ending at
the same depot d, hence, it prevents the existence of unfeasible paths between depots. We will
look into this interpretation in more detail in Section 2.3.2.

To see that the 3I system models path elimination constraints, consider an unfeasible path
(d1, i1, i2, . . . , ik, d2) in which d1, d2 ∈ D, d1 ̸= d2 and i1, i2, . . . , ik ∈ C. From constraints
(2.3) we have that zd1d1i1 = 1, thus, from using constraints (2.5) in succession for each node
i1, . . . , ik, we get zd1ik−1ik

= 1. However, the arc outgoing client ik goes to depot d2 which is
impossible because variable zd1ikd2 does not exist.

Despite being a compact system of inequalities, the 3I system can be difficult to use in
practice for two reasons. Firstly, each arc between client nodes is replicated as many times as the
number of depots in order to create the arc-depot assignment variables and, thus, the number of
existing z variables can become significantly large as the number of depots increases. Secondly,
the number of linking constraints between the z and the x variables (2.6) is also significantly
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Figure 2.1: An example of the 3-layered graph

large since one constraint exists for each z variable. Regarding the second issue we will show
in Section 2.3.3 that we can strengthen this compact system of inequalities in a way that uses
considerably fewer linking constraints between the z and the x variables and define a system
of inequalities which provides an at least as good corresponding linear programming relaxation
value than the 3I system.

2.3.2 A network flow interpretation of the base model

In this section we give an important interpretation of the 3I system defined in Section 2.3.1 as a
network flowmodel. This interpretation is not necessary in order to use the 3I system in practice,
however, it is important in order to establish a relationship between the 3I system and a set of
constraints in the space of the x variables, as we will see in Section 2.4.

For the network flow model interpretation, we require a specific graph, which we denote by
3-layered graph. In this graph, the set of depotsD is replicated into setD, with each node d ∈ D

being the copy of the original depot d ∈ D. With respect to the arc set defined in the new graph,
the only difference is that arcs entering node d in the original graph now enter node d. To the
best of our knowledge, this 3-layered graph approach was first proposed by Albareda-Sambola
et al. (2005) and later explored by Bektaş (2012). Figure 2.1 shows an example of the 3-layered
graph for a multi-depot routing problem in which D = {1, 2} and C = {3, 4, 5, 6}.

The 3I system can be viewed as a network flow model in the 3-layered graph which guaran-
tees that 1 unit of flow is sent from each node d ∈ D to its copy d ∈ D, where the zdij variables
are re-interpreted as indicating whether or not arc (i, j) ∈ AC ∪ Ad

O ∪ Ad
I is used to send one

unit of flow from node d to its copy d. Alternatively, observe that the condition that 1 unit of
flow must be sent from each depot to its copy is equivalent to stating that a path must exist from
each depot to its copy. In addition, given the network flow (or path) model interpretation, the
integrality requirement on the z variables can be relaxed to zdij ≥ 0.

In the example of Figure 2.1, the 3I system ensures that one unit of flow is sent from node
1 to node 1 and from node 2 to node 2 in the 3-layered graph, or, alternatively, that two paths
must exist, one going from node 1 to node 1 and another from node 2 to node 2.
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2.3.3 Strengthening the base model

As we mentioned at the end of Section 2.3.1, the 3I system contains a large number of linking
constraints zdij ≤ xij (2.6). However, observe that any arc (i, j) ∈ AC can only be used in at most
one circuit in any feasible solution of the multi-depot routing problem given the requirement
that the circuits for each depot are disjoint. Consider then the following compact system of
inequalities which dominates the 3I system and which we denote by 3I+:∑

j∈C

zddj = 1 ∀d ∈ D (2.3)

∑
j∈C

zdjd = 1 ∀d ∈ D (2.4)

∑
j∈{d}∪C

zdji =
∑

j∈{d}∪C

zdij ∀d ∈ D, ∀i ∈ C (2.5)

∑
d∈D

zdij ≤ xij ∀(i, j) ∈ AC (2.8)

zdij ≤ xij ∀d ∈ D, ∀(i, j) ∈ Ad
O ∪ Ad

I (2.9)

zdij ∈ {0, 1} ∀d ∈ D, ∀(i, j) ∈ AC ∪ Ad
O ∪ Ad

I . (2.7)

The number of linking constraints between the z and the x variables (2.8)–(2.9) in the 3I+

system is substantially lower than the number of the linking constraints (2.6) of the 3I system,
since in the 3I system, as we mentioned before, there is one linking constraint for each z variable
and in the 3I+ system the linking constraints for arcs (i, j) ∈ AC are aggregated for all depots.
Therefore, the 3I+ system is preferable to use to model path elimination constraints than the
3I system for two reasons. Firstly, the number of variables is unchanged but the number of
constraints is reduced. Secondly, the linking constraints (2.8)–(2.9) imply the weaker linking
constraints (2.6), hence, the 3I+ system is stronger than the 3I system.

The discussion of Section 2.3.2 can also be applied to the 3I+ system, that is, this system
of inequalities can also be interpreted as a network flow model in the 3-layered graph with
additional constraints. More precisely, for each subsetD′ ⊆ D the 3I+ system ensures that |D′|
units of flow are sent from the depots inD′ to their copies in the 3-layered graph and that these
flows are disjoint. Equivalently, the 3I+ system guarantees that there exist |D′| disjoint paths
going from the depots inD′ to their copies. Given these interpretations, we can once again relax
the integrality requirement on the z variables to zdij ≥ 0.

Observe that we can further improve the 3I+ system by noticing that equality holds in both
of the linking constraints (2.8) and (2.9). In the case of the former, note that if an arc (i, j) ∈ AC

is used then it needs to be used in one and only one of the circuits. In the latter, if an arc
with an endpoint in a depot d ∈ D is used then it needs to be used in the circuit of the same
depot. Consequently, we can replace the linking constraints (2.8) and (2.9) by the following
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ones, respectively:∑
d∈D

zdij = xij ∀(i, j) ∈ AC (2.10)

zdij = xij ∀d ∈ D, ∀(i, j) ∈ Ad
O ∪ Ad

I . (2.11)

We denote by 3I++ the system of inequalities 3I+ in which we replace the linking constraints
(2.8)–(2.9) by constraints (2.10)–(2.11). When the objective function only depends on the x

variables, we can prove that the linear programming relaxation value is the same regardless of
whether we use equalities or inequalities in the linking constraints. We start by proving that the
linking constraints (2.9) and (2.11) are equivalent and then we show that the 3I+ and the 3I++

systems provide the same linear programming relaxation value.

Proposition 1. Consider a solution (x′, z′) that satisfies the depot degree constraints (1.2) and
(1.3) for the x variables and constraints (2.3) and (2.4) for the z variables. Then, (x′, z′) satisfies
the linking constraints (2.9) if and only if it satisfies the linking constraints (2.11).

Proof. Clearly if (x′, z′) satisfies constraints (2.11), then it also satisfies constraints (2.9). Con-
versely, consider a constraint (2.9) associated with a depot d ∈ D and suppose that there ex-
ists a client j ∈ C such that, for the arc (d, j) ∈ Ad

O, we have zddj < xdj . Then, we obtain
1 =

∑
i∈C zddi <

∑
i∈C xdi = 1, where the first equality is given by constraints (2.3) and the

second equality is given by the depot outdegree constraints (1.2), which is a contradiction. For
the arcs of Ad

I , we can use a similar reasoning.

Proposition 2. Consider two models, model A comprised of the assignment relaxation con-
straints (1.2)–(1.5), the domain constraints for the x variables (1.8) and the constraints of the
3I+ system, and model B comprised of the assignment relaxation constraints (1.2)–(1.5), the
domain constraints for the x variables (1.8) and the constraints of the 3I++ system. Given an
objective function which only depends on the x variables, both models provide the same linear
programming relaxation value.

Proof. The idea of this proof is to show that we can construct a solution of the linear program-
ming relaxation of model B based on a solution of the linear programming relaxation of model
A where the part on the x variables is the same and, thus, the difference is only on the part on
the z variables. For this reason, both solutions will have the same cost since we assume that the
objective function only depends on the x variables.

Let (x′, z′) be a solution of the linear programming relaxation of model A and, for all arcs
(i, j) ∈ AC , define ϵij = x′

ij −
∑

d∈D z
′d
ij . We start by proving that ϵ(i, C) = ϵ(C, i) for any

i ∈ C. First notice that from the client outdegree constraints (1.4) we have that:

x′(i, C) = x′(C, i) + x′(D, i)− x′(i,D).
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Additionally, from the flow conservation constraints (2.5) and given that (x′, z′) is in the
conditions of Proposition 1, we can derive:∑

d∈D

z
′d(i, C) =

∑
d∈D

z
′d(C, i) +

∑
d∈D

z
′d
di −

∑
d∈D

z
′d
id =

∑
d∈D

z
′d(C, i) + x′(D, i)− x′(i,D).

Thus, by combining the two above equalities, we obtain:

ϵ(i, C) = x′(i, C)−
∑
d∈D

z
′d(i, C) = x′(C, i)−

∑
d∈D

z
′d(C, i) = ϵ(C, i).

Consider now an arbitrary depot k ∈ D and a new solution (x′, z′′) where z′′d
ij = z

′d
ij for all

d ∈ D \ {k} and for all (i, j) ∈ AC ∪ Ad
O ∪ Ad

I , where z
′′k
ij = z

′k
ij + ϵij for all (i, j) ∈ AC ,

and where z′′k
ij = z

′k
ij for all (i, j) ∈ Ad

O ∪ Ad
I . Observe that (x′, z′) and (x′, z′′) have the same

cost given an objective function which only depends on the x variables. In order to complete
the proof, we only need to show that (x′, z′′) is a feasible solution of the linear programming
relaxation of model B.

Clearly, (x′, z′′) satisfies the assignment relaxation constraints (1.2)–(1.5) by definition. Ad-
ditionally, and also by definition, (x′, z′′) satisfies constraints (2.3)–(2.4), the linking constraints
(2.11) and the flow conservation constraints (2.5) for all d ∈ D \ {k}. Observe also that, by
the definition of ϵ, the solution (x′, z′′) satisfies the linking constraints (2.10). Finally, in or-
der to complete the proof, we now need to verify that (x′, z′′) satisfies the flow conservation
constraints (2.5) for depot k.

Consider i ∈ C and observe that

z
′′k(k ∪ C, i) = z

′k(k ∪ C, i) + ϵ(C, i) = z
′k(i, k ∪ C) + ϵ(i, C) = z

′′k(i, k ∪ C),

which follows from the fact that z′ satisfies the flow conservation constraints (2.5) for depot
k and from the result proved above for ϵ. This completes the proof since we have shown that
(x′, z′′) is a solution of the linear programming relaxation of model B.

The advantage of using the 3I++ system over the 3I+ system is that if we consider the equal-
ity version of the linking constraints, namely constraints (2.10)–(2.11), we can eliminate the x
variables from the model and obtain a valid formulation for the multi-depot routing problem in-
volving only the z variables if we re-define them as binary variables by using constraints (2.7),
as in the four previous works by Albareda-Sambola et al. (2005), Bektaş (2012), Fernández &
Rodríguez-Pereira (2016) and Hill & Voß (2016). In addition, the 3I++ system may improve the
linear programming relaxation values if other cost functions are used, more specifically if the
cost functions are functions of the z variables, since Proposition 2 requires that the cost function
used only depends on the x variables.

We conclude by observing that neither the 3I+ system nor the 3I++ system is practical to use
to solve large instances of the multi-depot routing problem, even if they contain substantially
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less linking constraints than the 3I system. This is why the network flow interpretation, given
in Section 2.3.2 for the original 3I system and above for the 3I+ system and the 3I++ system, is
important. We will see in Section 2.4 that, by using the max-flow/min-cut theorem, we will be
able to prove an equivalence result between a set of exponentially-many multi-cut constraints
in the space of the x variables and the 3I system. This result will also indirectly provide a
polynomial-time separation algorithm for the multi-cut constraints and, additionally, we will be
able to derive from the 3I+ system a generalization of the multi-cut constraints.

2.3.4 A property of the systems of inequalities based on the z variables for
symmetric cost instances

In this section we present a property of the 3I++ system that is related to the value of the linear
programming relaxation of this system of inequalities for symmetric cost functions.

Proposition 3. Suppose that c is a symmetric cost function and consider a solution x∗ that sat-
isfies the depot degree constraints (1.2)–(1.3). Then, there exists a solution (x′, z′) that satisfies
(1.2)–(1.3) and all the constraints of the 3I++ system and has the same cost as x∗.

Proof. Let x′ be defined as follows:

x′
ij =

1

2
x∗
ij +

1

2
x∗
ji ∀(i, j) ∈ A. (2.12)

Clearly both x∗ and x′ have the same cost given that the costs are symmetric. Additionally,
we can easily notice that, for all d ∈ D, we have x′(d, C) = 1

2
x∗(d, C)+ 1

2
x∗(C, d) = 1

2
+ 1

2
= 1,

which means that x′ satisfies the depot outdegree constraints (1.2). By using a similar reasoning
we can also prove that x′ satisfies the depot indegree constraints (1.3).

We will now prove that a flow z′ exists such that (x′, z′) satisfies the several constraints of
the 3I++ system. Observe that for these proofs we will use the linking constraints between the
z and the x variables (2.10)–(2.11) of the 3I++ system.

Regarding the depot outdegree constraints (2.3) for the z variables, consider d ∈ D and no-
tice that z′d(d, C) = x′(d, C) = 1, since we already proved that x′ satisfies the depot outdegree
constraints (1.2). Equivalently, we can use the same reasoning for the depot indegree constraints
(2.4) for the z variables, given that x′ satisfies the depot indegree constraints (1.3).

With respect to the flow conservation constraints (2.5), suppose that, for some d ∈ D and
i ∈ C, we have z′d(d∪C, i) < z

′d(i, d∪C). By adding
∑

k∈D:k ̸=d z
′k(k ∪C, i) to both sides of

this inequality we obtain:∑
k∈D:k ̸=d

z
′k(k ∪ C, i) + z

′d(d ∪ C, i) < z
′d(i, d ∪ C) +

∑
k∈D:k ̸=d

z
′k(k ∪ C, i).
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By using the linking constraints (2.10)–(2.11) of the 3I++ system we can write the above
inequality as

x(V, i) < z
′d(i, d ∪ C) +

∑
k∈D:k ̸=d

z
′k(k ∪ C, i) ≤ x(i, d ∪ C) + x(D \ {d} ∪ C, i).

Finally, notice that from the definition of x′ (2.12), we have x′(i, d ∪ C) = x′(d ∪ C, i)

and, thus, the above inequality can be written as x(V, i) < x(V, i) which is a contradiction.
Therefore, z′d(d ∪ C, i) ≥ z

′d(i, d ∪ C). By applying a similar reasoning we can prove that
z
′d(d ∪ C, i) ≤ z

′d(i, d ∪ C), which completes the proof.

The implications of this result are mainly of practical concern. For symmetric cost instances,
this result states that if we consider an incomplete model in the space of the x variables for the
multi-depot routing problemwhich does not have any set of path elimination constraints then, by
using the 3I++ system to model path elimination constraints, the linear programming relaxation
value is the same as the one of the incomplete model. Observe that this result is interesting also
because it applies to any set of path elimination constraints which is implied by the 3I++ system,
as for example the 3I and the 3I+ systems and other sets of constraints which will be presented
throughout this part of the dissertation.

2.4 A new set of path elimination constraints in the space of
the x variables

In this section we present the multi-cut constraints, which are a newly developed set of path
elimination constraints in the space of the x variables. The multi-cut constraints are one of the
most important contributions of this dissertation.

We present their basic version in Section 2.4.1. Then, in Section 2.4.2 we show that these
new constraints are related to the arc-depot assignment variable based systems of inequalities of
Section 2.3, namely through the max-flow/min-cut theorem. This relationship will then allow
us to derive a generalization of the multi-cut constraints in Section 2.4.3.

2.4.1 The multi-cut constraints

We start this section by presenting a new set of path elimination constraints defined in the space
of the x variables.

Proposition 4. The following multi-cut constraints are valid for the multi-depot routing problem
and eliminate circuits with two or more depots:

x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 ∀d ∈ D, ∀S ⊂ C. (2.13)
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Proof. Consider a depot d ∈ D and a client subset S ⊂ C. To see that these constraints are
valid, suppose that x(S ′, d), x(S ′, S) and x(d, S) are all 0. In any feasible solution of the multi-
depot routing problem there must exist an arc outgoing d and another arc ingoing d. Therefore,
since x(d, S) = 0 and x(S ′, d) = 0, then x(d, S ′) = 1 and x(S, d) = 1, respectively. But then,
since x(S ′, S) = 0 there is no way of closing the circuit. To see why circuits with two or more
depots are eliminated consider, without loss of generality, that a circuit contains two depots, d1
and d2 from D, and define S ′ as the set of client nodes which are in the path between depot d1
and depot d2. Thus, x(S ′, d1) = x(d1, S) = x(S ′, S) = 0 and so constraint (2.13) for depot d1
is violated.

We refer to constraints (2.13) as the 1-MCC inequalities. The above result shows that these
constraints model the generic path elimination constraints (1.7), however, they are in exponential
number and so they require a separation algorithm to be used effectively in practice. In Section
3.3.2 wewill show that they can be separated in an exact way and in polynomial time by resorting
to max-flow/min-cut computations in an adequate graph.

In order to derive the separation algorithm for the 1-MCC inequalities (2.13) we will see in
the next section that these constraints are related to the 3I system presented in Section 2.3.1, for
which the interpretation of the 3I system as a network flow model discussed in Section 2.3.2
will be very important.

2.4.2 Establishing a relationship between the multi-cut constraints and
the systems of inequalities based on the z variables

In this section we show that the 1-MCC inequalities x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 (2.13)
presented in the previous section are equivalent to the 3I system proposed in Section 2.3.1 in
terms of their corresponding linear programming relaxation. Recall that in Section 2.3.2 we
showed that the 3I system could be interpreted as a network flow system in a special 3-layered
graph. In particular, we observed that the 3I system can be seen as guaranteeing that 1 unit of
flow is sent from each depot to its copy in the 3-layered graph. Following this, we can relate the
1-MCC inequalities (2.13) to the 3I system as follows.

Proposition 5. The projection of the linear programming relaxation of the 3I system, comprised
of constraints (2.3)–(2.7), onto the space of the x variables is given by the 1-MCC inequali-
ties (2.13) and xij ≥ 0, ∀(i, j) ∈ A.

Proof. This follows from the max-flow/min-cut theorem. Given the interpretation of the 3I
system in the 3-layered graph, we redefine variables zdid and xid as zdid and xid, respectively,
where d is the copy of node d ∈ D in the 3-layered graph. The max-flow/min-cut theorem
indicates that, for each depot d, 1 unit of flow is sent from d to its copy d, with arc capacities
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given by the values of the x variables, if and only if every cut separating d from d has capacity
at least 1. This last constraint is x(d ∪ S ′, d ∪ S) ≥ 1 for any S ⊂ C. Redefining the variables
xid into xid, we obtain the multi-cut constraints (2.13).

The importance of this result is two-fold. Firstly, it shows that in theory the 1-MCC inequal-
ities (2.13) must provide the same linear programming relaxation value as the 3I system, and
in particular the result of Proposition 3, which discussed the value of the linear programming
relaxation for symmetric instances, also applies to the 1-MCC inequalities (2.13). Secondly, the
fact that the proof of Proposition 5 is based on the max-flow/min-cut theorem indicates that we
can devise a polynomial-time separation algorithm for the 1-MCC inequalities (2.13) based on
max-flow/min-cut computations. This algorithm will be presented in Section 3.3.2.

In Section 2.3.3 we showed that the 3I system could be strengthened. More precisely, we
defined the 3I+ system which dominates the 3I system and which has fewer linking constraints
between the z and the x variables as the 3I system. Given the result of Proposition 5, it would
be interesting to see which inequalities we can derive in the space of the x variables by using
the 3I+ system. This will be topic of the next section.

2.4.3 A generalization of the multi-cut constraints

In this section we present a generalization of the new multi-cut constraints, namely the 1-MCC
inequalities x(S ′, d)+x(S ′, S)+x(d, S) ≥ 1 (2.13). In addition, we show that these generalized
multi-cut constraints can be related to the 3I+ system presented in Section 2.3.3, in a similar way
as the 1-MCC inequalities (2.13) are related to the 3I system of Section 2.3.1.

Notice that the 1-MCC inequalities (2.13) are defined for each depot d ∈ D. A generalization
of these constraints can be obtained by using depot subsets with more than one depot in the
multi-cut. More precisely, consider the following constraints:

x(S ′, D′) + x(S ′, S) + x(D′, S) ≥ |D′| ∀D′ ⊆ D, ∀S ⊂ C. (2.14)

We denote the constraints above for sets D′, where |D′| = k, by k-MCC inequalities.
Clearly, if k = 1 we obtain the 1-MCC inequalities (2.13) as a special case. The result that
follows shows that the k-MCC inequalities (2.14) can be derived from the 3I+ system while
also providing a proof of their validity.

Proposition 6. The projection of the linear programming relaxation of the 3I+ system, com-
prised of constraints (2.3)–(2.5), (2.8)–(2.9) and (2.7), onto the space of the x variables is in-
cluded in the polyhedron defined by the k-MCC inequalities (2.14) and xij ≥ 0, ∀(i, j) ∈ A.

Proof. The proof follows from the max-flow/min-cut theorem and also from the fact that we can
view the 3I+ system in the 3-layered graph, as we observed in Section 2.3.3. Variables zdid and
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xid are redefined as zdid and xid, respectively, as in the proof of Proposition 5. For each subset
D′ ⊆ D, the max-flow/min-cut theorem indicates that |D′| units of flow are sent fromD′ to the
subset of the copies of the depots in D′, say D′, if and only if every cut separating D′ from D′

has capacity at least |D′|. This last constraint is expressed as x(D′ ∪ S ′, D′ ∪ S) ≥ |D′| for any
S ⊂ C. Redefining the variables xid into xid, we obtain the k-MCC inequalities (2.14).

Note that in this case it is not obvious whether or not we have a strict inclusion in the above
result, since the linking constraints

∑
d∈D zdij ≤ xij (2.8) for arcs inAC aggregate multiple flows

simultaneously. Therefore, in theory, we can only ensure that the k-MCC inequalities (2.14)
provide a linear programming relaxation value which is at most the one of the 3I+ system. In
addition, note that the result of Proposition 3, regarding the linear programming relaxation value
for symmetric instances, also applies to the k-MCC inequalities.

The proof of Proposition 6 indicates that it is also possible to devise a separation algorithm
for the k-MCC inequalities (2.14) based on max-flow/min-cut computations. We will present an
exact separation algorithm in Section 3.3.3 which, however, is not a polynomial-time algorithm
and, thus, the use of the k-MCC inequalities (2.14) is not as straightforward as the 1-MCC
inequalities (2.13). Nevertheless, we will also present in Section 3.3.3 a heuristic separation
algorithm for the k-MCC inequalities (2.14) which we will show to be very effective in practice.

Next we prove a result which has implications on the reduction of the computational effort
needed to separate the k-MCC inequalities (2.14).

Proposition 7. In the presence of the assignment constraints (1.2)–(1.5) and non-negativity
constraints xij ≥ 0, ∀(i, j) ∈ A, every |D|-MCC inequality (2.14) is redundant and for each
subset S1 ⊂ C and each subset D1 ⊂ D, with |D1| = k, the corresponding k-MCC inequality
(2.14) is equivalent to the (|D| − k)-MCC inequality (2.14) written for S2 = C \ S1 and for
D2 = D \D1.

Proof. We start by showing that the assignment constraints (1.2)–(1.5) imply the following
equality:

x(C \ S1, D1) + x(C \ S1, S1) + x(D1, S1) + |D \D1| =

= |D1|+ x(S1, D \D1) + x(S1, C \ S1) + x(D \D1, C \ S1) ∀D1 ⊆ D, ∀S1 ⊂ C. (2.15)

To see why, let S2 = C \ S1 and D2 = D \D1. The proof is based on four valid equalities
that are obtained by adding the assignment constraints (1.2)–(1.5) for adequate subsets and then
combining the resulting equalities.

(i) by adding the depot outdegree constraints (1.2) for d ∈ D1 and partitioning C into S1 and
S2, we obtain x(D1, S1) + x(D1, S2) = |D1|;
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(ii) similarly, by adding the depot indegree constraints (1.3) for d ∈ D2 and partitioning C

into S1 and S2, we obtain x(S2, D2) + x(S1, D2) = |D2|;

(iii) by adding the client outdegree constraints (1.4) for i ∈ S2 and partitioning V intoD1,D2,
S1 and S2, we obtain x(S2, D1) + x(S2, D2) + x(S2, S1) + x(S2) = |S2|;

(iv) similarly, by adding the client indegree constraints (1.5) for i ∈ S2 and partitioning V into
D1, D2, S1 and S2, we obtain x(D1, S2) + x(D2, S2) + x(S1, S2) + x(S2) = |S2|.

Observe that by combining the two equalities under (iii) and (iv) we obtain the equality
x(S2, D1) + x(S2, D2) + x(S2, S1) = x(D1, S2) + x(D2, S2) + x(S1, S2). In this last equality
we now use the first two equalities under (i) and (ii) and replace x(S2, D2) by |D2| − x(S1, D2)

and x(D1, S2) by |D1| − x(D1, S1) to obtain (2.15) for the sets D1 and S1.

We can now prove the two statements of the main result. The first statement is a direct
consequence of the equality (2.15) written for D1 = D and the fact that x(S1, C \ S1) ≥ 0 for
any S1 ⊂ C. From equality (2.15) we also obtain that ∀D1 ⊂ D, ∀S1 ⊂ C,

x(S2, D1) + x(S2, S1) + x(D1, S1) ≥ |D1|

if and only if

x(S1, D2) + x(S1, S2) + x(D2, S2) ≥ |D2|,

where D2 = D \D1 and S2 = C \ S1.

Proposition 7 indicates that, in practice, it suffices to separate only half of the k-MCC in-
equalities (2.14), as those that are not separatedwill be implied by the ones that are. For example,
for an instance with six depots, we only need to search for violated 1-MCC, 2-MCC and half of
the 3-MCC inequalities. This is relevant for any exact separation algorithm for these constraints,
however, this reduction still does not change the complexity of the exact separation algorithm
that we will present in Section 3.3.3.

Finally, we observe that by using the depot indegree constraints (1.3) and the client indegree
constraints (1.5), the k-MCC inequalities (2.14) can be rewritten as follows:

x(D′, S) + x(S) + x(S,D \D′) ≤ |S| ∀D′ ⊂ D, ∀S ⊂ C. (2.16)

This second form of writing the k-MCC inequalities (2.14) is interesting in order to more eas-
ily compare them to other path elimination constraints, such as the ones which will be presented
in the next section.
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2.5 Path elimination constraints from the literature

The discussion about path elimination constraints in the literature regarding problems which
involve multiple depots is not extensive, as we have mentioned. In most recent works (see,
e.g., Belenguer et al. 2011, Benavent & Martínez-Sykora 2013, Sundar & Rathinam 2017), the
path elimination constraints used are mostly adaptations (and generalizations) of the so-called
chain-barring constraints proposed earlier by Laporte et al. (1986). In order to use the chain-
barring constraints in this dissertation they need to be adapted, since previous studies describe
formulations on undirected graphs whereas this study is based on directed graphs.

In Section 2.5.1 we present the adaptation of the chain-barring constraints for directed graphs
that we will use and then, in Section 2.5.2, we compare them to the multi-cut constraints pre-
sented in Section 2.4.

2.5.1 An adaptation of the chain-barring constraints

In this section we show how to adapt the chain-barring constraints, originally proposed by La-
porte et al. (1986) for a location-routing problem, to the context of the multi-depot routing prob-
lem and, in particular, to models based on directed graphs. For that we will be using the path
elimination constraints of Benavent & Martínez-Sykora (2013) as a reference point.

Previous studies model path elimination constraints in undirected graphs by using binary
variables which indicate whether an edge of the graph is used or not. In particular, Benavent &
Martínez-Sykora (2013) use a variable uij , defined as binary for every pair i, j ∈ C, i ̸= j to
indicate whether or not the edge {i, j} between clients i and j is used in the solution, and defined
as {0,1,2} for every pair (d, i), where d ∈ D and i ∈ C, indicating, respectively, whether the
edge linking depot d and client i is not used or if it is used once or twice, with the latter case
forming a two-node cycle, that is, a cycle with a depot and a client. The edge variables used
by Benavent & Martínez-Sykora (2013) can be related to the directed variables xij through
the equalities uij = xij + xji for every edge {i, j}. Observe that any model which satisfies the
generic subtour elimination constraints (1.6) satisfies, in particular, the inequalities xij+xji ≤ 1

for i, j ∈ C, i ̸= j, and thus the inequality uij ≤ 1 is satisfied. This relationship allows us
to write the path elimination constraints described by Benavent & Martínez-Sykora (2013) by
using the arc variables x as follows:

x(D′, i) + x(i,D′)+2x(S) + x(j,D \D′) + x(D \D′, j) ≤ 2|S| − 1

∀D′ ⊂ D, ∀S ⊂ C : 3 ≤ |S| ≤ |C| − |D|, ∀i, j ∈ S, i ̸= j. (2.17)

The inequalities above, under the relationship between the undirected variables u and the di-
rected variables x, correspond to the directed version of the path elimination constraints used by
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Benavent & Martínez-Sykora (2013). However, these only eliminate paths between two differ-
ent depots as long as the path has at least three client nodes, and so they must be complemented
with additional sets of constraints for the other cases. Before we discuss that, and for complete-
ness, we provide a proof of their validity and of the fact that they are path elimination constraints
for the case in which the unfeasible path has at least three client nodes, both of which follow
from arguments similar to the ones given by Benavent & Martínez-Sykora (2013).

Proposition 8. Constraints (2.17) are valid for the multi-depot routing problem and eliminate
paths with at least three client nodes between two different depots.

Proof. We start by showing that they are valid. Consider a client subset with at least three nodes
S ⊂ C, two nodes i, j ∈ S, i ̸= j andD′ ⊂ D. Recall that x(S) ≤ |S| − 1 since no client-only
circuits can exist.

First we prove that if x(S) < |S| − 1, then constraints (2.17) are redundant. Clearly, if
x(S) < |S| − 2 the constraints are redundant. Consider then that x(S) = |S| − 2 and suppose
that x(D′, i) = x(i,D′) = x(j,D \ D′) = x(D \ D′, j) = 1. Then, because of the client
degree constraints (1.4)–(1.5), neither i nor j are connected to nodes of S, hence, we can derive
x(S) = x(S \ {i, j}) ≤ |S| − 3, which is a contradiction. This means that the inequality
x(D′, i) + x(i,D′) + x(j,D \ D′) + x(D \ D′, j) ≤ 3 must hold and, thus, constraints (2.17)
are redundant. Therefore, the only case of interest is when x(S) = |S| − 1.

Suppose now that x(S) = |S|− 1. This means that there is a path in S which links all nodes
of S, including i and j. Then, in order not to have any unfeasible paths between depots, either i
is linked to a depot inD′ or j is linked to a depot inD \D′ and so constraints (2.17) which read

x(D′, i) + x(i,D′) + x(j,D \D′) + x(D \D′, j) ≤ 1

are valid.
To see why paths with at least three client nodes between two different depots are eliminated

consider, without loss of generality, a path with at least three client nodes between two depots
d1 ∈ D′ and d2 ∈ D \ D′ from D, define S as the set of client nodes which are in the path,
and suppose that i ∈ S is linked to d1 and j ∈ S is linked to d2. Thus, x(S) = |S| − 1 and
x(D′, i) + x(i,D′) + x(j,D \D′) + x(D \D′, j) = 2 and so there is a constraint (2.17) for this
set S such that d1 ∈ D′ and d2 ∈ D \D′ which is violated.

Constraints (2.17) are not valid when |S| = 2 since the right-hand side is equal to 3 and it
is feasible that both i and j are part of a two-node circuit. That is, circuits of the type (d1, i, j,
d2, p, q, d1), in which d1 and d2 are depots and i, j, p and q are clients, need to be eliminated
by considering a different set of constraints. To eliminate such circuits, we can use the follow-
ing constraints, which are the directed version of similar constraints described by Benavent &
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Martínez-Sykora (2013):

x(D′, i) + x(i,D′) + 3xij + 3xji + x(j,D \D′) + x(D \D′, j) ≤ 4

∀D′ ⊂ D, ∀i, j ∈ C, i ̸= j. (2.18)

Once again, for completeness, we prove their validity and the fact they eliminate paths with
exactly two client nodes between different depots.

Proposition 9. Constraints (2.18) are valid for the multi-depot routing problem and eliminate
paths with exactly two client nodes between two different depots.

Proof. The validity of these constraints follows from similar arguments to the ones used in the
proof of Proposition 8. Consider D′ ⊂ D and i, j ∈ C, i ̸= j. Note that xij + xji ≤ 1 in any
feasible solution and that constraints (2.18) are only of interest when xij +xji = 1. In this case,
i and j are linked, hence, either i is linked to a depot in D′ or j is linked to a depot in D \ D′

and so constraints (2.18), which read x(D′, i)+ x(i,D′)+ x(j,D \D′)+ x(D \D′, j) ≤ 1, are
valid.

To see why paths with exactly two client nodes between two different depots are eliminated
consider a path (d1, i, j, d2), where d1, d2 ∈ D, d1 ̸= d2 and i, j ∈ C. Then, xd1i = xjd2 = 1

and 3xij = 3, thus a constraint (2.18) for nodes i and j and a depot subsetD′ such that d1 ∈ D′

and d2 ∈ D \D′ is violated.

Both sets of constraints (2.17) and (2.18) are in exponential number, however, we will
present a polynomial-time separation algorithm in Section 3.3.4 based on a separation algorithm
proposed by Belenguer et al. (2011) which resorts to max-flow/min-cut computations. This al-
gorithm is not an exact separation algorithm, as will be explained in Section 3.3.4, however, it
is very effective in practice.

2.5.2 A comparison to the multi-cut constraints

Since the k-MCC inequalities x(S ′, D′) + x(S ′, S) + x(D′, S) ≥ |D′| (2.14) presented in Sec-
tion 2.4.3 and the directed chain-barring constraints (2.17)–(2.18) are both path elimination con-
straints defined in the space of the x variables, it is interesting to compare one set to the other.

To establish a theoretical connection, we start by writing the k-MCC inequalities (2.14) in
their second form (2.16), which we presented at the end of Section 2.4.3, and which we recall is
as follows:

x(D′, S) + x(S) + x(S,D \D′) ≤ |S| ∀D′ ⊂ D, ∀S ⊂ C. (2.16)

Consider, now, the following weaker version of (2.16)

x(D′, i) + x(S) + x(j,D \D′) ≤ |S| ∀D′ ⊂ D, ∀S ⊂ C, ∀i, j ∈ S, i ̸= j, (2.19)
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and add up a constraint (2.19) written for setsD′ and S with the same constraint written for sets
D \D′ and the same set S, where i and j are swapped. This operation results in the following
constraint:

x(D′, i) + x(i,D′) + 2x(S) + x(j,D \D′)+x(D \D′, j) ≤ 2|S|

∀D′ ⊂ D, ∀S ⊂ C, ∀i, j ∈ S, i ̸= j. (2.20)

Clearly these constraints are redundant since they are obtained by adding two valid inequali-
ties. In fact, we can easily observe that, from an integer point of view, they do not even eliminate
unfeasible paths between two different depots. However, if |S| ≥ 3 we can reduce the right-
hand side of constraint (2.20) to 2|S| − 1 and obtain exactly the set of constraints (2.17) which
are the directed chain-barring constraints for |S| ≥ 3.

Observe that in the previous section we showed that the directed chain-barring constraints
(2.17)–(2.18) eliminate paths between two different depots provided that the path has at least two
client nodes. However, circuits of the type σ = (d1, i1, d2, i2, …, dm−1, im−1, dm, im, d1), where
d1, . . . , dm ∈ D and i1, . . . , im ∈ C, for m ≥ 2, that is, unfeasible circuits which alternate
between a depot and a client, are not eliminated by these constraints. As has been shown by
Laporte et al. (1986), circuits of the type σ are never optimal if we consider symmetric costs,
since there always exists a feasible solution that is cheaper or at most as costly. Here we provide
a similar proof for the case of directed graphs.

Proposition 10. If c is a symmetric cost function, then there exists a set of circuits which cost
at most the same as an unfeasible circuit σ = (d1, i1, d2, i2, …, dm−1, im−1, dm, im, d1), where
d1, . . . , dm ∈ D and i1, . . . , im ∈ C, form ≥ 2.

Proof. Consider a set of circuits σ1 which is comprised of m single-client return trips of the
form (dj , ij , dj) for j ∈ {1, . . . ,m}. Consider another set of circuits σ2, also comprised of m
return trips, but now in the form (dj , ij−1, dj) for j ∈ {2, . . . ,m} and (d1, im, d1). We claim that
the cheapest of these two sets of circuits σ1 and σ2 is cheaper than the unfeasible circuit σ. Let
c be the cost of circuit σ, and c1, c2 be the costs of the sets of circuits σ1 and σ2, respectively.
Since costs are symmetric, then 2c = c1 + c2. Suppose, without loss of generality, that c1 ≤ c2.
Then 2c ≥ 2c1, hence c ≥ c1.

Since in most of the literature that uses constraints similar to the chain-barring constraints
it is assumed that costs are symmetric, these depot-client alternating circuits did not arise. For
asymmetric instances the result of Proposition 10 does not hold, hence, we need to use another
set of constraints to eliminate these unfeasible circuits. This is in fact guaranteed by the 1-MCC
inequalities (2.13) for |S| = 1, which, for clarity, we write as:

xdi + x(i,D \ d) ≤ 1 ∀d ∈ D, ∀i ∈ C. (2.21)
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We conclude this section by observing that we will be performing some computational tests
to compare the multi-cut constraints to the directed chain-barring constraints. In particular, we
will see that the linear programming relaxation values are significantly different depending on
whether the instance is a symmetric cost instance or an asymmetric cost instance. In fact, the
result of Proposition 3, which we recall stated a property of the arc-depot assignment variable
based systems of inequalities of Section 2.3 for symmetric instances, does not hold for the di-
rected chain-barring constraints. However, for asymmetric instances the multi-cut constraints
provide considerably higher linear programming relaxation values.

2.6 Problem variants

In this section we show how to adapt the generalized multi-cut constraints, namely the k-MCC
inequalities x(S ′, D′) + x(S ′, S) + x(D′, S) ≥ |D′| (2.14), to variants of multi-depot routing
problems which may be of interest in other studies and that require path elimination constraints.

In the multi-depot routing problem all depots are necessarily used, however, a case of interest
could be the case in which D is considered a set of potential depot locations and additional
decisions have to be taken as to whether each depot d ∈ D should be used or not. This variant
is a simplification of the well-known location-routing problem (see, e.g., Laporte et al. 1986,
1988, Belenguer et al. 2011, Albareda-Sambola 2015), where there is often a fixed cost of using
a depot and, for that reason, choosing which depots to use is an important decision.

Observe that in this problem variant a depot does not necessarily need to have any incident
arcs. Therefore, we need to modify the depot degree constraints (1.2)–(1.3) to, respectively,∑

j∈C

xdj = yd ∀d ∈ D (2.22)

∑
j∈C

xjd = yd ∀d ∈ D, (2.23)

where y is an additional binary variable such that yd = 1 if depot d ∈ D is used, and yd = 0

otherwise. These new depot degree constraints state that the outdegree and the indegree of a
depot d ∈ D are 1 if d is used or, equivalently, if yd = 1, whereas if d is not used, that is, if
yd = 0, then the outdegree and the indegree of d must be 0.

Clearly, path elimination constraints are still required to prevent unfeasible paths between
depots which are used. For this purpose we can use an adaptation of the k-MCC inequalities
(2.14) as follows:

x(S ′, D′) + x(S ′, S) + x(D′, S) ≥ y(D′) ∀D′ ⊆ D, ∀S ⊂ C. (2.24)

An easy way to see that the adaptation of the k-MCC inequalities (2.24) are a valid set of
path elimination constraints is by using the new depot indegree constraints (2.23) and the client
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indegree constraints (1.5) and rewrite them as

x(D′, S) + x(S) + x(S,D \D′) ≤ |S| ∀D′ ⊂ D, ∀S ⊂ C, (2.16)

which are the alternative form of the original k-MCC inequalities (2.14) presented in Section
2.4.3 and which are mathematically expressed in the same way in this problem variant.

The cut form of the adapted k-MCC inequalities (2.24) shows that the separation algorithm
for these constraints is essentially the same as the one which we will present in Section 3.3.3
for the original k-MCC inequalities (2.14). In fact, we can prove similar results to the ones of
Propositions 5 and 6, which we recall relate the original k-MCC inequalities (2.14) to arc-depot
assignment variable based systems of inequalities. The proof of these similar results only differs
in the fact that, in the 3-layered graph, the flow sent from a given depot d ∈ D to its copy equals
yd instead of 1.

Another case which may be of interest in other studies is the case in which there are multiple
vehicles at a given depot, for example due to vehicles having limited capacities. The adaptation
in this case is simple given the previous discussion. More precisely, by changing the y variables
from binary variables to general integer variables yd ∈ {0, . . . , kd}, where kd is the number of
vehicles available at depot d ∈ D, we can simply use the depot degree constraints (2.22)–(2.23)
and the adaptation of the k-MCC inequalities (2.24) above.

2.7 Concluding remarks

In this chapter we proposed a new formulation in the space of the arc variables x for the multi-
depot routing problem. More precisely, we used the generic formulation of Chapter 1 defined
by the assignment constraints (1.2)–(1.5) and the domain constraints for the x variables (1.8)
to which we added a set of subtour elimination constraints and a set of path elimination con-
straints. The subtour elimination constraints are a straightforward adaptation of constraints de-
scribed in the literature, whereas the path elimination constraints, namely the 1-MCC inequali-
ties x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 (2.13), are a newly developed set of constraints and are
one of the most important contributions of this dissertation.

We also presented a network flow formulation, based on earlier formulations described in
the literature, which is defined on a 3-layered graph. This 3-layered graph is obtained from
the original graph by introducing a copy of each depot and replacing the arcs from the clients
to the original depots by arcs from the clients to their copies. The network flow formulation
ensures that, in the 3-layered graph, one unit of flow is sent from each depot to its copy, thus
guaranteeing that unfeasible paths between two depots do not exist. In this chapter we were able
to prove that the 1-MCC inequalities (2.13) correspond to the projection onto to the space of the
x variables of this network flow formulation. The importance of this result is two-fold. Firstly,
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the linear programming relaxation value of the network flow formulation is equal to the linear
programming relaxation value of the formulation defined by the 1-MCC inequalities (2.13) (and
non-negativity constraints) and, secondly, given that the proof of this relationship is based on
the max-flow/min-cut theorem, we will be able to devise a polynomial-time exact separation
algorithm for the new path elimination constraints.

Additionally, we strengthened the network flow formulation by using arguments based on
the disjointness of the circuits for which the projection onto the space of the x variables resulted
in a generalization of the 1-MCC inequalities (2.13). We also theoretically compared the new
multi-cut constraints to a set of path elimination constraints which are used in the majority of
the recent literature for related problems.

In Chapter 3 we will present a branch-and-cut algorithm based on the new formulation de-
scribed in this chapter, which will allow us to assess the effectiveness of the new multi-cut
constraints in practice.
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3.1 Introduction

In this chapter we present a branch-and-cut algorithm for the multi-depot routing problem, based
on the sets of constraints in the space of the x variables presented in Chapter 2, that we will
computationally evaluate by using a number of test instances. The branch-and-cut algorithm
(Padberg & Rinaldi 1987, 1991) is an important combinatorial optimization tool used to solve
integer linear programming problems, which combines the branch-and-bound algorithm with
cutting plane algorithms (see, e.g., Wolsey 1998, for an overview on the branch-and-bound and
the cutting plane algorithms).

The main idea of a regular branch-and-bound algorithm is as follows. Suppose that we want
to solve an integer linear programming problem in which we are minimizing a given objective
function. We start by solving the linear programming relaxation of a formulation for the integer
linear programming problem. If the solution of the linear programming relaxation is integer,
then it is the optimal solution of the integer linear programming problem and the algorithm
stops. Otherwise, we create a number of new problems derived from the original integer linear
programming problem by partitioning the solution space. For example, the most usual way of
doing this is by choosing a variable u with a fractional value u∗ and partitioning the solution
space in order to create two new problems such that in one we have u ≤ ⌊u∗⌋ and in the other
we have u ≥ ⌈u∗⌉. Each of these problems is then treated as a new integer linear programming
problem and the process is repeated. Each problem is called a node of the branch-and-bound
tree, with the original problem being the root node. In order for the branch-and-bound algorithm
to work adequately, we also need to use bounding techniques. Observe that any integer solution
found at a node of the branch-and-bound tree is a feasible solution of the original problem (it is
optimal if it is found at the root node), and its value is an upper bound for the optimal value. It
is imperative that we keep track of the best solution found so far, which is called the incumbent.
Since our goal is to find the optimal solution to the integer linear programming problem, we
know that we only need to look for integer solutions which have a lower value than our current
incumbent. If at a given node the linear programming relaxation value is above the value of the
incumbent, then we are sure that any potential new node that would be generated from that node
could never lead to an integer solution with a lower value than the current incumbent and, thus,
we can prune the node.

There are two main ways of improving the performance of a branch-and-bound algorithm,
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which is usually measured in terms of time taken to find the optimal solution and is intrinsically
associated with the number of branch-and-bound nodes solved. Firstly, it is very important
to produce good upper bounds, so that we can eliminate many potential subproblems that we
would otherwise have to solve. While solving the several nodes of the branch-and-bound tree,
the algorithm naturally produces upper bounds by finding new incumbents, however, we can also
find feasible solutions and, consequently, potentially new upper bounds, by resorting to heuristic
algorithms. Secondly, it is also extremely important that the formulation we use for the integer
linear programming problem produces linear programming relaxation values which are as close
to the optimal value as possible. This will allow the linear programming relaxation values at
each node of the branch-and-bound tree to be as high as possible and, thus, to more likely be
above the value of the incumbent and, consequently, for the node to be pruned. The branch-and-
cut algorithm operates on the latter. Essentially, we improve the linear programming relaxation
values at each node by using a cutting plane approach, that is, we generate valid inequalities for
the integer linear programming problem which are violated by the optimal solution of the linear
programming relaxation problem and then re-solve the linear programming relaxation problem
to obtain an improved lower bound. This process is repeated until no more violated inequalities
are found.

An important variant of the branch-and-cut algorithm occurs when the formulation we pro-
vide for the integer linear programming problem includes certain constraints which we do not
wish to add at the start of the process. One of the reasons for this may be because the number
of constraints is exponential in number. An important difference is that, whenever an integer
solution is found at a given node, we must ensure that it is actually feasible for the original
integer linear programming problem by checking if there are any violated constraints from the
set of constraints which we left out of the initial formulation. If a violated constraint is found,
we add it to the formulation so that any node which is solved from there on will not find that
unfeasible solution again. There is an important observation to be made regarding this variation
of the branch-and-cut algorithm. Since the formulation we are using is incomplete, it is expected
that the linear programming relaxation values it provides are too far from the optimal value and,
thus, it is extremely important that in the cutting plane phase we look for violated inequalities
from the sets which were left out of the formulation in addition to other sets of valid inequalities.

When a general framework for the branch-and-cut algorithm was first proposed by Pad-
berg & Rinaldi (1991), the processing power of contemporary computers was exponentially
lower than modern ones and dedicated software to solve optimization problems, the so-called
solvers, were still in their early stages. Nowadays, many modern solvers already have an effi-
cient branch-and-cut algorithm framework embedded which is constantly improved with state-
of-the-art techniques and that easily allows users to tailor it to their needs. Thus, unless there
exists a very strong reason to implement a branch-and-cut algorithm from scratch, it is usually

35



CHAPTER 3. A BRANCH-AND-CUT ALGORITHM

much preferable to take advantage of the existing solvers. The branch-and-cut algorithmwe will
present in this chapter uses the underlying branch-and-cut algorithm framework of the CPLEX
solver version 12.6.1. by IBM (2014).

This chapter is organized in the following way. In Section 3.2 we discuss what a modern
branch-and-cut algorithm implementation consists of using as an example the 12.6.1 version
of the CPLEX solver. Then, we present separation algorithms for the constraints of Chapter
2 which will be used in the branch-and-cut algorithm in Section 3.3. Afterwards, we present
the set of test instances of the multi-depot routing problem that we use in the computational
tests as well as software and hardware details in Section 3.4. In Section 3.5 we present some
preliminary computational tests to help design the branch-and-cut algorithm. Next, in Section
3.6 we present the branch-and-cut algorithm for the multi-depot routing problem. In Section
3.7 we present some computational results and assess the performance of the branch-and-cut
algorithm. Finally, we summarize the results of Section 3.7 and make some concluding remarks
for this chapter in Section 3.8.

3.2 A modern branch-and-cut algorithm

In this section we explain the basics of using the branch-and-cut algorithm framework of the
CPLEX solver to implement a branch-and-cut algorithm. In particular, we focus on defining
some terminology used in this context. We observe that most of the terminology used in the
context of the CPLEX solver is the same as, or similar to, the terminology used in other integer
linear programming solvers.

Most commercial solvers in general, andCPLEX in particular, are able to solve an integer lin-
ear programming problem just by requiring a valid formulation of the problem. In fact, CPLEX
has an implementation of a branch-and-cut algorithm which uses the basic idea of a branch-and-
bound with cutting plane algorithms as well as many other state-of-the-art techniques, some of
which their users are unaware of. Some known techniques include general purpose heuristics
to try to find feasible solutions and general purpose cuts to improve the linear programming
relaxation values in the cutting plane phase.

Observe that the requirement of using a valid formulation is more limiting than it appears
since, essentially, the formulation we providemust be a compact formulation. CPLEX, however,
allows formore advanced techniques. In particular, users can tailor the branch-and-cut algorithm
by using what are called callback functions, which allow the user to modify how CPLEX should
proceed in certain steps of the branch-and-cut algorithm.

More formally, at specific steps of the branch-and-cut algorithm, CPLEX checks if there is a
callback function implemented by the user. If there is, thenCPLEX temporarily stops the branch-
and-cut algorithm and calls the callback function, and the algorithm continues in the code which

36



CHAPTER 3. A BRANCH-AND-CUT ALGORITHM

is defined in the callback function. This code is user made with no interference from CPLEX
and, typically, it consists of asking for information from CPLEX, such as the current fractional
or integer solution, the number of nodes which have been explored so far, etc., and, by using
this information, applying some routine and then returning information to the solver.

There are several callback functions which can be used with CPLEX, however, in this disser-
tation we only explain three of them, which are the ones we will be using, namely the heuristic
callback, the lazy constraint callback and the user cut callback.

3.2.1 Heuristic callback

A heuristic callback is a callback function that CPLEX calls whenever (i) a new linear program-
ming relaxation solution is determined at the root node; and (ii) the final linear programming
relaxation solution is determined at any node other than the root node. In other words, in the root
node a heuristic callback is called every time a new linear programming relaxation solution is
determined, even if it resulted from a re-optimization following the addition of violated inequal-
ities, whereas in the remaining nodes the heuristic callback is only called after it has been proved
that the linear programming relaxation solution does not violate any more valid inequalities.

The reason for the term heuristic is that the particular steps in which the heuristic callback is
called are the most appropriate ones to look for a heuristic solution which can hopefully improve
the current incumbent. In fact, many heuristics typically implemented in a heuristic callback
use the information of the linear programming relaxation solution values (e.g., by attempting to
round them to the nearest integer value). Note that if the current linear programming relaxation
solution is an integer solution, then the heuristic callback is still called since the user may want
to try to improve it (e.g. by using local search).

3.2.2 Lazy constraint callback

A lazy constraint callback is essential to use whenever the formulation we provide to CPLEX
is incomplete, that is, whenever we leave a set of constraints out of the initial formulation (e.g.,
because they are exponentially-many). A lazy constraint callback is called whenever an integer
solution is found, namely because the linear programming relaxation solution is integer or a
heuristic solution was found by CPLEX.

Since the initial formulation given to CPLEX is not valid due to the constraints which were
left out, then an integer solution is not necessarily a feasible solution. Thus, CPLEX calls any
lazy constraint callback that has been implemented and lets the user decide whether the solution
is feasible or not. The user must use the information of the integer solution and check for feasi-
bility. If the solution is not feasible, then the user has the chance to inform CPLEX that a new
constraint should be added to the formulation.
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Note that the code in any lazy constraint callback is the user’s responsibility and it must
ensure that integer solutions are correctly identified as feasible or unfeasible. Usually this is
done by using a dedicated separation algorithm for the set of constraints left out of the model
which identifies a violated inequality if one exists.

3.2.3 User cut callback

The third and final type of callback function we will discuss is the user cut callback. These
callback functions are called in the cutting plane phase whenever a new linear programming
relaxation solution is found, including whenever it was obtained by re-optimizing a linear pro-
gram to which valid inequalities were added. When CPLEX calls a user cut callback function,
the control is passed onto the user who can then choose to search for and to add valid inequalities
to further improve the linear programming relaxation value.

The code in a user cut callback is usually directed at collecting information related to the
linear programming relaxation solution and then, by using that information, applying separation
algorithms to determine violated inequalities if any exist. Note that the code in these particular
callback functions is called many times during the whole branch-and-cut algorithm, hence, it
is important that it is efficient. Good implementations of user cut callbacks require the use of
techniques such as controlling which and how many valid inequalities are added before giving
control back to CPLEX and designing efficient separation algorithms.

3.3 Separation algorithms

A separation algorithm for a given set of constraints is an algorithm which checks whether a
given point, either fractional or integer, satisfies all the constraints in the set and, if not, identifies
one of the violated inequalities. Separation algorithms are essential in order to use exponentially-
sized sets of constraints in practice, usually by resorting to a cutting plane approach.

At this point it is important to distinguish effectiveness, that is, the ability to find violated
inequalities, and efficiency, that is, the running time, of a separation algorithm. A separation
algorithm is said to be exact if, given a point, it can identify an inequality violated by that point
or prove that none exists with certainty. A separation algorithm is said to be heuristic if violated
inequalities exist but the algorithm may not be able to find them. An exact separation algorithm
is the most effective type of algorithm, since we can be sure that when the algorithm stops no
more violated inequalities exist, however, it may be very inefficient. In fact, exact separation
algorithms may not be polynomial-time algorithms and, even if they are, they can still be time
consuming. Conversely, heuristic separation algorithms are not as effective, however, they can
be designed to be as efficient as necessary. In the case where the exact separation algorithm
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is not a polynomial-time algorithm, heuristic separation algorithms may be the only reasonable
way to separate a given set of constraints. In addition, even if the exact separation algorithm is
a polynomial-time algorithm, heuristic separation algorithms can help to considerably lower the
overall running time by being used prior to resorting to the exact separation algorithm.

Another important distinction to make is whether the point we are separating is a fractional
point or an integer point. Separation algorithms for fractional points also work for integer points,
however, the converse is obviously not true. When designing separation algorithms it is impor-
tant to find a dedicated algorithm for integer points since, usually, it is always possible to find
an exact separation algorithm which is very efficient, namely because it only requires analyzing
the integer point and checking for feasibility. In addition, the underlying idea of a separation
algorithm for integer points can usually be adapted for fractional points in order to design an
efficient heuristic separation algorithm. Following the discussion in Section 3.2, when using an
integer linear programming solver, any separation algorithm for integer points should be imple-
mented as a lazy constraint callback and any separation algorithm for fractional points should
be implemented as a user cut callback.

In this section we present separation algorithms, both exact and heuristic, for the sets of con-
straints of exponential size presented in Chapter 2. Most of the exact separation algorithms pre-
sented in this chapter can be viewed as max-flow/min-cut problems in adequate auxiliary graphs.
The separation algorithms which resort to max-flow/min-cut computations, given that the max-
flow/min-cut problem can be solved in polynomial time, will be polynomial-time separation
algorithms as long as the number of max-flow/min-cut computations required to be performed
is also polynomial.

We will use two different auxiliary graphs. The first auxiliary graph used in the exact separa-
tion algorithms is denoted by st-extended graph and is a graphW1 = (V1, A1)which is obtained
from the original graph G in the following way:

• The set of nodes V1 includes all nodes of V and two additional nodes s and t, that is,
V1 = V ∪ {s, t};

• The set of arcs A1 includes all arcs of A except the arcs ingoing the depots, additional
arcs linking node s to every depot d ∈ D and additional arcs linking every client i ∈ C to
node t, that is, A1 = (A \ {(i, d) : i ∈ C, d ∈ D}) ∪ {(s, d) : d ∈ D} ∪ {(i, t) : i ∈ C}.

The other auxiliary graph used in the separation algorithms is denoted by st-extended 3-
layered graph and is a graphW2 = (V2, A2), similar to the 3-layered graph described in Section
2.3.2, built in the following way:

• The set of nodes V2 is comprised of every node of V and a copy of each depot d ∈ D. For
simplification we will denote by d the copy of a depot d ∈ D and by D the set of depot
copies. In addition, we also add two nodes s and t. Therefore, V2 = V ∪D ∪ {s, t};
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Figure 3.2: An example of the st-extended 3-layered graph

• The set of arcs A2 is comprised of all arcs of A except the arcs ingoing the depots, addi-
tional arcs linking s to every depot d ∈ D, additional arcs linking every client i ∈ C to
every copy of a depot d ∈ D and arcs linking every copy of a depot d ∈ D to t, that is,
A2 = (A \ {(i, d) : i ∈ C, d ∈ D})∪{(s, d) : d ∈ D}∪{(i, d) : i ∈ C, d ∈ D}∪{(d, t) :
d ∈ D}.

Figures 3.1 and 3.2 show the auxiliary graphsW1 andW2 for a multi-depot routing problem
in which D = {1, 2} and C = {3, 4, 5, 6}, respectively.

3.3.1 Separation of the subtour elimination constraints (2.2)

In order to separate the subtour elimination constraints x(D ∪ S ′, S) ≥ 1 (2.2) we provide two
algorithms: algorithm 3.1, which is a polynomial-time exact separation algorithm, and algorithm
3.2, which is a polynomial-time exact separation algorithm for integer points and a heuristic
separation algorithm for fractional points.

Intuitively, observe that we can find violated subtour elimination constraints (2.2) by min-
imizing their left-hand side, which is a cut. Thus, algorithm 3.1 is based on max-flow/min-cut
computations in the st-extended graph, with capacities given by the point being separated, and
it checks whether or not the max-flow value from the set of depots to each client node is 1. If
for any client the max-flow is less than 1, then the value of the min-cut is also less than 1 and a
violated inequality is found.

As for algorithm 3.2 (see, e.g., Fischetti, Salazar-González & Toth 1997), the underlying
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Algorithm 3.1
Require: A point x∗ and the auxiliary st-extended graph.
1: for all i ∈ C do
2: Set the capacities of the arcs {(s, d) : d ∈ D} to 1, the capacities of the arcs (p, q) ∈ A \

{(k, d) : k ∈ C, d ∈ D} to x∗pq, the capacity of the arc (i, t) to 1 and the capacities of the arcs
{(k, t) : k ∈ C, k ̸= i} to 0, and determine the maximum flow w from s to t.

3: if w < 1 then
4: The corresponding minimum cut defines a violated inequality (2.2) in which S is the subset of

client nodes in the same shore as node t.
5: end if
6: end for

Algorithm 3.2
Require: A point x∗.
1: Find the connected components induced by x∗ by considering all arcs (p, q) ∈ A such that x∗pq > 0

(e.g., by using a depth-first search algorithm).
2: for all connected components without any depot do
3: The set S comprised of the client nodes of the component defines a violated inequality (2.2).
4: end for

idea is to determine the connected components induced by the non-zero arc variables x and
to check whether or not any of those components only includes client nodes. Note that any
connected component of this form leads to an unfeasible subtour, regardless of whether the
point being separated is fractional or integer. This algorithm is exact for integer points, but it
is only heuristic for fractional points. Nevertheless, if a violated subtour elimination constraint
(2.2) is found for a fractional point, then it is a maximally violated one since the left-hand side
equals 0 and the right-hand side is 1, and, therefore, it is a very effective inequality to add to the
model.

3.3.2 Separation of the 1-MCC inequalities (2.13)

In order to separate the 1-MCC inequalities x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 (2.13) we pro-
vide two algorithms: algorithm 3.3, which is a polynomial-time exact separation algorithm, and
algorithm 3.4, which is a polynomial-time exact separation algorithm for integer points and a
heuristic separation algorithm for fractional points.

Intuitively, observe that we can find violated 1-MCC inequalities (2.13) by minimizing their
left-hand side, which, as we showed in Section 2.4.2, is actually a cut in the 3-layered graph given
the interpretation as a network flowmodel of the 3I system of Section 2.3.1. Thus, algorithm 3.3
is based on max-flow/min-cut computations in the st-extended 3-layered graph, with capacities
given by the point being separated, and it checks whether or not the max-flow value from a
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Algorithm 3.3
Require: A point x∗ and the auxiliary st-extended 3-layered graph.
1: for all d ∈ D do
2: Set the capacity of the arc (s, d) to 1, the capacities of the arcs {(s, d′) : d′ ̸= d} to 0, the

capacities of the arcs (p, q) ∈ A \ {(k, d′) : k ∈ C, d′ ∈ D} to x∗pq, the capacities of the arcs
{(k, d′) : k ∈ C, d′ ∈ D} to x∗kd′ , the capacity of the arc (d, t) to 1 and the capacities of the arcs
{(d′, t) : d′ ̸= d} to 0, and determine the maximum flow w from s to t.

3: if w < 1 then
4: The corresponding minimum cut defines a violated inequality (2.13) for d in which S is the

subset of client nodes in the same shore as node t.
5: end if
6: end for

Algorithm 3.4
Require: A point x∗.
1: Find the connected components induced by x∗ by considering all arcs (p, q) ∈ A such that x∗pq > 0

(e.g., by using a depth-first search algorithm).
2: for all connected components with two or more depots do
3: Find a path between two depots in the connected component, say a path from d1 to d2, and set S

as the complementary set in C of the set of client nodes in the path found.
4: if x∗ is integer then
5: S defines a violated inequality (2.13) for depot d1.
6: else
7: If x∗(d1, S) + x∗(S) + x∗(S,D \ {d1}) > |S|, then S defines a violated inequality (2.13) for

depot d1.
8: end if
9: end for

depot d ∈ D to its copy d is 1. If for any depot this max-flow value is below 1, then a violated
inequality exists.

As for algorithm 3.4, the underlying idea is to first determine the connected components
induced by the non-zero arc variables x and to check whether or not any of those components
includes two or more depots. Then, for each of those components we look for an unfeasible
path between two depots, which we do in the following way. If the point we are separating is an
integer point, then finding such a path can be done by a depth-first search, however, this is not
true for fractional points since one might be stuck in an infinite loop due to potential fractional
circuits. For fractional points we apply a modified depth-first search in which nodes which have
already been visited are removed from future potential nodes to search. This means that we may
not be able to find an unfeasible path for a given connected component. Nevertheless, the com-
putational tests show that this modified depth-first search is able to effectively find unfeasible
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Algorithm 3.5
Require: A point x∗ and the auxiliary st-extended 3-layered graph.
1: for all D′ ⊂ D such that |D′| ≤ |D|

2 do
2: Set the capacities of the arcs {(s, d) : d ∈ D′} to 1, the capacities of the arcs {(s, d) : d ∈ D\D′}

to 0, the capacities of the arcs (p, q) ∈ A \ {(k, d) : k ∈ C, d ∈ D} to x∗pq, the capacities of the
arcs {(k, d) : k ∈ C, d ∈ D} to x∗kd, the capacities of the arcs {(d, t) : d ∈ D′} to 1 and the
capacities of the arcs {(d, t) : d ∈ D \D′} to 0, and determine the maximum flow w from s to t.

3: if w < |D′| then
4: The corresponding minimum cut defines a violated inequality (2.14) for D′ in which S is the

subset of client nodes in the same shore as node t.
5: end if
6: end for

Algorithm 3.6
Require: A point x∗.
1: Find a 1-MCC inequality (2.13) for a given set S ⊂ C and a depot d ∈ D which is violated by point

x∗ (e.g., by using algorithm 3.3 or 3.4).
2: for all d′ ∈ D \ {d} do
3: If x∗(S′, d′) + x∗(d′, S) < 1, then add depot d′ to the multi-cut.
4: end for

paths and, therefore, algorithm 3.4 is able to effectively find violated 1-MCC inequalities (2.13)
for fractional points.

3.3.3 Separation of the k-MCC inequalities (2.14)

Algorithm 3.5 is an exact separation algorithm for the more general k-MCC inequalities
x(S ′, D′) + x(S ′, S) + x(D′, S) ≥ |D′| (2.14) and it is very similar to the exact separation
algorithm of the 1-MCC inequalities x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 (2.13) described in
algorithm 3.3. The only difference is that algorithm 3.5 is now based on Proposition 6 presented
in Section 2.4.3, which relates the k-MCC inequalities (2.14) to the network flow interpretation
of the 3I+ system of Section 2.3.3. However, unless we fix the value of k, this exact separation
algorithm is not a polynomial-time algorithm since a max-flow/min-cut computation has to be
performed for many of the subsetsD′ ⊂ D, about half of them given the result of Proposition 7.
Nevertheless, observe that the 1-MCC inequalities (2.13) suffice as path elimination constraints,
and can be separated in polynomial-time, hence, the separation of the k-MCC inequalities (2.14)
for k ≥ 2 is optional.

Since algorithm 3.5 is not polynomial in time, we will not be using it in the branch-and-cut
algorithm. However we did implement it and, in fact, computational testing shows that it is very
inefficient. Instead, we will use the heuristic separation algorithm described in algorithm 3.6,
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which we will show, based on some computational tests, to be very effective at finding violated
k-MCC inequalities (2.14) for k ≥ 2. Intuitively, suppose a violated 1-MCC inequality (2.13)
for a depot d ∈ D was found, for instance by using algorithm 3.3 or algorithm 3.4. Then, we
can check for each depot d′ ̸= d whether or not the violation of the multi-cut would increase by
adding the depot d′ to the multi-cut.

Observe that, even though algorithm 3.6 is a heuristic separation algorithm, once we deter-
mine the violated 1-MCC inequality (2.13) in step 1 and, consequently, the set S, this algorithm
becomes exact for that specific set S.

3.3.4 Separation of the directed chain-barring constraints (2.17)–(2.18)

In order to separate the directed chain-barring constraints (2.17)–(2.18) presented in Section
2.5.1, which we recall are as follows

x(D′, i) + x(i,D′)+2x(S) + x(j,D \D′) + x(D \D′, j) ≤ 2|S| − 1

∀D′ ⊂ D, ∀S ⊂ C : 3 ≤ |S| ≤ |C| − |D|, ∀i, j ∈ S, i ̸= j (2.17)

x(D′, i) + x(i,D′)+3xij + 3xji + x(j,D \D′) + x(D \D′, j) ≤ 4

∀D′ ⊂ D, ∀i, j ∈ C, i ̸= j, (2.18)

we will resort to two different algorithms, one for fractional points and another for integer points
which may also be used as a heuristic separation algorithm for fractional points.

First notice that, by using the client indegree constraints (1.5), constraints (2.17) can be
rewritten as follows:

2x(D ∪ S ′, S) ≥ x(D′, i) + x(i,D′) + x(j,D \D′) + x(j,D \D′) + 1

∀D′ ⊂ D, ∀S ⊂ C : 3 ≤ |S| ≤ |C| − |D|, ∀i, j ∈ S, i ̸= j. (3.1)

This way of writing constraints (2.17), which was observed by Belenguer et al. (2011) for
a different adaptation of the chain-barring constraints, shows us that we can separate them by
minimizing their left-hand side and maximizing their right-hand side independently, since the
set S only appears on the left-hand side and the choice of the set D′ is only important for the
right-hand side. Based on this observation, we define algorithm 3.7 for fractional points. In-
tuitively, we minimize the left-hand side by resorting to max-flow/min-cut computations in the
st-extended graph, since it is a cut, with capacities given by the point being separated, and we
maximize the right-hand side by inspection, that is, by checking for each depot d ∈ D whether
we should have d ∈ D′ or d ∈ D \D′.

Algorithm 3.7 is an adaptation of an algorithm proposed by Belenguer et al. (2011) and it
is a very effective separation algorithm for the directed chain-barring constraints (2.17)–(2.18),
however, it is not exact. More precisely, the way in which the setD′ is determined is exact, but
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Algorithm 3.7
Require: A point x∗ and the auxiliary st-extended graph.
1: for all i, j ∈ C, i ̸= j do
2: Set the capacities of the arcs {(s, d) : d ∈ D} to 1, the capacities of the arcs (p, q) ∈ A \ {(k, d) :

k ∈ C, d ∈ D} to x∗pq, the capacities of the arcs (i, t) and (j, t) to 1 and the capacities of the arcs
{(k, t) : k ∈ C, k ̸= i, k ̸= j} to 0. Then, determine the maximum flow wlhs from s to t and
define S as the client nodes in the same shore as node t in the corresponding minimum cut.

3: Set wrhs = 0 and D′ = ∅.
4: for all d ∈ D do
5: If x∗di + x∗id > x∗dj + x∗jd, then set w

rhs = wrhs + x∗di + x∗id and D′ = D′ ∪ {d}. Otherwise,
set wrhs = wrhs + x∗dj + x∗jd.

6: end for
7: if wlhs < wrhs then
8: if |S| = 2 then
9: Check if constraint (2.18) for the sets S = {i, j} and D′ determined is violated.
10: else
11: S and D′ define a violated inequality (2.17).
12: end if
13: end if
14: end for

the way in which the set S is determined is not. This is due to the fact that there are additional
conditions on the set S, in that |S| ≥ 3 for constraints (2.17) and |S| = 2 for constraints (2.18),
which are not taken into account when computing the max-flow/min-cut. Note that an exact
separation algorithm for the directed chain-barring constraints (2.17)–(2.18) exists, however, it
is more time-consuming and the extra time taken does not compensate using it instead of the
one just presented since, as we mentioned, the algorithm 3.7 is already very effective.

In order to separate integer points we use algorithm 3.8. We also use a slight adaptation of
this algorithm, namely algorithm 3.9, as a heuristic separation algorithm for fractional points.
Observe that algorithm 3.8 already takes into account the discussion regarding asymmetric and
symmetric costs of Section 2.5.2, that is, if costs are asymmetric and |S| = 1, then it checks to
see if a 1-MCC inequality xdi + x(i,D \ d) (2.21) for |S| = 1 is violated by the given point.
Note that, in both algorithms, step 3 is the same as step 3 of algorithm 3.4, which we solve by
using the modified depth-first search which we described for algorithm 3.4.
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Algorithm 3.8
Require: An integer point x∗.
1: Find the connected components induced by x∗ by considering all arcs (p, q) ∈ A such that x∗pq > 0

(e.g., by using a depth-first search algorithm).
2: for all connected components with two or more depots do
3: Find a path between two depots in the connected component, say a path from d1 to d2, and set S

as the set of client nodes in the path found, i as the node directly linked to d1 and j as the node
directly linked to d2 (i and j can potentially be the same node).

4: if |S| ≥ 2 then
5: S, i and j define a violated inequality (2.17) or (2.18), depending on |S|, for D′ = {d1}.
6: else
7: if costs are asymmetric then
8: S = {i} = {j} defines a violated inequality (2.21) forD′ = {d1}.
9: end if
10: end if
11: end for

3.4 Test instances and software/hardware configurations

In what remains of this chapter we will be mostly reporting on some computational experi-
ments. Four sets, A, B, C and T, of instances are used in the experiments. The first set A is a
subset of the symmetric benchmark location-routing problem instances, also used by Benavent
& Martínez-Sykora (2013) and available at http://prodhonc.free.fr/, comprising a total
of nine instances, six with 100 clients and with either 5 or 10 depots, and three with 200 clients
and 10 depots. In these instances, we are given coordinates for each node and, following Be-
navent &Martínez-Sykora (2013), the costs cij and cji are determined as the Euclidean distance
between nodes i and j multiplied by 100 and rounded up to the nearest integer. These instances
are named as |C|-|D|-t, where t = 1, 2, 3 indicates how the points are distributed, where 1
represents uniform distribution, and 2 and 3 denote two and three clusters, respectively.

The instances in set B are also symmetric, where the node coordinates have been generated
by uniformly placing as many points as needed in a 200× 200 continuous grid. The set includes
a total of 33 instances, comprising nine with 100 clients, nine with 200 clients and fifteen with
300 clients. For the first subset, we initially generate an instance with 100 clients and 20 depots.
Removing 10 depots from this instance gives rise to another instance with 10 depots. Finally, a
further removal of five depots results in an instance with five depots. The construction is used to
obtain a geographically interrelated set of instances with the same set of clients, and where the
depot locations have a nested structure. By repeating this process twice more, we obtain a total
of nine 100-client instances. The same process has been used to generate nine instances with
200 clients and either 10, 20 or 40 depots, and fifteen instances with 300 clients and either 10,
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Algorithm 3.9
Require: A fractional point x∗.
1: Find the connected components induced by x∗ by considering all arcs (p, q) ∈ A such that x∗pq > 0

(e.g., by using a depth-first search algorithm).
2: for all connected components with two or more depots do
3: Find a path between two depots in the connected component, say a path from d1 to d2, and set S

as the set of client nodes in the path found, i as the node directly linked to d1 and j as the node
directly linked to d2 (i and j can potentially be the same node).

4: if |S| ≥ 2 then
5: if |S| > 2 then
6: If x∗(d1, i) + x∗(i, d1) + 2x∗(S) + x∗(j,D \ {d1}) + x∗(D \ {d1}, j) > 2|S| − 1, then S,

i and j define a violated inequality (2.17) for D′ = {d1}.
7: else
8: If x∗(d1, i) + x∗(i, d1) + 3x∗ij + 3x∗ji + x∗(j,D \ {d1}) + x∗(D \ {d1}, j) > 4, then i and

j define a violated inequality (2.18) forD′ = {d1}.
9: end if
10: end if
11: end for

20, 30, 40 or 60 depots. The instances are named as bgs-100-|D|-t, where t = 1, 2, 3 denotes
the instance number.

The instances in set C are asymmetric and are obtained by transforming the symmetric in-
stances in set B. The transformation consists in increasing or decreasing the cost of an arc (i, j)
by a percentage pij ∈ [0.25, 0.75]. More precisely, for each edge {i, j}, we randomly choose
either arc (i, j) or arc (j, i) with equal probability. The cost of the chosen arc is increased, and
the cost of the arc in the opposite direction is decreased by the specified percentage. The in-
stances in set C are named as the original symmetric instance from which they derive with an
added suffix “a”.

Finally, the set T of instances is comprised of small-sized test instances, both symmetric
and asymmetric, with 50 clients and between 2 and 20 depots, for a total of 38 instances. The
symmetric instanceswere generated in the sameway as the instances of setB and the asymmetric
instances were generated in the same way as the instances of set C. The instances in set T
are named as t-bgs-50-|D| and as t-bgs-50-|D|a for the symmetric and asymmetric instances
respectively.

All the computational results obtained were conducted on a single thread of an Intel Core
i7-4790 3.6GHz processor in a personal computer with 8GB of RAM and within which CPLEX
12.6.1 Concert Technology for C++ was used. All of the code is original, except for the max-
flow algorithm which is based on the push-relabel algorithm by Goldberg & Tarjan (1988).
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3.5 Preliminary computational experiment

In this section we report on some preliminary computational tests to help us design the branch-
and-cut algorithm. The formulation used in the branch-and-cut algorithm has as the underlying
set of subtour elimination constraints the subtour elimination constraints x(D′∪S ′, S) ≥ 1 (2.2).
As for path elimination constraints, there were two different sets which were presented, namely
the 1-MCC inequalities x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 (2.13) and the directed chain-barring
constraints (2.17)–(2.18), with the addition of the 1-MCC inequalities for |S| = 1 in the case of
asymmetric instances, presented in Section 2.5.1. For the branch-and-cut algorithm we will use
the 1-MCC inequalities (2.13) and we briefly justify this choice in Section 3.5.1.

In Section 3.5.2 we show how the use of valid inequalities affects the solution times for
obtaining the optimal solution of instances of the multi-depot routing problem. In particular, we
test the use of the k-MCC inequalities x(S ′, D′) + x(S ′, S) + x(D′, S) ≥ |D′| (2.14) and of the
directed chain-barring constraints (2.17)–(2.18), the latter which are not used as path elimination
constraints in the branch-and-cut algorithm but can still be used as valid inequalities.

3.5.1 Comparing the directed chain-barring constraints to the multi-cut
constraints

In this sectionwe compare the linear programming relaxation values of two formulations defined
in the space of the arc variables x which only differ in the set of path elimination constraints
used. Consider the generic model presented in Section 1.3 in which the subtour elimination
constraints (2.2) are used to model the generic subtour elimination constraints (1.6), that is, the
following model:

Minimize
∑

(i,j)∈A

cijxij (1.1)

subject to:
∑
j∈C

xdj = 1 ∀d ∈ D (1.2)

∑
j∈C

xjd = 1 ∀d ∈ D (1.3)

∑
j∈V

xij = 1 ∀i ∈ C (1.4)

∑
j∈V

xji = 1 ∀i ∈ C (1.5)

x(D ∪ S ′, S) ≥ 1 ∀S ⊂ C : 2 ≤ |S| ≤ |C| − |D| (2.2)

{(i, j) ∈ A : xij = 1}

contains no circuit with

two or more depots (1.7)
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xij ∈ {0, 1} ∀(i, j) ∈ A. (1.8)

The first formulation that we will consider is the formulation in which in the model above we
replace the generic path elimination constraints (1.7) by the newly developed 1-MCC inequal-
ities x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 (2.13), which we will denote by MC formulation. The
second formulation is obtained by replacing the generic path elimination constraints (1.7) with
the directed chain-barring constraints (2.17)–(2.18), with the addition of the 1-MCC inequalities
for |S| = 1 in the case of asymmetric instances, and it will be denoted as CB formulation.

We will compare the linear programming relaxation values given by both formulations in
the test instances of set T. The linear programming relaxation values reported in this section are
the real linear programming relaxation values because we deactivate all of CPLEX’s general
purpose cuts and preprocessing. Note that for now we are not interested in running times and,
thus, the addition of general purpose cuts by CPLEX would not inform us correctly on the value
of the linear programming relaxations. In addition, we use only the exact separation algorithm
3.3 for the 1-MCC inequalities (2.13) and the separation algorithm 3.7 for the directed chain-
barring constraints (2.17)–(2.18). Note also that the optimal values reported were obtained with
the branch-and-cut algorithm that we will present further on.

Table 3.1 shows the linear programming relaxation values of the MC formulation and of
the CB formulation for the asymmetric and the symmetric instances of the instance set T. Table
3.1 reports the results divided into two smaller and similar tables. The left half is with respect
to the asymmetric instances and the right half to the symmetric ones. In each half the first
column indicates the instance name and the second column its optimal value (OPT). The other
two columns indicate the linear programming relaxation value of the MC formulation (MC) and
of the CB formulation (CB), respectively.

The results reported on the left half of Table 3.1 for the asymmetric instances show that
the MC formulation consistently provides higher linear programming relaxation values than the
CB formulation, except for the instances with a number of depots between 2 and 7 where the
linear programming relaxation values coincide. Conversely, from the results on the right half,
which are with respect to the symmetric instances, we see that the roles are reversed, that is, the
CB formulation consistently provides higher linear programming relaxation values than the MC
formulation, except in the instances with a number of depots between 2 and 7.

Choosing between theMC and the CB formulations is not straightforward. In fact, they seem
to be complementary since the former provides higher linear programming relaxation values for
asymmetric instances and the latter for symmetric instances. However, there is one reason why
we believe the MC formulation is more suited to be the formulation to use in our branch-and-cut
algorithm which is related to the separation algorithms in use. The separation algorithm used
to identify violated directed chain-barring constraints (2.17)–(2.18) described in algorithm 3.7
is more time-consuming than the separation algorithm described in algorithm 3.3 for finding
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Table 3.1: Comparing the linear programming relaxation values of the MC and the CB formulations

Name OPT MC CB Name OPT MC CB
t-bgs-50-20a 821 819.9 800.469 t-bgs-50-20 1362 1324 1331.83
t-bgs-50-19a 824 822.9 803.655 t-bgs-50-19 1367 1325 1332.42
t-bgs-50-18a 807 805.4 788.55 t-bgs-50-18 1342 1300 1306.51
t-bgs-50-17a 784 784 770.958 t-bgs-50-17 1311 1283.5 1289.81
t-bgs-50-16a 752 752 738.958 t-bgs-50-16 1263 1236.5 1242.65
t-bgs-50-15a 754 746 738.1 t-bgs-50-15 1251 1234.5 1238.83
t-bgs-50-14a 757 748 737.611 t-bgs-50-14 1241 1224.5 1228.83
t-bgs-50-13a 749 737.286 728 t-bgs-50-13 1229 1217.5 1221.33
t-bgs-50-12a 741 729.188 720 t-bgs-50-12 1232 1220.5 1224.33
t-bgs-50-11a 722 715.714 708.417 t-bgs-50-11 1229 1198 1204.6
t-bgs-50-10a 719 708.038 702.548 t-bgs-50-10 1188 1163 1166
t-bgs-50-9a 707 695.531 690.188 t-bgs-50-9 1193 1166 1168.67
t-bgs-50-8a 689 679 675 t-bgs-50-8 1170 1145.5 1150.88
t-bgs-50-7a 679 670 670 t-bgs-50-7 1159 1137.5 1137.63
t-bgs-50-6a 659 651.167 651.167 t-bgs-50-6 1128 1113 1113
t-bgs-50-5a 648 639.75 639.75 t-bgs-50-5 1105 1091.65 1091.65
t-bgs-50-4a 621 610.563 610.563 t-bgs-50-4 1053 1050.25 1050.25
t-bgs-50-3a 628 620.846 620.846 t-bgs-50-3 1077 1073.88 1073.88
t-bgs-50-2a 628 619.75 619.75 t-bgs-50-2 1078 1074.75 1074.75

violated 1-MCC inequalities (2.13). More precisely, if MF is the complexity of the max-flow
algorithm, then separating the 1-MCC inequalities (2.13) has a worst-case computational com-
plexity of O(MF × |D|), since one max-flow has to be calculated for each depot, whereas
separating the directed chain-barring constraints (2.17)–(2.18) has a worst-case computational
complexity of O(MF × |C|2), since a max-flow has to be calculated for each pair of clients.
This means that, in practice, we need to rely on heuristic separation algorithms for the directed
chain-barring constraints (2.17)–(2.18) which are never as effective as exact ones (or near-exact
in this specific case), whereas separating the 1-MCC inequalities at every branch-and-bound
node in an exact way is viable given their efficient separation. Note that this was also observed
by Benavent & Martínez-Sykora (2013) and, in fact, they use heuristic separation algorithms
to separate the undirected variant of the directed chain-barring constraints (2.17)–(2.18) rather
than exact ones. Nevertheless, the linear programming relaxation values of the CB formulation
are higher than the ones of the MC formulation for symmetric instances and, for that reason, we
will test in the next section if we can take advantage of that by using the directed chain-barring
constraints (2.17)–(2.18) as valid inequalities.
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3.5.2 Evaluating the effectiveness of using valid inequalities

As we mentioned, we will use the MC formulation defined in Section 3.5.1 as the underlying
formulation for the branch-and-cut algorithm. However, it does not mean that the other inequal-
ities in the space of the x variables that we presented in Chapter 2 are not useful. In this section,
we show some results with the purpose of seeing whether or not the use of certain inequalities as
valid inequalities decreases the optimal solution times of a branch-and-cut algorithm based on
the MC formulation. More precisely, we consider three variants of the MC formulation, namely
the MC formulation in which:

• the directed chain-barring constraints (2.17)–(2.18) are added as valid inequalities by us-
ing the separation algorithm 3.7, denoted by MC+CB;

• the directed chain-barring constraints (2.17)–(2.18) are added as valid inequalities by us-
ing the heuristic separation algorithm 3.9, denoted by MC+hCB;

• the k-MCC inequalities x(S ′, D′)+x(S ′, S)+x(D′, S) ≥ |D′| (2.14) for k ≥ 2 are added
as valid inequalities by using the heuristic separation algorithm 3.5 every time a violated
1-MCC inequality (2.13) is found, denoted by k-MC.

We consider two different schemes. In the first scheme we separate the additional valid
inequalities in every node of the branch-and-bound tree, whereas in the second scheme we only
separate the valid inequalities in the root node of the branch-and-bound tree. To obtain these
results we use the default settings of the branch-and-cut algorithm framework of CPLEX and
provide all the necessary separation algorithms as callback functions, including the heuristic
separation algorithms for the subtour elimination constraints x(D ∪ S ′, S) ≥ 1 (2.2) and the
1-MCC inequalities x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 (2.13) present in the MC formulation.

Table 3.2 shows the comparison results and its format is as follows. It is divided into two
smaller and similar tables such that in the top half we have the case in which the valid inequalities
are separated in every node of the branch-and-bound tree, whereas in the bottom half only in the
root node. The first column indicates the name of the instance. The following eight columns
are divided into four two-column parts, which are with respect to each of the four formulations
being compared, namely, in order, the MC formulation, the MC+CB formulation, the MC+hCB
formulation and the k-MC formulation. Each two-column pair reports the optimal value or the
best lower and upper bound at the end of the time limit of the instance (OPT) and the time taken
(t), in seconds, for the branch-and-cut algorithm to end. We set a time limit of 1200 seconds and
used a subset of the instances with 200 clients of sets B and C, which include both asymmetric
and symmetric instances. For the MC+CB and the MC+hCB formulations, we only ran the tests
for the symmetric instances given the computational results presented in the previous section.
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Table 3.2: Comparing the solution times of the MC, the MC+CB, the MC+hCB and the k-MC formulations

MC MC+CB MC+hCB k-MC
Name OPT t OPT t OPT t OPT t

bgs-200-10-1a 1325 27 - - - - 1325 16
bgs-200-20-1a 1361 279 - - - - 1361 277
bgs-200-40-1a 1504 637 - - - - 1504 178
bgs-200-10-1 2301 489 [2292, —] 1200* 2301 152 2301 447
bgs-200-20-1 2332 475 [2311, —] 1200* 2332 303 2332 337
bgs-200-40-1 2417 223 [2402, —] 1200* 2417 305 2417 144

Name OPT t OPT t OPT t OPT t

bgs-200-10-1a 1325 27 - - - - 1325 17
bgs-200-20-1a 1361 279 - - - - 1361 354
bgs-200-40-1a 1504 637 - - - - 1504 150
bgs-200-10-1 2301 489 2301 668 2301 150 2301 436
bgs-200-20-1 2332 475 [2324, 2333] 1200* 2332 298 2332 524
bgs-200-40-1 2417 223 2417 596 2417 172 2417 244
*Not solved to optimality within the time limit.

These results provide several interesting conclusions. Starting with the k-MC formulation,
we can see that separating the k-MCC inequalities (2.14) for k ≥ 2 by using the heuristic sepa-
ration algorithm 3.6 proposed turned out to be effective. In fact, the computational times were
reduced in all cases when compared to the regular MC formulation when we separate them in
every node of the branch-and-bound tree. This reduction is more significant as the number of
depots increase, for which a possible explanation could be that, since there are more depots,
there are more violated path elimination constraints found. Observe that the reduction in com-
putational time was not substantial in the sense that the solution times remained in the same
order of magnitude, however, the heuristic separation algorithm 3.6 is computationally very fast
and easy to implement, hence, it seems evident from these results that adding the k-MCC in-
equalities (2.14) for k ≥ 2 as valid inequalities via the use of the proposed heuristic algorithm
is certainly a valid option.

Regarding theMC+CB and theMC+hCB formulations, we have completely opposite results
between the two. For the MC+CB formulation, the results show that it does not seem useful to
separate the directed chain-barring constraints (2.17)–(2.18) by using the separation algorithm
3.7. This was expected since this separation algorithm is very time-consuming, as we already
noted. However, the MC+hCB formulation has a much different behavior and, in fact, it was
able to improve the solution times in all instances, when we separated the directed chain-barring
constraints (2.17)–(2.18) in the root node, and in 2 out of 3 instances, when we separated them in
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all nodes of the branch-and-bound tree. Therefore, using the directed chain-barring constraints
(2.17)–(2.18) as valid inequalities for symmetric instances is a valid option, specially if the
heuristic separation algorithm is used only in the root node.

3.6 The outline of the branch-and-cut algorithm

In this section we describe the branch-and-cut algorithm proposed to solve the multi-depot rout-
ing problem based on the branch-and-cut algorithm framework of the CPLEX solver.

We start by detailing the several parts that compose the branch-and-cut algorithm, starting
in Section 3.6.1 with the formulation which serves as the underlying formulation for the branch-
and-cut algorithm as well as the valid inequalities that we use to increase the linear programming
relaxation values.

Then, we discuss some other practical concerns that one must have in order to design a mod-
ern branch-and-cut algorithm. In particular, in Section 3.6.2 we discuss the use of controlling
parameters that we have implemented in our lazy constraint and user cut callback functions, in
Section 3.6.3 we present a primal heuristic to provide feasible solutions to the branch-and-cut
algorithm and in Section 3.6.4 we discuss the use of symmetry-breaking constraints.

3.6.1 The underlying formulation

The branch-and-cut algorithm is based on the MC formulation presented in Section 3.5.1. For
clarity we rewrite it here:

Minimize
∑

(i,j)∈A

cijxij (1.1)

subject to:
∑
j∈C

xdj = 1 ∀d ∈ D (1.2)

∑
j∈C

xjd = 1 ∀d ∈ D (1.3)

∑
j∈V

xij = 1 ∀i ∈ C (1.4)

∑
j∈V

xji = 1 ∀i ∈ C (1.5)

x(D ∪ S ′, S) ≥ 1 ∀S ⊂ C : 2 ≤ |S| ≤ |C| − |D| (2.2)

x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 ∀d ∈ D, ∀S ⊂ C (2.13)

xij ∈ {0, 1} ∀(i, j) ∈ A. (1.8)

More precisely, we give the (incomplete) formulation comprised of (1.1)–(1.5) and (1.8)
to the CPLEX solver and then, whenever necessary, we add violated subtour elimination con-
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straints (2.2) and/or violated 1-MCC inequalities (2.13) by using a lazy constraint callback func-
tion. To do so we use the separation algorithms 3.2 and 3.4, respectively, which are exact sepa-
ration algorithms for integer points.

In the cutting plane phase of the branch-and-cut algorithm we also define a user cut callback
function that searches for violated subtour elimination constraints (2.2) and/or violated 1-MCC
inequalities (2.13) for fractional points. The separation algorithms we use are algorithms 3.1
and 3.2 for the subtour elimination constraints (2.2) and algorithms 3.3 and 3.4 for the 1-MCC
inequalities (2.13).

Finally, we also search for violated valid inequalities for fractional points with the use of a
user cut callback function, since the results analyzed in Section 3.5.2 showed that using valid
inequalities helped decrease the optimal solution times. More precisely, we use as valid inequal-
ities the k-MCC inequalities x(S ′, D′) + x(S ′, S) + x(D′, S) ≥ |D′| (2.14) for k ≥ 2 by using
the heuristic separation algorithm 3.6 every time a violated 1-MCC inequality (2.13) is found.
In addition, we use the directed chain-barring constraints (2.17)–(2.18) as valid inequalities but
we only separate them, by using the heuristic separation algorithm 3.9, at the root node of the
branch-and-bound tree and only for symmetric cost instances.

3.6.2 Parameters for lazy constraint/user cut callback functions

Aswe explained at the end of Sections 3.2.2 and 3.2.3, a good implementation of a lazy constraint
callback function or a user cut callback function is very important. Recall that the CPLEX solver
has no control over the code in a callback function and, thus, the user must ensure that the code
is efficient and produces the desired outcome. In this section we show some techniques that we
used to guarantee the efficiency of our lazy constraint and user cut callback functions, namely
regarding the order in which the separation algorithms are used and the control of the number
of violated inequalities added before re-optimizing.

For controlling the separation process in our lazy constraint/user cut callback functions,
we defined what we called a separation priority list. Essentially, the separation algorithms
are put on a list in the order in which they should be used. With respect to the lazy con-
straints, the separation priority list is comprised of, in order, algorithm 3.2 for the subtour
elimination constraints x(D ∪ S ′, S) ≥ 1 (2.2) and algorithm 3.4 for the 1-MCC inequalities
x(S ′, d)+x(S ′, S)+x(d, S) ≥ 1 (2.13). If the reversed order had been used no difference would
have been observed, given that the lazy constraint callback functions are called infrequently.

Regarding user cuts, and for asymmetric instances, the separation priority list is comprised
of, in order, algorithm 3.2 for the subtour elimination constraints (2.2), algorithm 3.4 for the
1-MCC inequalities (2.13), algorithm 3.1 for the subtour elimination constraints (2.2) and al-
gorithm 3.3 for the 1-MCC inequalities (2.13). As for user cuts in symmetric instances, the
separation priority list is comprised of, in order, algorithm 3.2 for the subtour elimination con-
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straints (2.2), algorithm 3.4 for the 1-MCC inequalities (2.13), algorithm 3.9 for the directed
chain-barring constraints (2.17)–(2.18), algorithm 3.1 for the subtour elimination constraints
(2.2) and algorithm 3.3 for the 1-MCC inequalities (2.13). Note that we mentioned that we
add the k-MCC inequalities x(S ′, D′) + x(S ′, S) + x(D′, S) ≥ |D′| (2.14) for k ≥ 2 as valid
inequalities in the branch-and-cut algorithm, however, the way in which we implemented algo-
rithm 3.6 is such that it is incorporated into algorithms 3.3 and 3.4 and, therefore, the k-MCC
inequalities (2.14) for k ≥ 2 are separated alongside the 1-MCC inequalities (2.13). The order
of the separation algorithms for user cut callback functions is of great importance since these
functions are called very frequently during the branch-and-cut algorithm. The most important
aspect that we need to ensure is that heuristic separation algorithms are called before exact sep-
aration algorithms. Afterwards, the choice of separating subtour elimination constraints before
path elimination constraints was based on some initial computational testing which showed that,
on average, this order performed slightly better.

We also introduce two control parameters. Firstly, we added a parameter to decide how
many lazy constraints or user cuts should be added in total before re-optimizing. This is typical
and straightforward and the purpose it to prevent the addition of too many cuts, which is known
to hinder the overall process. We use the value of 1 for lazy constraints and the value of 20 for
user cuts, that is, the lazy constraint separation process stops as soon as it finds one violated
inequality, since that is all which is required to identify the integer point as unfeasible, and the
user cut separation process stops whenever a combined total of 20 user cuts have been found,
which seemed to be an effective value in our initial testing.

Secondly, we added another parameter for user cuts that decides whether or not the separation
process should continue to the next algorithm in the separation priority list. The way in which
this parameter works is the following. If in the current separation algorithm we add at least
a given number of violated user cuts, then the separation process stops, that is, all algorithms
which have a lower priority in the separation priority list are ignored. After some initial testing
we decided to use the value 5, which is 25% of the maximum user cuts allowed of 20. The idea
for this controlling parameter is that if a good percentage of user cuts are from a specific type
(in this case, 25%), then it is preferable to re-optimize and restart the separation process so we
can retry that specific separation algorithm sooner. This is also very helpful whenever we are
using heuristic separation algorithms, which is the case, since if a good number of heuristic cuts
are found then the exact separation algorithms with a lower priority are skipped.

3.6.3 A primal heuristic

During the branch-and-cut algorithm we regularly use a heuristic procedure to try to improve
the current best known solution. This heuristic depends on whether the solution of the linear
programming relaxation of the branch-and-bound node is fractional or integer, and it is imple-
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mented in a heuristic callback function.
The heuristic procedure works as follows. Given a non-negative cost function c′, we start by

sorting the outgoing arcs from the depots in ascending order of cost and then choosing one arc for
each depot, starting with the one with the lowest cost and without repeating client nodes. Then,
by using a nearest neighbor criterion we insert the remaining client nodes in the best possible
circuit until we form |D| disjoint circuits, one for each depot. To further optimize these circuits
we apply local search operators that first swap nodes inside the circuits, then move nodes from
their current circuit to a different circuit and, finally, swap nodes inside the circuits again. If the
heuristic is applied by using the original cost function c, the solutions obtained are usually too
costly. However, we designed the heuristic with the purpose of using the information provided
by the linear programming relaxation. More precisely, given fractional values x∗, we modify
the cost of an arc (i, j) to cij × (1 − x∗

ij). The reasoning for this modified cost function is that
arcs for which the linear programming relaxation value is close to 1 will have a lower cost and
hence have a higher probability of being chosen in the constructive part of the heuristic, that
is, the feasible solution obtained before applying local search will be as close as possible to the
current linear programming relaxation solution.

For nodes of the branch-and-bound tree in which an integer solution was found, the heuristic
does not require the constructive part described above and only applies the local search operators
to the solution found, namely it first swaps nodes inside the circuits, then moves nodes from their
circuit to a different circuit and finally swaps nodes inside the circuits again.

The heuristic procedure is applied every time a new integer solution is found and every
time it is called in the root node. For the remaining nodes in which the linear programming
relaxation solution is fractional, the heuristic procedure is applied, for the first 250 branch-and-
bound nodes, every 5 nodes and, after this, it is applied every 10 nodes.

3.6.4 Symmetry-breaking constraints for symmetric instances

If the cost function is a symmetric cost function, then a symmetry problem arises due to the use
of a directed graph based formulation. In particular, any circuit with two or more clients and
its reverse have the exact same cost and, therefore, represent equivalent solutions even if they
are structurally different. This can pose a significant problem since any solution comprised of
m circuits with two or more client nodes can be represented in 2m different ways by combining
the two possible orientations for the m circuits with two or more client nodes. This negatively
influences the branch-and-cut algorithm since time may be wasted solving nodes which are
equivalent.

In order to break these symmetries, observe that in a given circuit with two or more client
nodes, one of the two client nodes adjacent to the depot has a smaller index than the other.
Therefore, we can enforce that the first client node visited after the depot is given a lower index
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than the client node visited just before the depot. For example, for the circuits c1 = (2, 5, 7, 4, 2)

and c2 = (2, 4, 7, 5, 2), assuming that 2 is the depot node, the circuit c1 would be considered
unfeasible, leaving circuit c2 to be one of the possible circuits to be part of a solution. More
formally, we add the following constraints to the MC formulation for symmetric cost instances:∑

j∈C, j≥i

xjd ≥ xdi ∀d ∈ D, ∀i ∈ C. (3.2)

Constraints (3.2) state that if a client i ∈ C is visited immediately after a depot d ∈ D, then
the client j ∈ C visited just before d should be such that j ≥ i. Notice that the case j = i is
required in order to avoid cutting-off solutions that are composed of two-node circuits.

We will not be providing any computational results to assess the benefit of using these con-
straints. Initial testing showed that the improvements are not significant, whichmay be attributed
to the fact that most solutions have many circuits with only one depot and one client, how-
ever, and on average, the computational times are slightly reduced by the use of the symmetry-
breaking constraints (3.2) and, thus, we will use these constraints in the branch-and-cut algo-
rithm.

3.7 Computational experiment

In this section we present computational results to assess the performance of the branch-and-
cut algorithm described in Section 3.6 in solving the test instances described in Section 3.4 to
optimality. The instances in set T are too small and are not considered here. In addition, we
also provide results regarding the linear programming relaxation value, namely we show the
value of the linear programming relaxation of the underlying formulation by excluding all of
CPLEX’s general purpose cuts as well as preprocessing. The idea is to show how close the linear
programming relaxation value is to the optimal value, however, note that this is not necessarily
the same value as the one which is obtained in the root node of the branch-and-bound tree when
solving the problem to optimality.

We divide this study in two parts, one concerning the asymmetric instances in Section 3.7.1,
and the other the symmetric instances in Section 3.7.2. We also provide an additional set of
computational results in Section 3.7.3 to compare the branch-and-cut algorithm to a different
one in which we do not separate the k-MCC inequalities x(S ′, D′)+x(S ′, S)+x(D′, S) ≥ |D′|
(2.14) for k ≥ 2.

3.7.1 Results for asymmetric instances

In this first part we present the results of applying the branch-and-cut algorithm to the asymmet-
ric instances, that is, the instances in set C described in Section 3.4.
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Table 3.3: Optimal solution results for asymmetric instances (1 of 2)

Name OPT t (s) B&B #SEC #1MCC #kMCC

bgs-100-5-1a 912 6 129 578 54 0
bgs-100-10-1a 921 2 15 122 38 2
bgs-100-20-1a 979 5 50 105 240 61
bgs-100-5-2a 980 4 90 480 53 2
bgs-100-10-2a 998 4 59 169 77 14
bgs-100-20-2a 1066 3 15 45 105 76
bgs-100-5-3a 928 3 49 278 20 0
bgs-100-10-3a 955 18 323 645 438 85
bgs-100-20-3a 994 7 50 176 265 188

bgs-200-10-1a 1325 14 30 333 66 1
bgs-200-20-1a 1361 159 432 738 887 94
bgs-200-40-1a 1504 250 415 196 1575 963
bgs-200-10-2a 1323 468 1523 1857 1090 202
bgs-200-20-2a 1355 99 150 329 858 177
bgs-200-40-2a 1475 2458 4599 513 4711 5405
bgs-200-10-3a 1395 70 258 824 164 3
bgs-200-20-3a 1422 751 1618 1503 3258 875
bgs-200-40-3a 1507 9607 10397 1110 14466 6793

Tables 3.3 and 3.4 show the results with respect to obtaining the optimal solution, with Table
3.3 focusing on the instances with up to 200 clients and up to 40 depots and Table 3.4 on the
instances with 300 clients and up to 60 depots. Both tables have the following format. The first
column indicates the name of the instance. The other six columns show, respectively, the optimal
value obtained or the final interval of best lower and upper bounds obtained if the time limit was
reached (OPT) and the corresponding time taken in seconds (t), the number of branch-and-bound
nodes explored (B&B), the number of violated subtour elimination constraints x(D∪S ′, S) ≥ 1

(2.2) found (#SEC), the number of violated 1-MCC inequalities x(S ′, d)+x(S ′, S)+x(d, S) ≥ 1

(2.13) found (#1MCC) and the number of violated k-MCC inequalities x(S ′, D′) + x(S ′, S) +

x(D′, S) ≥ |D′| (2.14) for k ≥ 2 found (#kMCC). We imposed a time limit of 10800 seconds
(three hours).

Tables 3.5 and 3.6 show the results with respect to obtaining the linear programming re-
laxation value, with Table 3.5 focusing on the instances with up to 200 clients and up to 40
depots and Table 3.6 on the instances with 300 clients and up to 60 depots. Both tables have the
following format. The first column indicates the name of the instance and the second column
indicates its optimal value (OPT) taken from either Table 3.3 or Table 3.4. The following six
columns show, respectively, the linear programming relaxation value (LP), the percentage of
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Table 3.4: Optimal solution results for asymmetric instances (2 of 2)

Name OPT t (s) B&B #SEC #1MCC #kMCC

bgs-300-10-1a [1648, 1657] 10800* 7296 9388 1189 83
bgs-300-20-1a [1668, 1698] 10800* 3331 7008 8979 965
bgs-300-30-1a [1697, 1714] 10800* 2625 2708 11414 2537
bgs-300-40-1a [1724, 1736] 10800* 3377 1492 9913 2999
bgs-300-60-1a 1820 8760 3819 721 5103 3939
bgs-300-10-2a 1612 492 334 2435 45 0
bgs-300-20-2a 1633 5617 4148 2900 2610 286
bgs-300-30-2a 1665 1626 1027 1504 1082 219
bgs-300-40-2a 1696 3955 861 1441 4812 1612
bgs-300-60-2a 1789 7146 1724 1149 5995 4521
bgs-300-10-3a [1610, 1617] 10800* 6959 6055 1560 58
bgs-300-20-3a [1623, 1645] 10800* 2100 2672 10824 948
bgs-300-30-3a [1648, 1672] 10800* 2499 2143 11465 2398
bgs-300-40-3a [1698, 1714] 10800* 2204 2184 11618 4138
bgs-300-60-3a [1777, 1783] 10800* 3269 764 5776 4339

*Not solved to optimality within the limit of three hours.

gap between the linear programming relaxation value and the best known upper bound (gap),
the time taken to obtain the linear programming relaxation value (tL) in seconds, the number
of violated subtour elimination constraints (2.2) found (#SEC), the number of violated 1-MCC
inequalities (2.13) found (#1MCC) and the number of violated k-MCC inequalities (2.14) for
k ≥ 2 found (#kMCC).

First we analyze the results in Table 3.3. Regarding the asymmetric instanceswith 100 clients
and up to 20 depots, the branch-and-cut algorithm was able to solve all nine instances within at
most 18 seconds. Since the computational times are negligible, it is not clear how the number
of depots influences the solution times. We can also see that the number of violated multi-cut
constraints found generally increases with the number of depots. In particular, the number of
violated k-MCC inequalities (2.14) for k ≥ 2 found corresponds to a relatively high percentage
of the total number of violated inequalities found for instances with 20 depots. For example,
in instances bgs-100-20-2a and bgs-100-20-3a they are roughly one third of the total number
of violated inequalities found. This is also indicative that the heuristic separation algorithm 3.6
that we proposed is effective at finding violated k-MCC inequalities (2.14) for k ≥ 2.

Still in Table 3.3, the results show that the instances with 200 clients and up to 40 depots are
harder to solve than the previous ones, however, the branch-and-cut algorithm was still able to
solve all nine instances to optimality within the time limit of three hours. For this set, the results
show that instances with more depots are, in general, harder to solve. For example, instance bgs-
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Table 3.5: Linear programming relaxation results for asymmetric instances (1 of 2)

Name OPT LP gap (%) tL (s) #SEC #1MCC #kMCC

bgs-100-5-1a 912 898.349 1.50 0 92 2 0
bgs-100-10-1a 921 911.38 1.04 0 46 14 3
bgs-100-20-1a 979 969.67 0.95 0 38 65 19
bgs-100-5-2a 980 967.948 1.23 0 120 3 0
bgs-100-10-2a 998 988.778 0.92 0 101 11 0
bgs-100-20-2a 1066 1055.8 0.96 0 43 43 35
bgs-100-5-3a 928 917.25 1.16 0 123 0 0
bgs-100-10-3a 955 939.458 1.63 0 96 27 19
bgs-100-20-3a 994 983.065 1.10 1 96 96 95

bgs-200-10-1a 1325 1319.7 0.40 3 202 28 0
bgs-200-20-1a 1361 1349 0.88 4 127 60 14
bgs-200-40-1a 1504 1492.61 0.76 9 77 164 122
bgs-200-10-2a 1323 1308.76 1.08 3 193 23 0
bgs-200-20-2a 1355 1344.02 0.81 3 184 48 9
bgs-200-40-2a 1475 1452.67 1.51 24 73 218 237
bgs-200-10-3a 1395 1380.69 1.03 1 136 2 0
bgs-200-20-3a 1422 1407.13 1.05 2 86 29 9
bgs-200-40-3a 1507 1489.21 1.18 19 102 169 285

200-20-3a was solved in 751 seconds whereas for instance bgs-200-40-3a the solution time was
of 9607 seconds. In addition, we can see that the number of violated multi-cut constraints found
can increase significantly with the number of depots. An interesting case is that of instance bgs-
200-40-2a where the number of violated k-MCC inequalities (2.14) for k ≥ 2 found was about
50% of the total number of violated inequalities found.

As for the results in Table 3.4, regarding the instances with 300 clients and up to 60 depots,
the branch-and-cut algorithm was only able to solve 6 out of 15 instances. These results are
a clear evidence of the limit of capability of the branch-and-cut algorithm in order to solve
asymmetric instances. Interestingly, in the instance set 300-xx-1, the branch-and-cut algorithm
was able to solve the instance with 60 depots but not the other ones and, in the instance set 300-
xx-3, no instance was solved, however, the instance with 60 depots ended, after three hours, with
a smaller interval of lower and upper bounds when compared to the instances with between 20
and 40 depots. These results allow us to conclude that the limitation of the branch-and-cut
algorithm is more likely due to the ratio between the number of clients and depots rather than
the total number of clients and depots individually.

Focusing now on the results regarding the linear programming relaxation values of Tables
3.5 and 3.6, we first observe that, for unsolved instances, the value reported on the gap column
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Table 3.6: Linear programming relaxation results for asymmetric instances (2 of 2)

Name OPT LP gap (%) tL (s) #SEC #1MCC #kMCC

bgs-300-10-1a [1648, 1657] 1633.52 1.42 13 290 16 1
bgs-300-20-1a [1668, 1698] 1656.83 2.42 25 249 88 2
bgs-300-30-1a [1697, 1714] 1681.68 1.89 50 193 273 54
bgs-300-40-1a [1724, 1736] 1710.1 1.49 68 147 321 97
bgs-300-60-1a 1820 1803.32 0.92 296 126 704 656
bgs-300-10-2a 1612 1599.05 0.80 4 212 1 0
bgs-300-20-2a 1633 1622.34 0.65 10 248 18 0
bgs-300-30-2a 1665 1655.84 0.55 15 191 30 7
bgs-300-40-2a 1696 1688.95 0.42 33 143 135 73
bgs-300-60-2a 1789 1777.79 0.63 243 140 672 352
bgs-300-10-3a [1610, 1617] 1595.79 1.31 11 261 2 0
bgs-300-20-3a [1623, 1645] 1609.93 2.13 15 225 44 8
bgs-300-30-3a [1648, 1672] 1634.4 2.25 30 179 102 42
bgs-300-40-3a [1698, 1714] 1687.62 1.54 73 239 238 129
bgs-300-60-3a [1777, 1783] 1764.94 1.01 151 126 407 430

is an upper bound on the gap value if it were calculated by using the actual optimal value. In
addition, as we mentioned before, the lower bound determined on the root node when solving
the problem to optimality is not necessarily the same as the linear programming relaxation value
that we report in these tables, since CPLEX’s general purpose cuts and preprocessing are not
deactivated for the former. As for the results, and considering first only solved instances, we
can see that there was a maximum gap of 1.63% for the instances with 100 clients and up to 20
depots, 1.51% for the instances with 200 clients and up to 40 depots, and 0.92% for the instances
with 300 clients and up to 60 depots. These values are very satisfactory and they help explain
why the particular instances with 300 clients and up to 60 depots were solved while the ones
with less depots and the same 300 clients were not. As for the unsolved instances in Table 3.6,
the maximum reported gap was of 2.42% which, considering that it is an upper bound on the
gap calculated with the unknown optimal solution, it is still a very satisfactory value. Finally,
we observe that the number of violated inequalities of each type follows the same pattern as in
the case of Tables 3.3 and 3.4, which were with respect to obtaining the optimal solution.

3.7.2 Results for symmetric instances

In this second part we present the results of applying the branch-and-cut algorithm for the sym-
metric instances, which are the instances in sets A and B described in Section 3.4.

Tables 3.7, 3.8 and 3.9 show the results with respect to obtaining the optimal solution, with
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Table 3.7: Optimal solution results for symmetric instances (1 of 3)

Name OPT t (s) B&B #SEC #1MCC #kMCC #CB

100-5-1 38116 45 1480 1863 11 0 0
100-10-1 41991 6 76 253 56 8 9
100-5-2 34018 13 367 1187 29 0 0
100-10-2 39126 2 18 230 7 1 5
100-5-3 33024 9 192 606 7 0 1
100-10-3 33719 13 387 664 89 1 2

200-10-1 53739 1732 10062 2586 616 8 4
200-10-2 47441 3764 23926 3051 155 2 2
200-10-3 47828 433 2033 2056 100 8 3

Table 3.7 focusing on the symmetric benchmark location-routing problem instances of set A,
Table 3.8 on the randomly generated instances of setB with up to 200 clients and up to 40 depots
and Table 3.9 on the randomly generated instances of setB with 300 clients and up to 60 depots.
All three tables have the following format. The first column indicates the name of the instance.
The other seven columns show, respectively, the optimal value obtained or the final interval of
best lower and upper bounds obtained if the time limit was reached (OPT) and the corresponding
time taken in seconds (t), the number of branch-and-bound nodes explored (B&B), the number
of violated subtour elimination constraints x(D ∪ S ′, S) ≥ 1 (2.2) found (#SEC), the number
of violated 1-MCC inequalities x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 (2.13) found (#1MCC), the
number of violated k-MCC inequalities x(S ′, D′)+x(S ′, S)+x(D′, S) ≥ |D′| (2.14) for k ≥ 2

found (#kMCC) and the number of violated directed chain-barring constraints (2.17)–(2.18)
found (#CB). We again imposed a time limit of 10800 seconds (three hours).

Tables 3.10, 3.11 and 3.12 show the results with respect to obtaining the linear program-
ming relaxation value, with Table 3.10 focusing on the symmetric benchmark location-routing
problem instances of set A, Table 3.11 on the randomly generated instances of set B with up
to 200 clients and up to 40 depots and Table 3.12 on the randomly generated instances of set
B with 300 clients and up to 60 depots. All three tables have the following format. The first
column indicates the name of the instance and the second column indicates its optimal value
(OPT) taken from either Table 3.7, Table 3.8 or Table 3.9. The following seven columns show,
respectively, the linear programming relaxation value (LP), the percentage of gap between the
linear programming relaxation value and the best known upper bound (gap), the time taken to
obtain the linear programming relaxation value (tL) in seconds, the number of violated subtour
elimination constraints (2.2) found (#SEC), the number of violated 1-MCC inequalities (2.13)
found (#1MCC), the number of violated k-MCC inequalities (2.14) for k ≥ 2 found (#kMCC)
and the number of violated directed chain-barring constraints (2.17)–(2.18) found (#CB).
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Table 3.8: Optimal solution results for symmetric instances (2 of 3)

Name OPT t (s) B&B #SEC #1MCC #kMCC #CB

bgs-100-5-1 1587 1 0 179 3 0 2
bgs-100-10-1 1597 4 28 324 38 10 3
bgs-100-20-1 1687 7 74 301 84 17 13
bgs-100-5-2 1744 1 0 208 7 0 4
bgs-100-10-2 1777 2 5 208 21 3 5
bgs-100-20-2 1835 11 120 217 211 39 12
bgs-100-5-3 1553 28 765 1127 3 0 1
bgs-100-10-3 1558 13 302 439 47 5 1
bgs-100-20-3 1604 1 0 100 7 0 6

bgs-200-10-1 2301 121 395 1011 143 5 0
bgs-200-20-1 2332 536 1891 1301 651 29 7
bgs-200-40-1 2417 376 711 1014 1017 115 13
bgs-200-10-2 2236 700 3097 2433 364 13 5
bgs-200-20-2 2291 896 3655 1390 1134 304 5
bgs-200-40-2 2433 6783 18536 1074 6107 2388 26
bgs-200-10-3 2316 3476 15840 4493 802 60 3
bgs-200-20-3 [2345, 2346] 10800* 36617 2424 4553 760 10
bgs-200-40-3 2417 1934 5645 775 2630 981 13

*Not solved to optimality within the limit of three hours.

We start by analyzing the results in Table 3.7 regarding the benchmark location-routing prob-
lem instances. The results show that the branch-and-cut algorithmwas able to solve the instances
with 100 clients in at most 45 seconds and the instances with 200 clients in at most around one
hour. The number of depots in these instances is fairly low and without much variation and,
thus, these results do not allow us to perform a meaningful analysis concerning this particular
aspect. Observe that the number of violated multi-cut constraints found in these instances is
also low, which we believe is related to the small number of depots. In addition, notice that the
number of violated directed chain-barring constraints (2.17)–(2.18) found is significant in most
instances considering that they are only separated in the root node.

Concerning the results of Table 3.8, which are with respect to the randomly generated in-
stances with up to 200 clients and up to 40 depots, we see that the branch-and-cut algorithm
was able to solve all instances with 100 clients in at most 28 seconds and all instances with 200
clients in at most around two hours, except instance bgs-200-20-3 which ended with a lower
bound of 2345 and an upper bound of 2346. In addition, these instances seem to be of the same
type of difficulty when compared to the benchmark location-routing problem instances of Table
3.7, however, when compared to equal-sized asymmetric instances, in general they take slightly
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Table 3.9: Optimal solution results for symmetric instances (3 of 3)

Name OPT t (s) B&B #SEC #1MCC #kMCC #CB

bgs-300-10-1 [2723, 2737] 10800* 7171 8070 556 27 1
bgs-300-20-1 [2738, 2779] 10800* 6182 5994 1922 100 4
bgs-300-30-1 [2777, 2802] 10800* 5150 3070 4424 319 3
bgs-300-40-1 [2826, 2847] 10800* 3551 1619 7424 831 7
bgs-300-60-1 [2920, 2977] 10800* 1692 1785 8176 1518 17
bgs-300-10-2 [2755, 2779] 10800* 7545 6175 543 8 0
bgs-300-20-2 [2762, 2779] 10800* 5581 3417 3230 136 3
bgs-300-30-2 [2815, 2820] 10800* 4088 2500 4862 944 6
bgs-300-40-2 [2865, 2892] 10800* 2379 1852 7141 2318 12
bgs-300-60-2 [2965, 2976] 10800* 2939 869 7248 2380 30
bgs-300-10-3 [2727, 2745] 10800* 7483 6667 323 3 0
bgs-300-20-3 [2757, 2763] 10800* 8375 2060 1172 80 4
bgs-300-30-3 2781 9017 7874 1646 1885 82 10
bgs-300-40-3 [2817, 2839] 10800* 4351 1897 4456 775 11
bgs-300-60-3 [2870, 2876] 10800* 4064 1229 3452 567 22

*Not solved to optimality within the limit of three hours.

longer to solve and the number of violated multi-cut constraints found is lower. We believe that
there is an explanation for this situation and we will discuss it after analyzing the next table of
results. Finally, we can again see that the number of violated directed chain-barring constraints
(2.17)–(2.18) found is significant in most instances.

We now analyze the results regarding the randomly generated instances with 300 clients and
up to 60 depots reported in Table 3.9. These results show that only one instance out of 15 was
solved within the time limit, which was instance bgs-300-30-3 with a solution time of 9017 sec-
onds. When compared to the results for asymmetric instances, and also taking into the account
the analysis of the results of Table 3.8, it becomes clear that the branch-and-cut algorithm is not
as effective for symmetric instances as for asymmetric instances. The explanation for this situ-
ation is based on the result of Proposition 3 which also applies to the multi-cut constraints and
which essentially states that the linear programming relaxation values for symmetric instances
when using the multi-cut constraints are expected to be worse overall when compared to asym-
metric instances. More precisely, the cutting plane phase of the branch-and-cut algorithm is
able to provide higher linear programming relaxation values for asymmetric instances than for
symmetric instances and, thus, the overall branch-and-cut algorithm for asymmetric instances
is more effective. This is also evident from the number of violated k-MCC inequalities (2.14)
found, including for k = 1, which is lower, in general, for symmetric instances.

Focusing now on the results regarding the linear programming relaxation values of Tables
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Table 3.10: Linear programming relaxation results for symmetric instances (1 of 3)

Name OPT LP gap (%) tL (s) #SEC #1MCC #kMCC #CB

100-5-1 38116 37543.7 1.50 0 223 0 0 2
100-10-1 41991 41178.8 1.93 0 140 6 0 5
100-5-2 34018 33681.1 0.99 0 165 0 0 5
100-10-2 39126 38603.5 1.34 0 183 0 0 6
100-5-3 33024 32622.5 1.22 0 309 0 0 2
100-10-3 33719 33024 2.06 0 227 0 0 2

200-10-1 53739 52847.8 1.66 3 309 0 0 7
200-10-2 47441 46758.5 1.44 3 332 0 0 0
200-10-3 47828 47425.3 0.84 2 325 0 2 2

3.10, 3.11 and 3.12, we can see that the linear programming relaxation values are, on average,
worse than for asymmetric instances, as expected due to the result of Proposition 3. Neverthe-
less, the maximum gap for the benchmark location-routing problem instances was 2.06%, for
the randomly generated instances with 100 clients and up to 20 depots it was 2.89%, for the ran-
domly generated instances with 200 clients and up to 40 depots the maximum gap it was 2.37%,
and concerning the randomly generated instances with 300 clients and up to 60 it was 2.98%,
which are still satisfactory values. Observe also that the violated constraints found when obtain-
ing the linear programming relaxation values consist mostly of subtour elimination constraints
(2.2) and a few directed chain-barring constraints (2.17)–(2.18).

3.7.3 Evaluating the effectiveness of the generalized multi-cut constraints

In Section 3.5.2 we presented a preliminary set of computational results that showed that the
separation of the k-MCC inequalities x(S ′, D′) + x(S ′, S) + x(D′, S) ≥ |D′| (2.14) for k ≥ 2

by using the heuristic separation algorithm 3.6 produced slight decreases in the overall time
taken to obtain the optimal solution. That comparison, however, was based on a default branch-
and-cut algorithm. In this section we present a similar comparison by using the branch-and-cut
algorithm described in Section 3.6. More precisely, we compare two branch-and-cut algorithms.
The first one, which we will denote by B&C1 in the remainder of this section, is the branch-and-
cut algorithm described in Section 3.6 used to obtain the results in the two previous sections. The
second one, denoted by B&C2, is similar to the branch-and-cut algorithm B&C1 but in which
we do not separate the k-MCC inequalities (2.14) for k ≥ 2.

Table 3.13 presents the comparison results between the two branch-and-cut algorithms for
the asymmetric and the symmetric randomly generated bgs instances with 200 clients and up
to 40 depots with the following format. The first column indicates the name of the instance.
The remaining six columns are divided into two parts, each with three columns corresponding
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Table 3.11: Linear programming relaxation results for symmetric instances (2 of 3)

Name OPT LP gap (%) tL (s) #SEC #1MCC #kMCC #CB

bgs-100-5-1 1587 1578.5 0.54 0 181 0 0 1
bgs-100-10-1 1597 1580 1.06 0 217 4 0 6
bgs-100-20-1 1687 1660.5 1.57 0 154 2 0 15
bgs-100-5-2 1744 1728.5 0.89 0 226 0 0 1
bgs-100-10-2 1777 1755.19 1.23 0 186 1 0 12
bgs-100-20-2 1835 1792 2.34 0 92 1 0 14
bgs-100-5-3 1553 1517 2.32 0 107 0 0 2
bgs-100-10-3 1558 1513 2.89 0 99 1 0 1
bgs-100-20-3 1604 1568 2.24 0 116 0 0 15

bgs-200-10-1 2301 2290.85 0.44 3 359 0 0 3
bgs-200-20-1 2332 2306.22 1.11 4 264 2 0 19
bgs-200-40-1 2417 2381.6 1.46 4 180 5 1 17
bgs-200-10-2 2236 2206.2 1.33 2 236 0 0 4
bgs-200-20-2 2291 2250.67 1.76 3 237 1 0 13
bgs-200-40-2 2433 2384 2.01 4 166 9 0 28
bgs-200-10-3 2316 2280.25 1.54 3 209 5 1 3
bgs-200-20-3 [2345, 2346] 2299.75 1.97 5 285 0 0 6
bgs-200-40-3 2417 2359.77 2.37 3 144 3 0 17

to, respectively, the linear programming relaxation value (LP), the optimal value obtained or
the final interval of best lower and upper bounds obtained if the time limit of 10800 seconds
was reached (OPT) and the respective time taken (t) in seconds. The first part corresponds
to the branch-and-cut algorithm described in Section 3.6, that is, the branch-and-cut algorithm
B&C1, and the second part corresponds to the branch-and-cut algorithm in which the k-MCC
inequalities (2.14) for k ≥ 2 are not separated, that is, the branch-and-cut algorithm B&C2. The
results for the branch-and-cut algorithm B&C1 were taken from previous tables, namely Tables
3.3 and 3.5 for the asymmetric instances and Tables 3.8 and 3.11 for the symmetric instances.

We will divide our analysis between the asymmetric and the symmetric instances, which
correspond to, respectively, the first nine instances and the last nine instances. Regarding the
former, observe that the branch-and-cut algorithm B&C1 was able to solve all nine instances
in an average of 1542 seconds, whereas the branch-and-cut algorithm B&C2 could only solve
seven out of nine instances and with an average running time of 2636 seconds. However, if
we consider only the instances with 10 or 20 depots, then the branch-and-cut algorithm B&C1

solves the six instances in an average of 260 seconds, while the branch-and-cut algorithm B&C2

in an average of 230 seconds. This shows that the benefit of the use of the k-MCC inequalities
(2.14) for k ≥ 2 is only clearly evident in instances with more depots. Note also that for the
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Table 3.12: Linear programming relaxation results for symmetric instances (3 of 3)

Name OPT LP gap (%) tL (s) #SEC #1MCC #kMCC #CB

bgs-300-10-1 [2723, 2737] 2700.5 1.33 14 370 0 0 4
bgs-300-20-1 [2738, 2779] 2718.56 2.17 12 463 0 0 12
bgs-300-30-1 [2777, 2802] 2755.1 1.67 14 399 0 0 8
bgs-300-40-1 [2826, 2847] 2798.55 1.70 16 277 3 1 21
bgs-300-60-1 [2920, 2977] 2888.28 2.98 26 319 10 1 32
bgs-300-10-2 [2755, 2779] 2724.63 1.96 14 412 0 0 5
bgs-300-20-2 [2762, 2779] 2738.22 1.47 13 358 0 0 4
bgs-300-30-2 [2815, 2820] 2781.28 1.37 29 399 7 0 16
bgs-300-40-2 [2865, 2892] 2828.03 2.21 26 350 8 0 33
bgs-300-60-2 [2965, 2976] 2918.46 1.93 22 248 9 0 33
bgs-300-10-3 [2727, 2745] 2707.5 1.37 18 626 0 0 1
bgs-300-20-3 [2757, 2763] 2727.25 1.29 20 517 0 1 7
bgs-300-30-3 2781 2743.33 1.35 27 417 4 0 10
bgs-300-40-3 [2817, 2839] 2776.69 2.19 17 296 4 0 16
bgs-300-60-3 [2870, 2876] 2830.42 1.58 19 268 11 1 19

instances with 10 or 20 depots, the difference in the linear programming relaxation value is
negligible, whereas for the instances with 40 depots the difference is more noticeable. This also
helps to explain why the use of the k-MCC inequalities (2.14) for k ≥ 2 is more beneficial for
the instances with more depots.

As for the symmetric instances, both branch-and-cut algorithms were able to solve eight out
of nine instances within the time limit, with an average running time of 2847 seconds and 2881
seconds for the branch-and-cut algorithm B&C1 and the branch-and-cut algorithm B&C2, re-
spectively. In other words, the branch-and-cut algorithm B&C1 was only slightly better than the
branch-and-cut algorithm B&C2 for symmetric instances. Observe that the linear programming
relaxation values are the same for both cases due to the result of Proposition 3, which is one
explanation for the similarity of the results obtained with both branch-and-cut algorithms.

The results show that the use of the k-MCC inequalities (2.14) for k ≥ 2 is more benefi-
cial for asymmetric instances with a considerable number of depots. For the remaining cases
they provide only slightly lower average computational times. Thus, if one is able to find a
straightforward adaptation of the k-MCC inequalities (2.14) for k ≥ 2 in other problems and,
more importantly, if one is able to find an effective heuristic separation algorithm for the more
general multi-cut constraints, then it may be worth investigating their use in a branch-and-cut
algorithm. However, if one is unable to do so, the expected performance of a branch-and-cut
algorithm without the k-MCC inequalities (2.14) for k ≥ 2 should not be substantially different
when compared to a branch-and-cut algorithm with these inequalities.
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Table 3.13: Evaluating the effectiveness of the generalized multi-cut constraints

B&C1 B&C2

Name LP OPT t (s) LP OPT t (s)

bgs-200-10-1a 1319.7 1325 14 1319.7 1325 14
bgs-200-20-1a 1349 1361 159 1348.97 1361 300
bgs-200-40-1a 1492.61 1504 250 1492.26 1504 745
bgs-200-10-2a 1308.76 1323 468 1308.76 1323 215
bgs-200-20-2a 1344.02 1355 99 1343.82 1355 105
bgs-200-40-2a 1452.67 1475 2458 1449.66 [1467, 1486] 10800*
bgs-200-10-3a 1380.69 1395 70 1380.69 1395 89
bgs-200-20-3a 1407.13 1422 751 1407.02 1422 659
bgs-200-40-3a 1489.21 1507 9607 1486.38 [1499, 1513] 10800*

bgs-200-10-1 2290.85 2301 121 2290.85 2301 155
bgs-200-20-1 2306.22 2332 536 2306.22 2332 541
bgs-200-40-1 2381.6 2417 376 2381.6 2417 236
bgs-200-10-2 2206.2 2236 700 2206.2 2236 1065
bgs-200-20-2 2250.67 2291 896 2250.67 2291 1284
bgs-200-40-2 2384 2433 6783 2384 [2427, 2436] 10800*
bgs-200-10-3 2280.25 2316 3476 2280.25 2316 3003
bgs-200-20-3 2299.75 [2345, 2346] 10800* 2299.75 2346 5941
bgs-200-40-3 2359.77 2417 1934 2359.77 2417 2911

*Not solved to optimality within the time limit of three hours

We believe that the adaptation of the k-MCC inequalities (2.14) for k ≥ 2 to other problems
may not be straightforward, which is the reason for establishing this comparison in this section.
In fact, we will show in Chapter 6, when we discuss the Hamiltonian p-median problem in the
second part of this dissertation, that, for that case, the adaptation of the k-MCC inequalities
(2.14) for k ≥ 2 is not clear.

3.8 Concluding remarks

In this chapter we proposed a branch-and-cut algorithm based on a formulation in the space of
the arc variables xwhich uses the newmulti-cut path elimination constraints, namely the 1-MCC
inequalities x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 (2.13) presented in Chapter 2. Earlier theoretical
investigations indicated that the new 1-MCC inequalities (2.13) could potentially be useful in
practice for one important reason. As we saw in Chapter 2, the new constraints could be seen
as equivalent in terms of linear programming relaxation to a compact system of inequalities that
models path elimination constraints by using arc-depot assignment variables. This relationship
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is based on the max-flow/min-cut theorem and, thus, we were able to devise a very efficient
separation algorithm for the 1-MCC inequalities (2.13) which only requires solving as many
max-flow problems as the number of depots. One drawback of these inequalities, however, is
related to the fact that, if we consider the linear programming relaxation value given by a formu-
lation with just the depot degree constraints (1.2)–(1.3), then by adding the 1-MCC inequalities
(2.13) the linear programming relaxation value is unchanged if costs are symmetric, as a result
of Proposition 3.

We also conducted some preliminary computational tests. In particular, we were interested
in studying how the new 1-MCC inequalities (2.13) compared, in a branch-and-cut algorithm, to
a previously know set of path elimination constraints, namely the so-called chain-barring con-
straints from which we derived the directed chain-barring constraints (2.17)–(2.18). These tests
indicated that, for asymmetric instances, the 1-MCC inequalities (2.13) provide higher linear
programming relaxation values, whereas, for symmetric instances, the directed chain-barring
constraints (2.17)–(2.18) provide higher linear programming relaxation values. Nevertheless,
we still believe that the 1-MCC inequalities (2.13) are overall the best option for symmetric in-
stances. The reasoning, discussed in more detail in Section 3.5.1, is essentially that the directed
chain-barring constraints (2.17)–(2.18) do not have a simultaneously exact (or near-exact) and
efficient separation algorithm and, thus, we are required to resort to heuristic separation algo-
rithms, has has already been observed in earlier studies (see Benavent &Martínez-Sykora 2013).
Thus, by using the 1-MCC inequalities (2.13) as base path elimination constraints and the di-
rected chain-barring constraints (2.17)–(2.18) as valid inequalities separated in a heuristic way,
we believe that we are able to obtain better performances in a branch-and-cut algorithm.

In these preliminary computational tests we were also interested in studying the impact of
using the k-MCC inequalities x(S ′, D′)+x(S ′, S)+x(D′, S) ≥ |D′| (2.14) for k ≥ 2 along with
the simpler 1-MCC inequalities (2.13). More precisely, we tested whether or not separating the
k-MCC inequalities (2.14) for k ≥ 2 by using the heuristic separation algorithm 3.6 alongside
the 1-MCC inequalities (2.13) would lead to improvements over separating only the latter. These
tests, and later ones conducted within the final setting of the branch-and-cut algorithm, showed
that, on average, we obtained lower optimal solution times by separating the k-MCC inequalities
(2.14) for k ≥ 2, however, this reduction was barely noticeable for symmetric instances and not
significant for asymmetric instances in the sense that the solution times were not reduced by an
order of magnitude. Nevertheless, if one is able to find an efficient and effective algorithm for
these constraints, such as algorithm 3.6, which is computationally fast and easy to implement,
then it may be worth investigating their use in a branch-and-cut algorithm.

The performance of the branch-and-cut algorithm was overall satisfactory. For instances
with 100 clients and up to 20 depots, the branch-and-cut algorithm reached the optimal solution
in less than one minute. The optimal solution times were below the limit of three hours for
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instances with 200 clients and up to 40 depots, both symmetric and asymmetric, which are
instances of a considerable size, except in one instance. These times are the largest reported
ones but in many of these instances the solution times were below or around 15 minutes, with
a few between one hour and two hours. The bottleneck of the branch-and-cut algorithm was
in the instances with 300 clients and up to 60 depots, where the algorithm could not solve the
majority of the asymmetric instances and only solved one of the symmetric instances, however,
an interesting conclusion is that the limit is not necessarily tied to the number of clients or
the number of depots individually but rather to a ratio between the two numbers, since, in fact,
instances with 300 clients and 60 depots proved to be more easily handled by the branch-and-cut
algorithm than some instances with the same 300 clients but fewer depots.

We also conclude from the final results that on average, for equal-sized asymmetric and sym-
metric instances, the branch-and-cut algorithm usually solves the asymmetric instances faster.
This is mainly due to the fact that, as we mentioned before, the multi-cut constraints on which
the branch-and-cut algorithm heavily relies have the property described in Proposition 3. This
difference between solving asymmetric and symmetric instances was expected even before any
theoretical considerations. It is known from the literature regarding general routing problems
that models based on undirected graphs are more suitable to solve symmetric cost instances,
however, those models cannot be used for asymmetric cost instances whereas models based
on directed graphs, such as the underlying formulation of our branch-and-cut algorithm, can
be used for both cost structures. Nevertheless, the differences are not substantial and, in fact,
the branch-and-cut algorithm is still effective for symmetric instances. We also observed that
the linear programming relaxation values are always such that the maximum gap is slightly
lower than 3% for the solved symmetric instances and lower than 2% for the solved asymmet-
ric instances, which also explains why the algorithm performs slightly better for asymmetric
instances. Regarding the violated valid inequalities found, we saw that the branch-and-cut algo-
rithm identifies many more multi-cut constraints for asymmetric instances than for symmetric
instances, which is also consistent with the result of Proposition 3.

While we are overall satisfied with the results, we believe that the branch-and-cut algorithm
can be improved. From a theoretical point of view, the branch-and-cut algorithm could be im-
proved by looking into using other valid inequalities to further enhance the cutting plane phase.
Concerning more practical aspects, the performance of the branch-and-cut algorithm could be
improved, for example, by finding other more effective heuristic separation algorithms for the
inequalities in use, since max-flow/min-cut computations, despite being polynomial in time, are
still slow and, thus, it is important to reduce them as much as possible.

Our study of the multi-depot routing problem continues in the following chapter by looking
into additional theoretical aspects. More precisely, we will present different sets of path elimi-
nation constraints, which we will be comparing to the ones presented throughout Chapter 2. One
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of those new sets will allow us to derive a new formulation for the multi-depot routing prob-
lem which provides linear programming relaxation values close to the optimal solution. Even
though we will not be further improving the branch-and-cut algorithm presented in this chapter,
the theoretical discussion of the following chapter is an important starting point for deriving
additional constraints in the space of the x variables.
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4.1 Introduction

In this chapter we study additional formulations for the multi-depot routing problem. In partic-
ular, we present several systems of path elimination constraints and both a theoretical and prac-
tical comparison of such systems, including a comparison to the path elimination constraints
presented in Chapter 2, namely the multi-cut constraints and the compact systems of inequali-
ties based on the arc-depot assignment variables z in addition to the adaptation of the so-called
chain-barring constraints. We also study the set of constraints of themulti-depot routing problem
in a broader sense, that is, we no longer focus solely on path elimination constraints but instead
present a formulation which we will show implies most of the constraints presented in previous
chapters and in the first part of this chapter. This formulation is based on depot assignment
variables, both client-depot assignment variables and the arc-depot assignment variables z, and
it models subtour elimination constraints and path elimination constraints simultaneously. We
will show that this formulation provides linear programming relaxation values close to the op-
timal value with some computational experiments. Since this chapter is extensive and contains
a lot of information, we will start by providing a summary of each section.

We start in Section 4.2 by presenting path elimination constraints based on variables that
indicate which clients are assigned to which depots and which we call client-depot assignment
variables. More precisely, we consider binary variables vid = 1 if client i ∈ C is assigned
to or is in the circuit of depot d ∈ D, and vid = 0 otherwise. These variables can also be
viewed as precedence variables such as the ones used in the context of the precedence con-
strained (asymmetric) traveling salesman problem (see, e.g., Balas et al. 1995, Gouveia & Pires
1999, 2001, Gouveia & Pesneau 2006, Gouveia et al. 2018). This relationship stems from the
fact that the client-depot assignment variables can be interpreted as precedence variables that in-
dicate a precedence relationship between the depots and the clients. The additional information
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provided by the precedence variables led to intuitive and useful constraints for the precedence
constrained traveling salesman problem and, in fact, as we shall show, the client-depot assign-
ment variables are also useful for modeling path elimination constraints in multi-depot routing
problems.

We will start by considering a straightforward compact system of inequalities that can be
used to model path elimination constraints. Then we show that this system of inequalities can
be strengthened by using a similar approach to what has been done in the precedence constrained
traveling salesman problem, namely we first strengthen it in a way that the system of inequalities
we obtain remains a compact system of inequalities, and then we generalize this new system of
inequalities to obtain a non-compact system of inequalities. Afterwards, we present enhance-
ments that are directly motivated by the multi-depot routing problem, in particular by the fact
that multiple depots exist, andwe show that the original system of inequalities can be generalized
in a way which is different from the generalization derived previously, with the resulting system
of inequalities being an exponentially-sized set of constraints. Additionally, we show that the
two different ways of generalizing the original system of inequalities can be combined. Then,
we use the definition of the client-depot assignment variables v and of the arc-depot assignment
variables z, originally presented in Section 2.3, to observe that we can establish a relationship
between the two sets of variables and, from there, derive new systems of inequalities. Firstly, we
use the relationship between the v and the z variables to show that the 3I++ system, which was
presented in Section 2.3.3 and is based on the arc-depot assignment variables, implies two new
sets of exponentially-many path elimination constraints. Secondly, we show how to generalize
one of these new sets of path elimination constraints, again based on the relationship between
the v and the z variables. Finally, we combine constraints presented in this section to derive
new constraints in the space of the x variables.

In Section 4.3, we adapt the double multi-commodity network flow systems originally pro-
posed by Wong (1980) for the traveling salesman problem. These double network flow systems
use two sets of binary flow variables, namely binary variables fdi

pq = 1 if flow is sent from d ∈ D

to i ∈ C via arc (p, q) ∈
(
AC \ {(i, j) : j ∈ C}

)
∪Ad

O, and fdi
pq = 0 otherwise, and binary vari-

ables gdipq = 1 if flow is sent from i ∈ C to d ∈ D via arc (p, q) ∈
(
AC \ {(j, i) : j ∈ C}

)
∪Ad

I ,
and gdipq = 0 otherwise, and the client-depot assignment v variables as auxiliary variables. We
show that we obtain a valid set of path elimination constraints for the multi-depot routing prob-
lem by adding constraints that link these double network flow systems with the x variables,
however, we also show that we can obtain an stronger system of inequalities if we combine the
double network flow systems with the systems of inequalities based on the arc-depot assign-
ment variables, by using stronger linking constraints between the f and g and the z variables.
Additionally, we observe that this new system of inequalities models both subtour elimination
constraints and path elimination constraints and, in fact, the formulation resulting from using
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this system of inequalities is the formulation with the highest linear programming relaxation
value that we will propose in this dissertation for the multi-depot routing problem. By using
the max-flow/min-cut theorem, we derive an equivalent system of inequalities, in terms of the
corresponding linear programming relaxation, which does not require the double network flow
systems and, thus, it is a system of inequalities in the space of the x, the v and the z vari-
ables. This system of inequalities is essentially the 3I++ system with the addition of a set of
exponentially-many constraints, which can be interpreted as cut constraints for each specific
circuit. We also derive additional sets of constraints in the space of the x and the v variables
based on this formulation, namely a new set which generalizes the constraints obtained by using
concepts from the precedence constrained traveling salesman problem and which includes as a
special case a different set of subtour elimination constraints.

Finally, in Section 4.4 we present separation algorithms, in Section 4.5 we present compu-
tational results to determine the linear programming relaxation values provided by some of the
proposed constraints throughout the first two sections of this chapter and to compare them to
the results presented in the previous chapter, and in Section 4.6 we finish with some concluding
remarks.

4.2 Path elimination constraints based on client-depot assign-
ment variables

In this sectionwe present path elimination constraints based on the set of client-depot assignment
variables, which we recall are defined as binary variables vid = 1 if client i ∈ C is assigned to,
or equivalently is in the circuit of, depot d ∈ D, and vid = 0 otherwise. For an easier reading of
this section we advise using Figure 4.1 shown in Section 4.2.8 as a reference.

In Section 4.2.1, we start by defining a base compact system of inequalities in the space of
the x and the v variables which prevents the existence of paths between different depots.

As we mentioned before, the client-depot assignment variables v are closely related to the
precedence variables used in the precedence constrained (asymmetric) traveling salesman prob-
lem, since they can also be interpreted as indicating whether a given depot precedes a given
client or not. In Section 4.2.2 we use this relationship to derive a stronger compact system of
inequalities than the one defined in Section 4.2.1. Then, in Section 4.2.3, we generalize the sys-
tem of inequalities presented in Section 4.2.2, again by using the relationship to the precedence
constrained traveling salesman problem.

In Section 4.2.4 we introduce a generalization of the original system of inequalities pre-
sented in Section 4.2.1 which is motivated by the existence of multiple depots. In addition, we
will observe in Section 4.2.5 that this generalization is unrelated to the one proposed in Sec-
tion 4.2.3 and that, in fact, we can combine both generalizations and obtain a new system of
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inequalities which generalizes the original system of inequalities of Section 4.2.1 in two ways
simultaneously.

In Section 4.2.6 we show that the client-depot assignment variables v can be related to the
arc-depot assignment variables z, originally presented in Section 2.3, and we use this relation-
ship to derive other systems of inequalities. More precisely, we derive a new system of inequal-
ities, which includes as a special case a new compact system of inequalities, and we show that it
is theoretically different from the ones based on ideas from the precedence constrained traveling
salesman problem. In Section 4.2.7 we generalize this system of inequalities.

In Section 4.2.8 we summarize the previous sections and, finally, in Section 4.2.9 we com-
bine some of the constraints presented earlier in order to derive new sets of constraints in the
space of the x variables.

4.2.1 A base model in the space of the x and the v variables

In this section we present a first system of inequalities in the space of the x and the v variables
which models path elimination constraints. Intuitively, we want to establish a system of inequal-
ities that ensures that the v variables are correctly defined and that the clients which are in the
circuit of a given depot d ∈ D are linked to one another, and to the depot d, and are not linked
to the remaining depots nor to clients which are assigned to other depots. One way we can do
that is as follows:

xdi ≤ vid ∀d ∈ D, ∀i ∈ C (4.1)

xid ≤ vid ∀d ∈ D, ∀i ∈ C (4.2)∑
d∈D

vid = 1 ∀i ∈ C (4.3)

vid + xij ≤ vjd + 1 ∀d ∈ D, ∀i, j ∈ C, i ̸= j (4.4)

vid ∈ {0, 1} ∀d ∈ D, ∀i ∈ C. (4.5)

Constraints (4.1) and (4.2) ensure that if an arc linking a depot d ∈ D and a client i ∈ C,
respectively in both directions, is used, then imust be in the circuit of depot d. Conversely, if i is
not in the circuit of depot d then these two nodes cannot be linked. Constraints (4.3) guarantee
that every client is in one and only one circuit. Finally, constraints (4.4) state that if a client
i ∈ C is in the circuit of a depot d ∈ D and if the arc between i and another client j ∈ C is
used, then j must also be in the circuit of depot d. Conversely, if j is not in the circuit of depot
d, then i cannot be simultaneously in the circuit of depot d and linked to j.

We will denote the system of inequalities (4.1)–(4.5) by CDA. This system of inequali-
ties is sufficient to model the path elimination constraints of the multi-depot routing problem.
In fact, consider an unfeasible path (d1, i1, i2, . . . , ik, d2) in which d1, d2 ∈ D, d1 ̸= d2 and
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i1, i2, . . . , ik ∈ C. If k = 1, observe that from constraints (4.1)–(4.2) we can conclude that
xd1,i1 = xi1,d2 = 1 which implies that both vi1d1 = 1 and vi1d2 = 1, which violates constraints
(4.3). Suppose now that k ≥ 2. In this case, if we use constraints (4.1) for d1 and i1, then
vi1d1 = 1. Then, if we use constraints (4.4) in succession for the arcs (i1, i2), . . . , (ik−1, ik), we
obtain vild1 = 1, ∀l = 2, 3, . . . , k. Finally, if we use constraints (4.2) for d2 and ik we get vikd2 = 1.
But this is impossible since we have both vikd1 = 1 and vikd2 = 1 which violates constraints (4.3).
Observe that constraints (4.3) could be defined as less than or equal to constraints and we would
still obtain a valid set of path elimination constraints. We will come back to this observation
later on.

Another way in which we can see that the CDA system prevents unfeasible paths between
two depots is as follows. Consider the unfeasible path (d1, i1, i2, . . . , ik, d2) as defined above
and the following constraints: (i) constraints (4.1) written for d1 and i1; (ii) constraints (4.4)
written for the arcs (i1, i2), . . . , (ik−1, ik) and d1; and (iii) constraints vikd1 + xkd2 ≤ 1, which are
obtained by combining constraints (4.2) written for d2 and ik with constraints (4.3). For clarity,
we have the following:

xd1i1 ≤ vi1d1

vi1d1 + xi1i2 ≤ vi2d1 + 1

. . .

v
ik−1

d1
+ xik−1ik ≤ vikd1 + 1

vikd1 + xikd2 ≤ 1

By adding all the above constraints and observing that the terms on the v variables cancel
out, we obtain a constraint in the space of the x variables as follows:

xd1i1+xi1i2+. . .+xik−1ik+xikd2 ≤ k, ∀d1, d2 ∈ D, d1 ̸= d2, ∀ distinct i1, . . . , ik ∈ C. (4.6)

Constraints (4.6) are the most basic path elimination constraints in the space of the x vari-
ables that one could think of and they simply limit the number of arcs which can be used in
an unfeasible path with k + 1 arcs to k. In practice, constraints (4.6) are hard to use since
one constraint exists for every possible unfeasible path between two depots and it is not clear
how to separate them apart from standard enumeration. Nevertheless, in theory, they are path
elimination constraints and, as we have shown, they are implied by the CDA system. For simpli-
fication, we will not be repeating these arguments in the subsequent sections, except in Section
4.2.9, however, other constraints in the space of the x variables can be obtained by repeating the
above construction.

Note that the following reversed version of constraints (4.4) is also valid

vid + xji ≤ vjd + 1 ∀d ∈ D, ∀i, j ∈ C, i ̸= j, (4.7)
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for reasons similar to the case of constraints (4.4).

We can easily see that the CDA system in which we replace the original constraints (4.4)
by their reversed ones (4.7) can also model the path elimination constraints. In addition, the
linear programming relaxations of these two systems of inequalities are not equivalent and so
it makes sense to consider a third system of inequalities which includes constraints (4.4) and
(4.7) simultaneously. However, we show in the following section that any of these two cases is
dominated by a stronger system of inequalities. In fact, based on the relationship between the
client-depot assignment variables and the precedence variables of the precedence constrained
traveling salesman problem, we will show that both constraints (4.4) and (4.7) can be strength-
ened.

4.2.2 Strengthening the base model

Observe that, if we consider two clients i, j ∈ C, i ̸= j, we can never use an arc (i, j) and
its reverse (j, i) simultaneously or else we would form a subtour with these two client nodes.
Consider then the following constraints for which the validity is easy to establish and which
dominate both constraints vid + xij ≤ vjd + 1 (4.4) and constraints vid + xji ≤ vjd + 1 (4.7):

vid + xij + xji ≤ vjd + 1 ∀d ∈ D, ∀i, j ∈ C, i ̸= j. (4.8)

Recall that the client-depot assignment variables can be interpreted as precedence variables
and, in fact, these lifted constraints follow the same line of thought as the one leading to the so-
called disaggregated Desrochers and Laporte (DDL) constraints proposed by Gouveia & Pires
(1999) (see, also, Desrochers &Laporte 1991) for the precedence constrained traveling salesman
problem. We can now define a new system of inequalities, which we will denote by CDA-DDL,
as follows:

xdi ≤ vid ∀d ∈ D, ∀i ∈ C (4.1)

xid ≤ vid ∀d ∈ D, ∀i ∈ C (4.2)∑
d∈D

vid = 1 ∀i ∈ C (4.3)

vid + xij + xji ≤ vjd + 1 ∀d ∈ D, ∀i, j ∈ C, i ̸= j (4.8)

vid ∈ {0, 1} ∀d ∈ D, ∀i ∈ C. (4.5)

Note that the CDA-DDL system is also better in practice than the CDA system of Section
4.2.1 since it remains compact, it also models path elimination constraints, it has the same num-
ber of constraints and it provides a stronger linear programming relaxation value.
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4.2.3 Generalizations based on arc subsets

We still follow the work for the precedence constrained traveling salesman problem in this sec-
tion, namely the work by Gouveia & Pires (2001), to show that constraints vid+xij+xji ≤ vjd+1

(4.8) can be generalized for arc sets defining a clique.
Consider a client subset S ⊂ C with at least two nodes. Intuitively, if we use |S| − 1 arcs

of the clique defined by S, then there exists a path which links all nodes of S, in particular the
start and end nodes of the path, say i and j, respectively. Then, clearly, if i is in the circuit of
a depot d ∈ D, then j must also be in the same circuit. Therefore, we can derive the following
set of constraints:

vid+x(S) ≤ vjd+|S|−1 ∀d ∈ D, ∀S ⊂ C : 2 ≤ |S| ≤ |C|−|D|, ∀i, j ∈ S, i ̸= j. (4.9)

These constraints include constraints (4.8) as a special case when S = {i, j}. A formal proof
of their validity will be given further on, however, observe that they are only of interest when
x(S) = |S|−1, that is, only if there is a path linking all nodes of S, and, therefore, we can apply
the intuition given above. We can thus define a new system of inequalities which models path
elimination constraints as follows:

xdi ≤ vid ∀d ∈ D, ∀i ∈ C (4.1)

xid ≤ vid ∀d ∈ D, ∀i ∈ C (4.2)∑
d∈D

vid = 1 ∀i ∈ C (4.3)

vid + x(S) ≤ vjd + |S| − 1 ∀d ∈ D, ∀S ⊂ C : 2 ≤ |S| ≤ |C| − |D|, ∀i, j ∈ S, i ̸= j (4.9)

vid ∈ {0, 1} ∀d ∈ D, ∀i ∈ C. (4.5)

We denote this system of inequalities by CDA-GDDL. Notice that constraints (4.9) are in
exponential number and, therefore, in order to use this system of inequalities in practice we
require a separation algorithm for constraints (4.9), which was not necessary in the case of the
CDA and the CDA-DDL systems of Sections 4.2.1 and 4.2.2, respectively. In Section 4.4.2 we
provide a polynomial-time separation algorithm for constraints (4.9).

Observe also that if we add a constraint (4.9) for a pair i, j ∈ S, i ̸= j to the reversed
constraint (4.9) in which the roles of i and j are swapped, we obtain a subtour elimination
constraint x(S) ≤ |S| − 1 (2.1) for the set S. Thus, the CDA-GDDL system models both path
elimination constraints and subtour elimination constraints.

4.2.4 Generalizations based on depot subsets

In Section 4.2.1 we presented the CDA system that could model path elimination constraints.
One of the characteristics of this system of inequalities is that its constraints vid + xij ≤ vjd + 1
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(4.4) are only defined for single depots. In this section we show how to generalize constraints
(4.4) based on extending their underlying idea to subsets of depots.

Recall that the basic idea of constraints (4.4) is that whenever a client i ∈ C is in the circuit
of a depot d ∈ D and an arc (i, j) is used, then the client j ∈ C must also be in the circuit of
depot d. Suppose now that we consider a subset D′ ⊂ D. Clearly, the same reasoning applies
to this subset D′, that is, if client i is in the circuit of one of the depots of D′ and an arc (i, j) is
used, then j must also be in the circuit of one of the depots of D′.

More formally, we can consider the following generalization of constraints (4.4), which is
based on a similar concept developed by Erdoğan, Laporte & Rodríguez-Chía (2016) for the
Hamiltonian p-median problem (which is the topic of the second part of this dissertation):

viD′ + xij ≤ vjD′ + 1 ∀D′ ⊂ D, ∀i, j ∈ C, i ̸= j. (4.10)

These constraints are valid since, from constraints
∑

d∈D vid = 1 (4.3), we have viD′ ≤ 1 and,
thus, the same reasoning of the non-generalized version (4.4) applies. In addition, if |D′| = 1we
obtain constraints (4.4) as a special case. Observe that constraints (4.10) are exponentially many,
due to being defined for all subsets of the set D, however, they can be separated in polynomial
time as we will show in Section 4.4.1, once again based on an idea by Erdoğan et al. (2016).

By using constraints (4.10) we can now define a new system of inequalities which can model
path elimination constraints, and which we denote by GCDA:

xdi ≤ vid ∀d ∈ D, ∀i ∈ C (4.1)

xid ≤ vid ∀d ∈ D, ∀i ∈ C (4.2)∑
d∈D

vid = 1 ∀i ∈ C (4.3)

viD′ + xij ≤ vjD′ + 1 ∀D′ ⊂ D, ∀i, j ∈ C, i ̸= j (4.10)

vid ∈ {0, 1} ∀d ∈ D, ∀i ∈ C. (4.5)

One might be inclined to assume that this system of inequalities and the CDA-GDDL system
presented in the previous section are simply different ways of generalizing the base CDA system
of Section 4.2.1. However, we can actually combine both generalization ideas to derive a new
system of inequalities which dominates all other systems of inequalities in the space of the x
and the v variables presented thus far, as we will see in the following section.

4.2.5 Generalizations based on arc subsets and depot subsets

The observation made at the beginning of Section 4.2.4 also applies to the CDA-DDL system
of Section 4.2.2 and the CDA-GDDL system of Section 4.2.3. More precisely, both constraints
vid+xij+xji ≤ vjd+1 (4.8) of the CDA-DDL system and constraints vid+x(S) ≤ vjd+|S|−1 (4.9)
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of the CDA-GDDL system, are only defined for single depots. Interestingly, the generalization
based on depot subsets presented in Section 4.2.4 also applies to these two sets of constraints.

Recall that the argument used to obtain constraints (4.9) from the original set of constraints
vid + xij ≤ vjd + 1 (4.4) is that the reasoning for the validity of these constraints can be applied
as long as the two nodes i and j are linked through a path, and not necessarily only through an
arc. But then, the argument which we used in Section 4.2.4 to obtain the generalized constraints
viD′ + xij ≤ vjD′ + 1 (4.10) from constraints (4.4), which we recall states that if i and j are
linked then both nodes must be assigned to the same subset of depots, does not conflict with the
previous argument. Thus, we can combine both arguments and obtain a set of constraints which
generalizes constraints (4.4) for arc subsets and depot subsets simultaneously:

viD′ + x(S) ≤ vjD′ + |S| − 1

∀D′ ⊂ D, ∀S ⊂ C : 2 ≤ |S| ≤ |C| − |D|, ∀i, j ∈ S, i ̸= j. (4.11)

These constraints are also in exponential number, however, they can be separated in poly-
nomial time as we will show in Section 4.4.2. Clearly, if S = {i, j} we obtain a generalization
of constraints (4.8). Note that, even if this case is included in constraints (4.11), it is interesting
to consider it separately since we can use a dedicated separation algorithm whenever |S| = 2

which is much faster than the one used for the more general set (4.11) and which we will present
in Section 4.4.1. For completeness, we will specifically write this case:

viD′ + xij + xji ≤ vjD′ + 1 ∀D′ ⊂ D, ∀i, j ∈ C, i ̸= j (4.12)

With these new sets of constraints we can define two new systems of inequalities which
model path elimination constraints. We will denote by GCDA-DDL the following system:

xdi ≤ vid ∀d ∈ D, ∀i ∈ C (4.1)

xid ≤ vid ∀d ∈ D, ∀i ∈ C (4.2)∑
d∈D

vid = 1 ∀i ∈ C (4.3)

viD′ + xij + xji ≤ vjD′ + 1 ∀D′ ⊂ D, ∀i, j ∈ C, i ̸= j (4.12)

vid ∈ {0, 1} ∀d ∈ D, ∀i ∈ C. (4.5)

By replacing constraints (4.12) with their generalization (4.11) in the above system of in-
equalities, we create a different system of inequalities which we denote by GCDA-GDDL. Note
that, since constraints (4.11) generalize constraints (4.9), then the GCDA-GDDL system also
models subtour elimination constraints, given the observation at the end of Section 4.2.3.

Out of all the different systems of inequalities presented thus far in the space of the x and the
v variables, the GCDA-GDDL is the most general one, however, most of the arguments used
were motivated by the knowledge of studies on the precedence constrained traveling salesman
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problem and on the Hamiltonian p-median problem. In the following section we derive new
systems of inequalities which can be seen as a different way of strengthening and generalizing the
base model of Section 4.2.1 and which are closely related to the arc-depot assignment variable
based systems of inequalities presented in Section 2.3.

4.2.6 Exploring the relationship between the v and the z variables in order
to strengthen the base model

In Section 2.3 we presented several systems of inequalities based on the arc-depot assignment
variables z. For clarity, and in order to facilitate the comprehension of this text, we will rewrite
the definition of these variables and of the 3I++ system, which was the strongest system of
inequalities presented that uses the z variables.

The arc-depot assignment variables are binary variables defined as zdij = 1 if arc (i, j) ∈ A

is used in the circuit of depot d ∈ D, and zdij = 0 otherwise. Recall that an arc with an endpoint
in a depot d ∈ D cannot be used in the circuit of another depot and, thus, variables zdij , for any
d ∈ D, are only defined for arcs (i, j) ∈ AC ∪ Ad

O ∪ Ad
I . Additionally, recall the argument that

stated that any arc which is used must be used in exactly one circuit. Based on these variables
and these arguments, we defined the 3I++ system which is as follows:∑

j∈C

zddj = 1 ∀d ∈ D (2.3)

∑
j∈C

zdjd = 1 ∀d ∈ D (2.4)

∑
j∈{d}∪C

zdji =
∑

j∈{d}∪C

zdij ∀d ∈ D, ∀i ∈ C (2.5)

∑
d∈D

zdij = xij ∀(i, j) ∈ AC (2.10)

zdij = xij ∀d ∈ D, ∀(i, j) ∈ Ad
O ∪ Ad

I (2.11)

zdij ∈ {0, 1} ∀d ∈ D, ∀(i, j) ∈ AC ∪ Ad
O ∪ Ad

I . (2.7)

In this section we theoretically compare the above modeling approach to the one based on
the client-depot assignment variables v. More precisely, we show that the z and the v variables
are closely related and we use that relationship to derive a system of inequalities in the space of
the x and the v variables which is dominated by a system of inequalities in the space of the x,
the v and the z variables which is equivalent in terms of the corresponding linear programming
relaxation to the 3I++ system.

Given the definition of the v and the z variables, we can easily see that they can be related
as follows. Observe that the indegree of a client i ∈ C in the circuit of a depot d ∈ D indicates
whether i is in the circuit of d or not. In other words, if the indegree of client i in the circuit of
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depot d is 1, then i is certainly in the circuit of depot d. Conversely, if the indegree of client i in
the circuit of depot d is 0, then i is certainly not in the circuit of depot d. This can be expressed
in the following way: ∑

j∈{d}∪C

zdji = vid ∀d ∈ D, ∀i ∈ C. (4.13)

Note that by adding these equalities to the 3I++ system, along with the domain constraints
for the v variables (4.5), the linear programming relaxation value is not altered. Additionally,
by using the flow conservation constraints (2.5) we can derive the following similar equalities∑

j∈{d}∪C

zdij = vid ∀d ∈ D, ∀i ∈ C, (4.14)

which can be interpreted as equalities (4.13) but now with respect to the outdegree of a client
i ∈ C in the circuit of a depot d ∈ D. Clearly we only need to add either (4.13) or (4.14)
to the 3I++ system under the presence of the flow conservation constraints (2.5), however, for
simplification, we will use both equalities indiscriminately in the ensuing text.

The point of presenting equalities (4.13) and (4.14) is that we can use them in order to com-
pare both modeling approaches. To demonstrate exactly how, we start by showing that the 3I++

system to which we add the relationships (4.13)–(4.14) and the domain constraints for the v vari-
ables (4.5) dominates the following system of inequalities, which we will denote by GCDA+:

xdi ≤ vid ∀d ∈ D, ∀i ∈ C (4.1)

xid ≤ vid ∀d ∈ D, ∀i ∈ C (4.2)∑
d∈D

vid = 1 ∀i ∈ C (4.3)

viD′ + xij + x(D′, j) + x(i,D \D′) ≤ vjD′ + 1 ∀D′ ⊂ D, ∀i, j ∈ C, i ̸= j (4.15)

vid ∈ {0, 1} ∀d ∈ D, ∀i ∈ C. (4.5)

In this system of inequalities, constraints vid+xij ≤ vjd+1 (4.4) of the original CDA system
of Section 4.2.1 were replaced by constraints (4.15), hence, the GCDA+ system dominates the
original CDA system. In fact, we can easily see that it actually dominates the GCDA system
(hence its name) presented in Section 4.2.4, since constraints (4.15) of the GCDA+ system
dominate constraints viD′ + xij ≤ vjD′ + 1 (4.10).

Proposition 11. The 3I++ system to which we add the relationships (4.13)–(4.14) and the do-
main constraints (4.5) dominates the GCDA+ system and, consequently, the GCDA and the CDA
systems.

Proof. To prove this result we must show that the 3I++ system to which we add the relationships
(4.13)–(4.14) and the domain constraints (4.5) implies constraints (4.1)–(4.3) and (4.15).
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Regarding constraints (4.1) and (4.2) notice that from the relationships (4.13)–(4.14) for
nodes d ∈ D and i ∈ C and the linking constraints between the z and the x variables (2.11) we
get:

vid =
∑

j∈{d}∪C

zdji ≥ zddi = xdi, and vid =
∑

j∈{d}∪C

zdij ≥ zdid = xid.

For constraints (4.3), consider i ∈ C and notice that if we add the relationships (4.13) for all
depots of D we get: ∑

d∈D

vid =
∑
d∈D

∑
j∈{d}∪C

zdji =
∑
d∈D

zddi +
∑
d∈D

∑
j∈C

zdji.

Then, by using the linking constraints between the z and the x variables (2.10) and (2.11)
and, subsequently, the client indegree constraints (1.5) we get:∑

d∈D

zddi +
∑
d∈D

∑
j∈C

zdji = x(D, i) + x(C, i) = 1.

In the case of constraints (4.15), consider a subsetD′ ⊂ D and a client j ∈ C. If we add the
relationships (4.13) for the depots in D′ we obtain:

vjD′ =
∑
d∈D′

∑
k∈{d}∪C

zdkj =
∑
d∈D′

zddj +
∑
d∈D′

∑
k∈C

zdkj ≥
∑
d∈D′

zddj +
∑
d∈D′

zdij,

for some i ∈ C \ {j}. Now, if we add
∑

d∈D′
∑

k∈{d}∪C: k ̸=j z
d
ik to both sides and use the

relationships (4.14) for client i added up for the depots in D′ we obtain:

vjD′ +
∑
d∈D′

∑
k∈{d}∪C: k ̸=j

zdik ≥
∑
d∈D′

zddj +
∑
d∈D′

∑
k∈{d}∪C

zdik =
∑
d∈D′

zddj + viD′ .

Then, by using the linking constraints (2.10) and (2.11) we derive:

vjD′ + x(i,D′) + x(i, C \ {j}) ≥ x(D′, j) + viD′ .

Finally, if we use the client outdegree constraints (1.4) for client i we can rewrite the above
inequality as

vjD′ + 1 ≥ x(D′, j) + x(i,D \D′) + xij + viD′ ,

which is precisely a constraint (4.15).

Recall that we observed in Section 2.3.1 that constraints (4.3) can actually be written as less
than or equal to constraints. In this situation we can use the 3I+ system instead of the 3I++

system in Proposition 11. In other words, the difference between having equality or inequality
in constraints (4.3) is similar to the difference between the 3I+ and 3I++ systems established
in Proposition 2, that is, for an objective function which only depends on the x variables, no
difference in the linear programming relaxation value will be observed.
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The new constraints (4.15) can be separated in polynomial time, as we will see in Section
4.4.1. Additionally, we can derive a new compact system of inequalities to model path elimina-
tion constraints by considering the special case of constraints (4.15) in which |D′| = 1, that is,
the following constraints:

vid + xij + xdj + x(i,D \ {d}) ≤ vjd + 1 ∀d ∈ D, ∀i, j ∈ C, i ̸= j. (4.16)

More precisely, the system of inequalities comprised of constraints (4.1)–(4.3), the above
constraints (4.16) and the domain constraints (4.5), which we denote by CDA+, is a compact
system of inequalities which dominates the original CDA system.

Notice that it is not possible to further lift constraints (4.15) with the term xji like in the case
of constraints viD′ +xij +xji ≤ vjD′ +1 (4.12) since it is possible to have xji = x(i,D \D′) = 1

and vjD′ = 0. Therefore, this new way of lifting the original constraints (4.4) is not comparable
in theory and in terms of the corresponding linear programming relaxation to any of the lifted
and/or generalized sets of constraints presented in Sections 4.2.2, 4.2.3 and 4.2.5, which were
based on ideas from the precedence constrained traveling salesman problem.

In the following section we present an additional result with the purpose of showing that we
can also use the relationships between the v and the z variables (4.13)–(4.14) to derive gener-
alizations of constraint sets. As an example, we will show that constraints (4.15) can be gener-
alized. Note that they are already generalized for depot subsets, in a similar way as what was
presented in Section 4.2.4, however, they are not generalized for arc sets. As we mentioned
above, it is not possible to generalize them to arc sets defining a clique, but we can show that the
single node subsets {i} and {j} can be generalized to client subsets with more than one node.

4.2.7 Generalizations based on client subsets

In this section we show how to generalize the single node subsets {i} and {j} of constraints
viD′ + xij + x(D′, j) + x(i,D \D′) ≤ vjD′ +1 (4.15) to client subsets with more than one node.
We could have started from the more general case in the previous section, since the proof is an
extension of the proof of Proposition 11, however, for clarity, we decided to separate both cases.

The following result shows that the 3I++ system, presented in Section 2.3.3, and recalled
in the previous section, to which we add the relationships between the v and the z variables
(4.13)–(4.14) and the domain constraints for the v variables (4.5) implies the following set of
constraints:

vS1

D′ + x(S1, S2) + x(D′, S2) + x(S1, D \D′) ≤ vS2

D′ + |S1|

∀D′ ⊂ D, ∀S1, S2 ⊂ C, S1 ∩ S2 = ∅. (4.17)

Proposition 12. The 3I++ system to which we add the relationships (4.13)–(4.14) and the do-
main constraints (4.5) implies constraints (4.17).
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Proof. Let D′ ⊂ D and S1, S2 ⊂ C, S1 ∩ S2 = ∅ and consider the following inequality

vS2

D′ =
∑
d∈D′

∑
i∈S2

∑
j∈{d}∪C

zdji ≥
∑
d∈D′

∑
i∈S2

∑
j∈{d}∪S1

zdji =
∑
d∈D′

∑
i∈S2

zddi +
∑
d∈D′

∑
i∈S2

∑
j∈S1

zdji,

which can be obtained by adding the relationships (4.13) for d ∈ D′ and for i ∈ S2. Now,
by adding the appropriate terms to both sides, namely

∑
d∈D′

∑
i∈{d}∪C\S2

∑
j∈S1

zdji, and then
using the relationships (4.14) added for d ∈ D′ and j ∈ S1 we obtain:

vS2

D′ +
∑
d∈D′

∑
i∈{d}∪C\S2

∑
j∈S1

zdji ≥
∑
d∈D′

∑
i∈S2

zddi +
∑
d∈D′

∑
i∈{d}∪C

∑
j∈S1

zdji =
∑
d∈D′

∑
i∈S2

zddi + vS1

D′ .

Then, by using the linking constraints between the z and the x variables (2.10)–(2.11) on the
above inequality we can derive:

vS2

D′ + x(S1, D
′) + x(S1, C \ S2) ≥ x(D′, S2) + vS1

D′ .

Finally, by using the client outdegree constraints (1.4) added for all nodes of S1, we can
rewrite the above inequality as

vS2

D′ + |S1| ≥ x(D′, S2) + x(S1, D \D′) + x(S1, S2) + vS1

D′ ,

which completes the proof.

By generalizing the sets {i} and {j} of constraints (4.15) to client subsets with more than
one node in constraints (4.17), we can define a new system of inequalities in the space of the x
and the v variables which models path elimination constraints and which dominates the GCDA+

system presented in the previous section. However, constraints (4.17) do not seem to be sepa-
rable in polynomial time, hence, their use in practice is limited and we will not provide com-
putational results to assess the linear programming relaxation values which we could obtain by
using constraints (4.17).

We would like to end this section with an important observation. We clearly stated in Propo-
sitions 11 and 12 that we were adding the relationships (4.13)–(4.14) and the domain constraints
(4.5) to the 3I++ system. This is absolutely required unless the v variables are not used in any
other constraints other than the relationships (4.13)–(4.14) and the domain constraints (4.5), in
which case using the 3I++ system would suffice.

4.2.8 Summary

In the previous sections we presented several systems of inequalities in the space of the x and
the v variables to model path elimination constraints. Given the number of different systems of
inequalities, how they were derived, and how they compare in theory, we believe it is important
to present a summary. As a complement, in Figure 4.1 we provide a visual representation of this
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CDA CDA-DDL CDA-GDDL

GCDA GCDA-DDL GCDA-GDDL

CDA+ GCDA+

Figure 4.1: Summary of the systems of inequalities presented in Section 4.2

summary. A filled arrow indicates a lifting operation, a dashed arrow indicates a depot subset
generalization and a dotted arrow indicates an arc subset generalization. Observe that these
relationships are transitive and, thus, it is possible to easily establish a comparison of any two
systems of inequalities in terms of their corresponding linear programming relaxation, if any
exists. Recall that all of these systems of inequalities have a common set of constraints which
are the following:

xdi ≤ vid ∀d ∈ D, ∀i ∈ C (4.1)

xid ≤ vid ∀d ∈ D, ∀i ∈ C (4.2)∑
d∈D

vid = 1 ∀i ∈ C (4.3)

vid ∈ {0, 1} ∀d ∈ D, ∀i ∈ C. (4.5)

The most basic system of inequalities, presented in Section 4.2.1 and denoted by CDA, uses
constraints vid + xij ≤ vjd + 1 (4.4) in addition to the ones above. Each of the other systems of
inequalities presented is obtained from this base system of inequalities by replacing constraints
(4.4) with a different set which implies and/or generalizes the original constraints (4.4).

The first enhancements of the CDA system that we presented were derived from ideas similar
to the ones used in the precedence constrained traveling salesman problem. In Section 4.2.2 we
presented the CDA-DDL system that uses constraints vid + xij + xji ≤ vjd + 1 (4.8), which
are based on the idea that arcs (i, j) and (j, i) cannot be simultaneously used for client nodes
i, j ∈ C, i ̸= j. By extending this idea to client subsets S ⊂ C in Section 4.2.3, we derived
constraints vid + x(S) ≤ vjd + |S| − 1 (4.9), which replace the original constraints (4.4) in the
CDA-GDDL system.

In Section 4.2.4 we derived a different generalization of the original constraints (4.4) based
on ideas similar to ones used in the Hamiltonian p-median problem. In particular, we presented
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the GCDA system which uses constraints viD′ +xij ≤ vjD′ +1 (4.10), whereD′ is a depot subset.
Essentially, the argument used is that the intuition of the original constraints (4.4), which was
applied to individual depots, can also be applied to depot subsets. This generalization is different
from the one of the CDA-GDDL system, however, in Section 4.2.5 we showed that they can be
combined and we derived two additional systems of inequalities, the GCDA-DDL system and
the GCDA-GDDL system which use, respectively, constraints viD′ + xij + xji ≤ vjD′ + 1 (4.12)
and viD′ + x(S) ≤ vjD′ + |S| − 1 (4.11).

Finally, in Section 4.2.6 we presented an additional two new systems of inequalities that
enhance the original CDA system. These new systems of inequalities were derived from the
relationship between the client-depot assignment variables v and the arc-depot assignment vari-
ables z. One of the systems of inequalities, denoted by CDA+, uses the set of constraints
vid + xij + xdj + x(i,D \ {d}) ≤ vjd + 1 (4.16), whereas the other system of inequalities,
denoted by GCDA+, uses constraints viD′ + xij + x(D′, j) + x(i,D \ D′) ≤ vjD′ + 1 (4.15).
Additionally, in Section 4.2.7, we showed that the CDA+ and the GCDA+ systems can be fur-
ther generalized, however, we do not believe the resulting system of inequalities is usable in
practice.

An important classification of the different systems of inequalities presented arises from the
difference between compact and non-compact systems. The CDA, CDA-DDL and CDA+ are
compact systems of inequalities to model path elimination constraints. Conversely, the remain-
ing systems, that is, the CDA-GDDL, the GCDA, the GCDA-DDL, the GCDA-GDDL and the
GCDA+ systems, are non-compact systems of inequalities. For the non-compact systems of
inequalities we will provide separation algorithms in subsequent sections.

Another important aspect to consider is how the different systems compare in theory. Clearly
the CDA system is the weakest one since all other systems either imply and/or generalize it.
From the original CDA system there are two ways of strengthening it which are incomparable.
In one way we use ideas from the precedence constrained traveling salesman problem and in the
other we use the relationship between the v and the z variables. In the former case, we obtain
the CDA-DDL system, which can be generalized to the CDA-GDDL system, and, in the latter,
we obtain the CDA+ system. Then, an unrelated generalization based on depot subsets based
on ideas from the Hamiltonian p-median problem can be applied to any of the above systems
which originates the GCDA, the GCDA-DDL, the GCDA-GDDL and the GCDA+ systems.

The generalizations proposed in this section are straightforward given that they were derived
from similar constraints in related problems, however, we will revisit the space of the x and the v
variables in a subsequent section and, in particular, we will show that we can further generalize
the GCDA-GDDL system.
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4.2.9 Deriving inequalities in the space of the x variables

In this section we revisit the space of the arc variables xwith the objective of illustrating howwe
can derive new inequalities in this space by appropriately combining inequalities in the space of
the x and the v variables. The study conducted in this section is preliminary, in the sense that
we do not fully explore the space of the x variables, and certainly not from a practical point of
view. Nevertheless, our objective in this dissertation is to provide important tools and hints so
as to continue this study in the future.

The main technique that we use to combine inequalities in the space of the x and the v

variables is based on adding inequalities such that there are the exact same terms with v variables
on both the left-hand side and the right-hand side. This technique is not new and has been used in
the precedence constrained traveling salesman problem (see, e.g., Gouveia & Pires 1999, 2001,
Gouveia & Pesneau 2006). We have already used this technique in Section 4.2.1 and in Section
4.2.3, in the latter case to show that the CDA-GDDL system also models subtour elimination
constraints since it implies constraints x(S) ≤ |S|−1 (2.1). In this section we use it to combine
constraints arising from two ideas. More precisely, we combine: (i) constraints based on the
precedence constrained traveling salesman problem; with (ii) the new constraints based on the
relationship between the v and the z variables.

Consider constraints viD′ + xij + xji ≤ vjD′ + 1 (4.12) for a given D′ ⊂ D and a pair of
distinct clients i and j, and constraints viD′ + xij + x(D′, j) + x(i,D \ D′) ≤ vjD′ + 1 (4.15)
for the same depot subset D′ and for the same clients i and j but in which the roles of i and
j are swapped when compared to the other constraint, that is, viD′ + xij + xji ≤ vjD′ + 1 and
vjD′ + xji + x(D′, i) + x(j,D \ D′) ≤ viD′ + 1. Observe that if we add these two constraints,
then the terms on the v variables are eliminated and we obtain the following set of constraints
in the space of the x variables:

xij + 2xji + x(D′, i) + x(j,D \D′) ≤ 2 ∀D′ ⊂ D, ∀i, j ∈ C, i ̸= j. (4.18)

This particular set of constraints can be related to the directed chain-barring constraints pre-
sented in Section 2.5, namely the directed chain-barring constraints for client sets with two
nodes, which we recall are as follows:

x(D′, i) + x(i,D′) + 3xij + 3xji + x(j,D \D′) + x(D \D′, j) ≤ 4

∀D′ ⊂ D, ∀i, j ∈ C, i ̸= j. (2.18)

Notice that by adding two constraints (4.18) for a depot subset D′ ⊂ D and the same two
distinct client nodes i and j by swapping their roles, we obtain exactly a constraint (2.18), which
means that constraints (4.18) dominate constraints (2.18).

In the following result we formalize the derivation of constraints (4.18). More precisely, we
show that by appropriately combining constraints in the space of the x and the v variables we
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can derive a set of constraints in the space of the x variables which includes constraints (4.18)
as a special case.

Proposition 13. By appropriately combining constraints of the family viD′+x(S) ≤ vjD′+|S|−1

(4.11) and constraints of the family (4.15), we can derive the following set of constraints in the
space of the x variables:

x(S) + x(D′, i) + x(j,D \D′) + xji ≤ |S|

∀D′ ⊂ D, ∀S ⊂ C : 2 ≤ |S| ≤ |C| − |D|, ∀i, j ∈ S, i ̸= j. (4.19)

Proof. Consider a depot subset D′ ⊂ D, a client subset S ⊂ C and let i and j be two distinct
nodes of S. Consider also constraints viD′ + x(S) ≤ vjD′ + |S| − 1 (4.11) and constraints
(4.15), with the former written for D′, S, i and j, and the latter written for D′, j and i, that is,
viD′ +x(S) ≤ vjD′ + |S| − 1 and vjD′ +xji+x(D′, i)+x(j,D \D′) ≤ viD′ +1. By adding these
two constraints we obtain a constraint (4.19) for D′, S, i and j.

Even though we will not be testing these constraints in practice, we will provide, in Section
4.4.4, a polynomial-time separation algorithm for constraints (4.19) since they are in exponential
number.

Observe that, for S = {i, j}, constraints (4.19) are exactly constraints (4.18). Additionally,
constraints (4.19) when |S| ≥ 3 are also similar to the directed chain-barring constraints for
clients sets with at least three nodes, which we recall are as follows

x(D′, i) + x(i,D′)+2x(S) + x(j,D \D′) + x(D \D′, j) ≤ 2|S| − 1

∀D′ ⊂ D, ∀S ⊂ C : 3 ≤ |S| ≤ |C| − |D|, ∀i, j ∈ S, i ̸= j, (2.17)

however, in this case, no dominance relationship can be established. In fact, this is clearer if we
note that constraints (4.19) are a stronger version of constraints

x(D′, i) + x(S) + x(j,D \D′) ≤ |S| ∀D′ ⊂ D, ∀S ⊂ C, ∀i, j ∈ S, i ̸= j, (2.19)

which are a weaker version of the k-MCC inequalities x(D′, S) + x(S) + x(S,D \D′) ≤ |S|
(2.16) written in their alternative form presented in Section 2.5.2.

The most interesting point of constraints (4.19) is that they are the first (and only) set of
constraints in the space of the x variables presented in this dissertation which partially model
both subtour elimination and path elimination constraints. More precisely, consider that we have
an unfeasible path between two depots (d1, i, k1, . . . , kl, j, d2), where d1 ∈ D′, d2 ∈ D \D′, and
S = {i, j, k1, . . . , kl}. Then, constraint (4.19) for D′, S, i and j is violated since the left-hand
side has a value of |S| + 1. Additionally, suppose that the nodes of S form a subtour in which
the arc (j, i) is used. In this case, the left-hand side of constraint (4.19) for D′, S, i and j is
again |S|+ 1 and, thus, it is violated.
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Clearly, from a purely integer point of view, these constraints cannot be used as subtour
elimination constraints and/or path elimination constraints for every case, since there are many
subtours and/or unfeasible paths which they do not prevent. However, they can potentially be in-
teresting to use as valid inequalities in formulations defined in the space of the x variables. In or-
der to better understand what these constraints do different from the standard subtour elimination
constraints x(S) ≤ |S| − 1 (2.1) and the 1-MCC inequalities x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1

(2.13), consider a fractional circuit (d1, i, j, d2, j, i, d1) in which every arc has value 1
2
, with

d1 ∈ D′, d2 ∈ D \D′, and i and j distinct nodes of C. Notice first that xij +xji = 1, and so the
subtour elimination constraint (2.1) written for S = {i, j} is not violated. In addition, one can
also easily see that this circuit satisfies every 1-MCC inequality (2.13) written for d1 or d2 and
S = {i, j}. However, observe that xij +2xji+x(D′, i)+x(j,D \D′) = 1

2
+2× 1

2
+ 1

2
+ 1

2
> 2

and so one of the constraints (4.18) is violated.
Constraints (4.19) are the extent of the study of this section. However, the ideas here shown,

in particular constraints (4.19) and the proof of Proposition 13, can potentially provide some
insight for future research. We believe that many of the constraints which can be derived using
similar techniques to these are constraints which mix subtour elimination and path elimination
constraints, much like constraints (4.19) and, thus, are an interesting future investigation.

4.3 A formulation in the space of the x, the v and the z vari-
ables

In this sectionwe present a new formulation in the space of the original arc variables x, the client-
depot assignment variables v presented in Section 4.2, and the arc-depot assignment variables
z presented in Section 2.3. This new formulation models subtour elimination constraints and
path elimination constraints simultaneously and provides linear programming relaxation values
which are very close to the optimal value in practice, as we will show in Section 4.5.2.

We start by presenting in Section 4.3.1 an adaptation of the doublemulti-commodity network
flow systems proposed by Wong (1980) for the traveling salesman problem. Intuitively, these
double network flows ensure that there must be flow coming from a depot to a client and from
the same client to the same depot provided that said client is in the circuit of that specific depot.
We then show that by relating these double network flows to the arc variables x we are able to
obtain a valid set of path elimination constraints.

Most importantly, however, we show in Section 4.3.2 that if we relate these double network
flow models to the arc-depot assignment variables z we obtain a formulation which models
both subtour elimination constraints and path elimination constraints and, in Section 4.3.3, by
using the max-flow/min-cut theorem to eliminate the double network flow systems, we derive
an equivalent formulation, in terms of the corresponding linear programming relaxation, in the
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space of the x, the v and the z variables which is more tractable in practice.
Finally, in Section 4.3.4 we use the formulation in the space of the x, the v and the z variables

to derive additional constraints in the space of the x and the v variables.

4.3.1 Path elimination constraints based on double multi-commodity net-
work flow systems

In this section we revisit the double (multi-commodity) network flowmodels proposed byWong
(1980) for the traveling salesman problem and adapt them to the multi-depot routing problem,
in particular to the modeling of path elimination constraints. More precisely, we present an
adaptation of the double network flow models to the multi-depot routing problem case in addi-
tion to sets of linking constraints that relate these flow models to the original arc variables x,
which allows us to derive a system of inequalities which prevents the existence of paths between
different depots.

For these double network flow models we use the client-depot assignment variables vid pre-
sented in Section 4.2, which we recall state whether or not a client i ∈ C is in the circuit of a
depot d ∈ D. Note that the v variables are auxiliary variables, that is, they can be eliminated
from the constraints that we will present, however, we include them since it is much easier to
explain the modeling approach. The double network flow models for the multi-depot routing
problem are based on the following observation. If a client i is in the circuit of a depot d then
there must exist a path from d to i that does not go through other depots, and there must exist
a path from i to d that does not go through other depots. Equivalently, we can interpret the vid
variables as stating whether or not flow must be sent from d to i and, thus, vid units of flow must
go from d to i and cannot flow through other depots, and vid units of flow must go from i to d

and cannot flow through other depots.
We define two new sets of binary flow variables. Consider the binary variables fdi

pq = 1 if
flow is sent from d ∈ D to i ∈ C via arc (p, q) ∈

(
AC \ {(i, j) : j ∈ C}

)
∪ Ad

O, and fdi
pq = 0

otherwise, and the binary variables gdipq = 1 if flow is sent from i ∈ C to d ∈ D via arc
(p, q) ∈

(
AC \ {(j, i) : j ∈ C}

)
∪Ad

I , and gdipq = 0 otherwise. Intuitively, the f flow models the
flow coming from d and headed to i, whereas the g flow models the reserve. Consider, then, the
following flow system for the f variables∑

q∈C

fdi
dq = vid ∀d ∈ D, ∀i ∈ C (4.20)

∑
p∈{d}∪C

fdi
pi = vid ∀d ∈ D, ∀i ∈ C (4.21)

∑
q∈{d}∪C\{i}

fdi
qp =

∑
q∈C

fdi
pq ∀d ∈ D, ∀i ∈ C, ∀p ∈ C \ {i} (4.22)

fdi
pq ∈ {0, 1} ∀d ∈ D, ∀i ∈ C, ∀(p, q) ∈

(
AC \ {(i, j) : j ∈ C}

)
∪ Ad

O, (4.23)
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and the following flow system for the g variables∑
p∈C

gdipd = vid ∀d ∈ D, ∀i ∈ C (4.24)

∑
q∈{d}∪C

gdiiq = vid ∀d ∈ D, ∀i ∈ C (4.25)

∑
q∈C

gdiqp =
∑

q∈{d}∪C\{i}

gdipq ∀d ∈ D, ∀i ∈ C, ∀p ∈ C \ {i} (4.26)

gdipq ∈ {0, 1} ∀d ∈ D, ∀i ∈ C, ∀(p, q) ∈
(
AC \ {(j, i) : j ∈ C}

)
∪ Ad

I . (4.27)

Regarding the f flow system, and for each pair (d, i) such that d ∈ D and i ∈ C, constraints
(4.20) and (4.21) ensure that the amount of flow leaving depot d and entering client i, respec-
tively, is the same and it is equal to vid, that is, if i is in the circuit of d, then 1 unit of flow leaves
d with destination i, and if i is not in the circuit of d, then no f flow exists for the pair (d, i).
Additionally, constraints (4.22) are the flow conservation constraints for the remaining nodes in
C \ {i} and, thus, they state that the amount of f flow for the pair (d, i) which enters a given
client p ∈ C \ {i} is equal to the flow which leaves said client. As for the g flow system the
only difference when compared to the f flow system is that the g flow goes from i to d.

In order to obtain a valid set of path elimination constraints we require additional linking
constraints between the f and g and the x variables as well as additional constraints involving the
v variables, namely constraints

∑
d∈D vid = 1 (4.3) and the domain constraints (4.5). Regarding

the former, consider the following linking constraints for each arc (d, q) ∈ Ad
O

fdq
dq = xdq ∀(d, q) ∈ Ad

O (4.28)

fdk
dq ≤ xdq ∀(d, q) ∈ Ad

O, ∀k ∈ C \ {q}, (4.29)

the following linking constraints for each arc (p, d) ∈ Ad
I

gdppd = xpd ∀(p, d) ∈ Ad
I (4.30)

gdkpd ≤ xpd ∀(p, d) ∈ Ad
I , ∀k ∈ C \ {p}, (4.31)

and, finally, the following linking constraints for each arc (p, q) ∈ AC

∑
d∈D

fdq
pq = xpq ∀(p, q) ∈ AC (4.32)∑

d∈D

gdppq = xpq ∀(p, q) ∈ AC (4.33)∑
d∈D

(
fdk
pq + gdkpq

)
≤ xpq ∀(p, q) ∈ AC , ∀k ∈ C \ {p, q}. (4.34)

Constraints (4.28) state that an arc (d, q) ∈ Ad
O is used if and only if flow from d to q is sent

via that arc. Constraints (4.29) ensure that if an arc (d, q) ∈ Ad
O is used to send flow from d to a
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node k ∈ C \ {q}, then the corresponding variable xdq must be equal to 1. Conversely, if an arc
(d, q) ∈ Ad

O is not used then it cannot be used to send flow to k. Constraints (4.30)–(4.31) are
similar to constraints (4.28)–(4.29) but with respect to arcs in Ad

I . Constraints (4.32) and (4.33)
state that an arc (p, q) ∈ AC is used if and only if it is used to send flow from a depot d ∈ D

to q and if and only if it is used to send flow from p to a depot d ∈ D, respectively. Finally,
constraints (4.34) ensure that if an arc (p, q) ∈ AC is used to send flow from any depot to a client
k ∈ C \ {p, q} or from k to any depot, then the corresponding variable xpq must be equal to 1.
Conversely, if the arc (p, q) ∈ AC is not used then it cannot be used to send any flow destined
to or coming from k. Note that constraints (4.34) are valid since if we fix an arc (p, q) ∈ AC

and a client k ∈ C \ {p, q} then we know that the flow coming from any depot d to k uses a set
of arcs that is disjoint from the set of arcs that is used to send flow from k back to d, that is, an
arc is either used to send flow to k or to send flow from k.

The system of inequalities (4.20)–(4.34) to which we add constraints (4.3) and (4.5), which
we denote by FG-X, defines a valid set of path elimination constraints. Intuitively, observe that
an unfeasible path (d1, i1, i2, . . . , ik, d2), in which d1, d2 ∈ D, d1 ̸= d2 and i1, i2, . . . , ik ∈ C,
would force any client node in it to be simultaneously in the circuit of depot d1 and d2 which
would violate constraints (4.3). Note that both flow systems f and g are required to be in the
FG-X system in order to obtain a valid set of path elimination constraints.

We will not be exploring the FG-X system of inequalities more than up to this point in this
dissertation. Essentially, our objective in this section was only to present the double network
flowmodels f and g and show that they can theoretically be used to model path elimination con-
straints and, thus, wewill not compare this system to previous sets of path elimination constraints
neither in theory nor in practice, the latter due to the fact that it is computationally impractical
to use the FG-X system given its large number of both variables and constraints. Furthermore,
the FG-X system is not as interesting in theory as the stronger system that we will present in the
next section which is based on relating the double network flow models f and g to the arc-depot
assignment variables z of Section 2.3.

4.3.2 Combining the systems of inequalities based on the z variables with
the f and g flow systems

In the previous section we presented a set of double network flow systems, the f and g flow
systems, which state that, essentially, for each pair (d, i) such that d ∈ D and i ∈ C, flow must
be sent from d to i and from i to d, respectively, provided that i is in the circuit of depot d. These
flow systems were linked via a set of linking constraints with the arc variables x, however, we
show in this section that we can derive a stronger system of inequalities if we establish linking
constraints between the f and g variables and the arc-depot assignment variables z, originally
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presented in Section 2.3. In particular, we are interested in combining the double network flow
systems with the 3I++ system, which was presented in Section 2.3.3 and which, for clarity, we
rewrite here:∑

j∈C

zddj = 1 ∀d ∈ D (2.3)

∑
j∈C

zdjd = 1 ∀d ∈ D (2.4)

∑
j∈{d}∪C

zdji =
∑

j∈{d}∪C

zdij ∀d ∈ D, ∀i ∈ C (2.5)

∑
d∈D

zdij = xij ∀(i, j) ∈ AC (2.10)

zdij = xij ∀d ∈ D, ∀(i, j) ∈ Ad
O ∪ Ad

I (2.11)

zdij ∈ {0, 1} ∀d ∈ D, ∀(i, j) ∈ AC ∪ Ad
O ∪ Ad

I . (2.7)

Intuitively, for arcs in AC , notice that the z and the x variables are linked with linking con-
straints of the form

∑
D z ≤ x (2.10) in the 3I++ system, whereas the f and g flow systems

were linked with the x variables with constraints of the form
∑

D(f + g) ≤ x (4.32)–(4.34).
However, we will show that it is possible to define linking constraints between the f and g and
the z variables, for the same arcs in AC , which are of the form f + g ≤ z, for any d ∈ D,
and, thus, which are stronger than the original linking constraints between the f and g and the
x variables.

More formally, consider an arc (p, q) ∈ AC and observe that if for some depot d ∈ D flow
from d to some i ∈ C (or from i to d) flows on arc (p, q) then surely this arc must be used in the
circuit of depot d. Conversely, if the arc (p, q) is not used in the circuit of depot d, then no flow
from d destined to i can flow on that arc. In general, we can define linking constraints between
the f and g and the z variables as follows. Consider the following linking constraints for each
arc (d, q) ∈ Ad

O

fdq
dq = zddq ∀(d, q) ∈ Ad

O (4.35)

fdk
dq ≤ zddq ∀(d, q) ∈ Ad

O, ∀k ∈ C \ {q}, (4.36)

the following linking constraints for each arc (p, d) ∈ Ad
I

gdppd = zdpd ∀(p, d) ∈ Ad
I (4.37)

gdkpd ≤ zdpd ∀(p, d) ∈ Ad
I , ∀k ∈ C \ {p}, (4.38)

and the following linking constraints for each arc (p, q) ∈ AC

fdq
pq = zdpq ∀(p, q) ∈ AC , ∀d ∈ D (4.39)

gdppq = zdpq ∀(p, q) ∈ AC , ∀d ∈ D (4.40)
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fdk
pq + gdkpq ≤ zdpq ∀(p, q) ∈ AC , ∀d ∈ D, ∀k ∈ C \ {p, q}. (4.41)

The interpretation of the linking constraints for arcs inAd
O andAd

I (4.35)–(4.38) is similar to
the interpretation of the linking constraints between the f and g and the x variables (4.28)–(4.31)
for the same sets of arcs. In addition, the interpretation of the linking constraints for arcs in AC

(4.39)–(4.41) was intuitively explained with the observation made prior.
Under the linking constraints (4.35)–(4.41), we can combine the 3I++ system (2.3)–(2.5),

(2.10)–(2.11) and (2.7), and the two flow systems f (4.20)–(4.23) and g (4.24)–(4.27), pre-
sented in the previous section, with the addition of the relationships between the v and the z

variables (4.13)–(4.14) and the domain constraints for the v variables (4.5). Note that con-
straints

∑
d∈D vid = 1 (4.3) are no longer necessary since we proved in Proposition 11 that they

are implied by the 3I++ system to which we add the relationships between the v and the z vari-
ables (4.13)–(4.14). The resulting system, which we denote by FG-Z, is clearly stronger than
the FG-X system presented in the previous section. In addition, the FG-Z system models both
path elimination constraints and subtour elimination constraints. The former is straightforward
and the latter will be proved in the next section.

Observe, however, that the FG-Z system resulting from combining the 3I++ system with the
double network flows f and g is even more impractical to use computationally when compared
to the FG-X system presented in the previous section, specially given that both the number of
variables and the number of constraints increased. In order to obtain computational results that
allow us to study the linear programming relaxation values provided by the FG-Z system, we
derived an equivalent system of inequalities in the space of the x, the v and the z variables which
is more tractable in practice but is no longer a compact system of inequalities. This is the topic
of the next section.

4.3.3 Eliminating the f and g flow systems by using the max-flow/min-cut
theorem

In this section we show how to derive a system of inequalities in the space of the x, the v and the
z variables which is equivalent, in terms of the corresponding linear programming relaxation, to
the FG-Z system defined in the previous section. We will do so in two steps. Firstly, we prove
that in the FG-Z system only one of the two network flow models is required, or, more precisely,
one of the two network flow models is redundant in the corresponding linear programming
relaxation. Recall that this was not true in the case of the FG-X system presented in Section
4.3.1, which linked the f and g variables with the x variables, and, in this case, it will allow us
to considerably reduce the number of variables and constraints in the FG-Z system by completely
discarding one of the flow models. Secondly, we eliminate the other remaining flow system by
using the max-flow/min-cut theorem, thus effectively deriving a system of inequalities which
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only uses the x, the v and the z variables and which is equivalent, in terms of the corresponding
linear programming relaxation, to the FG-Z system. We start with the first result, which is similar
to a result proved by Langevin, Soumis & Desrosiers (1990) in the context of the traveling
salesman problem.

Proposition 14. In the FG-Z system, comprised of the 3I++ system (2.3)–(2.5), (2.10)–(2.11) and
(2.7), the f flow system (4.20)–(4.23), the g flow system (4.24)–(4.27), the linking constraints
between the f and g and the z variables (4.35)–(4.41), the relationships between the v and the
z variables (4.13)–(4.14), and the domain constraints for the v variables (4.5), one of the two
flow systems f or g is redundant in the corresponding linear programming relaxation.

Proof. We start by observing that certain z, f and g variables were not defined for some arcs of
A, however, for simplification of this proof, we define all variables for all arcs by setting their
value to 0 when necessary.

Given feasible flows z′ and f ′, and a feasible auxiliary solution v′, we construct a flow g′ as
follows:

g
′di
pq = z

′d
pq − f

′di
pq ∀d ∈ D, ∀i ∈ C, ∀(p, q) ∈ A. (4.42)

Immediately we can see that all linking constraints between the f and g and the z variables
are satisfied by the z′, f ′ and g′ flow systems.

Consider now a pair (d, i) such that d ∈ D and i ∈ C. In order to complete the proof, we
only need to verify that g′ satisfies flow conservation constraints for the nodes d and i and all
nodes k ∈ C \ {i}, which correspond to constraints (4.24)–(4.26) respectively.

Regarding the flow conservation constraints of depot d, observe first that, for the z′ and the
f ′ flows, we have:∑

q∈V

z
′d
dq −

∑
p∈V

z
′d
pd = 1− 1, and

∑
q∈V

f
′di
dq −

∑
p∈V

f
′di
pd = v

′i
d − 0.

Therefore, for flow g′ we can derive:

0−
∑
p∈V

g
′di
pd =

∑
q∈V

g
′di
dq −

∑
p∈V

g
′di
pd = 1− 1− (v

′i
d − 0) ⇔

∑
p∈V

g
′di
pd = v

′i
d .

With respect to node i, observe that∑
q∈V

z
′d
iq −

∑
p∈V

z
′d
pi = 0, and

∑
q∈V

f
′di
iq −

∑
p∈V

f
′di
pi = 0− v

′i
d ,

and, thus, we have∑
q∈V

g
′di
iq − 0 =

∑
q∈V

g
′di
iq −

∑
p∈V

g
′di
pi = 0− (0− v

′i
d ) ⇔

∑
q∈V

g
′di
iq = v

′i
d .
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Finally, for some k ∈ C \ {i} we have∑
q∈V

z
′d
kq −

∑
p∈V

z
′d
pk = 0, and

∑
q∈V

f
′di
kq −

∑
p∈V

f
′di
pk = 0,

which implies that ∑
q∈V

g
′di
kq −

∑
p∈V

g
′di
pk = 0.

We have therefore proved that g′ is a feasible flow and, since it can be constructed from
the z′ and f ′ flows, it is redundant. Note that if we start from feasible flows z′ and g′, we can
similarly derive a feasible flow f ′.

The result of Proposition 14 is important since it allows us to eliminate one of the two flow
systems f or g from the FG-Z system and still ensure that the linear programming relaxation
value is the same. Without loss of generality, assume that the g flow system is eliminated, that
is, consider the system comprised of the 3I++ system (2.3)–(2.5), (2.10)–(2.11) and (2.7), the
f flow system (4.20)–(4.23), the linking constraints between the f and the z variables (4.35),
(4.36), (4.39) and (4.41) without the terms with the g variables, the relationships between the v
and the z variables (4.13)–(4.14), and the domain constraints for the v variables (4.5), which we
denote by F-Z system.

The linear programming relaxation of the F-Z system is equivalent to the linear programming
relaxation of the FG-Z system and has fewer variables and constraints, however, it is still a
complex system of inequalities which is hard to use in practice due to still including the f flow
system. In the following result we show that we can derive a system of inequalities in the space
of the x, the v and the z variables which is equivalent, in terms of the corresponding linear
programming relaxation, to the F-Z system, and which uses a new set of exponentially-many
constraints, by using the max-flow/min-cut theorem.

Proposition 15. The projection of the linear programming relaxation of the f flow system, de-
fined by (4.20)–(4.23), (4.35)–(4.36), (4.39) and (4.41) without the terms with the g variables,
onto the space of the x, the v and the z variables is given by constraints xij ≥ 0, ∀(i, j) ∈ A,
zdij ≥ 0, ∀d ∈ D, ∀(i, j) ∈ AC ∪ Ad

O ∪ Ad
I , and vid ≥ 0, ∀d ∈ D, ∀i ∈ C, and the following

set of constraints:

zd({d} ∪ S ′, S) ≥ vid ∀d ∈ D, ∀S ⊂ C : 2 ≤ |S| ≤ |C| − |D|, ∀i ∈ S. (4.43)

Proof. For each depot d ∈ D, consider a directed graph Hd with node set {d} ∪ C and arc set
Ad

O ∪ AC . Given a fixed depot d ∈ D, the f flow system can be interpreted as a network flow
system that guarantees that vid units of flow are sent from d to every i ∈ C in graph Hd with
capacities given by the z variables. The max-flow/min-cut theorem indicates that vid units of
flow are sent from d to each node i ∈ C if and only if every cut separating d from i has capacity
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at least vid. This last constraint is zd({d}∪S ′, S∪{i}) ≥ vid for any i ∈ C and any S ⊂ C \{i},
which is an equivalent way of writing constraints (4.43).

The main implication of Proposition 15 is that we can derive a new non-compact system of
inequalities which is equivalent, in terms of the corresponding linear programming relaxation,
to the F-Z system (and, consequently, to the original FG-Z system) but which no longer requires
the f variables and, thus, is more manageable in practice provided we can efficiently separate
constraints (4.43). In fact, given that the proof of Proposition 15 relies on the max-flow/min-cut
theorem, we will be able to derive a polynomial-time separation algorithm for these constraints,
which is presented in Section 4.4.3. We denote this new system of inequalities in the space of
the x, the v and the z variables by ZV-CUTS, that is, the system comprised of the 3I++ system
(2.3)–(2.5), (2.10)–(2.11) and (2.7), the new constraints (4.43), the relationships between the v
and the z variables (4.13)–(4.14), and the domain constraints for the v variables (4.5).

An important property of the ZV-CUTS system is that it models both subtour elimination
constraints and path elimination constraints. Regarding the latter, recall that the 3I++ system
models path elimination constraints, hence, so does the ZV-CUTS system. As for the former, if
we fix some subset S ⊂ C and some i ∈ S, we add up constraints (4.43) for all depots d ∈ D,
and we use constraints

∑
d∈D vid = 1 (4.3) which are implied by the ZV-CUTS system, we obtain

a subtour elimination constraint in cut form x(D ∪ S ′, S) ≥ 1 (2.2) for the set S, which means
that the ZV-CUTS system also models subtour elimination constraints. Thus, by using the ZV-
CUTS system to model both the generic subtour elimination constraints (1.6) and the generic
path elimination constraints (1.7) of the generic formulation presented in Section 1.3, we obtain
a valid formulation for the multi-depot routing problem. As we will see in Section 4.5.2, the
formulation using the ZV-CUTS system provides linear programming relaxation values which
are close to the optimal value in the instances tested.

Since the ZV-CUTS system is defined in the space of the x, the v and the z variables, an
interesting investigation is to see which constraints we can derive in the space of the x and the
v variables based on this system, similarly to what we did at the end of Section 4.2 going from
the space of the x and the v variables to the space of the x variables.

4.3.4 Deriving inequalities in the space of the x and the v variables

In this section we present inequalities in the space of the x and the v variables implied by the
ZV-CUTS system of Section 4.3.3. In particular, we show that the ZV-CUTS system implies
a very general set of constraints, which includes as special cases both new constraints as well
as constraints presented previously in Section 4.2. More formally, we start by showing that the
ZV-CUTS system implies the following set of constraints:

x(D′ ∪ S ′, S) ≥ vi1D1
+ . . .+ vikDk
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∀ partitions D1, . . . , Dk of D′ ⊆ D,

∀S ⊂ C : max{2, k} ≤ |S| ≤ |C| − |D|, ∀{i1, . . . , ik} ⊆ S. (4.44)

Proposition 16. The ZV-CUTS system, defined by the 3I++ system (2.3)–(2.5), (2.10)–(2.11)
and (2.7), constraints zd({d} ∪ S ′, S) ≥ vid (4.43), the relationships between the v and the z
variables (4.13)–(4.14), and the domain constraints for the v variables (4.5), implies constraints
(4.44) which are, therefore, valid for the multi-depot routing problem.

Proof. Let k ≥ 1 and consider i1, . . . , ik distinct client nodes of a set S ⊂ C and D1, . . . , Dk

a partition of a subset of depots D′ ⊆ D. For each m = 1, . . . , k consider the following
constraints, which are of the family of constraints (4.43):

zd({d} ∪ S ′, S) ≥ vimd ∀d ∈ Dm

By adding all of the above constraints form = 1, . . . , k and by using the linking constraints
between the z and the x variables (2.10)–(2.11) of the 3I++ system, we obtain constraints (4.44).

Constraints (4.44) include a number of interesting sets of constraints as special cases, as
we will see. We conjecture that the exact separation of these constraints cannot be done in
polynomial time, which means that, in practice, it is difficult to compute the linear programming
relaxation values given by constraints (4.44). For this reason, we will focus on identifying two
particular cases. Observe that, by appropriately using the client indegree constraints (1.5) for
the nodes in set S, we can equivalently write constraints (4.44) as:

x(S) + x(D \D′, S) + vi1D1
+ . . .+ vikDk

≤ |S|

∀ partitions D1, . . . , Dk of D′ ⊆ D,

∀S ⊂ C : max{2, k} ≤ |S| ≤ |C| − |D|, ∀{i1, . . . , ik} ⊆ S. (4.45)

In the above form we can immediately see that for D′ = D and k = 2, and by using
constraints

∑
d∈D vid = 1 (4.3), constraints (4.45) are constraints viD′ + x(S) ≤ vjD′ + |S| − 1

(4.11), which we recall were presented in Section 4.2.5 and which we had not yet proved to
be valid. This observation, along with the result of Proposition 11, shows that the ZV-CUTS
system dominates all systems of inequalities presented in Section 4.2. Another special case of
interest is the case in which we set k = 1 in constraints (4.44). IfD′ = D we obtain the regular
subtour elimination constraints written in cut form x(D ∪S ′, S) ≥ 1 (2.2). In the case in which
D′ is a proper subset of D we obtain the following constraints:

x(D′ ∪ S ′, S) ≥ viD′ ∀D′ ⊂ D, ∀S ⊂ C : 2 ≤ |S| ≤ |C| − |D|, ∀i ∈ S. (4.46)

Constraints (4.46) are a different set of subtour elimination constraints, which are similar to
sets of constraints used in formulations for the Hamiltonian p-median problem, namely in the
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studies by Gollowitzer, Gouveia, Laporte, Pereira & Wojciechowski (2014) and Erdoğan et al.
(2016).

Similarly to the case of Section 4.2.9, the purpose of this section is not to provide a complete
study of inequalities in the space of the x and the v variables which we can derive from the ZV-
CUTS system, but more so to provide tools which can be used in future research. For example,
recall that, in Sections 4.2.6 and 4.2.7, we have already presented some results that show how to
derive additional inequalities in the space of the x and the v variables by using the relationship
between the v and the z variables and based on the 3I++ system, which is included in the ZV-
CUTS system. In this section, we presented constraints (4.44) which, clearly, include many
more particular cases which remain to be studied in more detail in future investigations.

4.4 Separation algorithms

In this section we present separation algorithms for some of the exponentially-sized sets of con-
straints presented throughout Sections 4.2 and 4.3. We refer the reader to the introduction of
Section 3.3, where we provide a more detailed explanation regarding separation algorithms.

Since in the computational experiments which wewill report in Section 4.5 we are only inter-
ested in obtaining linear programming relaxation values, we will only present exact separation
algorithms without any concerns regarding efficiency and, in addition, we will not present ded-
icated separation algorithms for integer points. Apart from the algorithms presented in Section
4.4.1, the separation algorithms described in the other sections are based on max-flow/min-cut
computations in the auxiliary st-extended graph, which we recall is the graph W1 = (V1, A1),
originally defined in Section 3.3, and which could be obtained from the original graph G as
follows:

• The set of nodes V1 includes all nodes of V and two additional nodes s and t, that is,
V1 = V ∪ {s, t};

• The set of arcs A1 includes all arcs of A except the arcs ingoing the depots, additional
arcs linking node s to every depot d ∈ D and additional arcs linking every client i ∈ C to
node t, that is, A1 = (A \ {(i, d) : i ∈ C, d ∈ D}) ∪ {(s, d) : d ∈ D} ∪ {(i, t) : i ∈ C}.

4.4.1 Separation of constraints (4.10), (4.12) and (4.15)

The separation algorithms for constraints viD′ + xij ≤ vjD′ +1 (4.10), viD′ + xij + xji ≤ vjD′ +1

(4.12) and viD′ + xij + x(D′, j) + x(i,D \ D′) ≤ vjD′ + 1 (4.15) are based on a separation
algorithm described by Erdoğan et al. (2016) for the Hamiltonian p-median problem.
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Algorithm 4.1
Require: A point (x∗, v∗).
1: for all (p, q) ∈ AC do
2: Set wlhs = 0 and D′ = ∅.
3: for all d ∈ D do
4: If v∗pd − v∗qd > 0, then set wlhs = wlhs + v∗pd − v∗qd and D′ = D′ ∪ {d}.
5: end for
6: if wlhs > 1− x∗pq then
7: D′ defines a violated inequality (4.10).
8: end if
9: end for

Algorithm 4.2
Require: A point (x∗, v∗).
1: for all (p, q) ∈ AC do
2: Set wlhs = 0 and D′ = ∅.
3: for all d ∈ D do
4: If v∗pd − v∗qd > 0, then set wlhs = wlhs + v∗pd − v∗qd and D′ = D′ ∪ {d}.
5: end for
6: if wlhs > 1− x∗pq − x∗qp then
7: D′ defines a violated inequality (4.12).
8: end if
9: end for

We start by observing that constraints (4.10), (4.12) and (4.15) can be rewritten, respectively,
in the following form:

viD′ − vjD′ ≤ 1− xij ∀D′ ⊂ D, ∀i, j ∈ C, i ̸= j (4.47)

viD′ − vjD′ ≤ 1− xij − xji ∀D′ ⊂ D, ∀i, j ∈ C, i ̸= j (4.48)

viD′ − vjD′ + x(D′, j) + x(i,D \D′) ≤ 1− xij ∀D′ ⊂ D, ∀i, j ∈ C, i ̸= j. (4.49)

In order to separate these constraints we use algorithms 4.1, 4.2 and 4.3, respectively, which
are polynomial-time exact separation algorithms for both fractional and integer points. Intu-
itively, notice that, for each arc (i, j) ∈ AC , the right-hand side of any of the above constraints
is fixed and we can maximize the left-hand side by checking for each depot d ∈ D whether we
should have d ∈ D′ or d ∈ D \D′.

4.4.2 Separation of constraints (4.11)

In order to separate constraints viD′ +x(S) ≤ vjD′ + |S|−1 (4.11), notice that if we appropriately
use the client indegree constraints (1.5) for the nodes in S and constraints

∑
d∈D vid = 1 (4.3)
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Algorithm 4.3
Require: A point (x∗, v∗).
1: for all (p, q) ∈ AC do
2: Set wlhs = 0 and D′ = ∅.
3: for all d ∈ D do
4: If v∗pd −v∗qd +x∗dq > x∗pd, then setw

lhs = wlhs+v∗pd −v∗qd +x∗dq andD
′ = D′∪{d}. Otherwise,

set wlhs = wlhs + x∗pd.
5: end for
6: if wlhs > 1− x∗pq then
7: D′ defines a violated inequality (4.15).
8: end if
9: end for

Algorithm 4.4
Require: A point (x∗, v∗) and the auxiliary st-extended graph.
1: for all i, j ∈ C, i ̸= j do
2: Set the capacities of the arcs {(s, d) : d ∈ D} to 1, the capacities of the arcs (p, q) ∈ A \ {(k, d) :

k ∈ C, d ∈ D} to x∗pq, the capacities of the arcs (i, t) and (j, t) to 1 and the capacities of the arcs
{(k, t) : k ∈ C, k ̸= i, k ̸= j} to 0. Then, determine the maximum flow wlhs from s to t and
define S as the client nodes in the same shore as node t in the corresponding minimum cut.

3: Set wrhs = 0 and D′ = ∅.
4: for all d ∈ D do
5: If v∗id > v∗jd , then setwrhs = wrhs+v∗id andD′ = D′∪{d}. Otherwise, setwrhs = wrhs+v∗jd .
6: end for
7: if wlhs < wrhs then
8: S and D′ define a violated inequality (4.11).
9: end if
10: end for

for node j, we can rewrite constraints (4.11) in the following cut form:

x(D ∪ S ′, S) ≥ viD′ + vjD\D′

∀D′ ⊂ D, ∀S ⊂ C : 2 ≤ |S| ≤ |C| − |D|, ∀i, j ∈ S, i ̸= j. (4.50)

This way of writing the constraints shows that we can separate them by minimizing the left-
hand side and maximizing the right-hand side independently, since the set S only appears on the
left-hand side and the choice of set D′ is only important for the right-hand side. Based on this
observation, we define algorithm 4.4 which is a polynomial-time separation algorithm for both
fractional and integer points. Intuitively, we minimize the cut on the left-hand side by resorting
to max-flow/min-cut computations in the st-extended graph and we maximize the right-hand
side by inspection, that is, by choosing for each depot d ∈ D whether we should have d ∈ D′
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Algorithm 4.5
Require: A point (x∗, v∗, z∗) and the auxiliary st-extended graph.
1: for all d ∈ D and i ∈ C do
2: Set the capacity of the arc (s, d) to 1, the capacities of the arcs {(s, d′) : d′ ̸= d} to 0, the

capacities of the arcs (d, q) ∈ Ad
O to z∗ddq , the capacities of the arcs (d

′, q) ∈ Ad′
O , for d

′ ̸= d, to 0,
the capacities of the arcs (p, q) ∈ AC to z∗dpq , the capacity of the arc (i, t) to 1, the capacities of the
arcs {(k, t) : k ∈ C, k ̸= i} to 0, and determine the maximum flow w from s to t.

3: if w < v∗id then
4: The corresponding minimum cut defines a violated inequality (4.43) for d and i in which S is

the subset of client nodes in the same shore as node t.
5: end if
6: end for

or d ∈ D \D′.

4.4.3 Separation of constraints (4.43)

In order to separate constraints zd({d}∪S ′, S) ≥ vid (4.43) for both fractional and integer points
we can use algorithm 4.5, which is a polynomial-time exact separation algorithm based on the
auxiliary st-extended graph. Intuitively, observe that the left-hand side, for each d ∈ D, is a
cut which only involves z variables with respect to d, thus, we can minimize it by performing
max-flow/min-cut computations in the st-extended graph in which the capacities of the arcs are
given by the z variables associated with depot d.

4.4.4 Separation of constraints (4.19)

In order to separate constraints x(S) + x(D′, i) + x(j,D \D′) + xji ≤ |S| (4.19), we start by
noticing that, by appropriately using the client indegree constraints (1.5) for the set S, they can
be rewritten as follows:

x(D ∪ S ′, S) ≥ x(D′, i) + x(j,D \D′) + xji

∀D′ ⊂ D, ∀S ⊂ C : 2 ≤ |S| ≤ |C| − |D|, ∀i, j ∈ S, i ̸= j. (4.51)

Once again this shows that we can separate these constraints by minimizing the left-hand
side and maximizing the right-hand side independently, since the set S only appears on the left-
hand side and the choice D′ is only relevant for the right-hand side. The separation algorithm
we propose is algorithm 4.6. Intuitively, we minimize the cut on the left-hand side by resorting
to max-flow/min-cut computations in the st-extended graph and we maximize the right-hand by
choosing for each depot d ∈ D whether we should have d ∈ D′ or d ∈ D \D′.
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Algorithm 4.6
Require: A point x∗ and the auxiliary st-extended graph.
1: for all i, j ∈ C, i ̸= j do
2: Set the capacities of the arcs {(s, d) : d ∈ D} to 1, the capacities of the arcs (p, q) ∈ A \ {(k, d) :

k ∈ C, d ∈ D} to x∗pq, the capacities of the arcs (i, t) and (j, t) to 1, the capacities of the arcs
{(k, t) : k ∈ C, k ̸= i, k ̸= j} to 0. Then, determine the maximum flow wlhs from s to t and
define S as the client nodes in the same shore as node t in the corresponding minimum cut.

3: Set wrhs = x∗ji and D′ = ∅.
4: for all d ∈ D do
5: If x∗di > x∗jd, then setw

rhs = wrhs+x∗di andD
′ = D′∪{d}. Otherwise, setwrhs = wrhs+x∗jd.

6: end for
7: if wlhs < wrhs then
8: S and D′ define a violated inequality (4.19).
9: end if
10: end for

4.5 Computational experiment

In this section we present a set of computational results that complement the theoretical discus-
sion of Sections 4.2 and 4.3. More precisely, we compare the linear programming relaxation
values provided by some of the systems of inequalities presented throughout these sections.

We will divide this study into two parts. In Section 4.5.1 we compare systems of inequalities
that model path elimination constraints defined in the space of the x and the v variables presented
in Section 4.2. Then, in Section 4.5.2, we compare a subset of these previous systems to the
systems based on the arc-depot assignment variables z, originally presented in Section 2.3, and,
in addition, we present linear programming relaxation values corresponding to a formulation
based on the ZV-CUTS system presented in Section 4.3.3.

For the ensuing experiments we will use the set T of instances that have been described in
Section 3.4. The reason for using a set of instances with a small size is due to the fact that
many of the proposed modeling approaches being compared have too many variables and/or
constraints and, thus, cannot be used to solve large instances in a reasonable computational
time. The linear programming relaxation values reported in the following sections are the real
linear programming relaxation values, that is, we deactivate all of CPLEX’s general purpose
cuts and preprocessing. Note also that the optimal value of these instances is known since it was
determined by using the branch-and-cut algorithm presented in Chapter 3.
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4.5.1 Comparing path elimination constraints in the space of the x and
the v variables

In this section we compare, in terms of the corresponding linear programming relaxation val-
ues, several of the proposed systems of inequalities in the space of the x and the v variables
to model path elimination constraints which were presented throughout Section 4.2. More pre-
cisely, we define valid formulations in the space of the x and the v variables for the multi-depot
routing problem that only differ in the set of path elimination constraints used, which allows us
to compare the several systems of path elimination constraints in a fair way.

Consider the base formulation comprised of the degree constraints (1.2)–(1.5), the subtour
elimination constraints x(D ∪ S ′, S) ≥ 1 (2.2), the domain constraints for the x variables (1.8),
and the following constraints in the space of the x and the v variables, which are common to all
of the different systems of inequalities of Section 4.2:

xdi ≤ vid ∀d ∈ D, ∀i ∈ C (4.1)

xid ≤ vid ∀d ∈ D, ∀i ∈ C (4.2)∑
d∈D

vid = 1 ∀i ∈ C (4.3)

vid ∈ {0, 1} ∀d ∈ D, ∀i ∈ C. (4.5)

We will compare a total of five formulations. Each formulation is comprised of the base
formulation presented above with the addition of a set of constraints. For simplification, we
denote the formulations by the same name of the system of inequalities in the space of the x and
the v variables fromwhich it originates. The formulations which will be tested are the following:

• The CDA-DDL formulation which uses constraints vid + xij + xji ≤ vjd + 1 (4.8);

• The CDA+ formulation which uses constraints vid + xij + xdj + x(i,D \ {d}) ≤ vjd + 1

(4.16);

• The GCDA-DDL formulation which uses constraints viD′ + xij + xji ≤ vjD′ + 1 (4.12);

• The GCDA+ formulation which uses constraints viD′ + xij + x(D′, j) + x(i,D \D′) ≤
vjD′ + 1 (4.15);

• The GCDA-GDDL formulation which uses constraints viD′ +x(S) ≤ vjD′ + |S|−1 (4.11).

Tables 4.1 and 4.2 show the linear programming relaxation values of the five formulations
which are being compared, with Table 4.1 focusing on the asymmetric instances of the instance
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Table 4.1: Comparing the linear programming relaxation values of several path elimination constraints based on
the v variables for asymmetric instances

Name OPT CDA-DDL CDA+ GCDA-DDL GCDA+ GCDA-GDDL

t-bgs-50-20a 821 812.714 818.584 815.031 820 815.631
t-bgs-50-19a 824 815.714 821.573 818.017 823 818.631
t-bgs-50-18a 807 799.75 804.067 800.791 804.519 800.853
t-bgs-50-17a 784 779.396 782.636 780.25 784 780.25
t-bgs-50-16a 752 747.396 750.636 748.25 752 748.25
t-bgs-50-15a 754 744.146 744.636 744.963 746 745.217
t-bgs-50-14a 757 742.093 742.051 743.057 743.917 743.994
t-bgs-50-13a 749 730.266 730.181 731.568 732.782 732.664
t-bgs-50-12a 741 722.257 722.131 723.517 724.656 724.311
t-bgs-50-11a 722 710.25 710.273 711.332 713.158 711.531
t-bgs-50-10a 719 705.364 705.5 705.9 707.25 705.9
t-bgs-50-9a 707 692.962 694.5 692.962 694.5 692.962
t-bgs-50-8a 689 676.815 678.554 676.815 678.563 676.951
t-bgs-50-7a 679 670 670 670 670 670
t-bgs-50-6a 659 651.167 651.167 651.167 651.167 651.167
t-bgs-50-5a 648 639.75 639.75 639.75 639.75 639.75
t-bgs-50-4a 621 610.563 610.563 610.563 610.563 610.563
t-bgs-50-3a 628 620.846 620.846 620.846 620.846 620.846
t-bgs-50-2a 628 619.75 619.75 619.75 619.75 619.75

set T and Table 4.2 on the symmetric ones. Both tables have the following format. The first col-
umn indicates the instance name and the second column its optimal value (OPT). The remain-
ing five columns indicate the linear programming relaxation value of formulations CDA-DDL,
CDA+, GCDA-DDL, GCDA+ and GCDA-GDDL, respectively.

First we analyze the results in Table 4.1, which are with respect to the asymmetric instances.
Observe that all five formulations provided the same linear programming relaxation value for
the instances with between 2 and 7 depots. Regarding the instances with 8 or more depots, the
results show that, between the two compact systems of path elimination constraints, namely the
CDA-DDL system and the CDA+ system, the latter provides a higher linear programming relax-
ation value than the former except in the instances with 12, 13 and 14 depots. The conclusions
are similar when we compare their depot subset generalizations, namely systems GCDA-DDL
and GCDA+, respectively, but now the latter provides a higher linear programming relaxation
value than the former in all instances with at least 8 depots. In any of the two cases, the depot
subset generalized systems are able to improve the linear programming relaxation values of the
corresponding compact systems. Finally, the generalization of the GCDA-DDL system to arc
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Table 4.2: Comparing the linear programming relaxation values of several path elimination constraints based on
the v variables for symmetric instances

Name OPT CDA-DDL CDA+ GCDA-DDL GCDA+ GCDA-GDDL

t-bgs-50-20 1362 1324 1324 1324 1324 1324
t-bgs-50-19 1367 1325 1325 1325 1325 1325
t-bgs-50-18 1342 1300 1300 1300 1300 1300
t-bgs-50-17 1311 1283.5 1283.5 1283.5 1283.5 1283.5
t-bgs-50-16 1263 1236.5 1236.5 1236.5 1236.5 1236.5
t-bgs-50-15 1251 1234.5 1234.5 1234.5 1234.5 1234.5
t-bgs-50-14 1241 1224.5 1224.5 1224.5 1224.5 1224.5
t-bgs-50-13 1229 1217.5 1217.5 1217.5 1217.5 1217.5
t-bgs-50-12 1232 1220.5 1220.5 1220.5 1220.5 1220.5
t-bgs-50-11 1229 1198 1198 1198 1198 1198
t-bgs-50-10 1188 1163 1163 1163 1163 1163
t-bgs-50-9 1193 1166 1166 1166 1166 1166
t-bgs-50-8 1170 1145.5 1145.5 1145.5 1145.5 1145.5
t-bgs-50-7 1159 1137.5 1137.5 1137.5 1137.5 1137.5
t-bgs-50-6 1128 1113 1113 1113 1113 1113
t-bgs-50-5 1105 1091.65 1091.65 1091.65 1091.65 1091.65
t-bgs-50-4 1053 1050.25 1050.25 1050.25 1050.25 1050.25
t-bgs-50-3 1077 1073.88 1073.88 1073.88 1073.88 1073.88
t-bgs-50-2 1078 1074.75 1074.75 1074.75 1074.75 1074.75

sets defining a clique, namely the system GCDA-GDDL, slightly improves the linear program-
ming relaxation values over the GCDA-DDL system and it is now marginally better than the
GCDA+ system in the instance with 14 depots.

Overall the results for asymmetric instances indicate that the CDA+ and the GCDA+ sys-
tems, which were derived from the 3I++ system in Section 4.2.6, seem to be more effective
than the CDA-DDL, the GCDA-DDL and the GCDA-GDDL systems, which are based on ar-
guments similar to ones used in the precedence constrained traveling salesman problem. Recall,
however, that the GCDA-GDDL system, which includes constraints (4.11), implies the sub-
tour elimination constraints x(S) ≤ |S| − 1 (2.1) as we showed in Section 4.2.3, which is an
advantage since we do not need separate them as well. Additionally, the results of Table 4.1
also clearly show that the compact systems provide, in general, a smaller linear programming
relaxation value than their depot subset and/or arc set generalized versions, however, the latter
require separation algorithms to use and, in some cases, the improvement is not substantial or
even non-existent.

Concerning the results of Table 4.2, which are with respect to the symmetric instances, we
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can see that all formulations provide the same linear programming relaxation value for all in-
stances. Regarding the formulations CDA+ and GCDA+, this is related to the result of Propo-
sition 3, from which we could conclude that the linear programming relaxation values for sym-
metric instances of any system of path elimination constraints which is implied by the 3I++

system is always the same. Note that we are unaware if a similar result to the one of Proposition
3 applies to the CDA-DDL, the GCDA-DDL or the GCDA-GDDL systems, even if the results
of Table 4.2 seem to indicate so. Overall, the conclusions we can draw from these results are
limited and, in fact, it is not clear which system of inequalities is preferable to use for symmetric
cost instances.

4.5.2 Comparing formulations using depot assignment variables

In this section we assess the linear programming relaxation values provided by formulations
based on the arc-depot assignment variables z, and compare them to each other and to a subset
of the formulations defined in the previous section, which used path elimination constraints in
the space of the x and the v variables. The formulations which will be compared in this section
consider as a base formulation the degree constraints (1.2)–(1.5), the subtour elimination con-
straints x(D∪S ′, S) ≥ 1 (2.2) and the domain constraints for the x variables (1.8). Once again,
for simplification, we denote the formulations by the same name of the system of inequalities
from which it originates.

We consider two formulations from the previous section, namely the GCDA+ formulation
and the GCDA-GDDL formulation. These two formulations will be compared to the 3I formu-
lation, which uses the 3I system presented in Section 2.3.1 and which we recall is as follows∑

j∈C

zddj = 1 ∀d ∈ D (2.3)

∑
j∈C

zdjd = 1 ∀d ∈ D (2.4)

∑
j∈{d}∪C

zdji =
∑

j∈{d}∪C

zdij ∀d ∈ D, ∀i ∈ C (2.5)

zdij ≤ xij ∀d ∈ D, ∀(i, j) ∈ AC ∪ Ad
O ∪ Ad

I (2.6)

zdij ∈ {0, 1} ∀d ∈ D, ∀(i, j) ∈ AC ∪ Ad
O ∪ Ad

I , (2.7)

the 3I++ formulation, which uses the 3I++ system that can be obtained from the one above by
replacing the linking constraints between the z and the x variables (2.6) by the set∑

d∈D

zdij = xij ∀(i, j) ∈ AC (2.10)

zdij = xij ∀d ∈ D, ∀(i, j) ∈ Ad
O ∪ Ad

I , (2.11)
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Table 4.3: Comparing the linear programming relaxation values of formulations based on the v variables and
formulations based on the z variables for asymmetric instances

Name OPT GCDA+ GCDA-GDDL 3I 3I++ ZV-CUTS

t-bgs-50-20a 821 820 815.631 819.9 820 820
t-bgs-50-19a 824 823 818.631 822.9 823 823
t-bgs-50-18a 807 804.519 800.853 805.4 805.4 806.1
t-bgs-50-17a 784 784 780.25 784 784 784
t-bgs-50-16a 752 752 748.25 752 752 752
t-bgs-50-15a 754 746 745.217 746 746 748.5
t-bgs-50-14a 757 743.917 743.994 748 748 750.5
t-bgs-50-13a 749 732.782 732.664 737.286 738.875 740.375
t-bgs-50-12a 741 724.656 724.311 729.188 730.5 732.333
t-bgs-50-11a 722 713.158 711.531 715.714 717.565 718.125
t-bgs-50-10a 719 707.25 705.9 708.038 709.638 710.664
t-bgs-50-9a 707 694.5 692.962 695.531 696.467 697.903
t-bgs-50-8a 689 678.563 676.951 679 679.613 682.247
t-bgs-50-7a 679 670 670 670 670 671.25
t-bgs-50-6a 659 651.167 651.167 651.167 651.167 652
t-bgs-50-5a 648 639.75 639.75 639.75 639.75 640.4
t-bgs-50-4a 621 610.563 610.563 610.563 610.563 611.333
t-bgs-50-3a 628 620.846 620.846 620.846 620.846 621
t-bgs-50-2a 628 619.75 619.75 619.75 619.75 620.5

and the ZV-CUTS formulation, which uses the ZV-CUTS system defined by the 3I++ system,
constraints zd({d} ∪ S ′, S) ≥ vid (4.43), the relationships between the v and the z variables
(4.13)–(4.14), and the domain constraints for the v variables (4.5).

Tables 4.3 and 4.4 show the linear programming relaxation values of the five formulations
which are being compared, with Table 4.3 focusing on the asymmetric instances of the instance
set T and Table 4.4 on the symmetric ones. Both tables have the following format. The first col-
umn indicates the instance name and the second column its optimal value (OPT). The remain-
ing five columns indicate the linear programming relaxation value of formulations GCDA+,
GCDA-GDDL, 3I, 3I++ and ZV-CUTS, respectively. Observe that the results for the formu-
lations GCDA+ and GCDA-GDDL were taken from Tables 4.1 and 4.2 and the results for the
formulation 3I were taken from Table 3.1, since we have shown that the 1-MCC inequalities
x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 are equivalent to the 3I system in Proposition 5.

We first analyze the results of Tables 4.3 and 4.4 by ignoring the last column, which concerns
the ZV-CUTS formulation. The results in Table 4.3, which are with respect to the asymmetric
instances of the instance set T, show that, in general, the arc-depot assignment variable based
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Table 4.4: Comparing the linear programming relaxation values of formulations based on the v variables and
formulations based on the z variables for symmetric instances

Name OPT GCDA+ GCDA-GDDL 3I 3I++ ZV-CUTS

t-bgs-50-20 1362 1324 1324 1324 1324 1357.5
t-bgs-50-19 1367 1325 1325 1325 1325 1362.5
t-bgs-50-18 1342 1300 1300 1300 1300 1335.5
t-bgs-50-17 1311 1283.5 1283.5 1283.5 1283.5 1308.5
t-bgs-50-16 1263 1236.5 1236.5 1236.5 1236.5 1263
t-bgs-50-15 1251 1234.5 1234.5 1234.5 1234.5 1251
t-bgs-50-14 1241 1224.5 1224.5 1224.5 1224.5 1241
t-bgs-50-13 1229 1217.5 1217.5 1217.5 1217.5 1229
t-bgs-50-12 1232 1220.5 1220.5 1220.5 1220.5 1232
t-bgs-50-11 1229 1198 1198 1198 1198 1224
t-bgs-50-10 1188 1163 1163 1163 1163 1186
t-bgs-50-9 1193 1166 1166 1166 1166 1191
t-bgs-50-8 1170 1145.5 1145.5 1145.5 1145.5 1170
t-bgs-50-7 1159 1137.5 1137.5 1137.5 1137.5 1159
t-bgs-50-6 1128 1113 1113 1113 1113 1128
t-bgs-50-5 1105 1091.65 1091.65 1091.65 1091.65 1105
t-bgs-50-4 1053 1050.25 1050.25 1050.25 1050.25 1053
t-bgs-50-3 1077 1073.88 1073.88 1073.88 1073.88 1076.25
t-bgs-50-2 1078 1074.75 1074.75 1074.75 1074.75 1077.75

systems provide higher linear programming relaxation values than the best of the two systems
defined in the space of the x and the v variables. Regarding the 3I++ system, this is only not true
for the instances with between 2 and 7 depots in which this formulation provides the same linear
programming relaxation value as the ones defined in the space of the x and the v variables. As
for the 3I formulation, its linear programming relaxation value is marginally worse than that of
the GCDA+ formulation for the instances with 19 and 20 depots but, for the remaining cases,
it is either the same or higher. Additionally, the results also show that the 3I++ system is only
marginally better than the 3I system.

Given that the 3I system is equivalent, in terms of the corresponding linear programming
relaxation, to the 1-MCC inequalities (2.13) and the 3I++ system implies the more general k-
MCC inequalities x(S ′, D′)+x(S ′, S)+x(D′, S) ≥ |D′| (2.14), the latter proved in Proposition
6, we can conclude that the k-MCC inequalities (2.14) are onlymarginally better than the 1-MCC
inequalities (2.13) in terms of linear programming relaxation. Note also that, due to the result of
Proposition 5, we can see that the 1-MCC inequalities (which can be separated in a very efficient
way) provide, in general, as good as or even higher linear programming relaxation values when
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compared to the path elimination constraint systems defined in the space of the x and the v

variables and, thus, it is unlikely that the results of the branch-and-cut algorithm presented in
Chapter 3 could be strengthened by using the systems in the space of the x and the v variables
which we have proposed in this chapter.

As for the results in Table 4.4, once again we see that the linear programming relaxation
values of the two systems in the space of the x and the v variables and of the 3I and the 3I++

system are the same, which was expected given the result of Proposition 3.
We now analyze in detail the results of Tables 4.3 and 4.4 regarding the last column, that is,

regarding the ZV-CUTS system. Note that the difference in the linear programming relaxation
values when compared to the 3I++ system is only due to constraints (4.43), since the linking
constraints between the v and the z variables (4.13)–(4.14) provide no increase in the linear
programming relaxation value on their own. As we mentioned when we first introduced this
system in Section 4.3.3, the linear programming relaxation values obtained are very close to the
optimal value of the instances tested. For the asymmetric instances in Table 4.3, we can see that
the ZV-CUTS system is able to improve the linear programming relaxation values in most of
the instances and, in particular, it is the only system which could obtain an improvement on the
instances with between 2 and 7 depots. However, the improvements are not substantial, which
could be due to the fact that the 3I++ system is already good for asymmetric instances. In con-
trast, in the symmetric instances of Table 4.4, the ZV-CUTS system provides outstanding results.
Firstly, it is the first system for which the linear programming relaxation values do not coincide
with all the other systems. Secondly, the improvement on the linear programming relaxation
values is very significant with the ZV-CUTS system being able to obtain the optimal solution
of 10 out of 19 instances, and on the remaining ones providing linear programming relaxation
values which are very close to the optimal value. Overall, the ZV-CUTS system provides high
linear programming relaxation values for any instance and it is definitely a formulation which
should be studied in more detail in the future.

4.6 Concluding remarks

In this chapter we presented several systems of inequalities to model path elimination constraints
as complement to the study of the previous chapters.

Most of the systems of inequalities presented were based on client-depot assignment vari-
ables similar to the precedence variables used in the precedence constrained traveling salesman
problem. The advantage of these variables is that they allow for intuitive ways of modeling
constraints, in particular path elimination constraints. Some of these systems were based on
ideas from the precedence constrained traveling salesman problem and from the Hamiltonian
p-median problem, which is the problem studied in the second part of this dissertation. The
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remaining systems were based on a relationship to the arc-depot assignment variables first used
in Chapter 2 and are, as far as we know, new. The computational results conducted in this
chapter showed that the latter type of systems usually provide higher linear programming relax-
ation values than the former for asymmetric instances, even though they are theoretically not
comparable.

We also presented another system of inequalities to model path elimination constraints based
on double network flow systems. The two flow systems work together to ensure that flow
is sent from each depot to each client assigned to that depot and back from the client to the
depot and were first linked with the arc variables. By linking these flow systems with the arc-
depot assignment variables, we were able to derive a stronger system of inequalities which also
models subtour elimination constraints. Additionally, based on two different results we were
able to show that we can derive a non-compact system of inequalities which does not require
the complex double network flows system but which provides the same linear programming
relaxation value. The computational results showed that a formulation based on this new system
is able to provide linear programming relaxation values which are very close to the optimal value
in the instances tested.
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Chapter 5

Introducing the Hamiltonian p-median
problem
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5.1 Introduction

In this second part of the dissertation we study the Hamiltonian p-median problem (see, e.g.,
Branco & Coelho 1990, Gollowitzer et al. 2014, Erdoğan et al. 2016, Bektaş, Gouveia & Santos
2019), which is the problem of finding p cycles (circuits) in an undirected (directed) graph such
that each node of the graph is in one and only one cycle (circuit) and the total cost of the selected
edges (arcs) is minimized. Notice that if p = 1 then the Hamiltonian p-median problem is the
classical symmetric (asymmetric) traveling salesman problem (see, e.g., Lawler et al. 1985,
Applegate et al. 2006). We will use formulations based on directed graphs, similarly to what we
did for the multi-depot routing problem in the first part of this dissertation, since we assume that
the cost function may be asymmetric, hence, from now on our aim is to find a set of p circuits
of minimum total cost such that each node is in one and only one circuit.
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As we mentioned, the traveling salesman problem is a particular case of the Hamiltonian
p-median problem, however, the literature related to the Hamiltonian p-median problem is not
as extensive as the one related to the traveling salesman problem. To the best of our knowledge,
the Hamiltonian p-median problem was first introduced by Branco & Coelho (1990) who pre-
sented two formulations, one a set partitioning formulation and the other a formulation based on
directed graphs, similar to the one by Fisher & Jaikumar (1981) for the vehicle routing problem,
as well as several heuristics, assuming symmetric costs. Other studies include that of Glaab
& Pott (2000) and Zohrehbandian (2007), either of which do not include computational exper-
iments, and more recently by Hupp & Liers (2013) and Gollowitzer et al. (2014) concerning
polyhedral studies. Most of the algorithmic work on this problem is fairly recent (see, e.g.,
Gollowitzer et al. 2014, Erdoğan et al. 2016, Marzouk, Moreno-Centeno & Üster 2016) and
introduces an additional condition which is that the Hamiltonian p-median problem does not
admit solutions that include two-node circuits. Clearly, this condition may lead to sub-optimal
solutions when compared to the Hamiltonian p-median problem as first defined by Branco &
Coelho (1990), however, it is attractive for modeling purposes, since the problem can then be
easily modeled by using formulations based on undirected graphs with only a binary variable
associated with each edge. Modeling two-node cycles on an undirected graph, although not
straightforward, is still possible by using {0,1,2} variables or, equivalently, an additional set
of binary variables that specifically considers this case, as it is done in routing problems with
multiple depots or in single-depot problems with multiple vehicles (see, e.g., Laporte, Nobert &
Pelletier 1983, Laporte et al. 1986, Araque G., Kudva, Morin & Pekny 1994, Belenguer et al.
2011, Benavent & Martínez-Sykora 2013).

The Hamiltonian p-median problem is related to the multi-depot routing problem that we
studied in the first part of this dissertation. Observe that the nodes of the underlying graph are all
identical in the Hamiltonian p-median problem, unlike what happens in the multi-depot routing
problem in which nodes are partitioned into depots and clients, however, we can artificially
attribute different roles to different nodes by using adequate modeling techniques. In particular,
we will introduce the concept of acting depot of a circuit, that is, in each of the p circuits one of
its nodes will function as an artificial depot whereas the other nodes will be considered artificial
clients. By using this concept we can effectively use techniques from routing problems with
multiple depots in the Hamiltonian p-median problem, even if these depots are artificial. The
concept of acting depot is not new in the Hamiltonian p-median problem (see, e.g., Gollowitzer
et al. 2014, Erdoğan et al. 2016) neither in other related settings (see, e.g., Laporte et al. 1983),
however, we believe it can be further explored and, in particular, we believe that a stronger link
can be established between routing problemswithmultiple depots and theHamiltonian p-median
problem.

Our approach for studying the Hamiltonian p-median problem in this dissertation follows
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the paradigm given by Gollowitzer et al. (2014) in that we present models for the Hamiltonian
p-median problem by partitioning the constraint set of the problem into two, namely one that
guarantees that there are at most p circuits in the solution, and another to ensure that there are at
least p circuits in the solution, which we will refer to as (≤ p) constraints and (≥ p) constraints,
respectively. At this point, it is interesting to revisit the special case of the traveling salesman
problem, where one wishes to obtain solutions with p = 1 circuit, for which reason one would
need to eliminate solutions with more than p = 1 circuits. This leads to the observation that the
(≤ p) constraints are generalizations of (and similar to) the subtour elimination constraints, and
that the (≥ p) constraints are not as straightforward to characterize since they are unnecessary
in the traveling salesman problem. By introducing the concept of acting depot, observe that
the (≤ p) and (≥ p) constraints can be restated in the following way. On the one hand, if a
solution has more than p circuits, then surely one of the circuits cannot have any acting depot.
On the other hand, if a solution has less than p circuits, then one of the circuits must have two or
more acting depots. Therefore, by introducing the acting depot concept, we can relate the (≥ p)

constraints to path elimination constraints which are more commonly associated with routing
problems with multiple depots.

The main purpose of the second part of this dissertation is to present a new formulation
and a corresponding branch-and-cut algorithm for the Hamiltonian p-median problem. More
precisely, we explore the concept of acting depot and define a new formulation based on the
idea that the arcs of the underlying graph are interpreted differently depending on whether one
of its endpoints is an acting depot or not. With this novel idea we are able to provide sets of (≤ p)

and (≥ p) constraints which can be separated in polynomial time and deal with symmetry issues
arising in formulations which use the concept of acting depot. In particular, the (≥ p) constraints
of the new formulation are a non-straightforward adaptation of the new multi-cut constraints
proposed in Section 2.4 of the first part of this dissertation and, thus, another of the contributions
of this part of the dissertation is to show that adaptations of the multi-cut constraints can be used
as path elimination constraints in other problems in an effective way. Additionally, we compare
the new proposed formulation to an adaptation of a formulation presented by Erdoğan et al.
(2016), which uses (acting-)client-(acting-)depot assignment variables similar to the ones used
in Chapter 4 in the context of the multi-depot routing problem.

The rest of this chapter is organized in the following way. In Section 5.2 we formally define
the Hamiltonian p-median problem and present some notation. In Section 5.3 we present a valid
generic integer linear programming formulation for the problem based on a set of arc variables.
Finally, in Section 5.4 we present another valid integer linear programming formulation for the
Hamiltonian p-median problem that uses the same arc variables and an additional set of variables
which differentiate the so-called acting depot nodes from the acting client nodes.
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Figure 5.1: An example of a feasible solution of a Hamiltonian 2-median problem

5.2 Definitions and notation

We define the Hamiltonian p-median problem on a directed graph G = (V,A), with a set of
nodes V = {1, . . . , n}, a set of arcs A = {(i, j) : i, j ∈ V, i ̸= j} and a non-negative cost
function c associated with the set of arcs. Whenever necessary we will re-use some of the names
used in the first part of this dissertation to define mathematical elements (such asG, V ,A and c)
for two reasons. Firstly it makes it easier to immediately associate the nomenclature with what
it represents and, secondly, it is clear that they now refer to the Hamiltonian p-median problem.
In addition, we assume thatG is a complete graph, however, once again, this study is applicable
to incomplete graphs by simply not considering the pairs (i, j) such that (i, j) /∈ A in any of the
mathematical expressions.

The objective of theHamiltonian p-median problem is to find aminimum cost set of p circuits
such that each node of V is in exactly one of the circuits. Figure 5.1 shows an example of a
feasible solution of a Hamiltonian p-median problem in which V = {1, 2, 3, 4, 5, 6} and p = 2.
In the solution, nodes 1, 3, 5 and 6 are in one circuit and nodes 2 and 4 are in another circuit.

We will use the same notation as in the first part of this dissertation to simplify the mathe-
matical expressions, that is:

• For any general one-index variable u, we write u(S) =
∑

i∈S ui;

• For any general two-index variable v in which both indexes are subscripts, we write
v(S) =

∑
i,j∈S vij and v(S1, S2) =

∑
i∈S1,j∈S2

vij;

• For any general two-index variable w with one subscript index and one superscript index,
we write wS2

S1
=

∑
i∈S1,j∈S2

wj
i ;

• For any general three-index variable z with two subscript indexes and one superscript
index, we write zk(S) =

∑
i,j∈S z

k
ij and zk(S1, S2) =

∑
i∈S1,j∈S2

zkij;

• In the expressions above, for any singleton set {i} we write i instead of {i};

• Finally, we define S ′ = K \ S for any subset of nodes S ⊆ K ⊆ V .
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5.3 A generic model in the space of the arc variables

The Hamiltonian p-median problem can be modeled as an integer linear programming problem
by using a set of binary variables xij = 1 if arc (i, j) ∈ A is used in one of the circuits, and
xij = 0 otherwise. The following model is a valid generic integer linear programming model
for the Hamiltonian p-median problem:

Minimize
∑

(i,j)∈A

cijxij (5.1)

subject to:
∑
j∈V

xij = 1 ∀i ∈ V (5.2)

∑
j∈V

xji = 1 ∀i ∈ V (5.3)

{(i, j) ∈ A : xij = 1} contains at most p circuits (5.4)

{(i, j) ∈ A : xij = 1} contains at least p circuits (5.5)

xij ∈ {0, 1} ∀(i, j) ∈ A. (5.6)

The system of inequalities (5.2)–(5.3) and (5.6) is the integer linear programming formu-
lation of the assignment problem (see, e.g., Wolsey 1998). Constraints (5.2) ensure that the
outdegree of any node must be 1, whereas constraints (5.3) guarantee that the indegree of any
node must be 1. Clearly any solution that satisfies these two conditions is comprised of a set of
disjoint circuits, however, there is no guarantee that the number of circuits is exactly p. Thus, in
order to obtain a valid model for the Hamiltonian p-median problem we require two additional
sets of constraints, namely constraints (5.4) which ensure that the number of circuits is less than
or equal to p and constraints (5.5) which guarantee that the number of circuits is greater than or
equal to p.

This formulation is an adaptation to directed graphs of a formulation described by Gollow-
itzer et al. (2014). In their formulation, constraints (5.4) are modeled as generalizations of sub-
tour elimination constraints known from the traveling salesman problem, whereas constraints
(5.5) are modeled as cycle-elimination constraints. It was proved by Gollowitzer et al. (2014),
however, that the separation of both sets of constraints is NP-hard, and we have no reason to be-
lieve otherwise for the case of their adaptation to directed graphs, thus, we are required to resort
to heuristic separation algorithms. In addition, computational tests conducted by Gollowitzer
et al. (2014), Erdoğan et al. (2016) and Marzouk et al. (2016) showed that such formulations
were unable to solve many instances with reasonable sizes. This motivates the study of solution
methods for the Hamiltonian p-median problem based on formulations that use additional sets
of variables. In particular, and as mentioned before, we will introduce the concept of acting
depot in the next section and discuss a different valid generic integer linear programming model
for the Hamiltonian p-median problem which uses a new set of acting depot variables alongside
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the arc variables x.

5.4 A model in the space of the arc and of the acting depot
variables

In this section we present and discuss a generic model for the Hamiltonian p-median problem
which differs from the one in Section 5.3 in that we use an additional set of acting depot variables.
More precisely, we consider the arc variables x defined previously and another set of binary
acting depot variables yi = 1 if node i ∈ V is an acting depot, and yi = 0 otherwise. For
simplicity, we will refer to a node i ∈ V as an acting depot or just depot if yi = 1, and as an
acting client or just client if yi = 0, in a given solution. Consider the following model:

Minimize
∑

(i,j)∈A

cijxij (5.1)

subject to:
∑
j∈V

xij = 1 ∀i ∈ V (5.2)

∑
j∈V

xji = 1 ∀i ∈ V (5.3)

∑
i∈V

yi = p (5.7)

{(i, j) ∈ A : xij = 1 and i ∈ V : yi = 1}

contains no circuit with zero depots (5.8)

{(i, j) ∈ A : xij = 1 and i ∈ V : yi = 1}

contains no circuit with two or more depots (5.9)

xij ∈ {0, 1} ∀(i, j) ∈ A (5.6)

yi ∈ {0, 1} ∀i ∈ V. (5.10)

This formulation is a valid generic integer linear programming formulation for the Hamil-
tonian p-median problem. Any solution which satisfies the degree constraints (5.2)–(5.3) and
constraints (5.7), which ensure that there are exactly p depots in any feasible solution, must be
comprised of a set of disjoint circuits in which p nodes of V are acting depots. Notice that there
is no structural difference in these solutions when compared to the solutions which only satisfy
the degree constraints (5.2)–(5.3), however, by introducing these acting depots, we can rewrite
the generic (≤ p) constraints (5.4) and the generic (≥ p) constraints (5.5) in a different, and
more familiar, way. Observe that if there exists a solution with more than p circuits then at least
one of the circuits has zero depots, and if there exists a solution with less than p circuits then at
least one of the circuits has more than one depot. Both of these unfeasible cases are prevented,
respectively, by the generic constraints (5.8) and (5.9).
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In order to model both generic sets (5.8) and (5.9) we will establish a connection to the
multi-depot routing problem studied in the first part of this dissertation. Recall that, in the
multi-depot routing problem, in order to prevent the existence of circuits with zero depots we
used subtour elimination constraints, whereas in order to prevent the existence of circuits with
two or more depots we used path elimination constraints. By using the acting depot concept,
we can adapt constraints used in the context of the multi-depot routing problem to the context
of the Hamiltonian p-median problem. However, the adaptation is not straightforward since the
set of depots is no longer fixed.

We shall illustrate this connection by presenting a valid formulation for the Hamiltonian p-
median problem defined in the space of the x and the y variables. In particular, in Section 5.4.1
we present a set of (≤ p) constraints, in Section 5.4.2 we present a set of (≥ p) constraints and
in Section 5.4.3 we present the complete proposed formulation in the space of the x and the y
variables and identify some of its drawbacks which will motivate the remainder of the study in
the second part of this dissertation.

5.4.1 Modeling the (≤ p) constraints in the space of the x and the y vari-
ables

With respect to the generic constraints (5.8), which we recall can be seen as subtour elimination
constraints in the acting depot context, we can use a set of constraints which correspond to the
directed version of a set of constraints proposed by Laporte et al. (1983) (see also Gollowitzer
et al. 2014), which are based on the observation that if there is no acting depot in a given set
S ∈ V , that is, if y(S) = 0, then a circuit composed only of nodes of S cannot exist:

x(S) ≤ |S| − 1 + y(S) ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p. (5.11)

Observe that if the set of depots is fixed, then the above constraints are precisely the subtour
elimination constraints x(S) ≤ |S| − 1 originally proposed by Dantzig et al. (1954) for the
traveling salesman problem.

5.4.2 Modeling the (≥ p) constraints in the space of the x and the y vari-
ables

Recall that the generic constraints (5.9) may be seen as path elimination constraints in the acting
depot setting. Thus, in order to model the (≥ p) constraints in the space of the x and the y

variables, we propose an adaptation of the new multi-cut constraints presented for the multi-
depot routing problem. More precisely, we show how to adapt the basic 1-MCC inequalities
x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 (2.13) first presented in Section 2.4.1.
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Intuitively, consider a partition into four subsets of the set of nodes V , namely sets S ′, S, I
and {i}, with |I| = p − 1. Suppose that the nodes in I ∪ {i} are the p acting depots and that
the nodes in S ′ and S, which form a partition of V \ (I ∪ {i}), are the acting clients. A set of
path elimination constraints in this case should ensure that nodes i and j, for any acting depot
j ∈ I (thus, different from i), are in different circuits. Note, however, that this interpretation
assumes that the nodes in I ∪ {i} are depots and that the nodes in V \ (I ∪ {i}) are clients. In
the multi-depot routing problem there was a clear distinction between depot nodes and clients
nodes, however, in the Hamiltonian p-median problem the nodes in I ∪ {i} may not be depots
and, thus, a path between i and j may be feasible. One way of imposing this condition and,
consequently, defining a valid set of path elimination constraints using the x and the y variables
is as follows:

x(S ′, i) + x(S ′, S) + x(i, S) ≥ yi + y(I)− |I|

∀i ∈ V, ∀I ⊂ V \ {i} : |I| = p− 1, ∀S ⊂ V \ (I ∪ {i}) . (5.12)

Observe that constraints (5.12) are redundant unless all nodes of I ∪ {i} are depots, which
is exactly the requirement we needed to impose. Then, the validity of these constraints follows
from similar arguments as the ones used in the proof of Proposition 4, where we showed that
the 1-MCC inequalities (2.13) were valid for the multi-depot routing problem.

By appropriately using the degree constraints (5.2)–(5.3), we can rewrite constraints (5.12)
in the following alternative form:

y(I) + x(I, S) + x(S) + x(S, i) + yi + x(I, i) ≤ |S|+ 1 + |I|

∀i ∈ V, ∀I ⊂ V \ {i} : |I| = p− 1, ∀S ⊂ V \ (I ∪ {i}) . (5.13)

In this form we can see that constraints (5.13) become y(I)+x(I, i)+ yi ≤ 1+ |I| if S = ∅
and, thus, they ensure that there can be no arcs between acting depots, which is a particular case
of an unfeasible path between depots which did not occur in the multi-depot routing problem
since arcs between depots did not exist.

We can thus conclude that constraints (5.12) provide a valid representation of the generic
(≥ p) constraints (5.9). Observe that a constraint similar to constraints (5.12) but in which
|I ∪ {i}| > p would be redundant as well, since the right-hand side would never be greater
than zero, however, we believe that the cases where |I ∪ {i}| < p might not be redundant in
the associated linear programming relaxation. In fact, the situation where I = {j} is related to
constraints known from the literature. More precisely, constraints similar to (5.13) in this case
are a stronger version of the path elimination constraints

yi + x(Pij) + yj ≤ |Pij| ∀i, j ∈ V, i ̸= j, (5.14)

where Pij is an elementary path from i to j and |Pij| is the number of nodes in the path.
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5.4.3 The complete model

By using the (≤ p) constraints of Section 5.4.1 and the (≥ p) constraints of Section 5.4.2, we
obtain a valid formulation for the Hamiltonian p-median problem in the space of the x and the
y variables. For clarity, we present it here:

Minimize
∑

(i,j)∈A

cijxij (5.1)

subject to:
∑
j∈V

xij = 1 ∀i ∈ V (5.2)

∑
j∈V

xji = 1 ∀i ∈ V (5.3)

∑
i∈V

yi = p (5.7)

x(S) ≤ |S| − 1 + y(S)

∀S ⊂ V : 2 ≤ |S| ≤ |V | − p (5.11)

x(S ′, i) + x(S ′, S) + x(i, S) ≥ yi + y(I)− |I|

∀I ⊂ V \ {i} : |I| = p− 1, ∀S ⊂ V \ (I ∪ {i}) (5.12)

xij ∈ {0, 1} ∀(i, j) ∈ A (5.6)

yi ∈ {0, 1} ∀i ∈ V. (5.10)

This formulation is an adaptation of the formulation that we proposed in Chapter 2 for the
multi-depot routing problem, however, there are two drawbacks to using this model, and in
particular constraints (5.12), in practice.

The first drawback is related to the separation of constraints (5.12). The exact separation
algorithm that we used to separate the 1-MCC inequalities x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1

(2.13) in the multi-depot routing problem can be adapted to this case, however, since the set
of depots is no longer fixed, then the separation algorithm would no longer be polynomial in
time as we would need to fix every possible set I ∪ {i} such that |I ∪ {i}| = p. The other
option would be to find a different separation algorithm that would determine the partition of
V \ {i} into the three sets S ′, S and I and that would, simultaneously, minimize the left-hand
side and maximize the right-hand side of constraints (5.12). In our opinion, it is not clear that the
resulting algorithm would be polynomial in time. Observe that if we had to resort to heuristic
separation algorithms, then this would defeat the purpose of using this formulation in the space
of the x and the y variables since we might as well be using a formulation in the space of the
x variables based on the one proposed in Section 5.3. One might argue that other adaptations
of path elimination constraints could be used instead of constraints (5.12), however, we believe
that any effective set of path elimination constraints relies on the fact that the depots and the
clients are clearly identified.
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The second drawback arises from a symmetry problem that is a consequence of this modeling
approach that selects nodes to be the acting depots of the circuits in that it allows for too many
alternative representations of the same solution. For example, a circuit (i1, i2, ..., im, i1), with
ij ∈ V, ∀j ∈ {1, . . . ,m}, can be represented in m different ways, one for each node as the
acting depot. It is not clear how this symmetry problem can be addressed with formulations
based on these two sets of variables.

In the next chapter we present a new formulation for the Hamiltonian p-median problem that
addresses the two drawbacks identified above, which has a higher linear programming relaxation
value than the formulation in the space of the x and the y variables, and which is very effective
in practice. More precisely, we will show that the (≤ p) constraints and the (≥ p) constraints
of the new formulation imply constraints (5.11) and (5.12), respectively, and that both sets can
be separated in polynomial time. In addition, the variables that we use in the new formulation
are capable of handling symmetry issues.
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6.1 Introduction

In this chapter we propose a new formulation for the Hamiltonian p-median problem. The for-
mulation is based on the concept of acting depot described earlier and uses three new sets of
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variables which essentially incorporate the information of which nodes are acting depots on the
arcs. More precisely, we propose three new sets of binary variables which distinguish between
the cases of whether or not an arc (i, j) ∈ A is used in one of the circuits where (i) i is a depot;
(ii) j is a depot; and (iii) neither i nor j are depots. In other words, for each arc (i, j) ∈ A we
create a binary variable pij which indicates whether or not arc (i, j) is used in one of the circuits
where i is an acting depot; a binary variable qij which indicates whether or not arc (i, j) is used
in one of the circuits where j is an acting depot; and a binary variable rij indicating whether or
not arc (i, j) is used in one of the circuits where neither i nor j are acting depots.

This chapter is organized in the followingway. In Section 6.2we present the new formulation
and in particular show how tomodel the (≤ p) and the (≥ p) constraints by using the new p, q and
r variables. Then, in Section 6.3 we present theoretical results concerning the new formulation,
including a comparison to the model in the space of the x and the y variables described in the
previous chapter. Finally, in Section 6.4 we present an alternative formulation based on the one
presented by Erdoğan et al. (2016) and compare it in theory to the PQR formulation.

6.2 A formulation in the space of the p, q and r variables

In this section we present a new formulation for the Hamiltonian p-median problem based on
the three new sets of p, q and r variables which are defined as follows: pij is a binary variable
such that pij = 1 if arc (i, j) ∈ A is used in one of the circuits and i is an acting depot, and
pij = 0 otherwise; qij is a binary variable such that qij = 1 if arc (i, j) ∈ A is used in one of
the circuits and j is an acting depot, and qij = 0 otherwise; and rij is a binary variable such that
rij = 1 if arc (i, j) ∈ A is used in one of the circuits and neither i nor j are acting depots, and
rij = 0 otherwise.

For simplification we will refer to an arc (i, j) ∈ A where i in an acting depot as a p-arc, to
an arc (i, j) ∈ A where j in an acting depot as a q-arc, and to an arc (i, j) ∈ A where neither i
nor j are acting depots as an r-arc. None of the three cases consider the situation where the two
nodes i and j can be depots at the same time. Therefore, the definition of the three new sets of
variables implicitly prevents solutions where two acting depots are directly linked, that is, if an
(unfeasible) path between two depots exists then at least one client node is included in that path.

Observe that the new variables are related to the previously defined arc variables x and acting
depot variables y. In fact, if an arc (i, j) ∈ A is used in any circuit, then it must be either a p-arc,
a q-arc or an r-arc. Furthermore, if a node i ∈ V is an acting depot, then surely there must exist
a p-arc outgoing node i and a q-arc ingoing node i, and, conversely, if i is not an acting depot,
then there cannot exist a p-arc outgoing node i nor a q-arc ingoing node i. More formally, the x
and the y variables and the p, q and r variables are related by the following equalities:

xij = pij + qij + rij ∀(i, j) ∈ A (6.1)
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yi =
∑
j∈V

pij ∀i ∈ V (6.2)

yi =
∑
j∈V

qji ∀i ∈ V. (6.3)

In order to obtain a valid generic integer linear programming model for the Hamiltonian p-
median problem in the space of the p, q and r variables, we can simply replace the x and the y
variables by using the above relationships in the generic model defined in the space of the x and
the y variables of Section 5.4. For simplification in the writing of the constraints, however, we
will only replace the x variables and leave the y variables as auxiliary variables in the model.

Minimize
∑

(i,j)∈A

cij (pij + qij + rij) (6.4)

subject to:
∑
j∈V

(pij + qij + rij) = 1 ∀i ∈ V (6.5)

∑
j∈V

(pji + qji + rji) = 1 ∀i ∈ V (6.6)

∑
i∈V

yi = p (5.7)

yi =
∑
j∈V

pij ∀i ∈ V (6.2)

yi =
∑
j∈V

qji ∀i ∈ V (6.3)

{(i, j) ∈ A : pij = 1 ∧ qij = 1 ∧ rij = 1}

contains no circuit with zero depots (6.7)

{(i, j) ∈ A : pij = 1 ∧ qij = 1 ∧ rij = 1}

contains no circuit with two or more depots (6.8)

pij ∈ {0, 1} ∀(i, j) ∈ A (6.9)

qij ∈ {0, 1} ∀(i, j) ∈ A (6.10)

rij ∈ {0, 1} ∀(i, j) ∈ A (6.11)

yi ∈ {0, 1} ∀i ∈ V. (5.10)

Observe that by using the relationships (6.2)–(6.3) and the degree constraints (6.5)–(6.6) we
can derive the following equalities, which will be useful throughout the remaining exposition:

p(V, i) + r(V, i) = 1− yi ∀i ∈ V (6.12)

q(i, V ) + r(i, V ) = 1− yi ∀i ∈ V. (6.13)

Given that this generic model was directly obtained from the one in the space of the x and
the y variables, it is clear that a solution of (6.5)–(6.6), (5.7) and (6.2)–(6.3) is comprised of a
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number of disjoint circuits and a set of p nodes of V which were chosen as acting depots. Once
again, however, a solution may be unfeasible since there is no guarantee that no circuits with
only r-arcs exist, that is, circuits with zero acting depots, nor that there is no circuit with two
or more acting depots. Both types of unfeasible circuits are prevented by the generic (≤ p)

constraints (6.7) and the generic (≥ p) constraints (6.8), respectively. In order to complete the
new proposed formulation, which we denote by PQR formulation, we will present two sets of
constraints to model both these generic constraints, which are the topics of Section 6.2.1 and
Section 6.2.2, respectively.

6.2.1 Modeling the (≤ p) constraints

In this section we show how tomodel the generic (≤ p) constraints (6.7) of the PQR formulation.
Recall that the (≤ p) constraints can be seen as subtour elimination constraints, since they
prevent the existence of circuits without any acting depots.

By definition of the p, q and r variables, a client-only circuit is a circuit in which all arcs are
r-arcs. Thus, in order to prevent these types of circuits, we can use any set of subtour elimina-
tion constraints known from the literature rewritten with the r variables. As we mentioned in
Section 2.2, there exist a number of surveys (see, e.g., Öncan et al. 2009, Godinho et al. 2011,
Roberti & Toth 2012) which compare different sets of subtour elimination constraints for the
traveling salesman problem. With respect to the PQR formulation we use an adaptation of the
ones proposed by Dantzig et al. (1954) as follows:

r(S) ≤ |S| − 1 ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p. (6.14)

Constraints (6.14) state that, for any subset of nodes S ⊂ V such that 2 ≤ |S| ≤ |V | − p,
there can only exist at most |S| − 1 r-arcs linking nodes of S. Note that the upper limit on |S|
given by |V | − p is due to the degree constraints (6.5)–(6.6) and the fact that there are no arcs
which link two acting depots by definition of the p, q and r variables.

The information provided by the variables of the PQR formulation allows us to lift con-
straints (6.14), as the following result shows.

Proposition 17. The following constraints are valid for the PQR formulation:

p(i, S) + y(S \ {i}) + r(S) ≤ |S| − 1 ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p, ∀i ∈ S (6.15)

q(S, i) + y(S \ {i}) + r(S) ≤ |S| − 1 ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p, ∀i ∈ S. (6.16)

Proof. We start by proving that constraints

y(S \ {i}) + r(S) ≤ |S| − 1 ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p, ∀i ∈ S, (6.17)

are valid for the PQR formulation. Consider a set S ⊂ V such that 2 ≤ |S| ≤ |V | − p and
a node i ∈ S. Observe that from the domain constraints for the y variables (5.10) we have
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y(S \ {i}) ≤ |S| − 1. Additionally, from the equalities p(V, i) + r(V, i) = 1 − yi (6.12) and
q(i, V ) + r(i, V ) = 1− yi (6.13), we can conclude that if yj = 1 then both r(j, V ) and r(V, j)
are equal to 0. Thus, suppose that y(S \ {i}) = k for some k such that 0 ≤ k ≤ |S| − 1. In
this situation, and given the previous observation, we know that r(S) ≤ |S| − 1− k and, thus,
y(S \ {i}) + r(S) ≤ |S| − 1, which are precisely constraints (6.17).

We now prove the validity of constraints (6.15) by lifting constraints (6.17) with the term
αp(i, S) on the left-hand side, where α is the lifting coefficient. If p(i, S) = 0 then constraints
(6.15) are clearly valid. Suppose, then, that p(i, S) = 1. In this case we know that the arcs
incident to i cannot be r-arcs, thus r(S) ≤ |S| − 2, and that there is a node in S \ {i}, say j,
such that pij = 1, that is, j is an acting client, thus, we have y(S \ {i}) = k for some k such
that 0 ≤ k ≤ |S| − 2. Therefore, by using a similar reasoning to the one leading to constraints
(6.17), we know that y(S \ {i}) + r(S) ≤ |S| − 2, hence, α = |S| − 1− (|S| − 2) = 1, which
proves the validity of constraints (6.15). A similar lifting procedure using the term αq(S, i)

yields (6.16).

Constraints (6.15) and (6.16) can be further lifted when |S| > p, as shown in the following
result.

Proposition 18. The following constraints are valid for the PQR formulation:

y(S) + r(S) ≤ |S| − 1 ∀S ⊂ V : p < |S| ≤ |V | − p. (6.18)

Proof. The proof follows from the fact that y(S) ≤ p ≤ |S| − 1, hence, we can apply the same
reasoning based on the equalities (6.12) and (6.13) used to prove the validity of constraints (6.17)
in Proposition 17.

By appropriately using the degree constraints (6.5)–(6.6) and the relationships between the
y and the p and q variables (6.2)–(6.3), constraints (6.15)–(6.18) can be equivalently written,
respectively, as follows:

p(V, S) + r(S ′, S) ≥ 1− p(i, S ′) ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p, ∀i ∈ S (6.19)

p(V, S) + r(S ′, S) ≥ 1− q(S ′, i) ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p, ∀i ∈ S (6.20)

p(V, S) + r(S ′, S) ≥ 1− yi ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p, ∀i ∈ S (6.21)

p(V, S) + r(S ′, S) ≥ 1 ∀S ⊂ V : p < |S| ≤ |V | − p. (6.22)

This alternative cut form suggests that these constraints can be separated by resorting to
max-flow/min-cut computations in an appropriate auxiliary graph. In Section 7.2.1 we present
a separation algorithm which simultaneously finds violated inequalities of these four sets.

Note that constraints (6.19)–(6.20) are valid if |S| > p, even though they are dominated
by constraints (6.22) in that case. However, constraints (6.22) would not be valid for |S| ≤ p.
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Therefore, by using constraints (6.22) for |S| > p and constraints (6.19)–(6.20) for |S| ≤ p, we
obtain a valid set of (≤ p) constraints for the PQR formulation and, in particular, we guarantee
that every constraint (6.21) is always satisfied. This last observation is important since the
separation algorithm which we use is only exact with respect to constraints (6.21), as shall be
explained. Nevertheless, since constraints (6.21) dominate the original set (6.14), then they also
model the generic (≤ p) constraints (6.7).

6.2.2 Modeling the (≥ p) constraints

In this section we show how tomodel the generic (≥ p) constraints (6.8) of the PQR formulation.
Recall that the (≥ p) constraints prevent the existence of circuits with two or more acting depots
and, thus, they can be seen as path elimination constraints.

In the first part of this dissertation we discussed several sets of path elimination constraints
for the multi-depot routing problem which we may adapt to the context of the PQR formulation.
In particular, we presented a newly developed set of path elimination constraints, which are the k-
MCC inequalities x(S ′, D′)+x(S ′, S)+x(D′, S) ≥ |D′| (2.14). For now we focus on adapting
these constraints for the case k = 1, that is, we show how to adapt the 1-MCC inequalities
x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 (2.13). Observe that the case k = 1 already provides a valid
set of path elimination constraints. Later, in Section 6.3.4, we discuss an adaptation of the more
general k-MCC inequalities (2.14) for k ≥ 2.

The following result presents and proves the validity of a set of (≥ p) constraints for the
PQR formulation which are based on the 1-MCC inequalities (2.13).

Proposition 19. The following multi-cut constraints are valid for the PQR formulation and
eliminate circuits with two or more acting depots:

q(S ′, i) + r(S ′, S) + p(i, S) ≥ yi ∀i ∈ V, ∀S ⊂ V \ {i}. (6.23)

Proof. We first prove the validity of constraints (6.23). Consider a node i ∈ V and a subset
S ⊂ V \ {i}. These constraints are clearly valid if yi = 0. Suppose then that yi = 1 and
that q(S ′, i) = r(S ′, S) = p(i, S) = 0. Since i is an acting depot then, from the relationships
between the y and the p and q variables (6.2)–(6.3), we have q(S, i) = 1 = p(i, S ′). Note that
in the circuit of depot i there can be no more acting depots, hence all remaining arcs must be
r-arcs. But then it is not possible to complete the circuit for depot i since r(S ′, S) = 0.

To see why these constraints prevent solutions in which there are two or more depots in the
same circuit suppose that i is an acting depot, that is, yi = 1, that there exists a node j ∈ V \{i}
such that yj = 1, and that i and j are in the same circuit. In this situation there must exist at
least one client node in the path from i to j, which follows from the definition of the p, q and
r variables, namely that there are no direct links between acting depots. If we consider that the
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set of nodes which are in the path from i to j are in S ′ and that the remaining nodes, except i
and j, are in S, we obtain p(i, S) = 0, since the arc leaving i goes to S ′, and q(S ′, i) = 0, since
the arc entering i comes from S. In addition, because j is a depot, then there is no r-arc incident
to j and, thus, regardless of whether j ∈ S or j ∈ S ′, we have r(S ′, S) = 0.

The proof of validity for the multi-cut inequalities (6.23) and the 1-MCC inequalities (2.13)
is similar, however, with respect to the multi-cut inequalities (6.23) a slight modification is
required due to the fact that the other acting depot involved in the unfeasible path other than i is
now either in S ′ or S. Observe that the multi-cut inequalities (6.23) are not a direct adaptation of
the 1-MCC inequalities (2.13). In fact, in the case of the multi-cut inequalities (6.23) all nodes
of V are part of either S ′, S or are the node i, whereas in the 1-MCC inequalities (2.13) the other
depots other than the one in the multi-cut are not part of the arcs of the multi-cut.

We also observe that the direct adaptation of the 1-MCC inequalities (2.13) presented in
Section 5.4.2, namely constraints x(S ′, i) + x(S ′, S) + x(i, S) ≥ yi + y(I) − |I| (5.12), was
defined for a partition of V \ {i} into three subsets, whereas the multi-cut inequalities (6.23)
are defined for a partition of V \ {i} into only two subsets. The difference in the number of
subsets in the partition is relevant for the complexity of the corresponding separation algorithm
and, in fact, we will show in Section 7.2.2 that the multi-cut inequalities (6.23) can be separated
in polynomial time by resorting to max-flow/min-cut computations in an adequate graph.

6.3 Theoretical investigations on the PQR formulation

In this section we present a number of theoretical results concerning the PQR formulation. In
Section 6.3.1 we present a compact system of inequalities which shares similarities to the ones
presented in Section 2.3 for the multi-depot routing problem and which were based on the arc-
depot assignment variables z. In particular, we show that it is possible to establish a relationship
to the multi-cut inequalities q(S ′, i) + r(S ′, S) + p(i, S) ≥ yi (6.23) of the PQR formulation.

In Section 6.3.2 we present symmetry-breaking constraints for the PQR formulation, includ-
ing a set of constraints that deal with the symmetries arising in formulations which use the acting
depot concept and that result from the relationship established in Section 6.3.1.

Then, in Section 6.3.3 we present a theoretical comparison of the PQR formulation to the
model defined in the space of the x and the y variables of Section 5.4 and, finally, in Section 6.3.4
we discuss the adaptation of the k-MCC inequalities x(S ′, D′) + x(S ′, S) + x(D′, S) ≥ |D′|
(2.14) for k ≥ 2 to the context of both the model defined in the space of the x and the y variables
and of the PQR formulation.
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6.3.1 A compact representation of the (≥ p) constraints

We showed in Section 2.4.2 that the 1-MCC inequalities x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1

(2.13) of the multi-depot routing problem are equivalent, in terms of the corresponding linear
programming relaxation, to a compact system of inequalities based on the arc-depot assignment
variables z. In particular, this was shown in Proposition 5 and the proof, which was based on the
max-flow/min-cut theorem, allowed us to design an exact separation algorithm for the original
1-MCC inequalities (2.13). In this section we show that a similar result exists with respect to
the (≥ p) constraints q(S ′, i) + r(S ′, S) + p(i, S) ≥ yi (6.23) of the PQR formulation. Since
this relationship is important, we will present all the important details despite the similarities.

The underlying idea is to observe that the multi-cut inequalities (6.23) can be viewed as
cut constraints in a 3-layered graph and, thus, we can derive a corresponding compact system of
inequalities which is a network flowmodel. The set of nodes of the 3-layered graph is composed
of three copies of each node of V . These copies are divided into three subsets, which are the
three layers of the 3-layered graph, each subset with a copy of each original node. The first
layer and the third layer, each composed of |V | nodes, represent the copies of the nodes of the
original graph that are viewed as the acting depots. The two layers correspond to viewing them,
respectively, as starting points and as ending points of one of the p circuits. The second layer
represents the copies of nodes of V that are viewed as the acting client nodes. The arc set of the
3-layered graph is also partitioned into three subsets. The first subset corresponds to the arcs
going from the first layer to the second layer, with an arc existing for every existing p variable
(i.e., p-arcs). The second subset corresponds to the arcs between the nodes in the second layer,
which are represented by the r variables in the original graph (i.e., r-arcs). Finally, the second
layer has arcs linking it to the third layer, with an arc existing if and only if a corresponding q

variable exists (i.e., q-arcs).

To model the (≥ p) constraints of the PQR formulation in the 3-layered graph we need to
guarantee the existence of p paths such that each path starts in a node in the first layer and ends in
a node in the third layer, with the additional constraint that the start and the end nodes of a path
are copies of the same corresponding node in the original graph. Consider the binary variables
zkij = 1 if an arc (i, j) is in the path from the copy of node k in the first layer to its copy in the
third layer, and zkij = 0 otherwise. The same variables also indicate whether or not arc (i, j) is
used in the circuit of the acting depot k in the original graph. The (≥ p) constraints of the PQR
formulation may be modeled by the compact system of inequalities below:

∑
j∈V

zkkj = yk ∀k ∈ V (6.24)

∑
j∈V

zkjk = yk ∀k ∈ V (6.25)
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∑
j∈V

zkji =
∑
j∈V

zkij ∀k ∈ V, ∀i ∈ V : i ̸= k (6.26)

zkkj = pkj ∀k ∈ V, ∀(k, j) ∈ A (6.27)

zkjk = qjk ∀k ∈ V, ∀(j, k) ∈ A (6.28)

zkij ≤ rij ∀k ∈ V, ∀(i, j) ∈ A : i, j ̸= k (6.29)

zkij ∈ {0, 1} ∀k ∈ V, ∀(i, j) ∈ A. (6.30)

For each k ∈ V , constraints (6.24)–(6.26) define a network flow system as follows. If k is
an acting client, that is, if yk = 0, then there is no flow corresponding to k on any arc. If k is an
acting depot, that is, if yk = 1, then constraints (6.24)–(6.25) state that yk = 1 units of flow leave
node k through an outgoing arc and enter node k through an ingoing arc, respectively, whereas
constraints (6.26) guarantee the flow conservation on each node i ∈ V \ {k}. By linking the z
variables with the p and the q variables through constraints (6.27) and (6.28), respectively, we
ensure that the flow for acting depot k can only flow on p-arcs and q-arcs which are incident to
k and, thus, we guarantee that the start and the end nodes of each path in the 3-layered graph are
the same. Observe that the linking constraints (6.27) and (6.28) are written as equalities instead
of inequalities of the less than or equal to form, however, both representations can be shown to
be equivalent, similarly to what was proved in Proposition 1 in the context of the multi-depot
routing problem.

Proposition 20. The projection of the linear programming relaxation of the system of inequal-
ities (6.24)–(6.30) onto the space of the p, q, r and y variables is given by the multi-cut in-
equalities (6.23) and pij ≥ 0, ∀(i, j) ∈ A, qij ≥ 0, ∀(i, j) ∈ A, rij ≥ 0, ∀(i, j) ∈ A and
yi ≥ 0, ∀i ∈ V .

Proof. This follows from the max-flow/min-cut theorem and the interpretation of the system of
inequalities (6.24)–(6.30) in the 3-layered graph. The max-flow/min-cut theorem states that, for
each node k, yk units of flow are sent from its copy in the first layer, say k1, to its copy in the third
layer, say k3, without passing through its copy in the second layer (due to the flow-conservation
constraints (6.26) which are not defined for the copy of node k in the second layer), with arc
capacities given by the values of the p, q and r variables, if and only if every cut separating k1

from k3 has capacity with value at least yk. This last requirement corresponds to constraints
q(S ′, k) + r(S ′, S) + p(k, S) ≥ yk, where S ′ and S form a partition of V \ {k}, which are
precisely constraints (6.23).

The proof of Proposition 20 is essentially an adaptation of the proof of Proposition 5. Nev-
ertheless, it is important to explicitly show it here since it will be fundamental to understand
the symmetry-breaking constraints that deal with the symmetries inherent in formulations with
acting depots which we will present in the next section. Additionally, Proposition 20 also has
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an important consequence in that it will allow us to derive a polynomial-time exact separation
algorithm for the multi-cut inequalities (6.23), which we will present in Section 7.2.2, that relies
on max-flow/min-cut computations in the 3-layered graph.

6.3.2 Breaking symmetries in the PQR formulation

In this section we discuss two types of symmetries observed in the solutions obtained by the
PQR formulation and show how they can be resolved. The reason why we dedicate a section to
this topic is two-fold. Firstly, symmetry-breaking in the PQR formulation is not straightforward
in what concerns the symmetries arising from the use of the concept of acting depot. Secondly,
the computational results will show that symmetry-breaking constraints in the PQR formulation
are fundamental for designing an efficient branch-and-cut algorithm.

Symmetry of type I - Reducing the number of candidate acting depots in a circuit

Recall that, as a consequence of the acting depot modeling approach, a circuit of the form
(i1, i2, ..., im, i1), with ij ∈ V, ∀j ∈ {1, . . . ,m}, can be represented in m different ways,
depending on the m possible acting depots. To address this first symmetry problem, we use
constraints that are motivated by the well-known idea (see, e.g., Campêlo, Corrêa & Frota 2004)
that the acting depot in any circuit (i1, i2, ..., im, i1) should be the node with the lowest index to
reduce them possible representations into one.

For example, consider a circuit (3, 2, 7, 6, 3). This circuit admits four different (but equiva-
lent in terms of cost) representations in the PQR formulation depending on whether node 3, node
2, node 7 or node 6 is chosen as the acting depot. However, if we state that the acting depot of
a given circuit should be the node with the lowest index, then only node 2 could be the acting
depot of circuit (3, 2, 7, 6, 3) and, thus, only one of the four representations would be a possible
solution of the PQR formulation.

This idea can be easily implemented by using the z variables of the compact system of
inequalities presented in the previous section as follows:

zkkj = 0 ∀k ∈ V, ∀(k, j) ∈ A : k > j (6.31)

zkjk = 0 ∀k ∈ V, ∀(j, k) ∈ A : k > j (6.32)

zkij = 0 ∀k ∈ V, ∀(i, j) ∈ A : k > min{i, j}. (6.33)

These constraints collectively impose that the depot of each circuit should be the node with
the lowest index by disallowing the use of arcs which do not satisfy this condition. For instance,
constraints (6.33) state that an arc (i, j) ∈ A cannot be used in the circuit of an acting depot
k > min{i, j} since this would imply that a node with a lower index than k would be an acting
client in the circuit of depot k.

136



CHAPTER 6. THE PQR FORMULATION

The three sets of symmetry-breaking constraints (6.31)–(6.33) can be partially adapted to
the PQR formulation by considering the following set of symmetry-breaking constraints:

pij = 0 ∀(i, j) ∈ A : i > j (6.34)

qij = 0 ∀(i, j) ∈ A : i < j. (6.35)

Constraints (6.34)–(6.35) prevent some alternative representations of the same circuit, but
do not guarantee that the depot of a circuit will be the node with the lowest index. For exam-
ple, whereas they eliminate the solution (3, 2, 7, 6, 3) since p32 = 0, they would not eliminate
solutions such as the circuit (3, 7, 2, 6, 3).

It is not straightforward how to ensure that the acting depot of any circuit should be the node
with the lowest index in the context of the PQR formulation. However, we can indirectly provide
such a set of constraints by using the symmetry-breaking constraints (6.31)–(6.33) together with
the result of Proposition 20. Recall that the idea of the compact system of inequalities presented
in the previous section is to ensure that yk units of flow are sent from the copy of each node k ∈ V

in the first layer to its copy in the third layer of the 3-layered graph. The result of Proposition
20, which is based on the max-flow/min-cut theorem, states that this condition may be modeled
by using multi-cut constraints instead. Thus, if in the proof of Proposition 20 we restrict the arcs
in which the flow for node k ∈ V can pass by removing arcs in the 3-layered graph according to
constraints (6.31)–(6.33), this also restricts the arcs allowed in the multi-cut. This leads to the
following restricted multi-cut constraints that can be used for symmetry-breaking purposes:

q(S ′, i) + r(S ′, S) + p(i, S) ≥ yi ∀i ∈ V, ∀S ⊂ V \ {1, . . . , i}. (6.36)

The restrictedmulti-cut inequalities (6.36) use all the information provided by the symmetry-
breaking constraints (6.31)–(6.33) and, therefore, they ensure that the acting depot in any circuit
is the node with the lowest index. We formalize the relationship between the compact system of
inequalities based on the z variableswith the addition of constraints (6.31)–(6.33) and constraints
(6.36) in the following result, however, we omit the proof since it is similar to the proof of
Proposition 20.

Proposition 21. The projection of the linear programming relaxation of the system of inequali-
ties (6.24)–(6.33) onto the space of the p, q, r and y variables is given by the restricted multi-cut
inequalities (6.36) and pij ≥ 0, ∀(i, j) ∈ A, qij ≥ 0, ∀(i, j) ∈ A, rij ≥ 0, ∀(i, j) ∈ A and
yi ≥ 0, ∀i ∈ V .

Symmetry of type II - Eliminating reversed circuits

The second type of symmetry arises in symmetric cost instances and is a consequence of a
modeling approach based on directed graphs. This issue had already been observed for the
multi-depot routing problem and symmetry-breaking constraints were proposed in Section 3.6.4.
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Essentially, a circuit and its reverse both have the same cost if arc costs are symmetric, hence,
both circuits represent equivalent solutions even if they are structurally different. Observe that
for circuits with only two nodes this problem is non-existent assuming that symmetry-breaking
constraints of type I are present in the formulation, thus, we focus on circuits which have at least
three nodes. These equivalent solutions can pose a non-negligible problem if a large number of
the p circuits, say m, in any solution are circuits with at least three nodes, since by combining
both possible orientations for these m ≤ p circuits we have 2m different representations of the
same solution. In order to eliminate alternative solutions and effectively only allow one single
representation instead of 2m, we can use the following symmetry-breaking constraints in the
PQR formulation: ∑

k≥j

qki ≥ pij, ∀i, j ∈ V, i ̸= j. (6.37)

Constraints (6.37) state that, for two distinct nodes i, j ∈ V , if i is an acting depot and node
j is visited immediately after i, then the node k visited just before i should be such that k ≥ j.
In other words, we enforce that the first node visited after the acting depot is given a lower index
than the node visited just before the acting depot. Notice that the case k = j is required in order
to avoid eliminating solutions that are composed of two-node circuits.

Furthermore, we can lift constraints (6.37) to:∑
k≥j

qki ≥
∑
k≥j

pik, ∀i, j ∈ V, i ̸= j. (6.38)

To see that this lifted version is valid consider a pair of distinct nodes i and j of V and
notice that: (i) the right-hand side of constraints (6.38) is still at most 1 due to the outdegree
constraints (6.5); (ii) if pij = 1, then the validity of constraints (6.38) follows from the validity
of the original constraints (6.37); (iii) if pij = 0 and pik′ = 1 for a node k′ > j then the validity
of constraints (6.38) follows from the validity of the original constraints (6.37) for the case when
j = k′; and (iv) for j = n constraints (6.38) and the original constraints (6.37) are the same.

Constraints analogue to constraints (6.38), that is, constraints in which the q variables are on
the right-hand side and the p variables are on the left-hand side, can also be defined, however
they can be shown to be redundant in the presence of the relationships between the y and the p
and q variables (6.2)–(6.3).

We would like to conclude this section by observing that the use of symmetry-breaking
constraints in the PQR formulation is fundamental as evidenced by the number of different al-
ternative solutions which represent the same set of circuits. The solutions identified are usually
comprised of several circuits with two nodes, thus the second type of symmetry is not as prob-
lematic as the first type of symmetry. In the latter case, however, we will provide computational
results in Section 7.5.2 that show that the computational effort is substantially reduced by using
the restricted multi-cut inequalities (6.36) instead of the original multi-cut inequalities (6.23).
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6.3.3 Theoretical comparison of the PQR formulation to the model de-
fined in the space of the x and the y variables

In this section we compare the PQR formulation to the model in the space of the x and the y
variables presented in Section 5.4. Recall that the former was created with the purpose of dealing
with the drawbacks identified in latter. The first drawback had to do with the separation of the
(≥ p) constraints which we believe cannot be solved with a polynomial-time algorithm. The
second drawback had to do with the symmetry inherent in formulations which use the concept
of acting depot and which is not clear how to handle with the x and the y variables.

In Section 6.3.1 we showed that the PQR formulation addresses the first drawback by estab-
lishing a relationship between a compact system of inequalities and the multi-cut inequalities
q(S ′, i) + r(S ′, S) + p(i, S) ≥ yi (6.23) of the PQR formulation that will allow us to derive
a polynomial-time separation algorithm for the latter. The second drawback was addressed in
the previous section, where we presented a set of restricted multi-cut inequalities (6.36) which
prevent alternative solutions induced by the use of the acting depot concept.

We now prove that the PQR formulation provides at least the same linear programming
relaxation value as the linear programming relaxation value of the model in the space of the x
and the y variables by showing that the (≤ p) constraints and (≥ p) constraints of the PQR
formulation imply the ones of the model in the space of the x and the y variables, respectively.
Observe that this is sufficient since the generic model in the space of the p, q, r and y variables
was obtained from the one in the space of the x and y variables by replacing the x variables
through the relationships between the x and the p, q and r variables (6.1). For simplification,
we provide the ensuing proofs without considering any type of symmetry-breaking constraints.

Proposition 22. The linear programming relaxation of the PQR formulation implies constraints
x(S) ≤ |S| − 1 + y(S) (5.11).

Proof. Consider a set S ⊂ V such that 2 ≤ |S| ≤ |V | − p. By adding y(S) + p(i, S ′), where
i ∈ S, to each side of constraints p(i, S) + y(S \ {i}) + r(S) ≤ |S| − 1 (6.15) and by using the
relationships between the y and the p variables (6.2) for node i, we obtain

y(S) + y(S) + r(S) ≤ |S| − 1 + y(S) + p(i, S ′).

Now, by using the relationships between the y and the p variables (6.2) added up for the
nodes of S to replace the first y(S) term on the left-hand side, and the relationships between the
y and the q variables (6.3) added up for the nodes of S to replace the second y(S) term on the
left-hand side, we obtain

p(S) + p(S, S ′) + q(S) + q(S ′, S) + r(S) ≤ |S| − 1 + y(S) + p(i, S ′).
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From the relationships between the x and the p, q and r variables (6.1) added up for the
arcs between nodes of S, we know that x(S) = p(S) + r(S) + q(S). Hence, we can write the
previous inequality as follows:

x(S) ≤ |S| − 1 + y(S) + p(i, S ′)− p(S, S ′)− q(S ′, S).

Finally, the expression p(i, S ′)− p(S, S ′)− q(S ′, S) is non-positive since i ∈ S, hence, the
inequality above implies constraint (5.11) for the same set S. A similar proof exist by starting
with constraints q(S, i) + y(S \ {i}) + r(S) ≤ |S| − 1 (6.16).

Regarding constraints x(S ′, i) + x(S ′, S) + x(i, S) ≥ yi + y(I) − |I| (5.12), we will start
by proving that the multi-cut inequalities (6.23) imply the following set of constraints

q(S ′, i) + r(S ′, S) + p(i, S) ≥ yi + y(I)− |I|

∀i ∈ V, ∀S ⊂ V \ (I ∪ {i}) : |I| = p− 1, (6.39)

which can be seen as constraints (5.12) written with the p, q and r variables instead of the x
variables.

Proposition 23. The linear programming relaxation of the PQR formulation implies constraints
(6.39).

Proof. Consider a constraint (6.23) for a node i ∈ V and a partition of V \ {i} into two subsets
S ′ and S, such that S ′ is partitioned intoB′ and C ′ and S is partitioned intoB and C, which can
be written as:

q(B′, i) + q(C ′, i) + r(B′, B) + r(C ′, C) + r(B′, C) + r(C ′, B) + p(i, B) + p(i, C) ≥ yi.

Consider now that I = C∪C ′ and note that the inequalities |C|−y(C) ≥ r(B′, C)+p(i, C)

and |C ′|−y(C ′) ≥ q(C ′, i)+r(C ′, C)+r(C ′, B) are valid since they follow from the equalities
p(V, i) + r(V, i) = 1 − yi (6.12) added up for the nodes of C and q(i, V ) + r(i, V ) = 1 − yi

(6.13) added up for the nodes of C ′, respectively. By using these two inequalities to replace the
corresponding terms on the left-hand side of the above inequality, we obtain a constraint (6.39)
for the partition of V \ {i} into B′, B and I .

In the proof of Proposition 23, the subsets C and C ′ correspond to sets of potential acting
depots included in S and S ′, respectively. This shows that the variables of the PQR formula-
tion implicitly hold information about the set I of potential acting depots which appeared in
constraints (5.12) and which was artificially introduced in constraints (6.39). Therefore, the
following result follows from Proposition 23.

Proposition 24. The linear programming relaxation of the PQR formulation implies constraints
(5.12).
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Proof. It suffices to add adequate non-negativity constraints for the p, q and r variables to the
left-hand side of constraints (6.39) and to use the relationships between the x and the p, q and r
variables (6.1).

6.3.4 Generalizations of the multi-cut constraints

In this section we discuss the adaptation of the generalized multi-cut constraints, that is, the
k-MCC inequalities x(S ′, D′) + x(S ′, S) + x(D′, S) ≥ |D′| (2.14), originally presented for the
multi-depot routing problem in Section 2.4.3, both to the PQR formulation and to the model in
the space of the x and the y variables. Regarding the latter, recall the set of adapted multi-cut
constraints written in their alternative form which we presented in Section 5.4.2, that is,

y(I) + x(I, S) + x(S) + x(S, i) + yi + x(I, i) ≤ |S|+ 1 + |I|

∀i ∈ V, ∀I ⊂ V \ {i} : |I| = p− 1, ∀S ⊂ V \ (I ∪ {i}) . (5.13)

By establishing a comparison to the expression of the k-MCC inequalities (2.14) written in
their alternative form, namely

x(D′, S) + x(S) + x(S,D \D′) ≤ |S| ∀D′ ⊂ D, ∀S ⊂ C, (2.16)

we can clearly see that the adaptation of the k-MCC inequalities (2.14) to the model in the
space of the x and the y variables for the Hamiltonian p-median problem involves generalizing
the singleton subset {i} in constraints (5.13). In order to maintain their overall intuition, in
the sense that the equivalent of I ∪ {i} should represent the set of potential acting depots, we
consider two disjoint subsets I1 and I2 such that |I1∪I2| = p. Thus, we can derive the following
expression:

y(I2) + x(I2, S) + x(S) + x(S, I1) + y(I1) + x(I2, I1) ≤ |S|+ |I1|+ |I2|

∀I1, I2 ⊂ V : I1 ∩ I2 = ∅, |I1|+ |I2| = p, ∀S ⊂ V \ (I1 ∪ I2) . (6.40)

Observe that by appropriately using the degree constraints (5.2)–(5.3) of the model in the
space of the x and y variables, we can write constraints (6.40) in cut form as follows:

x(S ′, I1)+x(S ′, S) + x(I1, S) ≥ y(I1) + y(I2)− |I2|

∀I1, I2 ⊂ V : I1 ∩ I2 = ∅, |I1|+ |I2| = p, ∀S ⊂ V \ (I1 ∪ I2) . (6.41)

The above constraints are an adaptation of the k-MCC inequalities (2.14) to the model in the
space of the x and y variables, when the nodes of I1 ∪ I2 are acting depots. Note, however, that
we are unsure whether in the case of the Hamiltonian p-median problem improvements could be
made to the above constraints or not. Recall that the set of nodes is not divided into depot nodes
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and client nodes in the Hamiltonian p-median problem in contrast to the multi-depot routing
problem and, thus, it is likely that such improvements may exist.

Regarding a generalization of the multi-cut inequalities q(S ′, i) + r(S ′, S) + p(i, S) ≥ yi

(6.23) of the PQR formulation, observe that by using a similar reasoning which led to constraints
q(S ′, i) + r(S ′, S) + p(i, S) ≥ yi + y(I) − |I| (6.39) presented in Section 6.3.3, we can write
constraints (6.41) above by replacing the x variables with the appropriate p, q and r variables
and obtain:

q(S ′, I1)+r(S ′, S) + p(I1, S) ≥ y(I1) + y(I2)− |I2|

∀I1, I2 ⊂ V : I1 ∩ I2 = ∅, |I1|+ |I2| = p, ∀S ⊂ V \ (I1 ∪ I2) . (6.42)

Given the relationship between the multi-cut inequalities (6.23) and constraints (6.39) estab-
lished in Proposition 23, the earlier indication is that some other generalization of the multi-cut
inequalities (6.23) which implies constraints (6.42) should exist. It is still unclear, however,
how these other constraints would look like.

We believe that we are not losing much in practice by not using a generalization of the
multi-cut inequalities (6.23), since the computational results concerning the multi-depot routing
problem which we presented in Section 3.7.3 showed that the use of the k-MCC inequalities
(2.14) did not significantly improve the results obtained when compared to the case where only
the 1-MCC inequalities x(S ′, d) + x(S ′, S) + x(d, S) ≥ 1 (2.13) were used in the branch-and-
cut algorithm. In addition, the separation of a more general set of multi-cut constraints in the
PQR formulation also appears to be harder in practice, in the sense that the heuristic separation
algorithm which we used in the multi-depot routing problem to separate the k-MCC inequalities
(2.14), namely algorithm 3.6, relies on the fact that there exist depots outside of the multi-cut
which can then be added to the multi-cut by simply comparing the value of an expression to 1.
However, in the multi-cut inequalities (6.23) of the PQR formulation every node of V is either
in S ′, in S or is node i, and, thus, the same reasoning of algorithm 3.6 is not straightforwardly
applicable. Observe also that the heuristic separation of the general multi-cut constraints is
fundamental since an exact separation algorithm is surely not efficient.

In other words, not only is the expression of a possible generalization of the multi-cut in-
equalities (6.23) of the PQR formulation unclear, but also it is doubtful that we could make
use of it in practice without a more comprehensive study. This is certainly a topic worth of
investigation in the future, however, we will not pursue it in this dissertation.

6.4 An alternative formulation

In this section we present an alternative formulation for the Hamiltonian p-median problem,
which is an adaptation of the formulation proposed by Erdoğan et al. (2016) for the variant of
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the Hamiltonian p-median problem in which two-node circuits are not allowed, and compare it
to the PQR formulation. The comparison in this section is theoretical, however, we will also
provide some computational results as a complement in Section 7.7.1.

We start by presenting the alternative formulation in Section 6.4.1 and show that it has simi-
larities to some of the models for the multi-depot routing problem presented in Chapter 4. Based
on these similarities, we provide a comparison between the alternative formulation and the PQR
formulation with respect to the corresponding (≥ p) constraints and (≤ p) constraints in Sec-
tions 6.4.2 and 6.4.3, respectively.

6.4.1 The x-v formulation

The formulation proposed by Erdoğan et al. (2016) proved to be effective for the variant of
the Hamiltonian p-median problem which does not allow two-node circuits to exist, hence, it
is interesting to compare it in theory to the PQR formulation. Observe that the formulation
of Erdoğan et al. (2016) is based on undirected graphs and was developed for a variant of the
Hamiltonian p-median problem, therefore, a theoretical comparison to the PQR formulation
cannot be directly established. Instead, we compare the PQR formulation to an adaptation of
the formulation of Erdoğan et al. (2016) to directed graphs, that is, by using variables associated
with arcs instead of variables associated with edges, and to the Hamiltonian p-median problem
as defined by Branco & Coelho (1990).

The adaptation of the formulation presented by Erdoğan et al. (2016), which we denote by
x-v formulation, uses the arc variables x in addition to a set of (acting-)client-(acting-)depot
assignment binary variables vji = 1 if node j ∈ V is in the circuit of the acting depot i ∈ V ,
and vji = 0 otherwise. Observe that the variables vii for any i ∈ V are also defined and, in this
case, they equivalently state whether or not i is an acting depot. In other words, we can relate
the acting depot variables y to the v variables as follows:

yi = vii ∀i ∈ V. (6.43)

This relationship shows that the following formulation can be seen as the generic formulation
in the space of the x and the y variables presented in Section 5.4 with additional constraints that
define the v variables, symmetry-breaking constraints for the v variables, and constraints that
model the generic (≤ p) constraints (5.8) and the generic (≥ p) constraints (5.9):

Minimize
∑

(i,j)∈A

cijxij (5.1)

subject to:
∑
j∈V

xij = 1 ∀i ∈ V (5.2)

∑
j∈V

xji = 1 ∀i ∈ V (5.3)
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∑
i∈V

vii = p (6.44)

vji ≤ vii ∀i, j ∈ V, i ̸= j (6.45)∑
j∈V

vij = 1 ∀i ∈ V (6.46)

vji = 0 ∀i, j ∈ V : j < i (6.47)

x(S ′, S) ≥ viS′ ∀S ⊂ V, ∀i ∈ S (6.48)

viS + xij ≤ vjS + 1 ∀(i, j) ∈ A, ∀S ⊂ V \ {j} (6.49)

xij ∈ {0, 1} ∀(i, j) ∈ A (5.6)

vji ∈ {0, 1} ∀i, j ∈ V. (6.50)

Constraints (6.44) are equivalent to constraints
∑

i∈V yi = p (5.7) under the relationships
(6.43). Constraints (6.45) state that a node i ∈ V must be an acting depot if a node j ∈ V \ {i}
is assigned to it. Conversely, no node can be assigned to i if it is not an acting depot. Constraints
(6.46) ensure that a node i ∈ V is either an acting depot or it is assigned to some other acting
depot. The symmetry-breaking constraints (6.47) guarantee that the acting depot in every circuit
is the node with lowest index. Constraints (6.48) are the (≤ p) constraints of the x-v formulation
and state that, for any subset S ⊂ V and for any i ∈ S, if i is assigned to a node in S ′ then at
least one arc in the cut-set separating S ′ and S must be used. Finally, constraints (6.49), which
are the (≥ p) constraints of the x-v formulation, ensure that if an arc (i, j) ∈ A is used then the
depot to which i is assigned to, which can include itself, must be the same to which j is assigned.
Conversely, if i and j are assigned to different depots then arc (i, j) cannot be used.

In contrast to the model presented by Erdoğan et al. (2016), the adapted model presented
above uses the arc variables x to allow asymmetric costs to be modeled, whereas the original
model uses edge variables. Additionally, normal constraint adaptations that are motivated from
changing from a model based on undirected graphs into a model based on directed ones result in
constraints (6.48) and (6.49) that are simply directed counterparts of constraints in the original
model presented by Erdoğan et al. (2016). Another difference between the two models is, how-
ever, more relevant and results from the fact that two-node circuits are not allowed in the variant
of the Hamiltonian p-median problem studied in the work by Erdoğan et al. (2016). In order
to allow two-node circuits to exist, our adapted model uses single terms “+xij” in constraints
(6.49) in contrast to using terms “+xij + xji” which would provide valid and better constraints
in the case where two-node circuits are not allowed.

Observe that the x-v formulation has many similarities to the models for the multi-depot
routing problem based on the client-depot assignment variables v discussed in Chapter 4. In
particular, the (≤ p) constraints (6.48) are similar to constraints x(D′ ∪ S ′, S) ≥ viD′ (4.46)
presented in Section 4.3.4. As for the (≥ p) constraints (6.49), they are similar to constraints
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viD′ + xij ≤ vjD′ + 1 (4.10) first presented in Section 4.2.4 which generalized the original con-
straints vid + xij ≤ vjd + 1 (4.4) for depot subsets. Observe that the generalizations based on arc
sets presented in Sections 4.2.2, 4.2.3 or 4.2.5, cannot be straightforwardly adapted to the case
of the x-v formulation for the Hamiltonian p-median problem for the same reason why we are
required to use “+xij” terms in constraints (6.49) instead of terms “+xij + xji”.

This relationship between the x-v formulation and some of the models presented in Chapter 4
is important since it implies that the work developed in that chapter can be adapted to this section
in order to compare the x-v formulation to the PQR formulation, however, given that the set of
nodes is no longer divided into depot nodes and client nodes, there are important differences that
need to be accounted for. In the remainder of this section we will compare the x-v formulation
to the PQR formulation. For simplicity, we ignore symmetry-breaking constraints given that
every result is applicable in either case.

In theory we can see that the x-v formulation and the PQR formulation are not comparable in
terms of their corresponding linear programming relaxation values. In fact, it is possible to find
fractional solutions of the linear programming relaxation of the x-v formulation which do not
satisfy the linear programming relaxation of the PQR formulation, and vice-versa. Neverthe-
less, in order to understand in more detail the differences between the two formulations, more
precisely in terms of their corresponding (≤ p) and (≥ p) constraints, we will present in the
next two sections some results which will help provide a theoretical link between the x-v and
the PQR formulations.

6.4.2 A comparison of the (≥ p) constraints of the x-v formulation and
the PQR formulation

Oneway to establish a link between the (≥ p) constraints of the x-v and of the PQR formulations
is to use the compact system of inequalities based on the z variables which we presented in
Section 6.3.1. This relationship is very similar to the one presented in Section 4.2.6 for the
multi-depot routing problem. Observe that the compact system of inequalities based on the
z variables can be strengthened by replacing the linking constraints between the z and the r

variables zkij ≤ rij (6.29) with the following set of constraints:∑
k∈V \{i,j}

zkij = rij ∀(i, j) ∈ A. (6.51)

The reasoning for the validity of these constraints is similar to the one used to derive the 3I++

system of Section 2.3.3 for the multi-depot routing problem. In particular, an r-arc (i, j) ∈ A

can only be used in the circuit of exactly one acting depot k ∈ V \{i, j} given that the circuits for
each acting depot must be disjoint. Observe that, once again, we could have used inequalities
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of the less than or equal to form in constraints (6.51), however, a similar result to the one of
Proposition 2 can also be proved in this context.

Another similarity to the multi-depot routing problem case is that the v and the z variables
can be related through the equalities

vik =
∑
j∈V

zkji ∀k ∈ V, ∀i ∈ V, (6.52)

or their reversed version, which is equivalent under the flow conservation constraints (6.26),

vik =
∑
j∈V

zkij ∀k ∈ V, ∀i ∈ V. (6.53)

The proof of the following result is, therefore, an adaptation of the proof of the result of
Proposition 11 with slight differences motivated by the new context.

Proposition 25. The linear programming relaxation of the system of inequalities (6.24)–(6.28),
(6.51) and (6.30), with the addition of either relationships (6.52) or (6.53) and the domain
constraints for the v variables (6.50), implies the (≥ p) constraints viS + xij ≤ vjS + 1 (6.49) of
the x-v model.

Proof. Consider an arc (i, j) ∈ A and a subset S ⊂ V \ {j}. We will prove the result assuming
that i ∈ S. For the case in which i /∈ S, the proof is similar.

If we add the relationships (6.52) with respect to node j for the nodes in the subset S and
weaken the right-hand side of the resulting equation, we obtain:

vjS =
∑
d∈S

∑
k∈V

zdkj ≥
∑
d∈S

zdij.

Now, if we add
∑

d∈S
∑

k∈V :k ̸=j z
d
ik to both sides of the inequality above and use the rela-

tionships (6.53) for node i added up for the nodes of S we obtain:

vjS +
∑
d∈S

∑
k∈V :k ̸=j

zdik ≥ viS.

Finally, observe that∑
d∈S

∑
k∈V :k ̸=j

zdik =
∑

k∈V :k ̸=j

∑
d∈S\{i},d ̸=k

zdik +
∑

d∈S\{i}

zdid +
∑

k∈V :k ̸=j

ziik,

and that∑
k∈V :k ̸=j

∑
d∈S\{i},d ̸=k

zdik +
∑

d∈S\{i}

zdid +
∑

k∈V :k ̸=j

ziik ≤

r(i, V \ {j}) + q(i, S \ {i}) + p(i, V \ {j}) ≤ x(i, V \ {j}).
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In the expression above, the first inequality follows from the linking constraints between the
z and the p, q and r variables (6.27), (6.28) and (6.51), respectively, and the last one from the
relationships between the x and the p, q and r variables (6.1). Then, by using the outdegree
constraints (5.2) for the x variables we obtain

vjS + 1 ≥ viS + xij,

which are constraints (6.49) for node j and the subset S.

The result of Proposition 25 does not allow us to establish any dominance relationship be-
tween the x-v formulation and the PQR formulation. However, and given the result of Propo-
sition 20, we can conclude that the (≥ p) constraints of both models are implied by the same
system of inequalities based on the z variables. What we will see in practice is that, with respect
to the (≥ p) constraints, the linear programming relaxation value of the PQR formulation is
higher in most cases than that of the x-v formulation.

6.4.3 A comparison of the (≤ p) constraints of the x-v formulation and
the PQR formulation

The link between the x-v formulation and the PQR formulation with respect to their correspond-
ing (≤ p) constraints can be derived from the adaptation of constraints zd({d}∪S) ≥ vid (4.43)
to the context of the Hamiltonian p-median problem. More precisely, we define the following
constraints:

zk(S ′, S) ≥ vik ∀S ⊂ V, ∀k ∈ S ′, ∀i ∈ S. (6.54)

The validity of these constraints is easy to establish based on similar arguments to those used
to derive constraints (4.43) for the multi-depot routing problem in Section 4.3.3. If we add this
set of exponentially-many constraints to the system of inequalities based on the z variables, we
can prove the two following results.

Proposition 26. The linear programming relaxation of the system of inequalities (6.24)–(6.28),
(6.51) and (6.30), with the addition of either relationships (6.52) or (6.53), the domain con-
straints for the v variables (6.50) and constraints (6.54), implies the following constraints

x(S ′, S) ≥ vi1L1
+ . . .+ vikLk

∀S ⊂ V : |S| ≥ k, ∀{i1, . . . , ik} ⊂ S, ∀ partitions L1, . . . , Lk of S ′, (6.55)

which include as a special case the (≤ p) constraints (6.48) of the x-v model when k = 1.

Proof. Let k ≥ 1 and consider i1, . . . , ik distinct nodes of a set S ⊂ V andL1, . . . , Lk a partition
of S ′ = V \ S. For eachm = 1, . . . , k consider the following constraints (6.54)

zk(S ′, S) ≥ vimk ∀k ∈ Lm,
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which can be equivalently written as∑
j∈S′

zk(j, S) ≥ vimk ∀k ∈ Lm.

By adding all of these constraints form = 1, . . . , k, we obtain:

k∑
m=1

∑
d∈Lm

∑
j∈S′

zd(j, S) ≥
k∑

m=1

∑
d∈Lm

vimd = vi1L1
+ . . .+ vikLk

.

The right-hand side of the above constraint is equal to the right-hand side of constraints
(6.55). As for the left-hand side, observe that it can be written as:

k∑
m=1

∑
d∈Lm

∑
j∈S′

zd(j, S) =
∑
d∈S′

∑
j∈S′

zd(j, S) =
∑
d∈S′

zd(d, S) +
∑
j∈S′

∑
d∈S′,d̸=j

zd(j, S). (6.56)

Thus, by using the linking constraints between the z and the p variables (6.27) for the first
term of the above rightmost expression, the linking constraints (6.51) for the second term of
the above rightmost expression and, lastly, the relationships between the x and the p, q and r

variables (6.1) we obtain∑
d∈S′

zd(d, S) +
∑
j∈S′

∑
d∈S′,d ̸=j

zd(j, S) ≤ p(S ′, S) + r(S ′, S) ≤ x(S ′, S),

which completes the proof.

Proposition 27. The linear programming relaxation of the system of inequalities (6.24)–(6.28),
(6.51) and (6.30), with the addition of either relationships (6.52) or (6.53), the domain con-
straints for the v variables (6.50) and constraints (6.54), implies lifted (≤ p) constraints p(i, S)+
y(S \ {i}) + r(S) ≤ |S| − 1 (6.15) and q(S, i) + y(S \ {i}) + r(S) ≤ |S| − 1 (6.16).

Proof. Consider a set S ⊂ V such that 2 ≤ |S| ≤ |V |−p, a node i ∈ S and, for each d ∈ S\{i},
an inequality (6.54) as follows:

zd(S ′ ∪ {d}, S \ {d}) ≥ vid.

By adding these constraints for all d ∈ S \ {i} we obtain:∑
d∈S\{i}

zd(S ′ ∪ {d}, S \ {d}) ≥ viS\{i}.

Now consider the rightmost expression under (6.56) in the proof of Proposition 26 in the
case in which k = 1. If we add that expression to the above inequality we can derive:∑
d∈S′

zd(d, S) +
∑
j∈S′

∑
d∈S′,d̸=j

zd(j, S) +
∑

d∈S\{i}

zd(S ′ ∪ {d}, S \ {d}) ≥ viS′ + viS\{i} = 1− yi.
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By manipulating the expression on the left-hand side of the above inequality, the details of
which we omit for simplification, we can arrive at the following inequality:∑

d∈V \{i}

zd(d, S) +
∑
j∈S′

∑
d∈V \{i},d ̸=j

zd(j, S \ {d}) ≥ 1− yi.

If we add zi(i, S) to both sides, we obtain:∑
d∈V

zd(d, S) +
∑
j∈S′

∑
d∈V \{i},d ̸=j

zd(j, S \ {d}) ≥ 1− zi(i, S ′).

Thus, we can derive,

1−p(i, S ′) ≤ 1−zi(i, S ′) ≤
∑
d∈V

zd(d, S)+
∑
j∈S′

∑
d∈V \{i},d ̸=j

zd(j, S \{d}) ≤ p(V, S)+r(S ′, S),

which are exactly constraints (6.15) in their cut form.
Regarding constraints (6.16), we can use the flow-conservation constraints (6.26) to derive

a set of constraints which are the reverse of constraints (6.54), namely

zk(S, S ′) ≥ vik ∀S ⊂ V, ∀k ∈ S ′, ∀i ∈ S, (6.57)

and use a similar reasoning.

Once again, these results do not allow us to establish a dominance relationship between the
x-v formulation and the PQR formulation. However, in practice, we will see that the linear
programming relaxation value of the x-v formulation is higher in most cases than that of the
PQR formulation, with respect to the (≤ p) constraints.

6.5 Concluding remarks

In this chapter we proposed a new formulation for the Hamiltonian p-median problem based on
the concept of acting depot presented in Chapter 5. The new formulation uses a novel idea by
incorporating the information of which nodes are acting depots on the arcs. More precisely, we
defined three sets of binary variables, the p, q and r variables, such that pij indicates whether or
not an arc (i, j) ∈ A is used and i is an acting depot, qij indicates whether or not an arc (i, j) is
used and j is an acting depot, and rij indicates whether or not an arc (i, j) is used and neither i
nor j are acting depots.

The new formulation, which we denoted by PQR formulation, allowed us to address the two
drawbacks identified in the formulation in the space of the x and the y variables presented in
Section 5.4, which were the complexity of the separation algorithm for the (≥ p) constraints
and the symmetries induced by the use of the acting depot concept. The former drawback was
addressed in the PQR formulation by presenting a set of (≥ p) constraints, namely an adaptation
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of the multi-cut constraints presented in Chapter 2 for the multi-depot routing problem, which
can be separated in polynomial time. We also showed that the (≥ p) constraints of the PQR
formulation could be improved to act as symmetry-breaking constraints that prevent alternative
solutions which only differ on the acting depot chosen.

Furthermore, we proved that the linear programming relaxation of the PQR formulation is at
least as good as the linear programming relaxation of the formulation in the space of the x and the
y variables and, additionally, we compared the PQR formulation to an alternative formulation
which is an adaptation of a formulation from the literature that was originally proposed for the
variant of the Hamiltonian p-median problem in which two-node circuits are not allowed.

In the next chapter we present a branch-and-cut algorithm based on the PQR formulation
to solve the Hamiltonian p-median problem and additional computational results, including a
comparison, in practice, of the PQR formulation and the alternative formulation.
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7.1 Introduction

In this chapter we present a branch-and-cut algorithm based on the PQR formulation presented in
Chapter 6 and a set of computational results to assess its performance, as well as complementary
computational results with a number of different objectives. We advise reading Sections 3.1
and 3.2 and the introduction of Section 3.3 to refresh the concepts related to branch-and-cut
algorithms and separation algorithms, respectively.

This chapter is organized in the following way. In Section 7.2 we present separation algo-
rithms relevant to the constraints of the PQR formulation. In Section 7.3 we provide information
on the test instances used in the computational experiments. In Section 7.4 we present the out-
line of the branch-and-cut algorithm. In Section 7.5 we present results to show the importance,
in practice, of symmetry-breaking constraints and of the liftings of the (≤ p) constraints of the
PQR formulation discussed in Section 6.2.1. In Section 7.6 we present the results of the branch-
and-cut algorithm for the test instances. In Section 7.7 we present complementary computational
results to compare the PQR formulation to the alternative x-v formulation presented in Section
6.4.1, and to assess the performance of an adaptation of the branch-and-cut algorithm to solve
the variant of the Hamiltonian p-median problem in which two-node circuits are not allowed.
Finally, we finish with some concluding remarks in Section 7.8.

7.2 Separation algorithms

In this section we present separation algorithms for the (≤ p) and the (≥ p) constraints of
the PQR formulation. We will use two different auxiliary graphs in the separation algorithms,
however, given the similarities to the graphs depicted in Figures 3.1 and 3.2 with respect to the
multi-depot routing problem, we omit some details for the sake of brevity.

The first auxiliary graph is the 3-layered graph described in Section 6.3.1. The second aux-
iliary graph is a 2-layered graph which is essentially the 3-layered graph in which the third layer
is removed, that is, we only consider the two layers which correspond to viewing the nodes as
acting depots which represent the starting point of one of the p circuits and as acting clients,
respectively. Additionally, we add a node s with an outgoing arc to every node in the first layer.

We present the separations algorithms for the (≤ p) constraints and the (≥ p) constraints of
the PQR formulation in Sections 7.2.1 and 7.2.2, respectively.

7.2.1 Separation of the (≤ p) constraints of the PQR formulation

In order to separate the (≤ p) constraints of the PQR formulation, namely

p(V, S) + r(S ′, S) ≥ 1− p(i, S ′) ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p, ∀i ∈ S (6.19)
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Algorithm 7.1
Require: A point (p∗, q∗, r∗, y∗) and the auxiliary 2-layered graph.
1: for all i ∈ V do
2: Set the capacities of the arcs from s to every node in the first layer to 1, the capacities of the arcs

from the nodes in the first layer to the nodes in the second layer to the corresponding value p∗,
the capacities of the arcs between nodes in the second layer to the corresponding value r∗, and
determine the maximum flow w from s to the copy of node i in the second layer.

3: if w < 1 then
4: Given the corresponding minimum cut, set S as the subset of nodes for which the corresponding

copies in the second layer are in the same shore as the copy of node i in the second layer.
5: if |S| > p then
6: S defines a violated inequality (6.22).
7: else
8: Evaluate w < 1− p∗(i, S′) and w < 1− q∗(S′, i). If at least one expression is true, then S

defines a violated inequality (6.19) or (6.20) depending on which expression was evaluated
as true. If both were, then add only the inequality for which the violation is the greatest.

9: end if
10: end if
11: end for

Algorithm 7.2
Require: A point (p∗, q∗, r∗, y∗).
1: Find the connected components induced by (p∗, q∗, r∗, y∗) by considering all arcs (i, j) ∈ A such

that p∗ij > 0 or q∗ij > 0 or r∗ij > 0 (e.g., by using a depth-first search algorithm).
2: for all connected components where every node of the component is such that y∗ = 0 do
3: The set S comprised of the nodes of the component defines a violated inequality (6.19), (6.20) and

(6.22). Add the violated inequality for which the violation is the greatest.
4: end for

p(V, S) + r(S ′, S) ≥ 1− q(S ′, i) ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p, ∀i ∈ S (6.20)

p(V, S) + r(S ′, S) ≥ 1− yi ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p, ∀i ∈ S (6.21)

p(V, S) + r(S ′, S) ≥ 1 ∀S ⊂ V : p < |S| ≤ |V | − p, (6.22)

we provide two algorithms.
Algorithm 7.1 is based on max-flow/min-cut computations. Intuitively, observe that the left-

hand side of any of the above constraints corresponds to a cut in the 2-layered graph in which
all nodes of the first layer are on the same shore given the common term p(V, S). Thus, the
min-cuts obtained in algorithm 7.1 are cuts that partition the nodes in the second layer into two
subsets which originate two corresponding subsets of the original nodes of V , namely S ′ and S
in the above expressions. Then, depending on the cardinality of S, either violated constraints
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Algorithm 7.3
Require: A point (p∗, q∗, r∗, y∗) and the auxiliary 3-layered graph.
1: for all i ∈ V such that y∗i > 0 do
2: Temporarily remove the copy of node i from the second layer. Set the capacities of the arcs from the

nodes in the first layer to the nodes in the second layer to the corresponding value p∗, the capacities
of the arcs between nodes in the second layer to the corresponding value r∗, the capacities of the
arcs from the nodes in the second layer to the nodes in the third layer to the corresponding value
q∗, and determine the maximum flow w from the copy of node i in the first layer to the copy of
node i in the third layer.

3: if w < y∗i then
4: The corresponding minimum cut defines a violated inequality (6.23) for i in which S is the

subset of nodes for which the corresponding copies in the second layer are in the same shore as
the copy of node i in the third layer.

5: end if
6: end for

(6.19), (6.20) or (6.22) are found.
Algorithm 7.1 is not an exact separation algorithm for any of the three sets of constraints

(6.19), (6.20) or (6.22). Regarding constraints (6.19) and (6.20), note that the right-hand side
depends on the set S ′. More precisely, we do not take into account the values p∗(i, S ′) and
q∗(S ′, i) when determining the min-cut. As for constraints (6.22), the additional condition that
|S| > p is also not taken into account during the min-cut computation. Nevertheless, observe
that algorithm 7.1 is exact with respect to constraints (6.21). In fact, when algorithm 7.1 stops,
for sets S such that |S| > p we know that the value of the min-cut, say w, is such that w ≥ 1 ≥
1−y∗i for any i ∈ S, and if |S| ≤ pwe know thatw ≥ max{1−p∗(i, S ′), 1−q∗(S ′, i)} ≥ 1−y∗i

for any i ∈ S. Thus, it is ensured that no inequality (6.21) is violated, and, therefore, no client-
only circuits will exist in the solution.

As for algorithm 7.2, it is a heuristic separation algorithm for fractional points and an ex-
act separation algorithm for integer points based on the computation of connected components
which is very similar to algorithm 3.2 proposed in the first part of this dissertation.

7.2.2 Separation of the (≥ p) constraints of the PQR formulation

In order to separate the multi-cut inequalities q(S ′, i) + r(S ′, S) + p(i, S) ≥ yi (6.23) we pro-
vide two algorithms: algorithm 7.3, which is a polynomial-time exact separation algorithm, and
algorithm 7.4, which is a polynomial-time exact separation algorithm for integer points and a
heuristic separation algorithm for fractional points.

Similarly to the case of the multi-depot routing problem, the multi-cut inequalities (6.23) are
cuts in the 3-layered graph. Therefore, algorithm 7.3 is based on max-flow/min-cut computa-
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Algorithm 7.4
Require: A point (p∗, q∗, r∗, y∗).
1: Find the connected components induced by (p∗, q∗, r∗, y∗) by considering all arcs (i, j) ∈ A such

that p∗ij > 0 or q∗ij > 0 or r∗ij > 0 (e.g., using a depth-first search algorithm).
2: for all connected components where at least two nodes of the component are such that y∗ > 0 do
3: Find a path between two such nodes in the connected component, say a path from i to j, and set

S as the complementary set in V \ {i, j} of the set of nodes in the path found.
4: if (p∗, q∗, r∗, y∗) is integer then
5: S defines a violated inequality (6.23) for node i.
6: else
7: If q∗(S′ ∪ {j}, i) + r∗(S′ ∪ {j}, S) + p∗(i, S) < 1− y∗i , then S defines a violated inequality

(6.23) for node i.
8: end if
9: end for

tions in the 3-layered graph, with capacities given by the point being separated, and it checks if
the max-flow from the copy of a given node i ∈ V in the first layer to its copy in the third layer
is at least y∗i . If for any node this max-flow value is below y∗i , then a violated inequality exists.
Note that if y∗i = 0 it is not necessary to compute the max-flow.

Algorithm 7.4 is a heuristic separation algorithm for fractional points and an exact separation
algorithm for integer points based on the computation of connected components which is very
similar to algorithm 3.4 proposed in the first part of this dissertation.

Finally, in order to separate the restricted symmetry-breaking version of the multi-cut in-
equalities (6.36), we use similar algorithms with only a minor difference in the case of algorithm
7.3, namely in step 2 we not only temporarily remove from the second layer the copy of node i,
but also remove the copy of every node j such that j < i.

7.3 Test instances and software/hardware configurations

The remainder of this chapter will focus on computational experiments. For these experi-
ments we use two sets, A and B, of instances. The first set A is a subset of the very well-
known TSPLIB symmetric traveling salesman problem benchmark instances, namely dantzig42,
swiss42, att48, gr48, hk48, eil51, berlin52, brazil58, st70, eil76, pr76, gr96, rat99, kroA100,
kroB100, kroC100, kroD100, kroE100 and rd100. The number of nodes in these instances
varies from 42 to 100. The set B of instances includes TSPLIB asymmetric traveling sales-
man problem benchmark instances, namely ftv33 to ftv170, p43, ry48p, ft53, ft70 and kro124p,
with a number of nodes which varies from 34 to 171. The complete description for the sets A
and B of instances is available at https://www.iwr.uni-heidelberg.de/groups/comopt/

155



CHAPTER 7. A BRANCH-AND-CUT ALGORITHM

software/TSPLIB95/. In the symmetric instances of set A where node coordinates are pro-
vided instead of explicit cost values, we determine the cost of an arc (i, j), and consequently of
arc (j, i), by rounding up the Euclidean distance between i and j.

As in the first part of this dissertation, the computational experiments were conducted on a
single thread of an Intel Core i7-4790 3.6GHz processor in a personal computer with 8GB of
RAM and within which CPLEX 12.6.1 Concert Technology for C++ was used. All of the code
is original, except for the max-flow algorithm which is based on the push-relabel algorithm by
Goldberg & Tarjan (1988).

7.4 The outline of the branch-and-cut algorithm

The branch-and-cut algorithm based on the PQR formulation uses the branch-and-cut algorithm
framework of CPLEX version 12.6.1 by IBM (2014) through its Concert Technology for C++.
Recall that the advantage of using this framework is that the branch-and-cut algorithm is man-
aged by the solver but the user can intervene in specific parts of the algorithm by using callback
functions. For an efficient implementation of a branch-and-cut algorithm, the use of callback
functions is important, however, since the code in these functions is managed by the user, it is
important to use certain techniques to ensure the efficiency of the branch-and-cut algorithm.

The techniques we use in the branch-and-cut algorithm for the Hamiltonian p-median prob-
lem are essentially the same as in the branch-and-cut algorithm proposed in Section 3.6 for
the multi-depot routing problem. For instance, we already presented in the previous section
heuristic separation algorithms for the exponentially-sized sets of constraints involved, as well
as symmetry-breaking constraints in Section 6.3.2. We now discuss two other important aspects,
namely parameters to control the number of violated inequalities added in each iteration of the
cutting plane algorithm in Section 7.4.1, as well as a primal heuristic that finds feasible solutions
by using information from the nodes of the branch-and-bound tree in Section 7.4.2.

7.4.1 Parameters for lazy constraint/user cut callback functions

In Section 3.6.2 we explained the usefulness of parameters to control the addition of violated
inequalities in lazy constraint/user cut callback functions. In the branch-and-cut algorithm based
on the PQR formulation we use the same type of parameters, namely a separation priority list,
a parameter to control the number of lazy constraints or user cuts added in total before re-
optimizing, and a parameter to control whether or not we should skip some of the separation
algorithms in the separation priority list in a given cutting plane iteration. These last two pa-
rameters work exactly the same as explained in Section 3.6.2.

The separation priority list in this case depends on the number of circuits in the relaxation of
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the Hamiltonian p-median problem in which we do not add any (≤ p) nor (≥ p) constraints, that
is, the so-called assignment relaxation. More precisely, consider the problem comprised solely
of the degree constraints (5.2)–(5.3) and the domain constraints for the x variables (5.6) with the
arc cost minimization objective (5.1). As we mentioned in Section 5.3, this corresponds to the
assignment problem. The first step in the branch-and-cut algorithm is to determine the number
of circuits in the assignment relaxation, which we denote by p′. Observe that performing this
first step is reasonable since the assignment problem can be solved in polynomial time (see, e.g.,
Wolsey 1998).

The reasoning for performing this first step is based on preliminary computational experi-
ments. Apart from a very small set of test instances, the models described in this dissertation
for the Hamiltonian p-median problem, including the PQR formulation, have two properties:
(i) for a Hamiltonian p-median problem instance where p < p′, the models described in this
dissertation provide the same optimal solution and linear programming relaxation value if we
do not add any (≥ p) constraints when compared to a complete model; and (ii) for a Hamilto-
nian p-median problem instance where p > p′, the models described in this dissertation provide
the same optimal solution and linear programming relaxation value if we do not add any (≤ p)

constraints when compared to a complete model. Additionally, we found that when using a
complete model, that is, including both (≤ p) and (≥ p) constraints, in a branch-and-cut algo-
rithm, either none or very few violated constraints of the type (≥ p) are identified when p < p′,
and none or very few violated constraints of the type (≤ p) are identified if p > p′.

Based on the above properties, we define the separation priority lists such that the inequalities
which are much more likely to be violated are separated first. This translates to the following.
For lazy constraints, we define the separation priority list for p < p′ as algorithm 7.2 followed
by 7.4, whereas for p > p′ the order is reversed. With respect to user cuts, and for p < p′, the
order is algorithm 7.2, algorithm 7.4, algorithm 7.1 and, finally, algorithm 7.3. As for the case
p > p′, the order is 7.4, algorithm 7.2, algorithm 7.3 and, lastly, algorithm 7.1.

7.4.2 A primal heuristic

Similarly to what was presented in Section 3.6.3 for the multi-depot routing problem, we regu-
larly apply a heuristic procedure to find feasible solutions based on fractional solutions that can
hopefully improve the current incumbent or to improve incumbents found during the regular
branch-and-bound process.

The heuristic procedure used in the branch-and-cut algorithm based on the PQR formulation
is an adaptation of the one described in Section 3.6.3 and it works as follows. Given a non-
negative cost function c′, we start by finding the cheapest p arcs to start the p circuits. Then,
by using a nearest neighbor type of criterion we insert the remaining nodes in the best possible
circuit until we form p circuits that cover V . To further optimize these p circuits we apply local
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search operators that first swap nodes inside the circuits, then move nodes from their circuit to
a different circuit and finally swap nodes inside the circuits again. If the heuristic is applied
by using the original cost function c, the solutions obtained will usually be of poor quality, as
was the case in the heuristic procedure proposed in Section 3.6.3. Instead, we use the fractional
values p∗, q∗ and r∗ at a given node of the branch-and-bound tree to modify the cost of an arc
(i, j) to cij × (1 − p∗ij − r∗ij − q∗ij). Recall that the reasoning for this modified cost function is
that arcs for which the linear programming relaxation value is close to 1 will have a lower cost
and, thus, have a higher probability of being chosen in the constructive part of the heuristic.

For nodes of the branch-and-bound tree in which an integer solution was found, the heuristic
simply applies the local search operators to the solution found, since it does not require the con-
struction phase. The heuristic is applied at every five nodes during the first 250 nodes explored
in the branch-and-bound tree, following which the frequency is decreased to every 10 nodes.

7.5 Preliminary computational experiments

Before we discuss the final results obtained by the branch-and-cut algorithm, we present in this
section some preliminary computational experiments that provide insight on the benefits of two
aspects of the PQR formulation.

In Section 7.5.1 we show the benefit of separating the lifted versions of the (≤ p) constraints
presented in Section 6.2.1. Then, in Section 7.5.2 we present some results that compare the
branch-and-cut algorithm to another one in which symmetry-breaking constraints are not used.

7.5.1 Evaluating the effectiveness of using the lifted (≤ p) constraints

In Section 6.2.1 we discussed the (≤ p) constraints of the PQR formulation. In particular, we
presented four different sets of constraints, which we recall are as follows written in cut form

p(V, S) + r(S ′, S) ≥ 1− p(i, S ′) ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p, ∀i ∈ S (6.19)

p(V, S) + r(S ′, S) ≥ 1− q(S ′, i) ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p, ∀i ∈ S (6.20)

p(V, S) + r(S ′, S) ≥ 1− yi ∀S ⊂ V : 2 ≤ |S| ≤ |V | − p, ∀i ∈ S (6.21)

p(V, S) + r(S ′, S) ≥ 1 ∀S ⊂ V : p < |S| ≤ |V | − p, (6.22)

and provided a theoretical comparison. Recall that, for sets S such that |S| > p, constraints
(6.22) imply the other three sets. Additionally, for |S| ≤ p, constraints (6.19) and (6.20) imply
constraints (6.21).

In this section we present some results that show the actual benefit for the branch-and-cut
algorithm of separating the lifted (≤ p) constraints. More precisely, we compare three branch-
and-cut algorithms. The first branch-and-cut algorithm, which we denote by B&C1, is similar
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Table 7.1: Comparison the solution times of different (≤ p) constraints

B&C1 B&C2 B&C3

Name p′ p OPT t (s) t (s) t (s)

kro124p 32 5 35435 37 9 13
10 35010 9 23 15
15 34799 817 403 68
20 34433 187 53 62
25 34267 455 241 87
30 34002 35 1 1
35 34050 0 0 0
40 34310 0 0 0
45 35331 1 1 1
50 37541 1 1 1

rat99 45 5 1237 19 17 8
10 1212 374 47 68
15 1195 179 137 39
20 1184 2279 556 172
25 1170 1858 342 177
30 1159 1213 288 41
35 1153 799 486 50
40 1145 172 23 15
45 1142 1 0 0

to the branch-and-cut algorithm presented in Section 7.4 but where only the weaker constraints
(6.21) are separated. The second branch-and-cut algorithm, denoted by B&C2, is similar to the
branch-and-cut algorithm presented in Section 7.4 in which constraints (6.19) and (6.20) are
separated. Finally, the third branch-and-cut algorithm, denoted by B&C3, is the branch-and-cut
algorithm presented in Section 7.4.

Table 7.1 shows the comparison results for the asymmetric instance kro124p and the sym-
metric instance rat99 with the following format. The first four columns indicate the name of
the instance, the number p′ of circuits in the assignment relaxation, the value of p used, and the
optimal value of the instance (OPT), respectively. The remaining three columns show the time
taken (t) in seconds to obtain the optimal value for each of the three branch-and-cut algorithms.

The results are self-explanatory and essentially show that the use of the lifted versions of
the (≤ p) constraints of the PQR formulation provide significant improvements in terms of the
average computational time required to obtain the optimal solution. In particular, observe that
by using the standard branch-and-cut algorithm, namely the branch-and-cut algorithm B&C3,
we obtain the lowest average computational times. Additionally, the branch-and-cut algorithm
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B&C2 also improves the results of the branch-and-cut algorithm B&C1.

7.5.2 Evaluating the effectiveness of using symmetry-breaking constraints

The computational results presented in this section aim to show the benefits of using symmetry-
breaking constraints in the PQR formulation. Recall that in Section 6.3.2 we discussed two types
of symmetries identified in the solutions of the PQR formulation. The symmetries of type I are
related to alternative solutions which only differ on the acting depots chosen for each circuit and
are a consequence of the acting depot concept, whereas the symmetries of type II are due to the
use of directed graph based formulations for which both orientations of a circuit have the same
cost in symmetric cost instances.

The symmetries of type II had already been identified in the multi-depot routing problem
and we showed that they can be resolved through the use of the symmetry-breaking constraints∑

k≥j

qki ≥
∑
k≥j

pik, ∀i, j ∈ V, i ̸= j. (6.38)

Wewill not provide comparative results for these constraints, however, computational testing
shows that, similarly to what was observed in Section 3.6.4 with respect to the multi-depot
routing problem, the improvements they provide are not substantial, which may once again be
attributed to the fact that most solutions are comprised of many circuits with only two nodes.
Nevertheless, a slight average decrease in the solution times was observed, hence their use in
the branch-and-cut algorithm for symmetric cost instances.

We now present test results to show the effect of the symmetry-breaking constraints of type
I. More precisely, we compare the standard branch-and-cut algorithm described previously, in
which the symmetry-breaking restricted multi-cut inequalities q(S ′, i)+ r(S ′, S)+ p(i, S) ≥ yi

(6.36) are used, to another similar branch-and-cut algorithm in which the only difference is
that the regular multi-cut inequalities (6.23) are used instead. Observe, however, that there
is no advantage in using the regular multi-cut inequalities (6.23) over the restricted multi-cut
inequalities (6.36) in a branch-and-cut algorithm, unless we explicitly want to allow alternative
solutions. In fact, the latter dominate the former and, additionally, they are faster to separate
since the max-flow/min-cut computations are performed in smaller-sized auxiliary graphs.

Tables 7.2 and 7.3 show the comparison results, with Table 7.2 focusing on the asymmetric
instance ftv170 and Table 7.3 on the symmetric instance rat99. Both tables have the following
format. The first three columns indicate the name of the instance, the number p′ of circuits in
the assignment relaxation and the value of p used, respectively. The remaining six columns are
divided into two parts, each with three columns corresponding to, respectively, the linear pro-
gramming relaxation value (LP), the optimal value obtained or the final interval of best lower
and upper bounds obtained if the time limit of 10800 seconds was reached (OPT) and the re-
spective time taken (t) in seconds. The first part corresponds to the alternative branch-and-cut
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Table 7.2: Evaluating the effectiveness of using symmetry-breaking constraints of type I (1 of 2)

B&C1 B&C2

Name p′ p LP OPT t (s) LP OPT t (s)

ftv170 17 5 2662 2683 15 2662 2683 14
10 2635 2636 8 2635 2636 8
15 2631 2631 0 2631 2631 0
20 2631 2631 0 2631 2631 0
25 2631 2639 972 2635.14 2639 28
30 2632.95 [2646, 2658] 10800* 2644.38 2658 44
35 2643.57 [2664, 2705] 10800* 2671.92 2704 290
40 2670.93 [2713, 2736] 10800* 2714.81 2736 508
45 2719.42 [2779, 2799] 10800* 2772.13 2799 356
50 2781.78 [2842, 2884] 10800* 2844.78 2884 735
55 2861.38 [2937, 3012] 10800* 2954.38 3008 2470
60 2989.2 [3080, 3212] 10800* 3105.34 3205 3648
65 3198.03 [3246, 3695] 10800* 3325.09 [3428, 3432] 10800*
70 3450.56 [3518, 3826] 10800* 3567.63 [3684, 3706] 10800*
75 ** ** ** 3727.48 [3767, 4091] 10800*
80 ** ** ** 3962.44 [4099, 4403] 10800*
85 ** ** ** 4644.5 4777 7647

*Not solved to optimality within the time limit of three hours
** Ran out of memory before the time limit

algorithm, denoted by B&C1, which uses the regular multi-cut inequalities (6.23), and the sec-
ond part corresponds to the standard branch-and-cut algorithm, denoted by B&C2, which uses
the restricted multi-cut inequalities (6.36).

The results for the asymmetric instance ftv170 show a substantial improvement by the use
of the restricted multi-cut inequalities (6.36) instead of the regular multi-cut inequalities (6.23).
In fact, the branch-and-cut algorithm B&C2 was able to optimally solve eight more instances
than the branch-and-cut algorithm B&C1, namely for p ∈ {30, 35, 40, 45, 50, 55, 60, 85}. Addi-
tionally, a reduction in computational times is observed for instances that were already solved
to optimality, such as the instance with p = 25 for which the computational time decreased from
about fifteen minutes to only 28 seconds. Observe that the results also show that the linear pro-
gramming relaxation values are, in most cases, substantially higher when we use the restricted
multi-cut inequalities (6.36) in the PQR formulation, which also helps to explain the overall
improved results.

As for the symmetric instance rat99, the use of the restricted multi-cut inequalities (6.36) in-
stead of the regular multi-cut inequalities (6.23) does not have such a significant effect compared
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Table 7.3: Evaluating the effectiveness of using symmetry-breaking constraints of type I (2 of 2)

B&C1 B&C2

Name p′ p LP OPT t (s) LP OPT t (s)

rat99 45 5 1228.5 1237 26 1228.5 1237 8
10 1196.5 1212 62 1196.5 1212 68
15 1178.17 1195 68 1178.17 1195 39
20 1164.17 1184 433 1164.17 1184 172
25 1154.38 1170 83 1154.38 1170 177
30 1148 1159 508 1148 1159 41
35 1144.44 1153 218 1144.44 1153 50
40 1142.17 1145 64 1142.17 1145 15
45 1142 1142 0 1142 1142 0

to the asymmetric instance ftv170. This is clearly partly due to lack of difference in the linear
programming relaxation value of the PQR formulation with the former constraints and of the
PQR formulation with the latter constraints. Nevertheless, the branch-and-cut algorithm B&C1

solved all nine instances in an average of 162 seconds, whereas the branch-and-cut algorithm
B&C2 in an average of 63 seconds, which corresponds to a reduction of more than 50%.

7.6 Computational experiment

In this section we present computational results to assess the performance of the branch-and-cut
algorithm in solving the test instances described in Section 7.3 to optimality. We divide this
section in two parts, the first corresponding to the results on asymmetric instances in Section
7.6.1 and the second corresponding to the results on symmetric instances in Section 7.6.2.

7.6.1 Results for asymmetric instances

This section presents the results obtained on the asymmetric test instances by using the branch-
and-cut algorithm proposed in Section 7.4. Given the large number of test instances, we only
present results for a subset of the instances of set B in the main body of text, and present the
remaining results in Appendix A.1. For each instance, we present results for values of p which
are multiples of 5, starting with p = 5 and up to the maximum possible value of p for that
instance (e.g., for an instance with 40 nodes, the value of p can go up to 20). Additionally, we
impose a time limit of 10800 seconds (three hours).

Tables 7.4 and 7.5 show the results with respect to obtaining the optimal solution, with Table
7.4 focusing on the instances ft70, ftv70 and kro120p, and Table 7.5 on the instance ftv170. Both
tables have the following format. The first three columns indicate the name of the instance, the
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Table 7.4: Optimal solution results for asymmetric instances (1 of 2)

Name p′ p OPT t (s) B&B #(≤ p) #(≥ p)

ft70 10 5 38120 3 98 851 62
10 37978 0 0 0 0
15 38033 1 0 0 114
20 38390 7 99 5 976
25 39233 9 79 0 1604
30 40539 11 125 0 1460
35 42908 2 0 0 166

ftv70 11 5 1826 2 47 474 7
10 1766 0 0 0 0
15 1771 0 0 0 56
20 1841 1 0 0 86
25 1978 1 1 0 243
30 2210 2 5 0 469
35 2535 1 0 0 156

kro124p 32 5 35435 13 218 1035 50
10 35010 15 160 1848 71
15 34799 68 1171 4924 207
20 34433 62 397 5651 161
25 34267 87 591 6107 358
30 34002 1 0 52 6
35 34050 0 0 0 0
40 34310 0 0 0 9
45 35331 1 0 0 39
50 37541 1 0 0 53

number p′ of circuits in the assignment relaxation and the value of p, respectively. The other five
columns show, respectively, the optimal value obtained or the final interval of best lower and
upper bounds obtained if the time limit was reached (OPT), the time taken in seconds (t), the
number of branch-and-bound nodes explored (B&B), the number of violated (≤ p) constraints
found (#(≤ p)) and the number of violated (≥ p) constraints found (#(≥ p)).

Tables 7.6 and 7.7 show the results with respect to obtaining the linear programming relax-
ation value, with Table 7.6 focusing on the instances ft70, ftv70 and kro120p, and Table 7.7 on
the instance ftv170. Both tables have the following format. The first three columns indicate the
name of the instance, the number p′ of circuits in the assignment relaxation and the value of p,
respectively. The fourth column indicates the optimal value of the instance (OPT) taken from
either Table 7.4 or Table 7.5. The following five columns show, respectively, the linear program-

163



CHAPTER 7. A BRANCH-AND-CUT ALGORITHM

Table 7.5: Optimal solution results for asymmetric instances (2 of 2)

Name p′ p OPT t (s) B&B #(≤ p) #(≥ p)

ftv170 17 5 2683 14 23 339 7
10 2636 8 0 148 0
15 2631 0 0 0 0
20 2631 0 0 0 0
25 2639 28 5 1 455
30 2658 44 7 38 825
35 2704 290 206 1240 4304
40 2736 508 24 0 3548
45 2799 356 160 64 3758
50 2884 735 53 0 4825
55 3008 2470 135 10 8649
60 3205 3648 267 0 9703
65 [3428, 3432] 10800* 2491 31 17838
70 [3684, 3706] 10800* 1253 0 14429
75 [3767, 4091] 10800* 0 0 16046
80 [4099, 4403] 10800* 0 0 15483
85 4777 7647 3412 2 12350

*Not solved to optimality within the time limit of three hours

ming relaxation value (LP), the percentage of gap between the linear programming relaxation
value and the best known upper bound (gap), the time taken to obtain the linear programming
relaxation value (tL) in seconds, the number of violated (≤ p) constraints found (#(≤ p)) and
the number of violated (≥ p) constraints found (#(≥ p)).

We start by analyzing the results in Table 7.4. Notice that the branch-and-cut algorithm
was able to solve the instances ft70, ftv70 and kro124p, for all values of p, in a maximum of
87 seconds. This suggests that for asymmetric instances with up to 100 nodes the branch-and-
cut algorithm proposed is very effective. Recall the observation made regarding the distinction
between the cases p < p′ and p > p′ in Section 7.4.1. In particular, observe that for p < p′ few
violated (≥ p) constraints are found, and the ones which are we believe can be mostly attributed
to symmetry-breaking purposes. Conversely, for p > p′, very few violated (≤ p) constraints are
found. These results suggest that, in practice, we can expect different behavior in the branch-
and-cut algorithm depending on whether p < p′ or p > p′. More precisely, the set of (≤ p)

constraints used have a much bigger influence in the former case, whereas the (≥ p) constraints
used have a much bigger influence in the latter.

The results of Table 7.5 confirm this last observation, apart from the case p = 35 in which
there were a considerable number of violated (≤ p) constraints found. For the instance ftv170,
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Table 7.6: Linear programming relaxation results for asymmetric instances (1 of 2)

Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

ft70 10 5 38120 38055.6 0.17 0 89 1
10 37978 37978 0.00 0 7 0
15 38033 38018.5 0.04 0 0 59
20 38390 38275.2 0.30 0 0 185
25 39233 39027.9 0.52 1 0 417
30 40539 40258.3 0.69 2 0 800
35 42908 42297 1.42 0 0 119

ftv70 11 5 1826 1804.78 1.16 1 137 11
10 1766 1766 0.00 0 8 10
15 1771 1769.5 0.08 0 0 61
20 1841 1837 0.22 0 0 130
25 1978 1954.41 1.19 0 0 241
30 2210 2140.94 3.12 0 0 285
35 2535 2496.63 1.51 0 0 383

kro124p 32 5 35435 35114.9 0.90 0 229 3
10 35010 34681.5 0.94 1 265 2
15 34799 34421.8 1.08 1 215 1
20 34433 34227.8 0.60 4 463 4
25 34267 34083.1 0.54 0 69 7
30 34002 33990 0.04 0 51 1
35 34050 34050 0.00 0 0 13
40 34310 34294.1 0.05 0 3 24
45 35331 35082 0.70 0 0 28
50 37541 36663 2.34 0 0 23

which has 171 nodes, the branch-and-cut algorithm proposed was able to solve most of the
values of p, except for p ∈ {65, 70, 75, 80}. It is clear from these results that the value of p has
a strong influence in the solution times. In particular, the solution times are lower in the cases
in which p is close to the value of the assignment relaxation p′, but are significantly higher as
the difference between p and p′ increases.

With respect to the results of Table 7.6, we can see that the linear programming relaxation
values obtained are also directly influenced by the difference between p and p′. For the three
instances ft70, ftv70 and kro124p, and excluding the cases in which the solution obtained was
the same as the solution of the assignment relaxation, we can see a minimum and maximum
gap of 0.04% and 3.12%, respectively, which is a considerable difference. As for the results of
Table 7.7 with respect to the instance ftv170, we can draw similar conclusions. More precisely,
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Table 7.7: Linear programming relaxation results for asymmetric instances (2 of 2)

Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

ftv170 17 5 2683 2662 0.78 1 50 0
10 2636 2635 0.04 2 124 1
15 2631 2631 0.00 1 27 7
20 2631 2631 0.00 2 59 107
25 2639 2635.14 0.15 16 2 440
30 2658 2644.38 0.51 9 0 454
35 2704 2671.92 1.19 56 0 1152
40 2736 2714.81 0.77 103 0 1698
45 2799 2772.13 0.96 603 1 3385
50 2884 2844.78 1.36 1153 1 4950
55 3008 2954.38 1.78 2083 0 7090
60 3205 3105.34 3.11 4248 0 10647
65 [3428, 3432] 3325.09 3.12 9716 0 14291
70 [3684, 3706] 3567.63 3.73 10800* 0 16163
75 [3767, 4091] 3727.48 8.89 10800* 0 15918
80 [4099, 4403] 3962.44 10.01 10800* 0 15316
85 4777 4644.5 2.77 1081 0 5890

*Not solved to optimality within the time limit of three hours

for values of p closer to p′ the gap values are small, with a maximum of 1.19% for p up to 35,
for instance. However, as the value of p increases, we observe considerably larger gap values
such as, for example, in the cases p = 60 and p = 85, with gap values of 3.11% and 2.77%,
respectively. Observe that for the unsolved cases the gap value reported is an upper bound on the
real gap value if it were to be calculated with the (unknown) optimal solution. We believe that
the values 8.89%and 10.01% for the cases p = 75 and p = 80, respectively, largely overestimate
the real gap value since, as we can see in Table 7.5, no branch-and-bounds node were explored
(i.e., the time limit was reached in the root node) and, therefore, the upper bounds are most likely
far from the optimal value. Finally, we observe that the number of violated inequalities found is
also consistent with the results analyzed before, that is, it depends on whether p < p′ or p > p′.

7.6.2 Results for symmetric instances

We now present the results obtained with respect to the symmetric test instances. Once again,
given the large number of instances, we present some of the results in Appendix A.2.

Tables 7.8 and 7.9 show the results with respect to obtaining the optimal solution, with Ta-
ble 7.8 focusing on the instances pr76 and rat99, and Table 7.9 on the instances kroB100 and
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Table 7.8: Optimal solution results for symmetric instances (1 of 2)

Name p′ p OPT t (s) B&B #(≤ p) #(≥ p)

pr76 36 5 [96104, 97764] 10800* 130191 79582 738
10 [90747, 91883] 10800* 61096 120131 944
15 86380 1066 18155 46964 178
20 82311 99 588 9705 35
25 82040 1757 6100 39375 137
30 [80612, 81961] 10800* 21436 54850 491
35 77973 1 0 159 4

rat99 45 5 1237 8 222 1580 3
10 1212 68 419 4726 46
15 1195 39 391 5975 35
20 1184 172 2674 25897 145
25 1170 177 1177 18906 198
30 1159 41 157 6544 47
35 1153 50 419 9912 46
40 1145 15 308 8129 35
45 1142 0 0 0 0

*Not solved to optimality within the limit of three hours.

kroC100. Both tables have the following format. The first three columns indicate the name
of the instance, the number p′ of circuits in the assignment relaxation and the value of p, re-
spectively. The other five columns show, respectively, the optimal value obtained or the final
interval of best lower and upper bounds obtained if the time limit was reached (OPT), the time
taken in seconds (t), the number of branch-and-bound nodes explored (B&B), the number of
violated (≤ p) constraints found (#(≤ p)) and the number of violated (≥ p) constraints found
(#(≥ p)).

Tables 7.10 and 7.11 show the results with respect to obtaining the linear programming re-
laxation value, with Table 7.10 focusing on the instances pr76 and rat99, and Table 7.11 on the
instances kroB100 and kroC100. Both tables have the following format. The first three columns
indicate the name of the instance, the number p′ of circuits in the assignment relaxation and the
value of p, respectively. The fourth column indicates the optimal value of the instance (OPT)
taken from either Table 7.8 or Table 7.9. The following five columns show, respectively, the
linear programming relaxation value (LP), the percentage of gap between the linear program-
ming relaxation value and the best known upper bound (gap), the time taken to obtain the linear
programming relaxation value (tL) in seconds, the number of violated (≤ p) constraints found
(#(≤ p)) and the number of violated (≥ p) constraints found (#(≥ p)).

We start with the results of Tables 7.8 and 7.9. We can see that the branch-and-cut algo-

167



CHAPTER 7. A BRANCH-AND-CUT ALGORITHM

Table 7.9: Optimal solution results for symmetric instances (2 of 2)

Name p′ p OPT t (s) B&B #(≤ p) #(≥ p)

kroB100 43 5 [21023, 21093] 10800* 104060 55636 4706
10 [19869, 20289] 10800* 39475 120403 4976
15 [19198, 19364] 10800* 30045 123221 3219
20 18727 8587 23456 96014 1077
25 18132 8559 13631 102279 1484
30 17606 4426 7274 76271 921
35 17210 109 490 8919 86
40 16921 80 316 8506 62
45 16838 2 0 329 2
50 18684 2 0 0 0

kroC100 45 5 19998 7676 71857 64310 1693
10 19077 1769 18122 38756 1126
15 18454 1950 20767 34709 907
20 17958 208 1504 16261 323
25 17668 930 1144 24979 499
30 [17421, 17539] 10800* 13164 93350 1604
35 17189 5820 13899 54226 610
40 16926 74 579 8571 104
45 16801 0 0 0 0
50 17738 2 0 0 0

*Not solved to optimality within the limit of three hours.

rithm was able to solve almost all values of p for the four instances, with the exception of
p ∈ {5, 10, 30} in the case of instance pr76, p ∈ {5, 10, 15} in the case of instance kroB100 and
p = 30 for instance kroC100. These results indicate that the performance of the branch-and-cut
algorithm depends on the value of p, however, there is no clear pattern for this dependency.
Nevertheless, the branch-and-cut algorithm is effective for symmetric instances with up to 100
nodes. Observe that the instances which we decided to present in the main body of text are
the instances where the performance was worse on average, except for instance rat99, that is,
they are the worst case scenario for the symmetric instances which we tested. There is a similar
behavior to the results on asymmetric instances with respect to the distinction between p < p′

and p > p′. More precisely, for p < p′ the number of violated (≥ p) constraints found is much
lower than the number of violated (≤ p) constraints found.

When compared to the results for the asymmetric instances of the previous section, it is clear
that the branch-and-cut algorithm is able to solve similarly sized asymmetric instances more
efficiently. Additionally, for asymmetric instances, the value of p′ is usually lowwhen compared
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Table 7.10: Linear programming relaxation results for symmetric instances (1 of 2)

Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

pr76 36 5 [96104, 97764] 91255.6 6.66 0 135 0
10 [90747, 91883] 85634 6.80 2 534 0
15 86380 81211.5 5.98 0 58 0
20 82311 79365.2 3.58 0 50 0
25 82040 78332 4.52 0 52 1
30 [80612, 81961] 77731.8 5.16 0 52 1
35 77973 77207.3 0.98 1 671 0

rat99 45 5 1237 1228.5 0.69 1 297 0
10 1212 1196.5 1.28 1 198 0
15 1195 1178.17 1.41 1 218 0
20 1184 1164.17 1.67 2 250 1
25 1170 1154.38 1.34 1 272 0
30 1159 1148 0.95 3 325 1
35 1153 1144.44 0.74 2 146 0
40 1145 1142.17 0.25 2 254 0
45 1142 1142 0.00 0 30 0

to the maximum possible value, whereas in the case of symmetric instances we observe the
reversed situation. Given the distinction between the p < p′ and p > p′ cases, we can conclude
that the (≥ p) constraints are more important in the asymmetric case and the (≤ p) constraints
in the symmetric case.

We believe that the difference in performance between asymmetric and symmetric instances
is due to two main reasons. Firstly, it is possible to prove a result similar to Proposition 3 for the
restricted multi-cut inequalities q(S ′, i)+r(S ′, S)+p(i, S) ≥ yi (6.36), namely stating that these
constraints are expected to provide lower linear programming relaxation values for symmetric
cost instances which also negatively influences the cutting plane phase of the branch-and-cut
algorithm. Note, however, that since the (≤ p) constraints are more important in the symmetric
case, this result does not fully explain the worse performance for symmetric instances and, in
fact, we believe that the (≤ p) constraints of the PQR formulation are not as good, in practice,
as the (≥ p) constraints, which are more important in the asymmetric case. Secondly, as we
showed in Section 7.5.2, the use of the restricted multi-cut inequalities (6.36) for symmetry-
breaking purposes substantially improved the results for asymmetric instances, whereas this
improvement was not as noticeable for symmetric instances. This is related to the previous
observation since the increase in the linear programming relaxation value was significant in
asymmetric instances but non-existent in symmetric ones. Additionally, the restricted multi-
cut inequalities (6.36) are the (≥ p) constraints of the PQR formulation, hence, they are more
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Table 7.11: Linear programming relaxation results for symmetric instances (2 of 2)

Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

kroB100 43 5 [21023, 21093] 20282.3 3.84 1 220 0
10 [19869, 20289] 19230.5 5.22 1 297 0
15 [19198, 19364] 18438 4.78 2 286 1
20 18727 17849.5 4.69 1 114 3
25 18132 17357.5 4.27 1 119 2
30 17606 17057.8 3.11 1 138 1
35 17210 16890.3 1.86 1 117 5
40 16921 16834 0.51 112 2527 0
45 16838 16830 0.05 1 78 0
50 18684 16830 9.92 0 0 0

kroC100 45 5 19998 19016 4.91 1 208 0
10 19077 18250 4.34 1 143 0
15 18454 17713.5 4.01 0 92 0
20 17958 17344.8 3.41 1 93 1
25 17668 17116.3 3.12 2 245 0
30 [17421, 17539] 16959.5 3.30 1 115 2
35 17189 16863.5 1.89 24 1499 0
40 16926 16808.6 0.69 2 240 8
45 16801 16801 0.00 2 177 1
50 17738 16801 5.28 0 0 0

relevant for the asymmetric case.
With respect to the results of Tables 7.10 and 7.11, we can see that the gap values observed

in symmetric instances are substantially worse than in asymmetric instances. For example, for
instance pr76 the lowest gap value was 0.98% but the second lowest was 3.58%. Since, as we
observed before, the (≤ p) constraints are more important in the symmetric instances and, as
the results show, the number of violated (≥ p) constraints found is negligible, it is clear that the
(≤ p) constraints of the PQR formulation do not provide good linear programming relaxations
values, specially compared to the ones provided by the (≥ p) constraints in the asymmetric case.

7.7 Additional computational results

This section provides additional computational results with two distinct aims. In Section 7.7.1
we provide a numerical comparison of the x-v formulation presented in Section 6.4 to the PQR
formulation. Then, in Section 7.7.2 we present computational results that allow a comparison
of our branch-and-cut algorithm based on the PQR formulation to other solution methods in the
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Algorithm 7.5
Require: A point (x∗, v∗) and the original graph G with the addition of a node s with an outgoing arc

to every node of V .
1: for all i ∈ V do
2: Set the capacities of the arcs {(s, k) : k ∈ V } to v∗ik , the capacities of the arcs (j, k) ∈ A to x∗jk,

and determine the maximum flow w from s to i.
3: if w < 1 then
4: The corresponding minimum cut defines a violated inequality (6.48) in which S is the subset

of nodes in the same shore as node i.
5: end if
6: end for

literature with respect to the variant of the Hamiltonian p-median problem in which two-node
circuits are not allowed.

7.7.1 Numerical comparison between the x-v formulation and the PQR
formulation

In this section we provide computational results to compare the x-v formulation described in
Section 6.4 to the PQR formulation. More precisely, we compare the branch-and-cut algorithm
based on the PQR formulation presented in Section 7.4 to a branch-and-cut algorithm based on
the x-v formulation. We will start by detailing the branch-and-cut algorithm based on the x-v
formulation very briefly.

In terms of separation algorithms, we use an adaptation of algorithm 4.1 presented in Section
4.4.1, which is an adaptation itself of an algorithm presented by Erdoğan et al. (2016), to separate
the (≥ p) constraints viS+xij ≤ vjS+1 (6.49) of the x-v formulation. As for the (≤ p) constraints
of the x-v formulation, the separation algorithm which we use is an adaptation of an algorithm
described by Gollowitzer et al. (2014) and is similar to other algorithms presented in Section
4.4. For clarity, we present its details. Observe that, by using constraints

∑
j∈V vij = 1 (6.46),

the (≤ p) constraints of the x-v formulation x(S ′, S) ≥ viS′ (6.48) can be written as follows:

x(S ′, S) + viS ≥ 1 ∀S ⊂ V, ∀i ∈ S. (7.1)

This alternative form of writing constraints (6.48) indicates that we can separate them in an
exact way by resorting to max-flow/min-cut computations in the original graph with the addition
of a node s which has an outgoing arc to every node of V , as shown in algorithm 7.5.

We also use heuristic separation algorithms for both the (≤ p) and (≥ p) constraints based
on determining connected components similarly to algorithms 7.2 and 7.4, respectively. The
rest of the branch-and-cut algorithm based on the x-v formulation functions exactly the same as

171



CHAPTER 7. A BRANCH-AND-CUT ALGORITHM

the branch-and-cut algorithm based on the PQR formulation, including the use of the symmetry-
breaking constraints (6.47) and other techniques described in Section 7.4.

For the comparison results we selected a subset of the test instances, both symmetric and
asymmetric, to perform the comparison in the main body of text. The remaining results can be
seen in Appendix A.3. We do not present results for the instance ftv170 since the branch-and-cut
algorithm based on the x-v formulation was unable to solve it for the values of p tested.

Tables 7.12 and 7.13 show the comparison results, with Table 7.12 focusing on the asym-
metric instances ftv70 and kro124p, and Table 7.13 on the symmetric instances kroB100 and
kroC100. Both tables have the following format. The first three columns indicate the name
of the instances, the number p′ of circuits in the assignment relaxation and the value of p, re-
spectively. The remaining six columns are divided into two parts, each with three columns
corresponding to, respectively, the linear programming relaxation value (LP), the optimal value
obtained or the final interval of best lower and upper bounds obtained if the time limit of 10800
seconds was reached (OPT) and the respective time taken (t) in seconds. The first part corre-
sponds to the branch-and-cut algorithm described in Section 7.4 based on the PQR formulation,
denoted by B&C PQR, and the second part corresponds to the branch-and-cut algorithm based
on the x-v formulation described above and denoted by B&C x-v.

We will separate our evaluation on the reported results between asymmetric and symmetric
instances. In the former case, which corresponds to the results of Table 7.12, and in terms of
obtaining the optimal solution, the results show that the branch-and-cut algorithm B&C PQR
outperforms the branch-and-cut algorithm B&C x-v. In fact, the branch-and-cut algorithm B&C
PQR is able to obtain the optimal solution for all of the values of p for the two instances ftv70 and
kro124p, whereas the branch-and-cut algorithm B&C x-v is unable to do so for six of them. In
addition, regarding the values of p in which both branch-and-cut algorithms are able to obtain the
optimal solution, the solution times of the branch-and-cut algorithm B&C PQR are substantially
lower, with exception to a few cases. If we analyze the linear programming relaxation values,
the PQR formulation provides higher linear programming relaxation values for the case where
p > p′ and the x-v formulation for the case where p < p′. However, the difference in the linear
programming relaxation values between the two models is greater in the p > p′ case.

Regarding the results for the symmetric instances reported in Table 7.13, and in contrast to
the asymmetric case, the dominance of the performance of the branch-and-cut algorithm B&C
PQR over the performance of the branch-and-cut algorithm B&C x-v is not as impressive. In
terms of obtaining the optimal solution, the branch-and-cut algorithm B&C PQR was able to
solve 16 out of 20 values of p for the instances kroB100 and kroC100, whereas the branch-and-
cut algorithm B&C x-v only 12. However, the branch-and-cut algorithm B&C x-v was able
to solve three values of p that the branch-and-cut algorithm B&C PQR was not, namely p ∈
{5, 10, 15} for instance kroB100. In addition, in some cases, the solution times of the branch-
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Table 7.12: Numerical comparison between the x-v and the PQR formulations (1 of 2)

B&C PQR B&C x-v

Name p′ p LP OPT t (s) LP OPT t (s)

ftv70 11 5 1804.78 1826 2 1806.88 1826 3
10 1766 1766 0 1766 1766 0
15 1769.5 1771 0 1766.67 1771 25
20 1837 1841 1 1783.44 [1790, 1990] 10800*
25 1954.41 1978 1 1830.07 [1841, 2092] 10800*
30 2140.94 2210 2 1896.28 [1766, 2320] 10800*
35 2496.63 2535 1 1988.87 [2009, 2878] 10800*

kro124p 32 5 35114.9 35435 13 35212.9 35435 20
10 34681.5 35010 15 34812.5 35010 41
15 34421.8 34799 68 34523.6 34800 3320
20 34227.8 34433 62 34280.5 34433 35
25 34083.1 34267 87 34115.6 34267 43
30 33990 34002 1 34002 34002 0
35 34050 34050 0 34019.8 34050 3257
40 34294.1 34310 0 34171.5 34310 8
45 35082 35331 1 34487.2 [33991, 36206] 10800*
50 36663 37541 1 34982.3 [33978, 46790] 10800*

*Not solved to optimality within the time limit of three hours

and-cut algorithm B&C x-v were lower than the solution times of the branch-and-cut algorithm
B&C PQR. In general, and on average, the branch-and-cut algorithm B&C PQR performs better,
however, the branch-and-cut algorithm B&C x-v is more competitive than in the asymmetric
case. In terms of linear programming relaxation values, we have similar conclusions to the
ones for the asymmetric case. In particular, for the case where p > p′ the PQR formulation
provides higher linear programming relaxation values, whereas for the case such that p < p′

the x-v formulation provides higher linear programming relaxation values. The main difference
in these results, and in contrast to the results of the asymmetric case, is that instances where
p < p′ arise much more often in the symmetric case. This is the main reason for the increased
competitiveness of the branch-and-cut algorithm B&C x-v since, as already noted before for the
asymmetric case, the cases with p > p′ are the cases in which the PQR formulation provides
higher linear programming relaxation values. Observe that we decided to choose the instances in
which the branch-and-cut algorithm B&C x-v provides the best results to show in Table 7.5 and,
in fact, the branch-and-cut algorithm B&C PQR has a substantially better average performance
when considering the complete set of symmetric test instances.

Summarizing, in general the branch-and-cut algorithm based on the PQR formulation per-
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Table 7.13: Numerical comparison between the x-v and the PQR formulations (2 of 2)

B&C PQR B&C x-v

Name p′ p LP OPT t (s) LP OPT t (s)

kroB100 43 5 20282.3 [21034, 21093] 10800* 20495.5 21082 1995
10 19230.5 [19872, 20289] 10800* 19635.9 20127 3929
15 18438 [19204, 19364] 10800* 18944.9 19307 1775
20 17849.5 18727 8587 18324.2 18727 305
25 17357.5 18132 8559 17809.9 18132 93
30 17057.8 17606 4426 17395.5 17606 21
35 16890.3 17210 109 17048.2 17210 30
40 16834 16921 80 16861.8 16921 8
45 16830 16838 2 16830 16838 3
50 16830 18684 2 16830 [16830, 21852] 10800*

kroC100 45 5 19016 19998 7676 19357.2 [19421, 21265] 10800*
10 18250 19077 1769 18618.2 [18760, 19211] 10800*
15 17713.5 18454 1950 18058 [18300, 18651] 10800*
20 17344.8 17958 208 17670 [17878, 17958] 10800*
25 17116.3 17668 930 17367.8 [17528, 17668] 10800*
30 16959.5 [17434, 17539] 10800* 17118.9 [17379, 17476] 10800*
35 16863.5 17189 5820 16940.5 17189 123
40 16808.6 16926 74 16816.5 16926 23
45 16801 16801 0 16801 16801 0
50 16801 17738 2 16801 [16801, 21066] 10800*

*Not solved to optimality within the time limit of three hours

forms better than the branch-and-cut algorithm based on the x-v formulation. This dominance
is more noticeable for the asymmetric instances, however, even in the symmetric instances, the
branch-and-cut algorithm based on the PQR formulation is able to solve more instances than
the branch-and-cut algorithm based on the x-v model, specially if you consider the complete set
of instances. We believe that the advantages of the PQR formulation are the efficiency of the
separation of the restricted multi-cut inequalities q(S ′, i) + r(S ′, S) + p(i, S) ≥ yi (6.36) and
the good linear programming relaxation values for p > p′. For the symmetric instances the case
p > p′ is rare and, thus, the latter advantage is lost. Nevertheless, the efficiency of the separa-
tion of the restricted multi-cut inequalities (6.36) allows the branch-and-cut algorithm based on
the PQR formulation to outperform, in general, the branch-and-cut algorithm based on the x-v
formulation.
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7.7.2 Results for the variant in which two-node circuits are not allowed

Aswe explained in the introduction of Chapter 5, most of the recent literature on the Hamiltonian
p-median problem, in particular the works by Gollowitzer et al. (2014), Erdoğan et al. (2016)
andMarzouk et al. (2016), studies a variant of the Hamiltonian p-median problem in which two-
node circuits are not allowed and only for symmetric cost instances. In this section we show how
to adapt the PQR formulation to handle this case and present computational results to compare
our approach to the previous ones in the literature.

Possibly the most trivial way to prevent two-node circuits in the PQR formulation is to add
the following constraints:

pij + pji + qij + qji + rij + rji ≤ 1 ∀i, j ∈ V, i ̸= j. (7.2)

The interpretation of the p, q and r variables also allows for other ways tomodel this situation
as, for instance, shown by the following set of constraints:∑

k ̸=j

qki ≥ pij ∀i, j ∈ V, i ̸= j. (7.3)

Note that constraints (7.2) state that an arc (i, j) ∈ A cannot be used in both directions
simultaneously, whereas constraints (7.3) ensure that if an arc (i, j) ∈ A is used in which i is an
acting depot, then the ingoing arc to imust come from a node k such that k ̸= j. It can be easily
shown that, with respect to the linear programming relaxation, one set does not dominate the
other, however, their behavior is similar in the sense that earlier testing showed that both lead to
poor performances of the branch-and-cut algorithm based on the PQR formulation.

Recall, however, that an idea similar to the one of constraints (7.3) was used in the symmetry-
breaking constraints (6.38) presented in Section 6.3.2 used to prevent alternative solutions due
to reversed circuits having the same cost in symmetric instances. In particular, the symmetry-
breaking constraints (6.38) state that if a p-arc (i, j) ∈ A is used, then the ingoing q-arc to i

must come from a node k ∈ V such that k ≥ j. In the Hamiltonian p-median problem we had to
explicitly consider the case k = j, otherwise we could eliminate circuits with only two nodes,
however, this is not the case in the variant of the problem in which two-node circuits are not
allowed. Therefore, consider the following constraints:∑

k>j

qki ≥
∑
k≥j

pik, ∀i, j ∈ V, i ̸= j. (7.4)

The difference when compared to the symmetry-breaking constraints (6.38) is that on the
left-hand side we remove the case k = j since we do not want circuits with only two nodes.
Thus, constraints (7.4) not only implicitly prevent the existence of two-node circuits, but are
also symmetry-breaking constraints for reversed alternative circuits.
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Table 7.14: Evaluating the effectiveness of the non-trivial two-node circuit elimination constraints

B&C1 B&C2

Name p′ p LP OPT t (s) LP OPT t (s)

rat99 8 9 1203.54 1209.09 76 1203.98 1209.09 12
14 1203.54 1224.1 3079 1214.61 1224.1 23
19 1203.99 1245.16 7102 1235.13 1245.16 43
24 1209.71 [1267.22, 1273.23] 10800* 1263.17 1273.23 44
33 1238.64 [1309.4, 1397.26] 10800* 1343.4 1373.37 3003

*Not solved to optimality within the time limit of three hours

We also showed that, in the presence of symmetry-breaking constraints of type I, for instance
the restricted multi-cut inequalities q(S ′, i) + r(S ′, S) + p(i, S) ≥ yi (6.36), the symmetry-
breaking constraints (6.38), and consequently constraints (7.4), are only relevant for circuits
with more than two nodes. Since in the Hamiltonian p-median problem, in which two-node cir-
cuits are allowed, the solutions observed are comprised of many circuits with only two nodes, the
symmetry-breaking constraints (6.38) only provided slight improvements in the overall branch-
and-cut algorithm. However, and as we will see in Table 7.14, constraints (7.4) are extremely
effective for this case since, by the definition of this variant of the Hamiltonian p-median prob-
lem, every circuit will be comprised of at least three nodes.

Table 7.14 presents computational results that show the effectiveness of constraints (7.4)
for the symmetric instance rat99 with the following format. The first three columns indicate
the name of the instance, the number p′ of circuits in the assignment relaxation and the value
of p used, respectively. The remaining six columns are divided into two parts, each with three
columns corresponding to, respectively, the linear programming relaxation value (LP), the op-
timal value obtained or the final interval of best lower and upper bounds obtained if the time
limit of 10800 seconds was reached (OPT) and the respective time taken (t) in seconds. The
first part corresponds to the branch-and-cut algorithm based on the PQR formulation, denoted
by B&C1, which uses the trivial constraints (7.2) but not the symmetry-breaking constraints
(6.38), and the second part corresponds to the branch-and-cut algorithm based on the PQR for-
mulation, denoted by B&C2, which uses constraints (7.4). Observe that constraints (7.3) could
have been used instead of constraints (7.2), however, similar results would be observed for the
branch-and-cut algorithm B&C1.

The results of Table 7.14 show that the use of the symmetry-breaking/two-node circuit elim-
ination constraints (7.4) is very effective in the variant of the Hamiltonian p-median problem
in which two-node circuits are not allowed. In particular, the values of p = 24 and p = 33

went from unsolved by the branch-and-cut algorithm B&C1 to solved by the branch-and-cut al-
gorithm B&C2. Additionally, reductions in the solution times where observed for the instances
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Table 7.15: Optimal solution results for symmetric instances (two-node circuits not allowed) (1 of 2)

Name p′ p OPT t (s) B&B #(≤ p) #(≥ p)

eil76 4 7 542.954 10 17 168 338
10 545.021 38 217 681 1928
15 552.149 58 322 482 2859
19 563.955 133 545 658 4978
25 [590.395, 612.852] 10800* 6257 1646 39658

gr96 14 5 153568 119 1103 4565 553
20 151403 77 23 1624 825

rat99 8 9 1209.09 12 16 187 104
14 1224.1 23 79 408 352
19 1245.16 43 22 382 868
24 1273.23 44 64 354 995
33 1373.37 3003 6980 2866 14681

kroA100 13 10 19900.9 151 1405 6723 385
14 19637.5 95 124 4110 428
20 19868.6 30 55 681 440
25 20279.5 51 84 1275 583
33 [21498, 23591] 10800* 4142 3130 31147

kroB100 20 10 20823.1 145 1014 7759 860
14 20762.9 143 454 5317 607
20 20660 75 26 2726 185
25 20786.9 16 3 87 274
33 [22204.6, 24968.4] 10800* 3915 2587 33454

*Not solved to optimality within the limit of three hours.

which had been solved by the branch-and-cut algorithm B&C1. Without this set of constraints,
the branch-and-cut algorithm based on the PQR formulation would simply not be competitive
with the other methods from the literature.

We now present a more comprehensive set of results. For these results we used a subset of
the instance set that Erdoğan et al. (2016) use in their work, which is comprised of the TSPLIB
symmetric instances of set A described in Section 7.3 with the addition of instance u159 that has
159 nodes. Additionally, we use the same values of p used by Erdoğan et al. (2016). The results
were obtained with the branch-and-cut algorithm based on the PQR formulation described in
Section 7.4 with constraints (7.4) replacing the symmetry-breaking constraints (6.38). Given
the large number of test instances, we present some of the results in Appendix A.4.

Tables 7.15 and 7.16 show the results with respect to obtaining the optimal solution, with
Table 7.8 focusing on the instances eil76, gr96, rat99, kroA100 and kroB100, and Table 7.9
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Table 7.16: Optimal solution results for symmetric instances (two-node circuits not allowed) (2 of 2)

Name p′ p OPT t (s) B&B #(≤ p) #(≥ p)

kroC100 13 10 19923.3 98 721 5063 526
14 19938.8 67 231 4141 1006
20 20135 55 223 1120 890
25 20428 436 3542 3698 1959
33 [21536.6, 23759] 10800* 4767 5350 25233

kroD100 14 10 20270.6 48 108 2775 212
14 20267.2 42 22 1347 147
20 20457 197 770 4308 2070
25 20671.2 160 335 2803 2090
33 [21720.3, 22439.7] 10800* 8916 4162 25151

kroE100 12 10 20766.4 25 48 2164 297
14 20777.7 37 42 1529 449
20 20937.4 65 102 1677 1251
25 21174.9 92 130 2372 1114
33 [22470.1, 22843.6] 10800* 9225 5026 20484

rd100 14 10 7524.08 147 751 5527 662
14 7500.44 57 60 2449 105
20 7537.98 101 411 4456 1131
25 7555.83 42 11 721 699
33 [7919.09, 8211.2] 10800* 6539 3624 27475

u159 20 5 41695 1194 3978 8017 312
30 41723 540 187 8432 306

*Not solved to optimality within the limit of three hours.

on the instances kroC100, kroD100, kroE100, rd100 and u159. Both tables have the following
format. The first three columns indicate the name of the instance, the number p′ of circuits
in the assignment relaxation and the value of p, respectively. The other five columns show,
respectively, the optimal value obtained or the final interval of best lower and upper bounds
obtained if the time limit of 10800 seconds was reached (OPT), the time taken in seconds (t), the
number of branch-and-bound nodes explored (B&B), the number of violated (≤ p) constraints
found (#(≤ p)) and the number of violated (≥ p) constraints found (#(≥ p)).

Tables 7.17 and 7.18 show the results with respect to obtaining the linear programming
relaxation value, with Table 7.17 focusing on the instances eil76, gr96, rat99, kroA100 and
kroB100, and Table 7.18 on the instances kroC100, kroD100, kroE100, rd100 and u159. Both
tables have the following format. The first three columns indicate the name of the instance,
the number p′ of circuits in the assignment relaxation and the value of p, respectively. The
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Table 7.17: Linear programming relaxation results for symmetric instances (two-node circuits not allowed) (1 of
2)

Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

eil76 4 7 542.954 541.493 0.27 4 224 415
10 545.021 543.297 0.32 5 110 660
15 552.149 547.805 0.79 12 224 1001
19 563.955 553.543 1.85 14 257 1172
25 [590.395, 612.852] 572.847 6.53 30 323 1674

gr96 14 5 153568 151513 1.34 1 312 0
20 151403 150339 0.70 18 684 494

rat99 8 9 1209.09 1203.98 0.42 2 199 100
14 1224.1 1214.61 0.78 5 329 231
19 1245.16 1235.13 0.81 23 335 725
24 1273.23 1263.17 0.79 36 406 1179
33 1373.37 1343.4 2.18 32 286 1483

kroA100 13 10 19900.9 19570.2 1.66 11 680 3
14 19637.5 19380.7 1.31 6 635 106
20 19868.6 19523.3 1.74 20 974 290
25 20279.5 19815.7 2.29 21 920 356
33 [21498, 23591] 20542.7 12.92 106 1726 627

kroB100 20 10 20823.1 20444.8 1.82 3 507 4
14 20762.9 20396.3 1.77 7 679 2
20 20660 20414 1.19 18 1151 43
25 20786.9 20581.7 0.99 49 1588 448
33 [22204.6, 24968.4] 21413.9 14.24 39 1306 336

*Not solved to optimality within the limit of three hours.

fourth column indicates the optimal value of the instance (OPT) taken from either Table 7.15 or
Table 7.16. The following five columns show, respectively, the linear programming relaxation
value (LP), the percentage of gap between the linear programming relaxation value and the best
known upper bound (gap), the time taken to obtain the linear programming relaxation value (tL)
in seconds, the number of violated (≤ p) constraints found (#(≤ p)) and the number of violated
(≥ p) constraints found (#(≥ p)).

A comparison of our results to those reported by Erdoğan et al. (2016) shows that we have
been able to optimally solve instances that Erdoğan et al. (2016) have not, namely the instance
pr76 for p = 15 (reported in Appendix A.4), the instance gr96 for p = 20, the instance rat99 for
p ∈ {14, 19, 24, 33} and the instance u159 for p ∈ {5, 30}. Conversely, there are other instances
which we have been unable to solve to optimality that Erdoğan et al. (2016) have, namely the
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Table 7.18: Linear programming relaxation results for symmetric instances (two-node circuits not allowed) (2 of
2)

Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

kroC100 13 10 19923.3 19703.3 1.10 5 695 2
14 19938.8 19725.6 1.07 14 725 296
20 20135 19853.1 1.40 39 1065 511
25 20428 20033.8 1.93 28 813 692
33 [21536.6, 23759] 20286 14.62 30 899 672

kroD100 14 10 20270.6 19957 1.55 3 462 6
14 20267.2 19962.9 1.50 12 825 57
20 20457 20021.2 2.13 46 1086 495
25 20671.2 20156.9 2.49 52 971 455
33 [21720.3, 22439.7] 20669.6 7.89 64 1802 487

kroE100 12 10 20766.4 20651 0.56 3 451 1
14 20777.7 20641 0.66 5 467 213
20 20937.4 20715 1.06 18 859 444
25 21174.9 20891.6 1.34 37 920 632
33 [22470.1, 22843.6] 21485.3 5.95 40 1271 450

rd100 14 10 7524.08 7338.77 2.46 4 648 3
14 7500.44 7336.96 2.18 20 1142 28
20 7537.98 7354.05 2.44 33 1424 216
25 7555.83 7419.3 1.81 37 1103 511
33 [7919.09, 8211.2] 7670.45 6.59 35 1184 443

u159 20 5 41695 41079 1.48 3 236 1
30 41723 41071.4 1.56 309 2667 81

*Not solved to optimality within the limit of three hours.

instance att48 for p = 16 (reported in Appendix A.4), instance eil76 with p = 25 and instance
kroE100 with p = 33.

Regarding a comparison to the work of Marzouk et al. (2016), we observe that the results
reported byMarzouk et al. (2016) show that their branch-and-price algorithm is not able to easily
solve instances with small values of p, whereas the branch-and-cut algorithm based on the PQR
formulation we propose is. In particular, we have been able to optimally solve a number of
instances that were not solved by Marzouk et al. (2016) such as the instance pr76 for p = 15,
the instance gr96 for p = 5 and the instances kroA100, kroB100 and kroD100 for p ∈ {10, 14}.
In contrast, some instances optimally solved by Marzouk et al. (2016) proved difficult to solve
with our branch-and-cut algorithm such as the instance eil76 for p = 25. In addition, Marzouk
et al. (2016) tested many more values of p which we have not, thus, for those cases we do not
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have a comparison.
The PQR formulation was created to solve the original Hamiltonian p-median problem as

described by Branco & Coelho (1990), however, the results presented in this section suggest that
the branch-and-cut algorithm based on the PQR formulation we proposed in this dissertation is
able to compete with the current state-of-the-art methods for the variant of the problem in which
two-node circuits are not allowed. In fact, our approach was able to provide optimal solutions
for instances which had never been solved in the literature.

7.8 Concluding remarks

In this chapter we proposed a branch-and-cut algorithm based on the PQR formulation and used a
large set of well-known traveling salesman problem instances, both symmetric and asymmetric,
to test it. The performance of the branch-and-cut algorithm was satisfactory. In particular, the
branch-and-cut algorithm was able to solve asymmetric instances with up to 100 nodes in less
than two minutes and several values of p for an instance with 171 nodes within the time limit.
As for symmetric instances, the branch-and-cut algorithm proved to be less effective than in the
asymmetric case. Nevertheless, it was able to solve most values of p with respect to instances
with up to 100 nodes.

We identified two advantages of the branch-and-cut algorithm based on the PQR formulation
that explain its performance. Firstly, the separation of the (≥ p) constraints is very efficient.
Secondly, the linear programming relaxation values for the cases in which p > p′, which we
recall are the cases in which the (≥ p) constraints are more relevant, were relatively close to the
optimal value. These advantages were more important in the asymmetric instances given that
the case p > p′ arises less often in the symmetric instances, which is a possible explanation for
the difference in performance for both cost structures. A disadvantage of the PQR formulation
is that the linear programming relaxation values for p < p′, in which the (≤ p) constraints are
more relevant, were not as good as the ones for the p > p′ case, thus, a possible way to improve
the results of the branch-and-cut algorithm is by finding additional (≤ p) constraints which can
improve the lower bounds for the p < p′ case.

As a complement to the discussion of Chapter 6, we also compared our approach to two
other approaches. Firstly, we compared our branch-and-cut algorithm to a similar branch-and-
cut algorithm based on the x-v formulation presented in Section 6.4.1. The results showed that
the branch-and-cut algorithm based on the PQR formulation outperforms the branch-and-cut
algorithm based on the x-v formulation in asymmetric instances. With respect to the symmetric
instances, the branch-and-cut algorithm based on the PQR formulation was not as dominant,
specially since the (≤ p) constraints, which are more important in symmetric instances, of the x-
v model were able to provide higher linear programming relaxation values than those of the PQR
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formulation. Nevertheless, the branch-and-cut algorithm based on the PQR still outperforms the
branch-and-cut algorithm based on the x-v formulation on average for symmetric instances.

Secondly, given that no state-of-the-art recent algorithms for theHamiltonian p-median prob-
lem exist, we decided to adapt the PQR formulation and the respective branch-and-cut algorithm
to the variant of the Hamiltonian p-median problem in which two-node circuits are not allowed,
for which two recent state-of-the-art algorithms by Erdoğan et al. (2016) and Marzouk et al.
(2016) exist. The results showed that our approach is competitive with both methods. More
precisely, the adaptation of the branch-and-cut algorithm based on the PQR formulation to this
variant was able to provide optimal solutions for previously unsolved instances. Even though
the variant solved in this case is different from the Hamiltonian p-median problem as defined by
Branco & Coelho (1990), these results indicate that our approach is certainly competitive with
potential future algorithms which may be suggested for the Hamiltonian p-median problem.
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In this dissertation we studied two optimization problems: the multi-depot routing problem and
the Hamiltonian p-median problem, respectively in the first part and in the second part of the
dissertation.

The objective of the multi-depot routing problem is, given a set of depots and a set of clients,
to find a set of routes with minimum total cost, one for each depot, such that each client is
visited in one and only one route and such that each route starts and ends at the same depot.
The requirement that routes start and end at the same depot arises in most routing problems
with multiple depots and it is modeled by so-called path elimination constraints. One of the
contributions of this dissertation was the study of path elimination constraints in the multi-depot
routing problem setting, which can be adapted to related problems.

We proposed a new set of exponentially-many multi-cut path elimination constraints which
result from the projection of an arc-depot assignment variable based system of inequalities which
had been previously used in the literature. The new multi-cut constraints can be efficiently
separated in an exact way by resorting to max-flow/min-cut computations in an adequate 3-
layered graph. Based on these constraints, we presented a branch-and-cut algorithm to solve
the multi-depot routing problem. The results obtained by the branch-and-cut algorithm showed
that the new multi-cut constraints are very effective and allowed to obtain optimal solutions of
instances with up to 300 clients and 60 depots in a time limit of three hours. For symmetric cost
instances the multi-cut constraints do not improve the linear programming relaxation values
of the assignment relaxation of the problem, hence, their effectiveness was more evident in
asymmetric instances. Nevertheless, due to their efficient separation, we were still able to obtain
results on symmetric instances which do not differ significantly than the ones for asymmetric
instances despite using formulations based on directed graphs.

We also presented many additional systems of inequalities to model path elimination con-
straints. Some of these systems of inequalities were based on similar variables used in the context
of the precedence constrained (asymmetric) traveling salesman problem, namely client-depot as-
signment variables in this context, and some of the intuition was based on earlier studies in the
literature based on this problem and on the Hamiltonian p-median problem. We also presented
sets of path elimination constraints using the same client-depot assignment variables which, as
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far as we know, are new and are based on the relationship of these variables to the arc-depot
assignment variables used previously. Another important contribution of this dissertation was
a new formulation presented which expanded the concept of the systems of inequalities based
on the arc-depot assignment variables. In order to derive the new formulation we started by
presenting a double network-flow system based on an earlier study for the traveling salesman
problem and then we projected this system of inequalities on the space of the arc variables, the
client-depot assignment variables and the arc-depot assignment variables. The earlier indication
for this formulation is that, based on the computational results which showed that the linear pro-
gramming relaxation values obtained were close to the optimal value in the instances tested, this
formulation is an important formulation in order to, in the future, derive additional constraints
in lower-dimensional spaces.

In the second part of this dissertationwe studied theHamiltonian p-median problem inwhich,
given a set of nodes, we wish to find p circuits with minimum total cost such that each node is
one and only one circuit. Based on the concept of acting depot which assigns nodes to be artifi-
cial depots and which had been used previously in the literature, we established a relationship to
the multi-depot routing problem. This relationship allowed us to adapt, in a non-straightforward
way, the new multi-cut path elimination constraints proposed for the multi-depot routing prob-
lem. This resulted in a new formulation based on a novel idea in which the information on which
nodes are the acting depots is associated with the arc variables. Additionally, this new formu-
lation was able to incorporate very effective symmetry-breaking constraints in its adaptation of
the multi-cut constraints which greatly contributed to the computational results. With the new
formulation we developed another branch-and-cut algorithm that was able to solve asymmetric
instances with up to 171 nodes and symmetric instances with up to 100 nodes. Since in the re-
cent literature most algorithmic work is based on a variant of the Hamiltonian p-median problem
in which two-node circuits are not allowed, we also showed how to adapt our formulation and
the corresponding branch-and-cut algorithm to solve this case. The results showed that we were
able to solve instances which were previously unsolved in the literature.

Summarizing, the main contributions of the dissertation were the following: (i) we studied
path elimination constraints which are an important set of constraints arising in the literature in
routing problems involving multiple depots; (ii) we presented, in particular, a new set of multi-
cut path elimination constraints which can be separated very efficiently; (iii) we presented a new
formulation based on arc variables and on two sets of depot assignment variables which is able
to provide very good linear programming relaxation values; (iv) we implicitly showed that the
new multi-cut constraints are very versatile since they can be adapted to other problems, even
if not completely straightforwardly, by (v) presenting a new formulation for the Hamiltonian p-
median problem and a corresponding branch-and-cut algorithm which is able to solve instances
of considerable dimension and which is competitive with state-of-the-art algorithms proposed
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for the variant of the Hamiltonian p-median problem in which two-node circuits are not allowed.
This dissertation opens at least three directions for future investigations. Firstly, we intro-

duced a study for the multi-depot routing problem which looked at combining constraints in
higher-dimensional spaces in order to obtain constraints in lower-dimensional spaces, however,
this introduction mainly looked at providing tools to perform these derivations. In particular, we
believe that there is potential to find constraints in the space of the arc variables that combine
subtour elimination constraints with path elimination constraints. Secondly, the formulation
based on arc variables and on two sets of depot assignment variables provides linear program-
ming relaxation values which were close to the optimal value in the instances tested. This means
that studying the projection of the polyhedron defined by this system of inequalities can produce
interesting constraints in lower-dimensional spaces, which also links to the previous future in-
vestigation proposed. Finally, the new formulation presented for the Hamiltonian p-median
problem can be seen as an extension of formulations based on standard arc variables and acting
depot variables. Therefore, another interesting investigation is to study the projection of the new
formulation onto the space of the arc variables. For instance, one could start by studying its pro-
jection onto the space of both the arc variables and the acting depot variables in a intermediate
step and then onto the space of the arc variables alone.
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Additional results - Hamiltonian p-median
problem

Contents
A.1 Results for asymmetric instances . . . . . . . . . . . . . . . . . . . . . . . 192

A.2 Results for symmetric instances . . . . . . . . . . . . . . . . . . . . . . . 195

A.3 Numerical comparison between the x-v formulation and the PQR formu-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.4 Results for the variant in which two-node circuits are not allowed . . . . 206

This chapter presents additional results obtained by the branch-and-cut algorithm based on the
PQR formulation discussed in Chapter 7. No analysis of the results is performed here. Instead,
each subsequent section will refer to the point in Chapter 7 to which the results correspond to.
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A.1 Results for asymmetric instances

This section presents additional results with respect to asymmetric instances and are a comple-
ment to the results presented in Section 7.6.1.

Table A.1: Optimal solution results for asymmetric instances (appendix)

Name p′ p OPT t (s) B&B #(≤ p) #(≥ p)

ftv33 8 5 1201 0 0 109 4
10 1187 0 0 0 10
15 1261 0 0 0 6

ftv35 8 5 1387 0 0 114 0
10 1383 0 0 0 6
15 1480 0 0 0 20

ftv38 8 5 1444 0 0 56 0
10 1440 0 0 0 10
15 1534 0 0 0 44

p43 16 5 199 7 1622 1446 52
10 158 3 560 1029 57
15 148 0 0 0 0
20 160 0 0 0 11

ftv44 9 5 1543 1 31 275 15
10 1522 0 0 0 0
15 1573 0 2 1 36
20 1691 0 0 0 0

ftv47 11 5 1672 1 2 128 8
10 1652 0 0 0 0
15 1703 1 1 0 90
20 1815 0 0 0 0

ry48p 20 5 13497 1 90 417 23
10 12868 1 21 165 10
15 12677 1 26 120 16
20 12517 0 0 0 0

ft53 8 5 6022 1 2 66 1
10 5942 0 0 0 0
15 6049 1 0 0 67
20 6305 0 0 0 72
25 7639 1 0 0 134

ftv55 10 5 1482 1 22 354 14
10 1435 0 0 0 0

Continues on the next page
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Table A.1
Name p′ p OPT t (s) B&B #(≤ p) #(≥ p)

15 1445 0 0 0 87
20 1548 1 0 0 106
25 1790 0 0 0 242

ftv64 9 5 1732 0 0 98 4
10 1721 0 0 0 0
15 1721 0 0 0 0
20 1767 0 6 0 128
25 1888 0 0 0 101
30 2140 1 0 0 129

Table A.2: Linear programming relaxation results for asymmetric instances (appendix)

Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

ftv33 8 5 1201 1193.11 0.66 0 98 4
10 1187 1186 0.08 0 4 14
15 1261 1247.8 1.05 0 0 14

ftv35 8 5 1387 1383.75 0.23 0 77 1
10 1383 1382.5 0.04 0 0 6
15 1480 1471.25 0.59 0 0 12

ftv38 8 5 1444 1440.75 0.23 0 56 2
10 1440 1439.5 0.03 0 0 10
15 1534 1520.5 0.88 0 0 29

p43 16 5 199 187.833 5.61 0 108 1
10 158 152 3.80 0 262 4
15 148 148 0.00 0 125 0
20 160 148 7.50 0 5 4

ftv44 9 5 1543 1529.25 0.89 0 32 3
10 1522 1522 0.00 0 0 8
15 1573 1570.5 0.16 0 0 35
20 1691 1691 0.00 0 0 40

ftv47 11 5 1672 1661.13 0.65 0 95 0
10 1652 1652 0.00 0 20 7
15 1703 1691.5 0.68 0 0 55
20 1815 1815 0.00 0 0 48

ry48p 20 5 13497 13165.3 2.46 0 125 1
10 12868 12735.8 1.03 0 85 1
15 12677 12579.3 0.77 0 72 0

Continues on the next page
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Table A.2
Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

20 12517 12517 0.00 0 8 0

ft53 8 5 6022 6004.07 0.30 0 57 0
10 5942 5942 0.00 0 2 41
15 6049 6027.75 0.35 0 0 57
20 6305 6272.3 0.52 0 0 116
25 7639 6973.5 8.71 0 0 43

ftv55 10 5 1482 1460.33 1.46 0 220 2
10 1435 1435 0.00 0 65 27
15 1445 1443.5 0.10 0 0 90
20 1548 1510 2.45 0 0 92
25 1790 1754 2.01 0 0 232

ftv64 9 5 1732 1729.17 0.16 0 134 14
10 1721 1721 0.00 0 131 58
15 1721 1721 0.00 0 34 54
20 1767 1760.5 0.37 0 0 146
25 1888 1878 0.53 0 0 136
30 2140 2098.5 1.94 0 0 206
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A.2 Results for symmetric instances

This section presents additional results with respect to symmetric instances and are a comple-
ment to the results presented in Section 7.6.2.

Table A.3: Optimal results for symmetric instances (appendix)

Name p′ p OPT t (s) B&B #(≤ p) #(≥ p)

dantzig42 20 5 604 4 676 1977 17
10 573 3 243 1033 11
15 548 1 21 333 4
20 532 0 0 0 0

swiss42 20 5 1155 1 52 294 10
10 1084 2 226 1103 25
15 1034 1 11 77 3
20 1009 0 0 0 0

att48 22 5 29816 4 325 1442 44
10 27456 2 92 758 50
15 27009 2 192 800 42
20 26692 1 15 170 4

gr48 23 5 4544 1 2 190 0
10 4318 1 43 471 26
15 4231 4 154 1622 58
20 4157 0 10 132 15

hk48 18 5 10834 3 231 1804 57
10 10345 6 514 3634 59
15 9946 0 4 223 6
20 9916 1 22 235 21

eil51 23 5 441 1 9 123 2
10 428 2 83 652 7
15 418 2 92 1124 58
20 408 0 0 0 0
25 409 0 0 2 0

berlin52 23 5 7052 3 125 1069 33
10 6609 9 591 3113 114
15 6444 2 60 887 15
20 6359 2 79 580 9
25 6373 0 0 2 0

brazil58 27 5 20150 14 1037 2135 109
10 18407 61 3190 8346 227

Continues on the next page
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Table A.3
Name p′ p OPT t (s) B&B #(≤ p) #(≥ p)

15 17582 120 5037 14661 330
20 17017 53 2498 6665 151
25 16583 0 0 88 4

st70 31 5 665 87 2949 9800 474
10 631 156 6129 8656 300
15 607 447 5972 20353 838
20 589 435 7063 13435 356
25 573 68 1538 3736 71
30 561 1 6 374 1
35 610 1 0 0 0

eil76 35 5 563 4 70 480 2
10 550 4 55 923 23
15 545 45 543 5528 735
20 539 3 12 621 7
25 536 5 60 1005 57
30 533 4 40 732 34
35 531 0 0 0 0

gr96 45 5 150721 45 833 2012 70
10 147495 226 3205 10814 435
15 144249 137 902 10476 475
20 142035 492 2883 17145 815
25 139977 560 2569 20101 1163
30 138216 60 429 6985 137
35 137453 222 1001 11954 375
40 136338 23 214 3225 38
45 135563 0 0 0 0

kroA100 45 5 20224 61 1214 2127 55
10 19392 249 3805 11519 297
15 18755 447 2479 22261 598
20 18383 1481 5578 30894 529
25 17924 113 456 7391 101
30 17666 5801 3242 64283 785
35 17432 287 1527 14109 111
40 17212 8 68 1016 17
45 17153 0 0 0 0
50 18618 1 0 0 0

Continues on the next page
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Table A.3
Name p′ p OPT t (s) B&B #(≤ p) #(≥ p)

kroD100 44 5 20284 10221 60004 60366 7862
10 [19106, 19372] 10800* 42459 103038 4750
15 [18330, 18713] 10800* 27900 83788 5871
20 17914 4433 12750 54159 3153
25 17401 3989 5811 57340 2106
30 17015 130 985 10774 231
35 16752 4 4 537 5
40 16650 4 18 419 12
45 16625 1 0 16 3
50 18474 39 668 0 0

kroE100 45 5 20839 88 1608 4251 189
10 19595 16 98 1030 24
15 18958 174 1342 11682 280
20 18424 631 2963 27384 573
25 17958 1556 3928 37284 809
30 17489 82 546 6066 68
35 17080 6 15 723 3
40 16952 39 282 4674 33
45 16741 0 0 0 0
50 17730 1 0 0 0

rd100 46 5 7668 526 8975 11318 349
10 7436 5829 38013 54921 3168
15 [7211, 7234] 10800* 43503 98725 1938
20 7028 8312 37825 84520 651
25 6871 2506 7401 57975 1689
30 6777 822 3463 21619 309
35 6698 936 2119 33427 488
40 6660 114 757 7620 87
45 6617 5 25 1377 3
50 6910 1 0 0 0

*Not solved to optimality within the limit of three hours.

Table A.4: Linear programming relaxation results for symmetric instances (appendix)

Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

dantzig42 20 5 604 579.5 4.06 0 131 0
10 573 545 4.89 0 24 0

Continues on the next page
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Table A.4
Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

15 548 534 2.55 0 79 0
20 532 532 0.00 0 3 1

swiss42 20 5 1155 1123.17 2.76 0 83 0
10 1084 1045 3.60 0 26 1
15 1034 1021.83 1.18 0 62 2
20 1009 1009 0.00 0 100 0

att48 22 5 29816 28724.3 3.66 0 227 0
10 27456 27039.8 1.52 0 114 2
15 27009 26675.5 1.23 0 33 1
20 26692 26600.3 0.34 0 213 1

gr48 23 5 4544 4469.25 1.65 0 113 0
10 4318 4248 1.62 0 23 0
15 4231 4164.75 1.57 0 65 1
20 4157 4139.6 0.42 0 102 2

hk48 18 5 10834 10511.8 2.97 0 107 0
10 10345 10083.5 2.53 0 126 0
15 9946 9899 0.47 0 204 0
20 9916 9870 0.46 0 96 8

eil51 23 5 441 437.13 0.88 0 157 0
10 428 423.9 0.96 0 101 0
15 418 414.75 0.78 0 71 0
20 408 408 0.00 0 222 1
25 409 408 0.24 0 2 4

berlin52 23 5 7052 6816.5 3.34 0 206 0
10 6609 6491.83 1.77 0 106 0
15 6444 6388.75 0.86 0 244 0
20 6359 6322.39 0.58 0 221 1
25 6373 6312 0.96 0 3 0

brazil58 27 5 20150 18569.1 7.85 0 68 1
10 18407 17369 5.64 0 88 0
15 17582 16877 4.01 0 107 0
20 17017 16652 2.14 0 50 0
25 16583 16573 0.06 1 287 0

st70 31 5 665 643.25 3.27 1 268 0
10 631 603.083 4.42 0 101 2
15 607 574.25 5.40 1 239 2

Continues on the next page
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Table A.4
Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

20 589 564 4.24 0 75 2
25 573 561.5 2.01 2 291 0
30 561 560 0.18 1 302 1
35 610 560 8.20 0 0 0

eil76 35 5 563 560.1 0.52 0 121 1
10 550 546.25 0.68 1 376 0
15 545 539.75 0.96 0 109 2
20 539 535.75 0.60 0 84 7
25 536 533.167 0.53 1 205 0
30 533 531.778 0.23 1 125 3
35 531 531 0.00 0 20 0

gr96 45 5 150721 147533 2.12 1 240 0
10 147495 143407 2.77 1 173 0
15 144249 140685 2.47 2 393 0
20 142035 138559 2.45 1 225 0
25 139977 137118 2.04 1 158 1
30 138216 136510 1.23 0 62 2
35 137453 136096 0.99 2 162 0
40 136338 135777 0.41 1 67 0
45 135563 135563 0.00 1 75 0

kroA100 45 5 20224 19658 2.80 1 143 0
10 19392 18699.5 3.57 1 226 1
15 18755 18078 3.61 1 140 3
20 18383 17726.9 3.57 1 146 0
25 17924 17442.7 2.69 1 120 1
30 17666 17278.3 2.19 2 233 0
35 17432 17199.3 1.33 1 95 2
40 17212 17168.5 0.25 3 177 0
45 17153 17153 0.00 3 299 0
50 18618 17153 7.87 0 0 0

kroD100 44 5 20284 19322 4.74 1 221 0
10 [19106, 19372] 18353.7 5.26 1 170 0
15 [18330, 18713] 17662.2 5.62 1 293 0
20 17914 17177.8 4.11 1 125 0
25 17401 16899.9 2.88 1 196 1
30 17015 16740.5 1.61 1 156 1
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Table A.4
Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

35 16752 16663 0.53 3 271 1
40 16650 16617.3 0.20 24 828 0
45 16625 16585 0.24 1 56 4
50 18474 16585 10.23 0 0 0

kroE100 45 5 20839 20337.3 2.41 1 288 0
10 19595 19096 2.55 1 126 0
15 18958 18260.5 3.68 1 226 0
20 18424 17763.5 3.58 1 100 0
25 17958 17376.3 3.24 1 147 0
30 17489 17151.8 1.93 4 257 0
35 17080 16968.2 0.65 3 238 5
40 16952 16803 0.88 1 108 0
45 16741 16741 0.00 1 0 0
50 17730 16741 5.58 0 0 0

rd100 46 5 7668 7368 3.91 1 184 0
10 7436 7074.5 4.86 1 158 0
15 [7211, 7234] 6904.67 4.55 4 611 0
20 7028 6777.25 3.57 2 323 1
25 6871 6698 2.52 2 225 1
30 6777 6650 1.87 4 460 1
35 6698 6625.75 1.08 10 670 0
40 6660 6616.5 0.65 3 306 0
45 6617 6613 0.06 8 471 8
50 6910 6613 4.30 0 0 0
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A.3 Numerical comparison between the x-v formulation and
the PQR formulation

This section presents additional results with respect to the comparison between the x-v formu-
lation and the PQR formulation for both asymmetric and symmetric instances and are a com-
plement to the results presented in Section 7.7.1.

Table A.5: Numerical comparison between the x-v and the PQR formulations (appendix)

B&C PQR B&C x-v

Name p′ p LP OPT t (s) LP OPT t (s)

ftv33 8 5 1193.11 1201 0 1194 1201 0
10 1186 1187 0 1185 1187 0
15 1247.8 1261 0 1209.63 1261 15

ftv35 8 5 1383.75 1387 0 1385 1387 0
10 1382.5 1383 0 1381.5 1383 1
15 1471.25 1480 0 1415.72 1480 59

ftv38 8 5 1440.75 1444 0 1442 1444 0
10 1439.5 1440 0 1438.5 1440 0
15 1520.5 1534 0 1465.05 1534 3775

p43 16 5 187.833 199 7 199 199 0
10 152 158 3 157 158 0
15 148 148 0 148 148 0
20 148 160 0 148 160 138

ftv44 9 5 1529.25 1543 1 1529.89 1543 1
10 1522 1522 0 1522 1522 0
15 1570.5 1573 0 1540.83 1573 91
20 1691 1691 0 1597.39 1691 3711

ftv47 11 5 1661.13 1672 1 1664.75 1672 1
10 1652 1652 0 1652 1652 0
15 1691.5 1703 1 1656 1703 453
20 1815 1815 0 1707.81 [1774, 1837] 10800*

ry48p 20 5 13165.3 13497 1 13320 13497 1
10 12735.8 12868 1 12797.8 12868 1
15 12579.3 12677 0 12597.5 12677 0
20 12517 12517 0 12517 12517 0

ft53 8 5 6004.07 6022 1 6012.8 6022 0
10 5942 5942 0 5936.33 5942 5
15 6027.75 6049 1 5960 6049 80
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Table A.5
B&C PQR B&C x-v

Name p′ p LP OPT t (s) LP OPT t (s)

20 6272.3 6305 0 6031 [6242, 6305] 10800*
25 6973.5 7639 1 6183.19 [6203, 8206] 10800*

ftv55 10 5 1460.33 1482 1 1462.67 1482 1
10 1435 1435 0 1435 1435 0
15 1443.5 1445 0 1438.33 1445 9
20 1510 1548 1 1453.67 [1478, 1601] 10800*
25 1754 1790 0 1515.98 [1436, 1802] 10800*

ftv64 9 5 1729.17 1732 0 1731.2 1732 0
10 1721 1721 0 1721 1721 0
15 1721 1721 0 1721 1721 0
20 1760.5 1767 0 1726.83 [1735, 1843] 10800*
25 1878 1888 0 1767.62 [1778, 1958] 10800*
30 2098.5 2140 1 1836.25 [1721, 2229] 10800*

ft70 10 5 38055.6 38120 3 38113.7 38120 1
10 37978 37978 0 37978 37978 0
15 38018.5 38033 1 37984.5 38033 1078
20 38275.2 38390 7 38013 [38040, 39247] 10800*
25 39027.9 39233 9 38109.8 [38139, 40027] 10800*
30 40258.3 40539 11 38356.7 [38394, 40823] 10800*
35 42297 42908 2 38718.1 [38791, 44946] 10800*

dantzig42 20 5 579.5 604 4 599 604 0
10 545 573 3 561.5 573 3
15 534 548 1 542.7 548 1
20 532 532 0 532 532 0

swiss42 20 5 1123.17 1155 1 1141.75 1155 1
10 1045 1084 2 1065.5 1084 1
15 1021.83 1034 1 1026.5 1034 0
20 1009 1009 0 1009 1009 0

att48 22 5 28724.3 29816 4 29195.5 29816 1
10 27039.8 27456 2 27256.5 27456 1
15 26675.5 27009 2 26794.3 27009 1
20 26600.3 26692 1 26610.5 26692 0

gr48 23 5 4469.25 4544 1 4526.06 4544 0
10 4248 4318 1 4260.5 4318 1
15 4164.75 4231 4 4183.17 4231 2
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Table A.5
B&C PQR B&C x-v

Name p′ p LP OPT t (s) LP OPT t (s)

20 4139.6 4157 0 4140.5 4157 1

hk48 18 5 10511.8 10834 3 10769.6 10834 0
10 10083.5 10345 6 10219.7 10345 1
15 9899 9946 0 9918.8 9946 0
20 9870 9916 1 9870 9916 2

eil51 23 5 437.13 441 1 438.571 441 1
10 423.9 428 2 425.5 428 3
15 414.75 418 2 414.8 418 2
20 408 408 0 408 408 0
25 408 409 0 408 409 0

berlin52 23 5 6816.5 7052 3 6913.43 7052 1
10 6491.83 6609 9 6564 6609 2
15 6388.75 6444 2 6400.5 6444 2
20 6322.39 6359 2 6337 6359 1
25 6312 6373 0 6312 6373 46

brazil58 27 5 18569.1 20150 14 19103.3 20150 1
10 17369 18407 61 17776.5 18407 2
15 16877 17582 120 17191.5 17582 2
20 16652 17017 53 16748.5 17017 2
25 16573 16583 0 16582 16583 0

st70 31 5 643.25 665 87 662.1 665 2
10 603.083 631 156 621.4 631 26
15 574.25 607 447 594.154 607 479
20 564 589 435 576.3 589 29
25 561.5 573 68 563.5 573 2
30 560 561 1 560.167 561 0
35 560 610 1 560 [560, 728] 10800*

eil76 35 5 560.1 563 4 560.889 563 6
10 546.25 550 4 548.382 550 5
15 539.75 545 45 543 545 4
20 535.75 539 3 538 539 6
25 533.167 536 5 534 536 4
30 531.778 533 4 532 533 7
35 531 531 0 531 531 0

pr76 36 5 91255.6 [96104, 97764] 10800* 93076.5 [96803, 97450] 10800*
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Table A.5
B&C PQR B&C x-v

Name p′ p LP OPT t (s) LP OPT t (s)

10 85634 [90747, 91883] 10800* 88006 [90206, 92329] 10800*
15 81211.5 86380 1066 84413.3 86380 51
20 79365.2 82311 99 81247 82311 5
25 78332 82040 1757 79681.2 [81148, 82253] 10800*
30 77731.8 [80612, 81961] 10800* 78302.5 [79655, 82651] 10800*
35 77207.3 77973 1 77260.5 77973 1

gr96 45 5 147533 150721 45 149292 150721 75
10 143407 147495 226 145200 [146647, 147635] 10800*
15 140685 144249 137 142426 [143749, 146342] 10800*
20 138559 142035 492 140240 142035 9113
25 137118 139977 560 138444 139977 64
30 136510 138216 60 137192 138216 40
35 136096 137453 222 136350 137453 37
40 135777 136338 23 135861 136338 11
45 135563 135563 0 135563 135563 0

rat99 45 5 1228.5 1237 8 1231.5 1237 3
10 1196.5 1212 68 1207.6 1212 6
15 1178.17 1195 39 1190.88 1195 48
20 1164.17 1184 172 1175 1184 2837
25 1154.38 1170 177 1161 1170 683
30 1148 1159 41 1152.54 1159 48
35 1144.44 1153 50 1147.86 [1151, 1159] 10800*
40 1142.17 1145 15 1144 1145 10
45 1142 1142 0 1142 1142 0

kroA100 45 5 19658 20224 61 20046.3 20224 148
10 18699.5 19392 249 19236.3 19392 69
15 18078 18755 447 18572.6 18755 94
20 17726.9 18383 1481 18043.8 18383 75
25 17442.7 17924 113 17717.8 17924 29
30 17278.3 17666 5801 17451.6 17666 30
35 17199.3 17432 287 17253.2 17432 27
40 17168.5 17212 8 17179.5 17212 5
45 17153 17153 0 17153 17153 0
50 17153 18618 1 17153 [17153, 22460] 10800*

kroD100 44 5 19322 20284 10221 19915.5 20284 22
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Table A.5
B&C PQR B&C x-v

Name p′ p LP OPT t (s) LP OPT t (s)

10 18353.7 [19106, 19372] 10800* 18934.2 19275 150
15 17662.2 [18330, 18713] 10800* 18234.2 [18489, 19128] 10800*
20 17177.8 17914 4433 17670.4 17914 89
25 16899.9 17401 3989 17259.2 17401 17
30 16740.5 17015 130 16935.5 17015 11
35 16663 16752 4 16718.5 16752 2
40 16617.3 16650 4 16634 16650 5
45 16585 16625 1 16585 16625 16
50 16585 18474 39 16585 [16585, 20732] 10800*

kroE100 45 5 20337.3 20839 88 20427 20839 128
10 19096 19595 16 19430 19595 21
15 18260.5 18958 174 18644 18958 50
20 17763.5 18424 631 18043.5 18424 1887
25 17376.3 17958 1556 17629 17958 3899
30 17151.8 17489 82 17292.9 17489 108
35 16968.2 17080 6 17014.8 17080 7
40 16803 16952 39 16827.1 16952 17
45 16741 16741 0 16741 16741 0
50 16741 17730 1 16741 [17062, 18524] 10800*

rd100 46 5 7368 7668 526 7508.33 [7550, 8143] 10800*
10 7074.5 7436 5829 7222.75 [7361, 7716] 10800*
15 6904.67 [7211, 7234] 10800* 7024.45 [7146, 7264] 10800*
20 6777.25 7028 8312 6860 [6949, 7048] 10800*
25 6698 6871 2506 6762.5 6871 64
30 6650 6777 822 6703.75 6777 39
35 6625.75 6698 936 6658.5 6698 27
40 6616.5 6660 114 6629.75 6660 15
45 6613 6617 5 6614 6617 1
50 6613 6910 1 6613 [6613, 8100] 10800*

*Not solved to optimality within the time limit of three hours

205



APPENDIX A. ADDITIONAL RESULTS - HAMILTONIAN P-MEDIAN PROBLEM

A.4 Results for the variant in which two-node circuits are not
allowed

This section presents additional results with respect to the variant of the Hamiltonian p-median
problem inwhich two-node circuits are not allowed and are a complement to the results presented
in Section 7.7.2.

Table A.6: Optimal solution results for symmetric instances (two-node circuits not allowed) (appendix)

Name p′ p OPT t (s) B&B #(≤ p) #(≥ p)

dantzig42 8 3 648 1 2 226 5
10 654 0 0 62 18

swiss42 7 4 1232 1 4 211 7
6 1231 1 7 176 25
8 1231 1 0 87 65
10 1238 1 1 95 105
14 1292 1 0 10 285

att48 5 4 31903.3 1 0 168 3
6 31836.1 1 0 56 61
9 32195.5 2 4 99 170
12 32742.9 4 11 81 416
16 [35667.8, 37874.3] 10800* 18923 989 29397

gr48 6 4 4841 3 124 417 120
6 4805 2 57 308 243
9 4926 13 674 364 1094
12 5011 8 73 145 1094
16 5445 208 1777 407 6848

hk48 6 4 11271 2 69 400 52
6 11197 0 0 0 0
9 11292 2 17 151 270
12 11450 4 37 315 383
16 12215 118 1834 558 4030

eil51 3 5 422.323 4 69 286 354
7 424.356 5 101 153 540
10 432.489 10 246 282 1114
12 436.587 14 217 440 1518
17 473.977 1701 11238 978 9965

berlin52 7 5 7182.23 2 88 282 46
7 7167.2 1 0 134 14
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Table A.6
Name p′ p OPT t (s) B&B #(≤ p) #(≥ p)

10 7206.7 2 3 116 70
13 7298.63 2 7 109 209
17 7800.77 36 548 179 2031

brazil58 12 5 21744 12 676 1314 191
8 21289 6 235 896 98
11 21080 5 7 892 16
14 21221 2 0 70 90
19 22635 71 1135 556 2925

st70 12 7 638.221 5 25 437 18
10 632.54 4 18 430 23
14 630.902 3 0 102 141
17 636.194 9 22 283 403
23 694.495 3739 19720 2440 9607

pr76 8 7 101401 5 31 851 28
10 101779 8 36 280 142
15 103663 34 767 1583 306
19 104482 7 6 123 210
25 110074 12 0 174 385

*Not solved to optimality within the time limit of three hours

Table A.7: Linear programming relaxation results for symmetric instances (two-node circuits not allowed) (ap-
pendix)

Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

dantzig42 8 3 648 641 1.08 0 79 0
10 654 651.5 0.38 0 79 17

swiss42 7 4 1232 1214.5 1.42 0 197 0
6 1231 1214.5 1.34 0 165 21
8 1231 1218.81 0.99 0 131 43
10 1238 1225.75 0.99 0 246 75
14 1292 1270 1.70 0 22 104

att48 5 4 31903.3 31703.7 0.63 0 231 4
6 31836.1 31671.4 0.52 0 134 55
9 32195.5 31756.7 1.36 0 96 83
12 32742.9 32083.2 2.01 1 195 188
16 [35667.8, 37874.3] 33217 12.30 1 111 2892

gr48 6 4 4841 4770 1.47 0 125 1
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Table A.7
Name p′ p OPT LP gap (%) tL (s) #(≤ p) #(≥ p)

6 4805 4769.75 0.73 0 144 30
9 4926 4807 2.42 0 37 224
12 5011 4886.21 2.49 1 73 395
16 5445 5119.74 5.97 4 234 711

hk48 6 4 11271 11197.5 0.65 0 174 2
6 11197 11197 0.00 0 129 6
9 11292 11250.3 0.37 0 180 139
12 11450 11367.7 0.72 1 191 238
16 12215 11742.7 3.87 1 92 378

eil51 3 5 422.323 419.58 0.65 1 131 155
7 424.356 421.306 0.72 1 94 195
10 432.489 424.737 1.79 1 128 312
12 436.587 428.425 2.87 2 141 441
17 473.977 445.355 6.04 3 379 423

berlin52 7 5 7182.23 7167.14 0.21 0 165 20
7 7167.2 7166.87 0.00 0 141 21
10 7206.7 7182.32 0.34 1 189 176
13 7298.63 7263.34 0.48 1 247 225
17 7800.77 7559.85 3.09 0 17 167

brazil58 12 5 21744 21001 3.42 0 196 1
8 21289 20904 1.81 1 421 8
11 21080 20902.4 0.84 3 581 31
14 21221 21023.2 0.93 2 689 97
19 22635 21631.7 4.43 1 266 205

st70 12 7 638.221 631.417 1.07 1 227 4
10 632.54 628.559 0.63 6 1077 5
14 630.902 628.708 0.35 13 1109 187
17 636.194 630.017 0.97 10 676 367
23 694.495 648.67 6.60 7 560 266

pr76 8 7 101401 99028.9 2.34 1 168 37
10 101779 99263 2.47 1 91 63
15 103663 100667 2.89 1 155 154
19 104482 102559 1.84 2 234 237
25 110074 108023 1.86 4 324 166
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