

2019

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

The Family Traveling Salesman Problem

 “ Documento Definitivo”

Doutoramento em Estatística e Investigação Operacional

Especialidade de Otimização

Raquel Monteiro de Nobre Costa Bernardino

Tese orientada por:

Professora Doutora Ana Maria Duarte Silve Alves Paias

Documento especialmente elaborado para a obtenção do grau de doutor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/287749819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2019

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

The Family Traveling Salesman Problem

Doutoramento em Estatística e Investigação Operacional

 Especialidade de Otimização

Raquel Monteiro de Nobre Costa Bernardino

Tese orientada por:

Professora Doutora Ana Maria Duarte Silve Alves Paias

Júri:

Presidente:

● Doutora Maria Eugénia Vasconcelos Captivo, Professora Catedrática, Faculdade de Ciências da Universidade de Lisboa;

Vogais:

● Doutora Maria Cristina Saraiva Requejo Agra, Professora Auxiliar, Departamento de Matemática da Universidade de

Aveiro;

● Doutor José Manuel Vasconcelos Valério de Carvalho, Professor Catedrático, Escola de Engenharia da Universidade do

Minho;

● Doutor José Manuel Pinto Paixão, Professor Catedrático, Faculdade de Ciências da Universidade de Lisboa;

● Doutor Luís Eduardo Neves Gouveia, Professor Catedrático, Faculdade de Ciências da Universidade de Lisboa;

● Doutora Maria Eugénia Vasconcelos Captivo, Professora Catedrática, Faculdade de Ciências da Universidade de Lisboa;

● Doutora Ana Maria Duarte Silva Alves Paias, Professora Auxiliar, Faculdade de Ciências da Universidade de Lisboa

(orientadora).

Documento especialmente elaborado para a obtenção do grau de doutor

Dissertação financiada pela FCT ao abrigo do projeto PTDC/MAT-NAN/2196/2014

Para a minha mãe,
Julieta.

ii

Agradecimentos

O meu sincero obrigada à Professora Doutora Ana Maria Duarte Silva Alves Paias, a minha orien-
tadora. A sua dedicação a esta dissertação fez com que esta chegasse a bom porto. Obrigada pela
paciência, disponibilidade e por estar sempre disposta a ensinar-me. Foi mais uma vez uma honra
tê-la como minha orientadora.

Um grande obrigada à minha família. Aos meus pais, que sempre me tentaram educar da melhor
forma possível e fizeram de mim aquilo que sou hoje. Um obrigada especial ao meu pai, que nestes
últimos anos sempre me incentivou a aprender mais e me proporcionou esta aventura que foi o
doutoramento. Aos meus avós, Babá e Avô Júlio, obrigada por ainda hoje tomarem conta de mim.

Daniel, obrigada! Obrigada pelo teu companheirismo durante esta etapa e por, mais uma vez,
acreditares que isto seria possível antes de mim. Conseguimos, que venha o próximo desafio.

Gostaria também de agradecer a todos os professores que me acompanharam neste percurso.
Um agradecimento especial ao professor Luís Gouveia, pois também contribuiu de forma indireta
para esta dissertação.

Um obrigada especial aos meus colegas de gabinete e de almoço, Michele e Jessica pelas dis-
cussões interessantes que tivemos e pelos bons tempos que passámos juntos.

Por fim, a todos os que de uma forma ou de outra me incentivaram durante o decorrer desta
dissertação nem que seja por perguntarem como está a correr, o meu mais sincero obrigada.

iii

iv

Abstract

Consider a depot, a partition of the set of nodes into subsets, called families, and a cost matrix. The
objective of the family traveling salesman problem (FTSP) is to find the minimum cost circuit that
starts and ends at the depot and visits a given number of nodes per family. The FTSP was motivated
by the order picking problem in warehouses where products of the same type are stored in different
places and it is a recent problem. Nevertheless, the FTSP is an extension of well-known problems,
such as the traveling salesman problem.

Since the benchmark instances available are in small number we developed a generator, which
given a cost matrix creates an FTSP instance with the same cost matrix. We generated several test
instances that are available in a site dedicated to the FTSP.

We propose several mixed integer linear programming models for the FTSP. Additionally, we
establish a theoretical and a practical comparison between them. Some of the proposed models
have exponentially many constraints, therefore we developed a branch-and-cut (B&C) algorithm to
solve them. With the B&C algorithm we were able to obtain the optimal value of open benchmark
instances and of the majority of the generated instances.

As the FTSP is an NP-hard problem we develop three distinct heuristic methods: a genetic
algorithm, an iterated local search algorithm and a hybrid algorithm. With all of them we were able
to improve the best upper bounds available in the literature for the benchmark instances that still
have an unknown optimal value.

We created a new variant of the FTSP, called the restricted family traveling salesman problem
(RFTSP), in which nodes from the same family must be visited consecutively. We apply to the
RFTSP the methods proposed for the FTSP and develop a new formulation based on the interfamily
and the intrafamily relationships.

space
Keywords: Family traveling salesman problem; Multicommodity flow; Projections; Branch-and-
cut algorithm; Metaheuristics.

v

vi

Resumo

Considere-se um depósito, uma partição do conjunto de cidades em vários subconjuntos, aos quais
chamamos famílias, e custos de deslocação entre o depósito e as cidades e entre as várias cidades.
O objetivo do family traveling salesman problem (FTSP) é determinar o circuito elementar de custo
mínimo que começa e acaba no depósito e visita um número predeterminado de cidades em cada
família. O FTSP foi motivado pelo problema de recolha de produtos em armazéns onde os produ-
tos do mesmo tipo estão armazenados em locais diferentes. O FTSP é um problema relativamente
recente pois, além do artigo desenvolvido no âmbito desta dissertação, existe apenas um artigo na
literatura sobre o mesmo. Contudo, o FTSP pode ser visto como uma generalização de problemas
bem conhecidos da literatura, como o problema do caixeiro viajante e o problema do caixeiro vi-
ajante generalizado (generalized traveling salesman problem), daí a importância do seu estudo no
âmbito de uma dissertação de doutoramento.

Como as instâncias do FTSP disponíveis na literatura são em número reduzido decidimos criar
um gerador de instâncias para o FTSP. Este gerador recebe uma matriz de custos e cria quatro
instâncias diferentes do FTSP, que diferem no número de visitas por família, com a mesma matriz
de custos. As quatro instâncias foram geradas para terem características diferentes, nomeadamente
criámos um tipo de instância para ter um número reduzido de visitas por família e outro tipo para ter
um número elevado de visitas por família. Para gerarmos novas instâncias do FTSP usámosmatrizes
de custos, simétricas e assimétricas, de instâncias de referência do problema do caixeiro viajante
e de instâncias de referência assimétricas do problema do traveling purchaser. Criou-se um site
dedicado ao FTSP no qual se disponibilizam para toda a comunidade científica todas as instâncias
existentes do FTSP, nomeadamente as instâncias de referência da literatura e as instâncias geradas.

Nesta dissertação apresentamos váriosmodelos de programação linear inteiramista para o FTSP.
Estes modelos são comparados empiricamente e através de resultados teóricos. Alguns dos mode-
los propostos contêm conjuntos de restrições que são em número exponencial, pelo que temos de
recorrer a um algoritmo de branch-and-cut, que combina um algoritmo de branch-and-bound com
um algoritmo de planos de corte, para os resolver. Pela experiência computacional verificámos
que os modelos com um número exponencial de restrições são os mais eficientes. O melhor mod-

vii

elo proposto, a que chamámos modelo CC+RFV, contém dois conjuntos de restrições em número
exponencial, nomeadamente as desigualdades CC, que são uma adaptação das restrições de elimi-
nação de subcircuitos propostas por Dantzig et al. (1954) para o problema do caixeiro viajante e as
desigualdades RFV, criadas no âmbito desta dissertação para o FTSP. Estas últimas garantem que
se num subconjunto de cidades que contém o depósito, designado por S ′, não existem cidades sufi-
cientes para satisfazer as visitas de uma determinada família, então teremos que visitar uma cidade
no conjunto complementar de S ′. Ambas as desigualdades eliminam subcircuitos contudo, como
a separação das desigualdades RFV é muito demorada, usamos as desigualdades CC para eliminar
subcircuitos e as desigualdades RFV são adicionadas como desigualdades válidas para melhorar o
valor da relaxação linear. Foi ainda incorporado no algoritmo de branch-and-cut ummétodo heurís-
tico muito simples que permite obter uma solução admissível para o FTSP (não necessariamente
a ótima). Deste modo garantimos que, com o algoritmo de branch-and-cut, conseguimos sempre
obter uma solução admissível para o problema. Com o algoritmo de branch-and-cut aplicado ao
modelo CC+RFV conseguimos obter o valor ótimo de instâncias de referência que tinham valor
ótimo desconhecido. No que diz respeito às instâncias geradas, conseguimos obter o valor ótimo de
148 instâncias das 164 instâncias geradas, sendo que a proporção de instâncias simétricas resolvidas
é 73% e a proporção de instâncias assimétricas resolvidas é de 99%.

Como o problema do caixeiro viajante pode ser visto como um caso particular do FTSP, em que
temos que visitar todas as cidades de todas as famílias, podemos concluir que o FTSP pertence à
classe de problemas NP-difícil, pelo que desenvolvemos métodos heurísticos para o FTSP. Nesta
dissertação são propostos três métodos heurísticos, nomeadamente: um algoritmo genético, que usa
permutações como cromossomas; um algoritmo de iterated local search (ILS), que itera entre um
algoritmo de pesquisa local e um algoritmo de perturbação; e um algoritmo híbrido, que combina
o modelo CC+RFV proposto com o algoritmo de ILS. Os resultados computacionais mostraram
que o algoritmo genético é o algoritmo mais eficiente e que o algoritmo ILS e o algoritmo híbrido
são os mais eficazes, pois nas instâncias testadas obtêm sempre uma solução de custo inferior ao
da solução obtida com o algoritmo genético. Como o objetivo principal é obter as soluções com o
menor custo possível decidimos usar o algoritmo ILS e o algoritmo híbrido, pois nenhum obteve
o melhor resultado em todas as instâncias. Comparámos estes dois algoritmos e concluímos que,
geralmente, o algoritmo ILS é mais eficiente enquanto que o algoritmo híbrido é mais eficaz. Os
métodos heurísticos apenas foram aplicados a instâncias que o método exato não resolveu, isto é,
instâncias que têm valor ótimo desconhecido. No que diz respeito às instâncias de referência com
valor ótimo desconhecido, conseguimos obter soluções de custo inferior aos melhores limites su-
periores disponíveis na literatura para todas as instâncias testadas e usando ambos os algoritmos.

viii

Relativamente às instâncias geradas, como nunca foram usadas na literatura decidimos comparar
a solução obtida com os métodos heurísticos com o melhor limite superior obtido com o algo-
ritmo de branch-and-cut. Das 16 instâncias geradas que têm valor ótimo desconhecido os métodos
heurísticos só conseguiram obter uma solução de custo inferior à solução obtida pelo algoritmo de
branch-and-cut em três instâncias. Contudo, a comparação entre o algoritmo de branch-and-cut
e os métodos heurísticos não é justa pois o algoritmo de branch-and-cut obteve as suas soluções
ao fim de três horas, enquanto que, por exemplo o algoritmo de ILS, obteve as suas soluções num
tempo médio de 20 segundos.

Nesta dissertação também apresentamos uma variante do FTSP que, tanto quanto sabemos,
nunca foi apresentada na literatura. A variante do FTSP chama-se restricted family traveling sales-
man problem (RFTSP) e é obtida exigindo que as cidades da mesma família sejam visitadas con-
secutivamente. Para resolver o RFTSP decidimos adaptar os métodos que obtiveram os melhores
resultados no FTSP, nomeadamente o algoritmo de branch-and-cut aplicado ao modelo CC+RFV e,
relativamente a métodos heurísticos, o algoritmo de ILS e o algoritmo híbrido. Com estes métodos
obtivemos os valores ótimos e limites superiores, para as instâncias com valor ótimo desconhecido.
Comparando os resultados obtidos para o FTSP e os obtidos para o RFTSP verificamos que, nas in-
stâncias assimétricas, o número de instâncias com valor ótimo conhecido baixou significativamente.
Das 100 instâncias geradas com custos assimétricos e considerando o RFTSP, apenas conseguimos
obter o valor ótimo de 76 instâncias. Ainda relativamente ao RFTSP, propomos um novo modelo
de programação linear inteira mista. Este novo modelo explora as relações dentro de cada família e
as relações entre famílias como um problema de caminho mais curto e um problema do caixeiro vi-
ajante, respetivamente. Este novo modelo tem um número muito elevado de variáveis e restrições
o que torna a sua resolução menos eficiente. Contudo, este novo modelo obtém valores de re-
laxação linear superiores aos do modelo CC+RFV adaptado, pelo pode ser usado como objeto de
investigação futura como ponto de partida para novas abordagens de resolução como por exemplo
a utilização de técnicas de decomposição.

space
Palavras-chave: Family traveling salesman problem; Fluxos multicomodidade; Projecções; Al-
goritmo de branch-and-cut; Meta-heurísticas.

ix

x

Contents

1 Introduction 1

2 Mathematical Background 5
2.1 Graph theory . 5
2.2 Polyhedral theory . 8
2.3 Linear programming theory . 12
2.4 Complexity theory . 21
2.5 Basic linear programming problems . 22

2.5.1 The assignment problem . 23
2.5.2 The maximum flow problem . 23
2.5.3 The minimum capacity cut problem . 24
2.5.4 The shortest path problem . 25

3 The Family Traveling Salesman Problem 27
3.1 Literature review . 28
3.2 Related problems . 29
3.3 Basic constructive heuristics and neighborhoods 30

3.3.1 Constructive heuristics . 30
3.3.2 Neighborhoods . 31

3.4 Instances . 33

4 Mathematical Formulations 37
4.1 A generic formulation for the FTSP . 37
4.2 Formulating the subtour elimination constraints 39

4.2.1 Compact formulations . 39
4.2.1.1 The single-commodity flow model 40
4.2.1.2 The family-commodity flow model 41

xi

4.2.1.3 The node-commodity flow model 42
4.2.2 Non-compact formulations . 44

4.2.2.1 Connectivity cuts model . 45
4.2.2.2 Rounded visits model . 45
4.2.2.3 Rounded family visits model 49

4.3 Theoretical comparison of the several formulations 53
4.3.1 Comparing the compact models . 54
4.3.2 Comparing the compact and the non-compact models 60
4.3.3 Comparing the non-compact models . 67

4.4 Empirical comparison of the several formulations 68
4.4.1 Combining the CC inequalities and the RFV inequalities 72

5 The Branch-and-Cut Algorithm 75
5.1 The branch-and-cut algorithm outline . 75
5.2 The separation algorithms . 76

5.2.1 Separating the CC inequalities . 76
5.2.2 Separating the RFV inequalities . 81
5.2.3 Separating both the CC and the RFV inequalities 85

5.2.3.1 Separating only some RFV inequalities 87
5.3 Heuristic callback . 92
5.4 Computational experiment . 94

5.4.1 Benchmark instances . 94
5.4.2 Generated instances based on symmetric TSP instances 99
5.4.3 Generated instances based on asymmetric TSP instances 105
5.4.4 Generated instances based on asymmetric UTPP instances 110

6 Heuristic Algorithms 115
6.1 The genetic algorithm . 116
6.2 The iterated local search algorithm . 124
6.3 The hybrid algorithm . 130

6.3.1 Constructive phase . 131
6.3.2 Improvement phase . 137

6.3.2.1 Transferring information from the constructive phase to the im-
provement phase . 138

6.4 Computational experiment . 141

xii

7 The Family Traveling Salesman Problem: a Variant 149
7.1 The restricted family traveling salesman problem 149
7.2 Basic heuristics and neighborhoods for the RFTSP 151
7.3 Mathematical formulations for the RFTSP . 153

7.3.1 Formulating the consecutiveness condition 154
7.3.2 The inter- and intrafamily formulations 154

7.3.2.1 Formulating the intrafamily subproblem 155
7.3.2.1.1 The path single-commodity flow 158
7.3.2.1.2 The path multi-commodity flow 158
7.3.2.1.3 The path connectivity cuts 159
7.3.2.1.4 The path rounded visits 159

7.3.2.2 Formulating the interfamily subproblem 160
7.3.2.3 Theoretical comparison of the inter- and intrafamily formulations 161

7.3.3 Empirical comparison between the adapted formulations and the inter- and
intrafamily formulations . 162

7.4 The branch-and-cut algorithm for the RFTSP . 167
7.4.1 Heuristic callback . 168
7.4.2 Computational experiment . 169

7.4.2.1 Benchmark instances . 169
7.4.2.2 Generated instances based on symmetric TSP instances 171
7.4.2.3 Generated instances based on asymmetric TSP instances 175
7.4.2.4 Generated instances based on asymmetric UTPP instances 179

7.5 Heuristic algorithms for the RFTSP . 183
7.5.1 The iterated local search algorithm . 184
7.5.2 The hybrid algorithm . 185
7.5.3 Computational experiment . 186

8 Conclusion 197
8.1 Main conclusions . 197
8.2 Future work . 200

A Instance Description 207

B Branch-and-cut algorithm detailed results 217
B.1 Linear programming relaxation results without heuristic separation 217
B.2 Optimal results without the heuristic callback . 219

xiii

B.3 Linear programming relaxation results for instance set 2 221
B.4 Optimal results obtained with the 1-separation . 223
B.5 Linear programming relaxation results for instance set 3 224
B.6 Linear programming relaxation results for instances rbg with SCF model 227
B.7 Linear programming relaxation results for instance set 4 228

C Heuristic algorithms detailed results 231
C.1 Genetic algorithm . 231

C.1.1 Results obtained with the GA algorithm 231
C.1.2 Results obtained with the GA+NN algorithm 232
C.1.3 Results obtained with the LS algorithm 233
C.1.4 Results obtained with the LS_random algorithm 233
C.1.5 Results obtained with the LS_insertRemove algorithm 234
C.1.6 Results obtained by applying the LS_insertRemove algorithm to several

solutions . 235
C.2 Iterated local search algorithm . 236

C.2.1 Results obtained with the several choosing criteria of the perturbation method236
C.2.2 Results obtained with the removal criterion Random_removal in the per-

turbation method . 237
C.2.3 Results obtained combining both removal criteria in the perturbation method238
C.2.4 Results obtained with different numbers of iterations in the ILS algorithm . 240

C.3 Hybrid algorithm . 241
C.3.1 Evaluating the number of visits by using instance bier 241
C.3.2 Results obtained with the several r∗ values 242
C.3.3 Results obtained with the several ∆ values 243
C.3.4 Results obtained with the several Λ values 243
C.3.5 Results obtained with the hybrid algorithm 244
C.3.6 Results obtained with the hybrid algorithm with dual information 245

C.4 Final results with different seeds . 245

D RFTSP detailed results 251
D.1 Linear programming relaxation results obtained with the adapted formulations for

the RFTSP . 251
D.2 Linear programming relaxation results obtained with the y-separation for the RFTSP253
D.3 Linear programming relaxation results obtained with y-separation for the RFTSP . 254

xiv

D.4 Final heuristic results with different seeds for the RFTSP 256

E The Branch-and-Cut Algorithm for the Inter- and Intrafamily Formulations 265
E.1 The separation algorithms . 265

E.1.1 Separating the subtour elimination constraints in the interfamily subproblem 266
E.1.2 Separating the P-CC inequalities . 268
E.1.3 Separating the P-RV inequalities . 272

F Dimension proof 277

xv

xvi

List of Figures

2.1 Examples of a directed and a nondirected graph. 6
2.2 Example of a directed and simple graph. 6
2.3 Graphical representation of the Pe polytope. 10
2.4 Graphical representation of the Pe polytope without the redundant inequalities. . . 12
2.5 Graphical representation of the set of feasible solutions for the Pe problem. 14
2.6 Graphical representation of the convex hull of the set of feasible solutions of the Pe

problem. 15
2.7 Graphical representation of the formulation Pdual. 19

3.1 An example of a feasible solution for an FTSP instance. 28

4.1 Representation of the several flow systems. 40
4.2 RV inequalities motivation. 48
4.3 RFV inequalities motivation. 52
4.4 Feasible solution for the LP relaxation of the FCF model. 57
4.5 Feasible solution for the LP relaxation of the NCF model. 59
4.6 Feasible solution for the LP relaxation of the RV model. 61
4.7 Feasible solution for the LP relaxation of the NCF+ model. 63
4.8 Feasible solution for the LP relaxation of the RFV model. 65
4.9 Known relationships between the proposed formulations. 68

7.1 An example of a feasible and an unfeasible solution for the RFTSP. 150

xvii

xviii

List of Tables

4.1 Node-commodity flow models summary. 44
4.2 Linear programming relaxation results obtained with the compact models. 69
4.3 Linear programming relaxation results obtained with the non-compact models. . . 70
4.4 Linear programming relaxation results obtained with the CC+RFV model. 72

5.1 Heuristic separation CC inequalities. 80
5.2 Heuristic separation RFV inequalities. 84
5.3 Heuristic separation for both CC and RFV inequalities. 87
5.4 Separation algorithms for the CC+RFV model. 91
5.5 Heuristic callback in the B&C algorithm. 93
5.6 Linear programming relaxation results for the instance set 1 with CC, RFV and

CC+RFV models. 95
5.7 Linear programming relaxation results for the instance set 1 with y- separation and

1-separation. 95
5.8 Linear programming relaxation results for instances a with y-separation and 1-

separation. 96
5.9 Optimal values for the instance set 1 with y-separation and 1-separation. 97
5.10 Optimal value for instances a with y-separation. 98
5.11 Optimal value for instances a with 1-separation. 98
5.12 Average LP relaxation results for the instance set 2. 99
5.13 Average gap and time by instance type for the instance set 2. 100
5.14 Optimal values for the instance set 2 with y-separation. 101
5.15 Statistics for the optimal value by instance type for the instance set 2. 104
5.16 Average LP relaxation results for the instance set 3. 105
5.17 Average gap and time by instance type for the instance set 3. 106
5.18 Optimal values for the instance set 3 with y-separation. 107
5.19 Statistics for the optimal value by instance type for the instance set 3. 110

xix

5.20 Average LP relaxation results for the instance set 4. 110
5.21 Optimal values for the instance set 4 with y-separation. 111
5.22 Best upper bounds obtained with the B&C algorithm. 114

6.1 Best upper bounds for the benchmark instances obtained by Morán-Mirabal et al.
(2014). 115

6.2 Experimenting parameter sets for the GA algorithm. 118
6.3 Experimenting generating individuals for the GA+NN algorithm. 119
6.4 Experimenting the LS algorithm. 121
6.5 Experimenting the LS_random algorithm. 122
6.6 Experimenting the LS_insertRemove algorithm. 123
6.7 Comparison of the different choosing criteria in the perturbation method. 127
6.8 Evaluation of the removal criterion Random_removal. 128
6.9 Combining both removal criteria using several ρ values. 129
6.10 Comparing different number of iterations in the ILS algorithm. 130
6.11 Optimal solution times for the variations of instance bier. 132
6.12 Comparing several values of r∗. 135
6.13 Comparing several values of ∆. 136
6.14 Comparing several values of Λ. 137
6.15 Results obtained with the hybrid algorithm. 138
6.16 Using the hybrid algorithm with dual information. 140
6.17 Summary of the best results obtained with the proposed heuristic algorithms. . . . 141
6.18 Summary of the final results obtained with the ILS algorithm. 143
6.19 Summary of the final results obtained with the hybrid algorithm. 144
6.20 Current best known upper bounds. 148

7.1 Average of linear programming relaxation results with the adapted models for the
RFTSP. 163

7.2 Linear programming relaxation results for the instance set 1 with the inter- and
intrafamily formulations. 164

7.3 Linear programming relaxation results for the instance set 3 with the inter- and
intrafamily formulations. 165

7.4 Average of linear programming relaxation results with P-CC+RV model. 166
7.5 Average of linear programming relaxation results with y-separation. 167
7.6 Optimal values of the benchmark instances considering the RFTSP. 170

xx

7.7 Optimal values of the instances from the instance set 2 considering the RFTSP. . . 171
7.8 Statistics for the optimal value by instance type for the instance set 2 considering

the RFTSP. 174
7.9 Optimal values of the instances from the instance set 3 considering the RFTSP. . . 175
7.10 Statistics for the optimal value by instance type for the instance set 3 considering

the RFTSP. 178
7.11 Optimal values of the instances from the instance set 4 considering the RFTSP. . . 179
7.12 Statistics for the optimal value by instance type for the instance set 4 considering

the RFTSP. 180
7.13 Best upper bounds found by the B&C algorithm for the RFTSP. 182
7.14 Reference values for the instance gr and pr considering the RFTSP. 187
7.15 Summary of the final results obtained with the ILS algorithm for the RFTSP. 187
7.16 Summary of the final results obtained with the hybrid algorithm for the RFTSP. . . 189
7.17 Current best known upper bounds for the RFTSP. 194

A.1 Complete description of the instance set 1. 207
A.2 Complete description of the instance set 2. 208
A.3 Complete description of the instance set 3. 212
A.4 Complete description of the instance set 4. 215

B.1 Linear programming relaxation results of the CC and RFV models without the
heuristic separation algorithm. 218

B.2 Linear programming relaxation results of the CC+RFV model without the heuristic
separation. 219

B.3 Optimal values of the CC model without the heuristic callback. 220
B.4 Optimal values of the y-separation and the 1-separation without the heuristic callback.221
B.5 Linear programming relaxation results for instance set 2. 221
B.6 Optimal values for the instances of type high from the instance set 3with 1-separation.224
B.7 Linear programming relaxation results for the instance set 3. 224
B.8 Linear programming relaxation results for instances rbg with SCF model. 228
B.9 Linear programming relaxation results for the instance set 4. 228

C.1 Results obtained with the GA algorithm. 232
C.2 Results obtained with the GA+NN algorithm. 232
C.3 Results obtained with the LS algorithm. 233
C.4 Results obtained with the LS_random algorithm. 234

xxi

C.5 Results obtained with the LS_insertRemove algorithm. 235
C.6 Results obtained by applying the LS_insertRemove algorithm to several solutions. . 236
C.7 Comparison of the choosing criteriaMean,Min andMax. 237
C.8 Comparison of the choosing criteria Random_choice and Least_chosen. 237
C.9 Results obtained with the removal criterion Random_removal. 238
C.10 Results obtained with the choosing criterion Random_choice and the combination

of both removal criteria with ρ = 200, ρ = 100 and ρ = 50. 239
C.11 Results obtained with the choosing criterion Random_choice and the combination

of both removal criteria with ρ = 25, ρ = 10 and ρ = 5. 239
C.12 Results obtained with the choosing criterion Least_chosen and the combination of

both removal criteria with ρ = 200, ρ = 100 and ρ = 50. 240
C.13 Results obtained with choosing criterion Least_chosen and the combination of

both removal criteria with ρ = 25, ρ = 10 and ρ = 5. 240
C.14 Results obtained performing 5000 iterations of the ILS algorithm. 241
C.15 Optimal results for the variations of instance bier. 242
C.16 Results obtained with the several r∗ values. 242
C.17 Results obtained with ∆ = 140, ∆ = 160 and ∆ = 200 values. 243
C.18 Results obtained with Λ = 30, Λ = 50 and Λ = 90 values. 244
C.19 Results obtained with the hybrid algorithm. 244
C.20 Results obtained with the hybrid algorithm with dual information. 245
C.21 Results obtained in five runs for the instances with unknown optimal value. 246

D.1 Linear programming relaxation results obtained with adapted formulations for in-
stance set 1. 252

D.2 Linear programming relaxation results obtained with adapted formulations for in-
stance set 3. 252

D.3 Linear programming relaxation results obtained with the P-CC+RV model for the
instance set 1. 253

D.4 Linear programming relaxation results obtained with the P-CC+RV model for the
instance set 3. 254

D.5 Linear programming relaxation results obtained with the y-separation for the in-
stance set 1. 255

D.6 Linear programming relaxation results obtained with the y-separation for the in-
stance set 3. 255

xxii

D.7 Results obtained in five runs for the instances with unknown optimal value for the
RFTSP. 256

F.1 Affinely independent points considering the FTSP instance presented in Figure 3.1. 283

xxiii

xxiv

List of Algorithms

2.1 Cutting plane algorithm. 20
3.1 The neighborhood search procedure. 33
5.1 Separation algorithm for the CC inequalities. 77
5.2 Improved separation algorithm for the CC inequalities. 78
5.3 Heuristic separation of the CC inequalities. 80
5.4 Separation algorithm for the RFV inequalities. 82
5.5 Heuristic separation of the RFV inequalities. 83
5.6 Separation algorithm for the RFV inequalities for integer solutions. 84
5.7 Heuristic separation algorithm of both CC and RFV inequalities. 86
5.8 The y-separation algorithm. 88
5.9 The 1-separation algorithm. 89
5.10 The local search procedure used in the heuristic callback. 93
6.1 The basic framework of the genetic algorithm. 118
6.2 The LS algorithm. 121
6.3 The basic framework of the ILS algorithm. 125
6.4 The local search procedure used in the ILS algorithm. 126
6.5 The perturbation method used in the ILS algorithm. 130
6.6 Constructive phase of the hybrid algorithm. 134
7.1 The local search procedure for the B&C algorithm for the RFTSP. 168
7.2 The local search procedure used in the ILS algorithm for the RFTSP. 184
7.3 The perturbation method used in the ILS algorithm for the RFTSP. 185
E.1 Separation algorithm for the subtour elimination constraints in the interfamily sub-

problem. 267
E.2 Separation algorithm for the P-CC inequalities. 269
E.3 Heuristic separation of the P-CC inequalities. 271
E.4 Separation algorithm for the P-RV inequalities. 273
E.5 Heuristic separation of the P-RV inequalities. 274

xxv

E.6 Separation algorithm for the P-RV inequalities for integer solutions. 275

xxvi

Chapter 1

Introduction

Assume that products of the same type are scattered through different places in a warehouse and
one must collect a given number of products of each type. This problem, the order picking problem
in warehouses, motivated the family traveling salesman problem (FTSP), which will be addressed
in this dissertation. More formally, consider a depot and a set of cities that is partitioned into several
subsets, which are called families. The objective of the FTSP is to establish the minimum cost route
that starts and ends at the depot and visits a given number of cities in each family.

The FTSP may be seen as a generalization of problems that have a wide variety of applications,
which include the well-known traveling salesman problem and other variants. Additionally, the
FTSP is a fairly recent problem and, in fact, as far as we know, there is only one article in the
literature that addresses it. Therefore, for the reasons stated previously, the FTSP is a challenging
problem to be studied within the scope of a Ph.D. dissertation.

The primary, and most general, objective of this dissertation is to study the FTSP in order to
develop efficient methods that provide feasible solutions for this problem. The methods developed
belong to one of two main categories: (i) exact methods, which guarantee that the solution obtained
is the minimum cost feasible solution; and (ii) heuristic methods, which ensure that the solution
obtained is feasible.

Regarding the exact methods, we will propose adaptations of methods from the literature de-
veloped for other problems, namely for the traveling salesman problem, and we will also develop
new methods that take into account the specificities of the FTSP. The proposed methods will not
only be compared theoretically but also empirically by using a small subset of test instances. The
method that provides the best results is applied to all the test instances.

The heuristic methods are used to address the instances which the exact methods could not solve
efficiently. Similarly to what was done for the exact methods, we use a small subset of test instances
to do the parameter tuning of the several heuristic methods and to evaluate their behavior. The

1

CHAPTER 1. INTRODUCTION

heuristic method that provides the solutions with the lowest cost will be used to solve the instances
that the exact methods were unable to.

As a complement to this dissertation we decided to create a variant of the FTSP, which seems to
be a natural variant and that arises by imposing the condition that cities from the same family must
be visited consecutively. We denote this variant by the restricted family traveling salesman problem
(RFTSP). We will adapt for the RFTSP the methods, both exact and heuristic, that provided the best
results for the FTSP. Additionally, we developed an exact method that can only be applied to the
RFTSP, which is compared to the adapted exact method through computational testing.

Finally, we created a website devoted to the FTSP which gathers the test instances used in this
dissertation, both from the literature and the generated ones, and the best results obtained so far,
which are either exact results or heuristic results. The site also contains the same type of information
for the RFTSP.

This dissertation is organized as follows. In Chapter 2 we introduce definitions and theoretical
results that will be used during this dissertation. Therefore, this chapter is purely expository and it
is independent of the FTSP.

In Chapter 3 we provide a formal definition for the FTSP and present the notation used during
the remainder of the dissertation. Additionally, we present the literature review as well as some
problems that under specific circumstances can be solved as the FTSP. Some basic constructive
heuristics are also described. We conclude this chapter by describing the FTSP instance generator
developed and by presenting the test instances used.

Chapter 4 is devoted to the exact methods. We start by presenting several exact methods and
then, by using a small subset of test instances, we establish a theoretical and an empirical comparison
between the exact methods proposed.

In Chapter 5 we present the branch-and-cut algorithm, which is an algorithm used to solve some
of the exact methods proposed, and the computational results obtained for the test instances with
the best exact method.

In Chapter 6 we present the heuristic methods proposed for the FTSP, establish an empirical
comparison between them, by using a small subset of test instances, and carry out the computational
experiment, which consists in applying the best heuristic method to the instances that the exact
methods could not solve efficiently.

Chapter 7 is devoted to the RFTSP, the variant of the FTSP that we proposed. We present exact
methods for the RFTSP which are either adaptations of the exact methods for the FTSP or methods
developed specifically for the RFTSP and we establish an empirical comparison between the exact
methods proposed. We also develop heuristic methods by adapting the heuristic methods for the

2

CHAPTER 1. INTRODUCTION

FTSP. Finally, we present the computational experiment for the RFTSP.
We conclude this dissertation in Chapter 8 where we draw the main conclusions from this work

and provide some bullet points of what the future work could entail.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Mathematical Background

The purpose of this chapter is to present or clarify some definitions and theoretical results that are
going to be used throughout this dissertation. Therefore, this chapter is purely expository as the
results presented are a collection of results from the literature. This chapter is divided into five
sections: graph theory, polyhedral theory, linear programming theory, complexity theory and, fi-
nally, some basic linear programming problems. More precisely, in Section 2.1 we present concepts
related to graph theory, concepts related to polyhedral theory are presented in Section 2.2, in Sec-
tion 2.3 we address linear programming theory, complexity theory is presented in Section 2.4 and,
finally, in Section 2.5 we present some basic linear programming problems.

2.1 Graph theory

One seminal paper addressing graph theory dates back to 1739 and it was published by Euler. Since
then graphs have been used to model a wide variety of problems, being routing one of the most
common type. Information related to graph theory can be found in Christofides (1975) and Ahuja
et al. (1993), for example.

A graph G = (N,A) is defined as a pair of sets in which N = {1, 2, . . . , n} is a non-empty
finite set called node (or vertice) set and A = {a1, a2, . . . , am} is either an arc set in which its
elements are pairs of elements of N or an edge set, that is, a set of subsets with two elements of N .
In the former case, there is an orientation assigned to the elements of A and in the latter case, there
is no orientation assigned to the elements of A. If A is an arc set, then G is called a directed graph
whereas if A is an edge set, then G is called a nondirected graph.

Example 1. Figure 2.1 shows examples of a directed graph (Figure 2.1a) and a nondirected graph
(Figure 2.1b).

5

CHAPTER 2. MATHEMATICAL BACKGROUND

1 2

34

(a) Directed graph.

1 2

34

(b) Nondirected graph.

Figure 2.1: Examples of a directed and a nondirected graph.

We assume that G is a directed graph since any nondirected graph may be equivalently repre-
sented as a directed graph by assigning two arcs to each edge. We represent an arc ai as a pair of
nodes, that is, ai = (j, k) where j is the initial node and k is the final node of the arc. Additionally,
if there is an arc between j and k we say that j and k are adjacent nodes. We also consider that G
is a simple graph, that is, G contains a maximum of one arc between each pair of nodes and does
not contain arcs which have the same initial and final nodes.

Example 2. To illustrate the definitions presented throughout this section consider the Ge graph
presented in Figure 2.2.

1

2 3

4

56

Figure 2.2: Example of a directed and simple graph.

Given a graph G = (N,A), a subgraph Gs = (Ns, As) is a graph such that Ns ⊆ N and As =

{(i, j) ∈ A : i, j ∈ Ns}. A path (chain in a nondirected graph) is a sequence of arcs such that the
final node of one arc is the initial node of the following one, that is, {(i1, i2), (i2, i3), . . . , (ik−1, ik)}.
Node i1 is the initial node of the path and node ik is the final node of the path. A circuit (cycle in a
nondirected graph) is a path in which the initial and the final nodes are the same, that is, i1 = ik.

Example 3. An example of a path in Ge is {(1, 2), (2, 3), (3, 4)} and an example of a circuit is
{(2, 3), (3, 5), (5, 2)}.

6

CHAPTER 2. MATHEMATICAL BACKGROUND

A simple path (or circuit) is a path (or circuit) which does not use the same arc more than once
and an elementary path (or circuit) is a path (or circuit) that does not use the same node more than
once.

Example 4. The path in Ge presented in Example 3 is a simple and elementary path. However, the
path {(1, 2), (2, 3), (3, 5), (5, 2), (2, 3)} inGe is neither simple (it repeats arc (2, 3)) nor elementary
(it repeats nodes 2 and 3).

An elementary circuit (or path) that goes through every node of the graph is a Hamiltonian
circuit (or path) and a simple circuit (or path) that traverses every arc of the graph is an Eulerian
circuit (or path). A graph is Hamiltonian if it contains a Hamiltonian circuit and is Eulerian if it
contains an Eulerian circuit.

Example 5. As the circuit presented in Example 3 is the only existing circuit inGe we can conclude
that Ge is neither Hamiltonian (the circuit does not contain each node exactly once) nor Eulerian
(the circuit does not contain each arc exactly once).

The number of arcs that have node i as their initial node is called outdegree of node i. Equiva-
lently, the number of arcs that have node i as their final node is designated as the indegree of node
i.

Example 6. Considering graph Ge, the outdegree of node 2 is 1 while the indegree of node 2 is 2.

A graph G = (N,A) is complete if for every i, j ∈ N, i ̸= j there exists the arcs (i, j) and
(j, i).

Example 7. Graph Ge is not complete since, for instance, the arc (6, 1) does not exist.

We say that two nodes i and j are connected if, ignoring the orientation of the arcs, there is at
least one chain from i to j. A graph is connected if every pair of nodes inN is connected, otherwise
the graph is disconnected. If there is a path between every pair of nodes then the graph is strongly
connected. A disconnected graph is comprised of several connected subgraphs which are called
components.

Example 8. Graph Ge is connected but it is not strongly connected as there is no path between
nodes 6 and 4. If we remove the arc (1, 2), then the resulting graph is a disconnected graph with
two components. One component is the subgraph with the node set {1, 6}, and the other component
is the subgraph with the node set {2, 3, 4, 5}.

7

CHAPTER 2. MATHEMATICAL BACKGROUND

A cut is a partition of the node set N into two disjoint subsets S and S ′ = N \ S. Each cut
defines a cut-set [S ′, S] which is a set of arcs (i, j) ∈ A such that i ∈ S ′ and j ∈ S or i ∈ S and
j ∈ S ′. An s-t cut is a cut-set [S ′, S] that is defined with respect to two distinct nodes s and t, such
that: s ∈ S ′ and t ∈ S.

Example 9. Considering the graphGe and S = {1}, we have [S ′, S] = {(1, 2), (1, 6)}, which is an
s-t cut if, for instance, s = 1 and t = 2 however, if s = 2 and t = 6 the cut [S ′, S] is not an s-t cut.

It is possible to associate a value cij with each arc (i, j) ∈ A, which are called costs and the cost
of a generic path Π is defined as

∑
(i,j)∈Π cij . A graph is symmetric if the cost matrix associated

with A is symmetric, that is, if cij = cji,∀(i, j) ∈ A, and asymmetric if there exists at least a pair
of nodes such that cij ̸= cji, with (i, j) ∈ A.

2.2 Polyhedral theory

In this section we present a summary of definitions and results addressing polyhedra, which are
defined later on. For more on polyhedral theory see Nemhauser andWolsey (1988), Wolsey (1998),
Schrijver (1998) and Conforti et al. (2014).

Definition 1. A vector y ∈ Rn is a linear combination of vectors x1, x2, . . . , xk ∈ Rn if y =∑k
i=1 λix

i, with λ1, λ2, . . . , λk ∈ R.

Definition 2. A vector y ∈ Rn is an affine combination of vectors x1, x2, . . . , xk ∈ Rn if it is a
linear combination and

∑k
i=1 λi = 1, with λ1, λ2, . . . , λk ∈ R.

Definition 3. A vector y ∈ Rn is a convex combination of vectors x1, x2, . . . , xk ∈ Rn if it is a
linear combination and

∑k
i=1 λi = 1, with λ1, λ2, . . . , λk ≥ 0.

Definition 4. The convex hull of a set X ∈ Rn, denoted by conv(X), is the set of all vectors (or
points) that are convex combinations of the vectors (or points) in X .

Definition 5. A set of vectors x1, x2, . . . , xk ∈ Rn is linearly independent if the only solution of
the system

∑k
i=1 λix

i = 0n, with λi ∈ R, is λi = 0,∀i = 1, . . . , k.

The maximum number of linearly independent points in Rn is n.

Definition 6. A set of vectors x1, x2, . . . , xk ∈ Rn is affinely independent if the only solution of
the system

∑k
i=0 λix

i = 0n,
∑k

i=0 λi = 0, with λi ∈ R, is λi = 0,∀i = 1, . . . , k.

8

CHAPTER 2. MATHEMATICAL BACKGROUND

Note that if vectors x1, x2, . . . , xk ∈ Rn are linearly independent then they are also affinely
independent. However, the reciprocal is not valid. Consequently, the maximum number of affinely
independent points in Rn is n+ 1 (n linearly independent points and the zero vector).

We define matricesD ∈ Rm×n, withm rows and n columns, and b ∈ Rm×1, withm rows and 1
column. Note that the rows ofDmay be seen as vectors diR ∈ Rn, ∀i = 1, . . . ,m, and equivalently,
the columns of D may be viewed as vectors diC ∈ Rm, ∀i = 1, . . . , n.

Definition 7. The maximum number of linearly independent rows in D is the rank of D and is
denoted by rank(D).

Example 10. Consider the following matrix De ∈ R3×2:

De =


1 1

0 2

1 2


The vectors (1, 1), (0, 2), (1, 2), which correspond to the rows of matrix De, are not linearly

independent since (1, 2) = 1 × (1, 1) + 1
2
× (0, 2) but vectors (1, 1) and (0, 2) are. Therefore,

rank(De) = 2.

Considering the vector x ∈ Rn×1 and the matrices D and b presented previously, it is possible
to define a system of linear inequalitiesDx ≤ b. We define (D=, b=) as the submatrix of (D, b) that
contains the rows associated with the equalities present in the system and (D≤, b≤) as the submatrix
associated with the inequalities.

Definition 8. A polyhedron P ⊆ Rn is the set of points that satisfies a finite number of linear
inequalities, that is, P = {x ∈ Rn : Dx ≤ b}, withD ∈ Rm×n and b ∈ Rm×1. A polytope P ⊂ Rn

is a polyhedron that is bounded, that is, P ⊆ {x ∈ Rn : −ω ≤ xj ≤ ω, with ω > 0, ∀j ∈
{1, . . . , n}}.

Throughout this dissertation we will focus our study on bounded polyhedra since it is always
possible to define an M ∈ N such that 0 ≤ x ≤ M . Consequently, henceforth we assume that
P = {x ∈ Rn : Dx ≤ b} is a polytope.

Example 11. Figure 2.3 shows the graphical representation of the polytope Pe = {x ∈ R2 :

x1 + x2 ≤ 4, 2x2 ≤ 5, 1
3
x1 + x2 = 3, x1, x2 ≥ 0} in light gray. Polytope Pe will be used to

illustrate some of the definitions presented throughout this chapter.

9

CHAPTER 2. MATHEMATICAL BACKGROUND

1 2 3 4

1

2

3

4

x1 + x2 = 4

2x2 = 5

1
3x1 + x2 = 3

x1

x2

Figure 2.3: Graphical representation of the Pe polytope.

Definition 9. A polyhedron P is of dimension k, denoted by dim(P) = k, if the maximum number
of affinely independent points in P is k + 1.

Example 12. The polytope Pe has at least three affinely independent points: (0, 0), (1, 0) and (0, 1).
Therefore, we can deduce that dim(Pe) ≥ 3− 1 = 2. As we saw previously, the maximum number
of affinely independent points inR2 is 3 so, in this case, we can ensure that the equality dim(Pe) = 2

holds. However, usually that is not possible hence the importance of the next proposition.

Proposition 1. If P ⊆ Rn, then dim(P) + rank(D=, b=) = n.

Example 13. Polytope Pe ⊆ R2 therefore dim(Pe) = 2− rank(D=
e , b

=
e). As Pe is not defined by

any equality, then rank(D=
e , b

=
e) = 0. Consequently, dim(Pe) = 2.

Definition 10. Given π ∈ R1×n and π0 ∈ R, an inequality πx ≤ π0 is a valid inequality for P ⊆ Rn

if is satisfied by all x ∈ P .

A given valid inequality πx ≤ π0 is violated by a point y if y does not satisfy that inequality,
that is, πy > π0.

Definition 11. Consider πx ≤ π0 and µx ≤ µ0 two distinct valid inequalities for P ⊆ Rn. We say
that πx ≤ π0 dominates µx ≤ µ0 if there exists u ∈ R : u > 0 such that π ≥ uµ, π0 ≤ uµ0 and
(π, π0) ̸= (uµ, uµ0).

Definition 12. A valid inequality πx ≤ π0 is redundant in the description of P ⊆ Rn if there are
k ≥ 2 valid inequalities µix ≤ µi

0, with i = 1, . . . , k, for P and weights ui > 0, with i = 1, . . . , k,
such that (

∑k
i=1 uiµ

i)x ≤
∑k

i=1 uiµ
i
0 dominates πx ≤ π0.

10

CHAPTER 2. MATHEMATICAL BACKGROUND

Example 14. Inequality x2 ≤ 3 is a valid inequality for Pe, while inequality x1 ≤ 3 is not since
(4, 0) ∈ Pe and (4, 0) does not satisfy the previous inequality (x1 = 4 ≰ 3). Additionally, inequality
x2 ≤ 3 is dominated by inequality 2x2 ≤ 5 ⇔ x2 ≤ 5

2
as 5

2
< 3. We can also verify that inequality

1
3
x1 + x2 ≤ 3, which is a valid inequality for Pe, is redundant since it can be obtained as a linear
combination of inequalities x1 + x2 ≤ 4 and 2x2 ≤ 5, with u1 = u2 =

1
3
.

Definition 13. Let πx ≤ π0 be a valid inequality for P and F = {x ∈ P : πx = π0}. Then F is
called a face of P and we say that πx ≤ π0 represents F . A face F is a proper face if F ̸= ∅ and
F ̸= P .

Example 15. The following sets are faces of the polytope Pe:

• F0 = {(x1, x2) ∈ Pe : x2 = 3};

• F1 = {(x1, x2) ∈ Pe : x1 + x2 = 4};

• F2 = {(x1, x2) ∈ Pe : 2x2 = 5}, and;

• F3 = {(x1, x2) ∈ Pe :
1
3
x1 + x2 = 3}.

The only face that is not a proper face of Pe is F0, since F0 = ∅.

Definition 14. A face F of P is a facet of P if dim(F) = dim(P)− 1.

Proposition 2. Every inequality dkRx ≤ bk from the system Dx ≤ b that represents a face of P of
dimension less than dim(P)− 1 is irrelevant to the description of P .

Example 16. Since F1, F2 and F3 are faces of Pe we know that dim(Fi) ≤ dim(Pe) − 1 = 1,
∀i = 1, 2, 3 (faces have one additional equality). Points (4, 0) and (3

2
, 5
2
) belong to F1 and are

affinely independent, therefore dim(F1) ≥ 2 − 1 ⇒ dim(F1) = 1, thus F1 is a facet of Pe. By
using the same argument for face F2 and the points (0, 52) and (

3
2
, 5
2
) we can conclude that F2 is also

a facet of Pe. Finally, face F3 = {(3
2
, 5
2
)}, thus dim(F3) = 1− 1 = 0. Another way of proving that

the inequality 1
3
x1 + x2 = 3 is redundant in the description of Pe is by using Proposition 2. As F3

is not a facet, it is irrelevant in the description of Pe.
Henceforth we assume that the polytope Pe is defined by the non-redundant inequalities, that is,

Pe = {x ∈ R2 : x1 + x2 ≤ 4, 2x2 ≤ 5, x1, x2 ≥ 0}, as it is shown in Figure 2.4.

11

CHAPTER 2. MATHEMATICAL BACKGROUND

1 2 3 4

1

2

3

4

x1 + x2 = 4

2x2 = 5

x1

x2

Figure 2.4: Graphical representation of the Pe polytope without the redundant inequalities.

Definition 15. A point x ∈ P is an extreme point of P if it cannot be obtained as a convex combi-
nations of other points in P .

Proposition 3. A point x ∈ P is an extreme point of P if and only if x is a zero-dimensional face
of P .

Example 17. As we saw previously dim(F3) = 0, therefore F3 = {(3
2
, 5
2
)} is an extreme point of

Pe.

Definition 16. Given a polyhedron P ⊆ Rn−p × Rp, the projection of P onto the subspace Rn−p,
denoted projxP , is defined as:

projxP = {x ∈ Rn−p : (x,w) ∈ P for some w ∈ Rp}

Example 18. The polytope Pe ⊆ R2 may be seen as a subset ofR1×R1, thus it is possible to project
Pe onto the space of x1 and onto the space of x2. For example, by projecting Pe onto the subspace
of x1, we obtain projx1Pe = {x1 ∈ R : (x1, x2) ∈ Pe for some x2 ∈ R} and, by observing Figure
2.4 we can conclude that projx1Pe = [0, 4]. Analogously, projx2Pe = [0, 2

5
].

2.3 Linear programming theory

Linear programming is a mathematical field devoted to the study of problems involving linear func-
tions. Books that address linear programming theory are, for instance, Nemhauser and Wolsey
(1988), Wolsey (1998) and Schrijver (1998).

12

CHAPTER 2. MATHEMATICAL BACKGROUND

Let D ∈ Rm×n, b ∈ Rm×1 and c ∈ R1×n be matrices with known values and x ∈ Rn×1 be
the vector of variables. A linear programming (LP) problem consists in determining the value of
the variables, in this case the x values, that minimize (or maximize) a linear function cx, which is
called objective function, over a polyhedron, that is,

min{cx : Dx ≤ b, x ≥ 0n×1}.

Each inequality of the system Dx ≤ b is called a constraint of the problem and the inequalities
x ≥ 0n×1 are called the domain constraints of variables x.

When we impose the additional condition that some of the variables must be integer, that is,
x1, . . . , xk ∈ Z, with k < n, we obtain a mixed integer linear programming problem. When all
variables must be integer (i.e., k = n) we have an integer linear programming (ILP) problem. A
particular case of ILP problems arises when the variables are binary, that is, x ∈ {0, 1}n×1. This
particular case is called binary linear programming.

Definition 17. A polyhedron P ⊆ Rn is a formulation for a set X ⊆ Zn−p × Rp if and only if
X = P ∩ (Zn−p × Rp).

Consider the following LP problem: min {cx : x ∈ P}. An element x ∈ P is called a feasible
solution for that LP problem. If P = ∅ we say that the problem is unfeasible. The element x∗ ∈ P

such that cx∗ ≤ cx,∀x ∈ P is an optimal solution of the LP problem and cx∗ is the optimal value.
Note that the optimal solution of an LP problem is not necessarily unique. Additionally, recall that
we are particularly interested in bounded polyhedra, that is, polytopes.

Theorem 1. Consider a polytope P ∈ Rn and the linear programming problem min{cx : x ∈ P}.
If P ̸= ∅, then there is an optimal solution of the linear programming problem that is an extreme
point of P .

According to Theorem 1, when P is a polytope, it is possible to find the optimal solution of
an LP problem by enumerating all of its extreme points, however, this is not viable in practice
since, usually, there are too many extreme points. Nowadays, the common approach to solve LP
problems is by using commercial solvers that have specific algorithms implemented. This is how
we will solve LP problems throughout this dissertation.

Example 19. Let Pe be the polytope presented in Section 2.2. Consider the following LP and ILP
problems, with the same formulation Pe:

max{x1 + 3x2 : x ∈ Pe}

max{x1 + 3x2 : x ∈ Pe ∩ Z2},

13

CHAPTER 2. MATHEMATICAL BACKGROUND

which we will designate by LPe and Pe, respectively. Note that we called the ILP problem by the
same name as the formulation since this is the notation adopted in the remainder of the dissertation.

Figure 2.4 shows the set of feasible solutions for the LPe problem while Figure 2.5 shows the
set of feasible solutions for the Pe problem. By comparing both figures we can see how adding the
integrality condition changes the solution set. In fact, the solution set ofPe is not even a polyhedron.

1 2 3 4

1

2

3

4

x1 + x2 = 4

2x2 = 5

x1

x2

Figure 2.5: Graphical representation of the set of feasible solutions for the Pe problem.

We now analyze the optimal solutions of the LPe and the Pe problems presented previously. In
the case of the LPe problem, the optimal solution is (32 ,

5
2
) and the optimal value is 3

2
+ 3× 5

2
= 9,

whilst for the Pe problem, the optimal solution is (2, 2) and the optimal value is 2 + 3 × 2 = 8.
Note that the optimal solution of the LPe problem corresponds to an extreme point of the polytope
Pe, which was determined in Section 2.2, while the optimal solution of the Pe problem does not
correspond to any extreme point of the polytopePe. Nevertheless, if we were to consider the convex
hull (see Definition 4 in Section 2.2) of the points which are feasible solutions for the Pe problem,
then its optimal solution would be an extreme point. This fact shows the importance of the convex
hull.

Proposition 4. For any X ⊆ Rn conv(X) is a polyhedron.

Proposition 5. For any X ⊆ Rn the extreme points of conv(X) all belong to X .

From the results presented previously, in Propositions 4 and 5, we can conclude that the LP
problem min{cx : x ∈ X} is equivalent to the LP problem min{cx : x ∈ conv(X)}. In
particular, solving the ILP problem min{cx : x ∈ X, x ∈ Zn} is equivalent to solving the LP
problem min{cx : x ∈ conv(X)}, in which conv(X) is a polyhedron.

14

CHAPTER 2. MATHEMATICAL BACKGROUND

Example 20. Figure 2.6 shows, in light gray, the convex hull of the points which are feasible
solutions of the Pe problem.

1 2 3 4

1

2

3

4

x1 + x2 = 4

2x2 = 5

x1

x2

Figure 2.6: Graphical representation of the convex hull of the set of feasible solutions of the Pe problem.

When developing a formulation for an ILP problem, the aim is to create a system of inequalities
that defines the convex hull of points that are the feasible solutions of the ILP problem. In most
cases this is a hard task, thus, the formulation developed should give a close approximation of the
convex hull.

Example 21. By observing Figure 2.6, we verify that the half-space defined by the dashed line
gives a better approximation of the convex hull of the points that are feasible solutions of the Pe

problem than the half-space 2x2 ≤ 5, thus it is better to include in the formulation the inequality
that originates the half-space represented by the dashed line than the inequality 2x2 ≤ 5.

Definition 18. Given a setX ⊆ Rn and two formulationsP1 andP2 forX , P1 is a better formulation
than P2 if P1 ⊆ P2.

Definition 19. Given a set X ⊆ Rn and two formulations P1 and P2 for X , P1 is not comparable
to P2 if P1 \ P2 ̸= ∅ and P2 \ P1 ̸= ∅.

In practice, in order to show that two formulations P1 and P2 are not comparable we consider
two points x1 ∈ P1 and x2 ∈ P2 and verify that x1 /∈ P2 and x2 /∈ P1.

Definition 20. For the ILP min{cx : x ∈ P ∩ Zn} with formulation P = {x ∈ Rn : Dx ≤
b, x ≥ 0n×1}, the linear programming relaxation is the linear program min{cx : x ∈ P}.

Example 22. Note that the LPe problem, presented in Example 19, is the linear programming
relaxation of the Pe problem, also presented in Example 19, as the LP relaxation is obtained by

15

CHAPTER 2. MATHEMATICAL BACKGROUND

relaxing the integrality conditions of the ILP problem. Consequently, the LPe problem will be
called LP relaxation of the Pe problem henceforth.

Proposition 6. Suppose that P1 and P2 are two formulations for the problem min {cx : x ∈
X ⊂ Zn} such that P1 is a better formulation than P2. Let VLP (Pi) be the linear programming
relaxation value of min{cx : x ∈ Pi ⊂ Zn}, with i = 1, 2, then VLP (P1) ≥ VLP (P2) for all c.

If P1 and P2 are two not comparable formulations for the set X ⊂ Rn, then it is not possible to
establish a relationship between their linear programming relaxation values which is valid for every
cost matrix c ∈ R1×n.

Example 23. Consider a new LP problem with the formulation Pconv = conv(Pe ∩ Z2), that is,

max{x1 + 3x2 : x ∈ Pconv},

which will be designated as the LP relaxation of the Pconv. Note that the formulation Pconv is the
one represented in Figure 2.6. Since the formulation Pconv is contained in the formulation Pe and
due to the result of Proposition 6, we expect that VLP (Pconv) ≤ VLP (Pe). In fact, VLP (Pconv) = 8

and VLP (Pe) = 9.

Definition 21. A formulation P ⊂ Rn is an ideal formulation for a set X ⊂ Zn if and only if
P = conv(X).

Example 24. Formulation Pconv is an ideal formulation as it corresponds to convex hull of the set
of points that are feasible solutions of the Pe problem, as mentioned previously. A consequence
of having an ideal formulation is that when we solve an LP problem over conv(Pe) the optimal
solution obtained is integer, and, therefore, it is the optimal solution of the ILP problem.

Considering the matrices D, b and c defined as previously, we define a formulation P = {x ∈
Rn : Dx ≤ b, x ≥ 0n×1} for the ILP min{cx : x ∈ X = P ∩ Zn}. To simplify, we will
refer to the ILP as P , which is the name of the formulation. When the formulation P is not ideal,
that is, conv(X) ̸= P , we have to resort to a branch-and-bound algorithm to determine the optimal
solution of the ILP problem. The basic idea of a branch-and-bound (B&B) algorithm is to partition
the set of feasible solutions of P into smaller and easier to search subsets. We start by solving the
LP relaxation of P . Since we are considering a minimization problem, VLP (P) is a lower bound
for the optimal value of P . Similarly, the value of any feasible solution for P is an upper bound
for its optimal value. Let x0 be the optimal solution of the LP relaxation of P . If x0 is integer,
then it corresponds to the optimal solution of P , otherwise we must do branching on a variable
with fractional value. Let xi

0 be the value of a variable with fractional value. We create two new

16

CHAPTER 2. MATHEMATICAL BACKGROUND

B&B subproblems, Pk1 and Pk2 , which correspond to the problem P with the additional constraints
xi ≤ ⌊xi

0⌋ and xi ≥ ⌈xi
0⌉, respectively (other branching techniques may be used, see for instance

Barnhart et al., 1998). The B&B subproblems Pk1 and Pk2 are added to the list of open subproblems.
Then, we choose and remove a B&B subproblem Pk from the list of open subproblems and solve
its LP relaxation. If Pk is not unfeasible, let VLP (Pk) be the LP relaxation value of Pk and xk be
the corresponding optimal solution. If xk is feasible for P , that is, if it is integer, we verify whether
or not VLP (Pk) is lower than the best upper bound found so far during the B&B algorithm, which
we designate by UB∗, and, if it is, we update UB∗ to VLP (Pk). Otherwise, that is, if xk is not
feasible for P , we also must check whether VLP (Pk) < UB∗ or not. If VLP (Pk) ≥ UB∗, then
there is no need to do branching on the optimal solution of the LP relaxation of Pk as the B&B
subproblems that stem from Pk would never originate a solution with a lower value than UB∗. If
VLP (Pk) < UB∗, we do branching on a variable with a fractional value as we explained previously
and the B&B subproblems originated go to the list of open subproblems. The B&B algorithm stops
when the list of open problems is empty and one optimal solution corresponds to the integer solution
with value UB∗.

Having formulations that provide a high LP relaxation value (in the case of minimization prob-
lems) is very important in order to have an efficient B&B algorithm, since we can eliminate B&B
subproblems if their LP relaxation value is higher than the best upper bound found so far. We can
create several formulations for the same ILP problem, namely by using different variables and,
consequently, defined in different subspaces. In these cases in order to compare formulations we
must use projections so that all formulations are defined in the same subspace. Additionally, we can
also create formulations with an exponential number of constraints (or variables), which are called
non-compact formulations. Formulations with a polynomial number of constraints (or variables)
are designated by compact formulations.

Linear duality

Given matrices D ∈ Rm×n, b ∈ Rm×1 and c ∈ R1×n and the vector of variables x ∈ Rn×1, we
define the primal problem (P) as the following linear programming problem:

max{cx : Dx ≤ b, x ≥ 0n×1}

The dual problem (D) associated with (P) is the LP problem:

min{uT b : DTu ≥ cT , u ≥ 0m×1}

where u ∈ Rm×1 is a column vector of variables.

17

CHAPTER 2. MATHEMATICAL BACKGROUND

Note that the dual problem of the LP problem (D) is the LP problem (P). Therefore, it is
equivalent to define the maximization problem as the primal problem and the minimization problem
as the dual problem or vice-versa.

Proposition 7 (Weak duality). Consider the primal problem (P) and the dual problem (D) defined
previously and let x and u be feasible solutions for (P) and (D), respectively. Then, cx ≤ uT b.

A consequence from Proposition 7 is that any feasible solution of (D) provides an upper bound
for the optimal value of (P).

Proposition 8. Let x∗ and u∗ be feasible solutions for (P) and (D), respectively. Then the following
statements are equivalent:

(i) x∗ and u∗ are, respectively, the optimal solutions of (P) and (D).

(ii) cx∗ = (u∗)T b.

(iii) If a component of u∗ is positive, the corresponding inequality in Dx ≤ b is satisfied by
x∗ with equality, that is, (u∗)T (b − Dx∗) = 0, and, equivalently, if a component of x∗ is
positive, the corresponding inequality in DTu ≥ cT is satisfied by u∗ with equality, that is,
x∗(DTu∗ − cT) = 0.

Example 25. Consider the formulation Pdual = {(u1, u2) ∈ R2 : u1 + 2u2 ≥ 3, u1 ≥ 1, u1, u2 ≥
0}, which is represented in Figure 2.7, and the following LP problem, whichwe designate byLPdual:

w = min{4u1 + 5u2 : (u1, u2) ∈ Pdual}.

Notice that, the LPdual problem is the dual problem associated with the LP relaxation of the
Pe problem. The optimal solution of the LPdual problem is (1, 1) and the optimal value is w =

4× 1 + 5× 1 = 9, which corresponds to the optimal value of the LP relaxation of the Pe problem.
Consider now the ILP problem Pe, the only relationship that we can establish between the LPdual

and the Pe problems is given by Proposition 7, that is, the value of any feasible solution of the
LPdual problem is greater than or equal to the value of any feasible solution of the Pe problem. In
fact, the optimal value of the Pe problem is 8.

18

CHAPTER 2. MATHEMATICAL BACKGROUND

1 2 3 4

1

2

3

4

u1 + 2u2 = 3u1 = 1 u1

u2

Figure 2.7: Graphical representation of the formulation Pdual.

Generating valid inequalities

Consider X = P ∩ Zn, with P = {x ∈ Rn : Dx ≤ b, x ≥ 0n×1}. We know that is possible
to formulate any ILP problem as an LP problem by using its convex hull. However, in order to
do so we would need to have an explicit description of conv(X). Therefore, we must find valid
inequalities for conv(X) that are violated by the points in P \ conv(X). We present several ways
of generating valid inequalities.

space
Chvátal-Gomory procedure to construct valid inequalities for X: Recall that diC , with i =

1, . . . , n, are the column vectors of D and let λ ∈ Rm×1, λj ≥ 0, with j = 1, . . . ,m :

(i) the inequality
∑n

i=1(λd
i
C)x

i ≤ λb is valid for P ;

(ii) the inequality
∑n

i=1⌊λdiC⌋xi ≤ λb is valid for P ; and

(iii) the inequality
∑n

i=1⌊λdiC⌋xi ≤ ⌊λb⌋ is valid for X .

Theorem 2. Every valid inequality for X can be obtained by applying the Chavátal-Gomory pro-
cedure a finite number of times.

Example 26. Recall the inequality 2x2 ≤ 5 used in formulation Pe. By using the procedure (iii) of
the Chvátal-Gomory procedure to construct valid inequalities we obtain the inequalityx2 ≤ ⌊5

2
⌋ = 2

which, according to Theorem 2, is a valid inequality for the set of points which corresponds to
the feasible solutions of the Pe problem. In fact, this is the inequality that defines the half-space
represented by a dashed line in Figure 2.6 and describes the convex hull of the set of points which
are feasible solutions of the Pe problem.

19

CHAPTER 2. MATHEMATICAL BACKGROUND

Cutting plane algorithm

Usually, when solving a non-compact formulation we do not consider explicitly the constraints that
are exponential in number. Instead, and for such constraints, we iteratively identify a violated one
and add it to the formulation. Next, we present an algorithm to add such constrains in a dynamic
way.

Consider the LP min{cx : x ∈ P}, with P = {x ∈ Rn : Dx ≤ b, x ≥ 0n×1} = {x ∈ Rn :

D1x ≤ b1, D2x ≤ b2, x ≥ 0n×1} being a polytope with a set of constraints that are in exponential
number, such that matrices D, b and x are defined as previously and we assume, without loss of
generality, that D1x ≤ b1 is a subset of constraints of Dx ≤ b that is in exponential number.

Definition 22. Consider a point y ∈ Rn and a polytope P ⊂ Rn. The Separation Problem consists
in deciding whether y ∈ P or not, and, in the latter case, finding a valid inequality for P that is
violated by y.

Considering the LP problem presented previously and the polytope P , Algorithm 2.1 shows the
pseudocode for the cutting plane algorithm.

Algorithm 2.1 Cutting plane algorithm.
1: Set P 0 = {x ∈ Rn : D2x ≤ b2, x ≥ 0n×1} and t = 0.
2: while true do
3: Solve the LP min{cx : x ∈ P t}. Let xt be the optimal solution.
4: if xt ∈ P then
5: xt is an optimal solution for the LP problem. STOP.
6: else
7: Find a valid inequality (d1R)tx ≤ (b1)t for P such that (d1R)txt > (b1)t.

Set P t+1 = P t ∩ {x ∈ Rn : (d1R)
tx ≤ (b1)t} and t = t+ 1.

If there are no more violated inequalities, then xt ∈ P . STOP.
8: end if
9: end while

The cutting plane algorithm presented in Algorithm 2.1 is designed to solve LP problems with
non-compact formulations and it is the cutting plane algorithm that we will use in this dissertation.
Nonetheless, there are other cutting plane algorithms designed to solve ILP problems such as the
Gomory’s cutting plane algorithm (see e.g. Wolsey, 1998).

Consider the following ILP problem min{cx : x ∈ P ∩ Zn}, with the formulation P defined
previously, which will be referred to as P for simplification purposes. As the polytope P has

20

CHAPTER 2. MATHEMATICAL BACKGROUND

exponential many constraints, in order to obtain the optimal solution of P we have to resort to a
branch-and-cut algorithm, which was proposed by Padberg and Rinaldi (1987, 1991). The branch-
and-cut (B&C) algorithm has the same outline as a B&B algorithm but, due to the exponential
many constraints, each B&C subproblem is solved using the cutting plane algorithm presented in
Algorithm 2.1. The B&C algorithm is similar to the B&B algorithm, except for the case in which
the optimal solution of a B&C subproblem is an integer solution, as we cannot guarantee that the
integer solution is feasible for P unless we apply the separation algorithm to this integer solution.
In other words, when we obtain an integer solution when solving a B&C subproblem we must apply
the separation algorithm to that solution to verify whether it is feasible for P or not.

2.4 Complexity theory

Given a problem, one of the purposes of complexity theory is to determine how “difficult” it is to
solve it. Throughout this section we briefly introduce some classes of problems as well as some
results which will help us to identify to which class a given problem belongs. For a more extensive
explanation of complexity theory see, for example, Papadimitriou and Steiglitz (1998), Schrijver
(1998) and Wolsey (1998).

As we only intend to show some basic results related to complexity theory we will not be giving
a mathematical definition of concepts such as problem, problem instance, instance size, algorithm
and running time function, since only a basic idea of these concepts suffices to understand the next
results.

Consider a problem min{cx : x ∈ X}. Each problem has a decision problem (or a recognition
version of the problem) associated with it, which is the following:

Given a value k ∈ R is there an x∗ ∈ X such that cx∗ ≤ k?

The decision problem has a YES or NO answer.
Before proceeding we introduce some concepts related to an algorithm’s running time. An

algorithm is called polynomial if its running time function is bounded by a polynomial function. A
problem is solvable in polynomial time if it can be solved by a polynomial algorithm.

Definition 23. NP is the class of decision problems with the following property: for any problem
instance such that the answer is YES, there is a certificate that enable to verify the answer YES in
polynomial time.

The certificate may be seen as a solution for the original problem. The decision problem is in
NP if there is an algorithm that verifies if the certificate is in fact a solution for the original problem
and satisfies the additional constraint (cx ≤ k) in polynomial time.

21

CHAPTER 2. MATHEMATICAL BACKGROUND

Example 27. To illustrate the definition ofNP , consider the Pe problem presented in Section 2.3.
A decision problem associated with this ILP is the following: Is there (x∗

1, x
∗
2) ∈ Pe ∩ Z2 such that

x∗
1 + 3x∗

2 ≤ 10?
A certificate in this case could be the point (3, 1). An algorithm for the Pe problem would have

to verify if (3, 1) ∈ Pe ∩Z2 and 3+ 3× 1 ≤ 10, which can be done in polynomial time. Therefore,
the decision problem associated with the Pe problem is in NP .

Definition 24. P is the class of decision problems in NP for which there exists a polynomial
algorithm.

Definition 25. Let Q and R be decision problems. If an instance of Q can be converted into an
instance of R in polynomial time, then Q is polynomially reducible to R.

Definition 26. NP-complete is the subset of decision problemsQ ∈ NP such that for allR ∈ NP ,
R is polynomially reducible to Q.

Proposition 9. Suppose that problems Q,R ∈ NP:

(i) If Q ∈ P and R is polynomially reducible to Q, then R ∈ P .

(ii) If Q ∈ NP-complete and R is polynomially reducible to Q, then R ∈ NP-complete.

Definition 27. An (I)LP problem for which the decision problem belongs to theNP-complete class
is called an NP-hard problem.

The easiest way of showing that a problemQ is NP-hard is by using Proposition 9, that is, if we
can show thatQ is polynomially reducible to another problem that is NP-hard, then we can conclude
that Q is also NP-hard.

When a problem is NP-hard, finding its optimal solution may not be possible in practice due to
the high computational time or the limitations of the available technology, namely computational
memory. Thus, we resort to heuristic procedures, which are algorithms that provide feasible solu-
tions for a problem efficiently.

2.5 Basic linear programming problems

In this section we present some LP problems which are used as subroutines to solve the ILP problem
which is the focus of this dissertation. All the (I)LP problems that we are going to present in this
section share one property: the decision problems associated with them belongs to the classP . This

22

CHAPTER 2. MATHEMATICAL BACKGROUND

implies that there are algorithms that are able to solve them optimally in polynomial time. These
problems are presented, for instance, in Ahuja et al. (1993) and Wolsey (1998).

In Section 2.5.1 we present the assignment problem, the maximum flow problem is presented
in Section 2.5.2, in Section 2.5.3 we describe the minimum capacity cut problem and, finally, in
Section 2.5.4 we present the shortest path problem.

2.5.1 The assignment problem

Consider that there are n people available to perform n jobs, that each person must be assigned to
one job and that each job must be assigned to one person. Some individuals may be more suited to
perform a given job than others, thus there is a cost cij if person i is assigned to job j. Note that
assigning less suited people to perform a determined job carries a higher cost. The objective of the
assignment problem is to determine the assignment with the minimum total cost.

In order to formulate the assignment problem, consider the binary variables xij which have value
1 if person i ∈ {1, . . . , n} performs job j ∈ {1, . . . , n} and value 0 otherwise. A formulation for
the assignment problem is the following:

Minimize
n∑

i=1

n∑
j=1

cijxij (2.1)

Subject to:
n∑

j=1

xij = 1 ∀i ∈ {1, . . . , n} (2.2)

n∑
i=1

xij = 1 ∀j ∈ {1, . . . , n} (2.3)

xij ∈ {0, 1}0 ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , n}. (2.4)

The objective (2.1) represents the minimization of the total cost. Constraints (2.2) ensure that
each person performs exactly one job and the set of constraints (2.3) guarantee that each job is
performed by exactly one person. Finally, constraints (2.4) define the domain of the x variables.

2.5.2 The maximum flow problem

The maximum flow (max-flow) problem consists in sending the maximum amount of flow between
two nodes, which are called the source node and the target node, in a capacitated network, that is, a
graph in which the arcs have a minimum and a maximum capacity.

23

CHAPTER 2. MATHEMATICAL BACKGROUND

LetG = (N,A) be a directed and simple graph with minimum and maximum capacities lij ≥ 0

and uij ≥ 0, respectively, such that lij ≤ uij , associated with each arc (i, j) ∈ A. The source node
is denoted by s and the target node by t. Consider variables xij that represent the amount of flow
that traverses the arc (i, j) ∈ A and variable v as the value of the flow. The max-flow problem can
be formulated as follows:

Maximize v (2.5)

Subject to: ∑
j:(s,j)∈A

xsj −
∑

j:(j,s)∈A

xjs = v (2.6)

∑
j:(t,j)∈A

xtj −
∑

j:(j,t)∈A

xjt = −v (2.7)

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = 0 ∀i ∈ N \ {s, t} (2.8)

lij ≤ xij ≤ uij ∀(i, j) ∈ A. (2.9)

The objective is to maximize the flow, which is stated in the objective (2.5). Constraints (2.6)
and (2.7) state that v units of flow must leave s and enter t, respectively. The set of constraints
(2.8) ensures that the amount of flow that enters and leaves each node, other than the source and the
target node, is the same. Constraints (2.9) state that the flow traversing each arc must satisfy the
lower capacities l and the upper capacities u.

Given a flow x which is feasible for the capacitated network (or graph)G presented previously,
the residual network associated with x and G is the capacitated network G′ = (N,A′ ∪ A′′) with
A′ = {(i, j) : (i, j) ∈ A and xij < uij} and A′′ = {(j, i) : (i, j) ∈ A and xij > lij} in which the
lower capacity of the arc (i, j) ∈ A′ ∪A′′ is l′ij = 0 and the upper capacity u′

ij depends on whether
(i, j) ∈ A′ or (i, j) ∈ A′′. In the former case we have u′

ij = uij − xij whereas in the latter case we
have u′

ij = xji − lji.

2.5.3 The minimum capacity cut problem

Consider a directed and simple graph G = (N,A) with capacities lij ≥ 0 and uij ≥ 0, such that
lij ≤ uij , associated with each arc (i, j) ∈ A. The capacity u[S ′, S] of an s-t cut [S ′, S] in G is
defined as follows:

u[S ′, S] =
∑
i∈S′

∑
j∈S

uij −
∑
i∈S

∑
j∈S′

lij

24

CHAPTER 2. MATHEMATICAL BACKGROUND

The minimum capacity cut (min-cut) problem consists in determining the s-t cut with the lowest
capacity (the s-t cut [S ′, S]∗ such that u[S ′, S]∗ ≤ u[S ′, S], for all s-t cuts [S ′, S]).

The min-cut problem and the max-flow problem are closely related, in fact, the min-cut problem
is the dual problem associated with the max-flow problem. According to Proposition 8, that states
that the optimal value of the dual problem is equal to the optimal value of the primal problem, we
can conclude that the capacity of the minimum s-t cut is equal to the maximum flow between s and
t, which is stated in the next theorem. Additionally, we can obtain the sets S ′ and S which define the
min-cut by considering that S ′ contains the nodes that are reachable from s in the residual network
associated with the max-flow.

Theorem 3 (Max-flow/min-cut theorem). The maximum value of the flow from a source node s to
a target node t in a capacitated network is equal to the value of the minimum s-t cut.

There is a theorem which allow us to verify is there exists a feasible flow in a capacitated
network, which may be seen as a generalization of the max-flow/min-cut theorem, presented in
Theorem 3. The original theorem is due to Hoffman (see, e.g., Gondran and Minoux, 1984) and is
stated for a flow which remains constant in the network, however, it can be adapted for the cases in
which that does not hold. Therefore, we will present the theorem considering the latter case (see,
e.g., Gouveia et al., 2013).

Theorem 4 (Theorem of compatible flow). Given a directed graph G = (N,A) and capacities lij
and uij , such that lij ≤ uij , for each arc (i, j) ∈ A, a flow v such that

lij ≤ vij ≤ uij ∀(i, j) ∈ A∑
j∈N

vji −
∑
j∈N

vij = ei ∀i ∈ N

exists if and only if∑
i∈N\S

∑
j∈S

uij ≥
∑
i∈S

∑
j∈N\S

lij +
∑
i∈S

ei ∀S ⊂ N

2.5.4 The shortest path problem

Given a directed graph G = (N,A), two distinct nodes s, t ∈ N and costs cij associated with
each arc (i, j) ∈ A, the objective of the shortest path problem is to determined the minimum cost
elementary path from s to t. In order to formulate the shortest path we define variables xij which
have value 1 if the arc (i, j) ∈ A is used in the shortest path from s to t and have value 0 otherwise.

25

CHAPTER 2. MATHEMATICAL BACKGROUND

The shortest path problem can be formulated as follows:

Minimize
∑

(i,j)∈A

cijxij (2.10)

Subject to: ∑
j:(s,j)∈A

xsj −
∑

j:(j,s)∈A

xjs = 1 (2.11)

∑
j:(t,j)∈A

xtj −
∑

j:(j,t)∈A

xjt = −1 (2.12)

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = 0 ∀i ∈ N \ {s, t} (2.13)

0 ≤ xij ≤ 1 ∀(i, j) ∈ A. (2.14)

The objective is to minimize the cost of the path, which is stated in the objective (2.10). Con-
straints (2.11) and (2.12) state that one arc must leave s and enter t, respectively. Constraints (2.13)
guarantee that the number of arcs that enters and leaves each node that is neither s nor t is the same.
Constraints (2.14) define the domain of variables x.

26

Chapter 3

The Family Traveling Salesman Problem

The main focus of this dissertation is the family traveling salesman problem (FTSP) which is a
variant of the well-known traveling salesman problem (TSP) (see for instance, Lawler et al., 1985;
Applegate et al., 2006). Given a depot, a set of cities and a cost matrix, which represents the
traveling cost between each pair of cities, the objective of the TSP is to determine a minimum
cost Hamiltonian circuit (or cycle). For the FTSP consider, additionally, that the set of cities is
partitioned into several subsets which are called families. The objective of the FTSP is to determine
the minimum cost elementary circuit that: (i) begins and ends at the depot; and (ii) visits a given
number of cities in each family.

The FTSP may be modeled by using a complete and simple directed graph G = ({0} ∪N,A),
in which 0 represents the depot andN is the set of nodes, previously called cities, that is partitioned
into the several families. We will refer to the singleton subset {0} as 0 to simplify the notation
further on. The cost of using the arc (i, j) ∈ A is denoted by cij . There are L disjoint families,
represented by Fl, with l = 1, . . . , L, such that N = ∪L

l=1Fl. To simplify some definitions further
on we define L = {1, . . . , L}. The number of members of family l is nl and

∑L
l=1 nl = |N |. We

consider, without loss of generality, that the nodes that belong to family 1 are nodes 1, 2, . . ., n1, the
nodes that belong to family 2 are n1 + 1, . . ., n1 + n2, etc. In each family l we are required to visit
vl nodes and the total number of visits that we are required to make is denoted by V =

∑L
l=1 vl.

We assume that nl, vl ≥ 1, ∀l ∈ L since if that was not the case we could define a new FTSP
instance by removing the families l ∈ L such that nl = 0 or vl = 0. We define the set of single-
visit families as U = {l ∈ L : vl = 1} and the set of multi-visit families as M = L \ U .
There is a special case which happens when all family members must be visited, which we define
asW = {l ∈ L : vl = nl}. We say that family l is complete if there are vl nodes from family l in
the circuit. Clearly, in order to have a feasible solution all families must be complete. This notation
and these definitions are going to be used throughout this dissertation. Figure 3.1 shows a feasible

27

CHAPTER 3. THE FAMILY TRAVELING SALESMAN PROBLEM

solution for an FTSP instance with two families. Family 1, which is represented with the light gray
color, has two family members (nodes 1 and 2), and family 2, which is represented with the dark
gray color, has three members (nodes 3, 4 and 5), and we are required to visit one node from family
1 and two nodes from family 2.

1 2

3

45

0

Figure 3.1: An example of a feasible solution for an FTSP instance.

The FTSP is NP-hard since it reduces to the TSP when all families belong to set W , that is,
nl = vl,∀l ∈ L.

The rest of this chapter is organized in the ensuing way. In Section 3.1 we present the litera-
ture review, Section 3.2 shows some ILP problems that can be solved as the FTSP under specific
circumstances, in Section 3.3 we provide some basic heuristic methods to obtain feasible solutions
for the FTSP and, finally, in Section 3.4 we present the test instances used in the computational
experiment.

3.1 Literature review

The FTSP was firstly introduced by Morán-Mirabal et al. (2014) and, as far as we know, this is
the only article that addresses it, besides the one published in the scope of this dissertation (see
Bernardino and Paias, 2018a). Morán-Mirabal et al. (2014) motived the FTSP by the order picking
problem in warehouses where products of the same type are stored in different warehouses or in
different places in the same warehouse. Note that due to technological advances, it is possible to
locate a product very easily and thus there is no need to store products of the same type in the same
place. If we consider that each product is a family and the number of family members that we wish
to visit is the demand of the product associated with that family, then the order picking problem in
warehouses may be modeled as an FTSP.

Even though Morán-Mirabal et al. (2014) focus their work on heuristic methods, they proposed
an ILP formulation for the FTSP. This formulation is identical to the one proposed for the TSP by

28

CHAPTER 3. THE FAMILY TRAVELING SALESMAN PROBLEM

Dantzig et al. (1954) with the additional set of constraints ensuring the number of required visits
per family. With this model Morán-Mirabal et al. (2014) were able to solve benchmark instances
with up to 48 nodes (we present these benchmark instances in Section 3.4).

Regarding heuristicmethods, Morán-Mirabal et al. (2014) proposed a biased randomkey genetic
algorithm (BRKGA) and a greedy randomized adaptive search procedure (GRASP) with an evo-
lutionary path-relinking procedure. The computational experiment shows that the GRASP method
outperforms the BRKGA in the benchmark instances with higher dimension. With the referred
methods, Morán-Mirabal et al. (2014) provided upper bounds for the instances that their exact
method was unable to solve.

3.2 Related problems

As we said in Section 3.1, the FTSP is not widely studied in the literature, but there are several
problems that may be modeled as an FTSP under specific circumstances and which have a variety
of applications. The TSP is one such problem, as we have already mentioned, the FTSP in which
all families belong toW is the TSP.

The FTSP was created as an extension of the generalized traveling salesman problem (GTSP).
In the GTSP the set of cities is partitioned into clusters (which are called families in the FTSP) and
one wants to find the circuit with the minimum cost that visits each cluster at least once and every
node no more than once (see e.g., Srivastava et al., 1969; Gutin and Punnen, 2006). A particular
case of the GTSP, which is called the equality GTSP (see, e.g., Gutin and Punnen, 2006), arises
when we state that each cluster must be visited exactly once. Therefore, if we consider an FTSP
where every family is a single-visit family, that is, vl = 1, ∀l ∈ L, then the feasible solutions for
this FTSP are also feasible for the equality GTSP.

The FTSP may also be seen as a variant of the generalized covering salesman problem (GCSP),
that was presented by Golden et al. (2012). In the GCSP each city i ∈ N can cover a subset of
citiesDi and it has a predefined covering demand of ki . The objective of the GCSP is to determine
a circuit in which each city i is covered at least ki times by the cities in the circuit. Consider that
we have |N | families. Family i, which is associated with city i, will have as family members cities
j such that i ∈ Dj and vi equal to ki. Note that we must replicate the cities that belong to different
families so that the families are a partition of the set of cities. The feasible solutions for the FTSP
presented previously are also feasible for the GCSP.

Another problem that can be transformed into the FTSP is the capacitated traveling purchaser
problem (CTPP) (see, e.g., Boctor et al., 2003). In the CTPP, one wishes to purchase several copies

29

CHAPTER 3. THE FAMILY TRAVELING SALESMAN PROBLEM

of items that belong to a list and each item is available in a subset of markets (cities). Consider that
we have L distinct items and item l is available in the markets (cities) that belong to the set Fl and
one wishes to purchase vl units of product l. Assuming that each market only sells one unit of the
product and that the cost of each item is the same in every market that sells it, solving this CTPP is
equivalent to solving an FTSP.

3.3 Basic constructive heuristics and neighborhoods

In this section we present constructive heuristics which provide feasible solutions for the FTSP,
as well as neighborhoods that allow us to search the solution space. The purpose is to use these
procedures as subroutines in the branch-and-cut algorithm, which will be presented in Chapter 5,
and in the heuristic methods, which will be presented in Chapter 6. Therefore, we will not present
any computational results in this section. We start by presenting constructive heuristics in Section
3.3.1 and then the neighborhoods in Section 3.3.2.

3.3.1 Constructive heuristics

We propose three different constructive heuristics. The first one is an adaptation of a known greedy
heuristic for the TSP, namely the nearest neighbor (see e.g., Bellmore and Nemhauser, 1968), the
second one is a randomization of the nearest neighbor and the third, and final one, is a random
constructive heuristic.

In order to adapt the nearest neighbor heuristic to the FTSP we must take into account that we
must visit a fixed number of nodes per family. Thus, to apply the nearest neighbor we start at the
depot and then we choose the node i ∈ N such that c0i ≤ c0j,∀j ∈ N . We continue to choose
the nearest node to the last node inserted in the circuit according to the cost matrix c. The nearest
node i will only be added to the circuit if its family is not complete, otherwise node i is ignored
and another node has to be chosen to be inserted in the circuit instead using the same criterion. The
process ends when all the families are complete.

We also developed a randomization of the adaptation of the nearest neighbor, which we called
random nearest neighbor, with the purpose of generating several FTSP feasible solutions using a
greedy procedure. The algorithm is similar to the one described in the previous paragraph, with the
difference that instead of choosing the nearest node to the depot we choose a random node i ∈ N .
Thus, the feasible solution obtained will use arc (0, i). Then, we apply the adapted nearest neighbor
algorithm starting at node i.

Finally, the random constructive heuristic takes a permutation ofN and decodes it into a feasible

30

CHAPTER 3. THE FAMILY TRAVELING SALESMAN PROBLEM

solution for the FTSP. We assume that the feasible solution starts at node 0, thus there is no need
to include node 0 in the permutation, and then the family nodes are visited by the order in which
they appear in the permutation. Since we are required to visit vl nodes from each family l ∈ L
then, before inserting the nodes in the circuit, we need to verify whether family l is complete or
not. If family l is complete, we skip that node. Otherwise, we add it to the solution. This process is
repeated until all the families are complete. An example of how the random constructive heuristic
decodes a permutation into an FTSP feasible solution is shown in Example 28.

Example 28 (Random Constructive Heuristic). Consider the FTSP instance presented in Figure 3.1
and the permutation π = (4, 5, 3, 2, 1). The circuit starts at node 0 and then visits nodes 4 and 5. As
v2 = 2 and we already have two nodes from family 2 in the circuit we skip node 3. Then, we visit
node 2 and obtain a feasible solution for this FTSP instance since all families are complete. The
circuit obtained was {(0, 4), (4, 5), (5, 2), (2, 0)}.

3.3.2 Neighborhoods

We propose three neighborhoods for the FTSP: NI , NO and 2-opt. Neighborhood 2-opt is com-
monly used for routing problems with a symmetric cost matrix (see e.g., Johnson and McGeoch,
1997).

Considering s as a feasible solution for the FTSP, neighborhoodsNI ,NO and 2-opt are defined
as follows:

• NI(s) = {s′ feasible : s′ can be obtained from s by switching a maximum of two nodes

in the circuit}

• NO(s) = {s′ feasible : s′ can be obtained from s by switching a maximum of two nodes,

from the same family, such that one belongs to the circuit and the other does

not}

• 2-opt(s) = {s′ feasible : s′ can be obtained from s by inverting the order of a maximum of

one path in the circuit}

Since neighborhoodsNI andNO are originated by straightforward moves, we will only explain
in detail neighborhood 2-opt. Given a generic FTSP solution

s = {(0, i1), (i1, i2), . . . , (ik−1, ik), (ik, ik+1), (ik+1, ik+2), . . . , (iV−1, iV), (iV , 0)},

31

CHAPTER 3. THE FAMILY TRAVELING SALESMAN PROBLEM

a solution s′ ∈ 2-opt(s) is, for instance,

s′ = {(0, ik−1), (ik−1, ik−2), . . . , (i2, i1), (i1, ik), (ik, ik+1), (ik+1, ik+2), . . . , (iV−1, iV), (iV , 0)},

since s′ was obtained from s by inverting the order of the path {(i1, i2), . . . , (ik−2, ik−1)} in the
circuit s. This move is equivalent to, when considering nondirected graphs, switching two edges.
Even though we are using a directed graph to model the FTSP, when we have a symmetric cost
matrix, that is, when cij = cji, the cost of s′ ∈ 2-opt(s) can be easily computed through the cost of
s since the cost of any path is equal to the cost of the inverted path. Therefore, neighborhood 2-opt
was designed to be applied to instances with a symmetric cost matrix.

Example 29 (Neighborhoods). Consider the feasible solution, for the FTSP instance presented in
Figure 3.1, that is, s = {(0, 1), (1, 3), (3, 4), (4, 0)}. Then, the neighborhoods associated with s are:

NI(s) = {{(0, 1), (1, 3), (3, 4), (4, 0)}, {(0, 3), (3, 4), (4, 1), (1, 0)},

{(0, 4), (4, 3), (3, 1), (1, 0)}, {(0, 4), (4, 1), (1, 3), (3, 0)},

{(0, 1), (1, 4), (4, 3), (3, 0)}, {(0, 3), (3, 1), (1, 4), (4, 0)}}

NO(s) = {{(0, 1), (1, 3), (3, 4), (4, 0)}, {(0, 2), (2, 3), (3, 4), (4, 0)},

{(0, 1), (1, 5), (5, 4), (4, 0)}, {(0, 1), (1, 3), (3, 5), (5, 0)}}

2-opt(s) = {{(0, 1), (1, 3), (3, 4), (4, 0)}, {(0, 3), (3, 4), (4, 1), (1, 0)},

{(0, 3), (3, 1), (1, 4), (4, 0)}, {(0, 4), (4, 3), (3, 1), (1, 0)},

{(0, 1), (1, 4), (4, 3), (3, 0)}, {(0, 4), (4, 1), (1, 3), (3, 0)}}

In this example neighborhoods, NI(s) and 2-opt are similar. Observe that this is a consequence
from s having a small number of nodes, but, in general, these neighborhoods are more diverse and,
thus, it is useful to use them both to search the solution space.

We define Cost(s) =
∑

(i,j)∈s cij as the cost of a feasible solution s, which in this case is a
circuit. The neighborhoods NI , NO and 2-opt are searched using the following procedure, which
can be applied to any generic neighborhoodN . We start by computing the cost of every solution s′

that is inN (s). This process is not very time consuming since, in all three neighborhoods, the cost

32

CHAPTER 3. THE FAMILY TRAVELING SALESMAN PROBLEM

of s′ can easily be calculated from the cost of s and the proposed neighborhoods are relatively small
neighborhoods. In fact, the sizes of the neighborhoods presented have as an upper bound (V+1)×V

2
+1

for neighborhoods NI and 2-opt, and
∑L

l=1 vl × (nl − vl) + 1 for neighborhood NO. To continue
the search of the solution space, we choose the solution s∗ ∈ N (s) such that Cost(s∗) ≤ Cost(s′),
∀s′ ∈ N (s). This process is repeated for the solution s∗ until we cannot find a solution in N (s∗)

that has a lower cost than the cost of s∗. The pseudocode for the neighborhood search is presented
in Algorithm 3.1.

Algorithm 3.1 The neighborhood search procedure.
Require: A neighborhood N and a feasible solution s for the FTSP.
1: while There is a solution in N (s) with lower cost than Cost(s) do
2: Compute the cost of every solution s′ ∈ N (s).
3: Select the solution s′ with the lowest cost. Let s∗ be that solution.
4: s = s∗.
5: end while

3.4 Instances

The only benchmark instances available are the ones created byMorán-Mirabal et al. (2014). These
instances are based on TSPLIB instances (see Reinelt, 1991, for more information on the TSPLIB)
where families as well as number of visits were generated. They differ from the TSPLIB instances
on how the distances are calculated, since the distances are not rounded to the nearest integer. For
each TSPLIB instance there are three different FTSP instances, which have the same cost matrix
and families but vary on the number of visits. There are 21 benchmark instances with the number
of nodes varying between 14 and 1002. These instances will be referred to as the instance set 1.
Table A.1 in appendix provides a complete description of this set.

As the number of instances in the instance set 1 is reduced, we developed an FTSP instance
generator. Since there is a vast library of instances available for routing problems, namely, the
TSP and the traveling purchaser problem (TPP) we decided to use some of those cost matrices.
Therefore, the generator that we developed has as input a cost matrix, and consequently the number
of nodes, and creates FTSP instances with that cost matrix and randomly generated families and
number of visits per family. Each cost matrix generates four different FTSP instances, which only
differ in the number of visits per family and, consequently, in the total number of visits. Instances
of type reference, as the name suggests, are the instances of reference, as the number of visits is

33

CHAPTER 3. THE FAMILY TRAVELING SALESMAN PROBLEM

randomly generated between 1 an the number of family nodes. Instances of type low are generated
to have a lower number of visits per family than the instance of type reference, whereas instances
of type high are generated to have a greater number of visits than instances of type reference.
Finally, instances of type mixed are a random combination of the number of visits of instances
of type low and high. We now present a detailed description of how the several FTSP instance
generator parameters were defined.

space
The number of families L. After analyzing the benchmark instances, we verified that the ratio
between L and |N | + 1 varies between 0.04 and 0.21. Therefore, we decided that L should be
a randomly generated integer in the interval [0.10 × (|N | + 1), 0.15 × (|N | + 1)]. By using this
criterion, an instance with 100 nodes has between 10 and 15 families, for example.

space
The number of family elements n. To ensure that all families have at least one element we de-
fined a minimum number of nodes per family, designated by minn, which is the nearest integer to
0.25 × |N |+1

L
. For family 1, n1 is a random integer number generated between minn and ⌊ |N |+1

L
⌋.

The number of nodes for the i-th family, with i = 2, . . . , L − 1, is generated between minn and
⌊ (|N |+1)−

∑i−1
j=1 ni

L−(i−1)
⌋. The upper bound on the number of family members was chosen to guarantee that

the number of family elements per family is balanced. Finally, to ensure that all nodes, other than
the depot, belong to a family, the number of family nodes for family L is nL = |N | −

∑L−1
i=1 ni.

space
The number of family visits v. As mentioned previously, there are four types of instance. We
denote by v1, v2, v3 and v4 the number of visits of an instance of type reference, low, high and
mixed, respectively. Since the instances of type reference are the reference instances, the number
of visits per family is a randomly generated integer between 1 and the number of family members n.
That is, for a family l ∈ L, v1l ∈ [1, nl]. Instances of type low were designed to have a smaller num-
ber of visits than the instances of type reference. Therefore, for a given family l ∈ L, the number
of visits of an instance of type low is a randomly generated integer between 1 and v1l . Regarding
instances of type high, they were designed to have a higher number of visits than instances of type
reference, consequently, for a family l ∈ L, we have v3l ∈ [v1l , nl]. Finally, instances of type
mixed are a combination of instances of type low and high. For each family l ∈ L we generated,
randomly, a binary variable r. If r = 0, then v4l = v2l . Otherwise, v4l = v3l .

space
The total number of visits V. For an instance of type i, with i = 1, . . . , 4, the total number of
visits is V =

∑L
l=1 v

i
l .

34

CHAPTER 3. THE FAMILY TRAVELING SALESMAN PROBLEM

space
With this generator we created three different sets of instances. One set of instances, which we

call instance set 2, is based on symmetric TSP instances available in the TSPLIB’s website https:
//www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/. The instance set 2
is composed of 64 instances with a number of nodes between 136 and 264 and was created as a
complement to the benchmark instances. The cost matrices used were constructed by using the
formulas presented by Reinelt (1991). A complete description of the instance set 2 is available in
appendix, Table A.2.

The other two sets of randomly generated instances have an asymmetric cost matrix. The in-
stance set 3 is based on asymmetric TSP instances and is comprised of all the asymmetric TSP
instances available in the TSPLIB. Thus, instance set 3 contains a total of 76 instances with a
number of nodes varying between 17 and 443. A complete description of the instance set 3 is
available in appendix, Table A.3. Finally, the instance set 4 is based on asymmetric instances for
the uncapacitated traveling purchaser problem (UTPP). These instances are available in the TPP’s
website https://jriera.webs.ull.es/TPP.htm and were created by Singh and van Oudheus-
den (1997). We used the cost matrix of the instances named AsimSingh.|N | + 1.10.1.tpp with
|N | + 1 ∈ {50, 100, 150, 200, 250, 300}, which originated 24 FTSP instances with a number of
nodes varying between 50 and 300. A complete description of the instance set 4 is available in
appendix, Table A.4.

To summarize, there are four sets of test instances: the instance set 1, which corresponds to the
benchmark instances proposed byMorán-Mirabal et al. (2014); the instance set 2, which is based on
symmetric TSP instances; the instance set 3, based on the asymmetric TSP instances; and, finally,
the instance set 4, which is based on UTPP asymmetric instances. For the sets of instances which we
generated, namely the sets 2, 3 and 4, each original instance originated four different types of FTSP
instances, namely types reference, low, high and mixed. All the instances presented previously
are available in http://familytsp.rd.ciencias.ulisboa.pt, which was created by us.

35

CHAPTER 3. THE FAMILY TRAVELING SALESMAN PROBLEM

36

Chapter 4

Mathematical Formulations

The FTSP may be seen has having two types of decision. On the one hand, we need to select
which family members are visited and, on the other hand, we need to establish a single connected
elementary circuit with the selected family members and the depot, being the latter the hardest to
formulate. In Section 4.1 we present a generic formulation for the FTSP in which the constraints
that ensure that the solution obtained is a single connected circuit are presented in a generic manner
and then, in Section 4.2, we present several ways of formulating them, which is the main focus
of this chapter. In Section 4.3 we establish a theoretical comparison between the several ways of
formulating the constraints that ensure that the solution obtained is a single connected circuit and,
finally, in Section 4.4, we present an empirical comparison between the several formulations.

When we introduced the FTSP we assumed that G was a complete graph, this assumption does
not lose generality as the following exposition can easily be adapted to graphs that are not complete
by simply removing the arcs (i, j) such that (i, j) /∈ A from the mathematical expressions present
in the several formulations. Additionally, not to repeat definitions throughout this chapter, for any
subset S of nodes S ⊆ N we define S ′ = 0 ∪ (N \ S).

4.1 A generic formulation for the FTSP

Let xij be a binary variable that has value 1 if the arc (i, j) ∈ A is in the circuit and value 0 otherwise.
Variables yi are also binary and have value 1 if the node i ∈ N is visited in the circuit and value 0
otherwise. The FTSP may be formulated with the following generic ILP model:

37

CHAPTER 4. MATHEMATICAL FORMULATIONS

Minimize
∑

(i,j)∈A

cijxij (4.1)

Subject to: ∑
j∈N

x0j = 1 (4.2)

∑
j∈0∪N

xij = yi ∀i ∈ N (4.3)

∑
j∈0∪N

xji −
∑

j∈0∪N

xij = 0 ∀i ∈ 0 ∪N (4.4)

∑
i∈Fl

yi = vl ∀l ∈ L (4.5)

{(i, j) ∈ A : xij = 1} is a single connected circuit (4.6)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.7)

yi ∈ {0, 1} ∀i ∈ N. (4.8)

The objective of the FTSP is to find the minimum cost elementary circuit, which is represented
by (4.1). Constraint (4.2) ensures that there is an arc leaving the depot and, together with constraints
(4.4), guarantees that there is an arc entering the depot. Constraints (4.3) state that if a node i ∈ N is
visited then there must be an arc leaving i, otherwise there is no arc leaving i. This set of constraints
also shows that variables y are auxiliary, since they could be removed from the model using equality
(4.3). Constraints (4.4) ensure that the indegree and the outdegree of each node are equal. The set
of constraints (4.5) guarantees the number of required visits per family. Finally, constraints (4.7)
and (4.8) define the domain of the x and the y variables, respectively.

There is a set of valid inequalities that can be derived for single-visit families. Consider two
distinct nodes i, j ∈ Fl such that l ∈ U , which we recall is the set of single-visit families. As the
number of visits of family l is one, we know that the arc (i, j) ∈ A will never be used in a feasible
solution since using it implies that two nodes from a single-visit family would be visited. Thus,
we can add the ensuing inequalities as valid inequalities to the generic formulation: xij = 0, ∀l ∈
U , ∀i, j ∈ Fl : (i, j) ∈ A.

A solution that satisfies the equation system (4.2)–(4.5), (4.7)–(4.8) has an arc leaving and an arc
entering the depot, visits the number of required nodes per family and, for each node, the indegree
is equal to the outdegree, however, it may not be a single connected circuit. We designate by
subtour a circuit that does not involve the depot, therefore, saying that the solution may not be a
single connected circuit is equivalent to saying that the solution may have subtours. The purpose

38

CHAPTER 4. MATHEMATICAL FORMULATIONS

of constraints (4.6), which are written in a implicit way, is to prevent subtours and, thus, they are
called subtour elimination constraints. Throughout the next sections we present several explicit
ways of formulating the subtour elimination constraints, which are either adaptations of known
subtour eliminations constraints from the TSP or specific subtour elimination constraints for the
FTSP, which will originate several formulations for the FTSP. Before doing so we introduce some
notation, considering a generic two index variable vij we define v(S1, S2) =

∑
i∈S1

∑
j∈S2

vij and,
similarly, for a generic one index variable vi we define v(S1) =

∑
i∈S1

vi.

4.2 Formulating the subtour elimination constraints

We developed compact and non-compact formulations. We start by presenting the compact models
in Section 4.2.1 and then the non-compact ones in Section 4.2.2.

4.2.1 Compact formulations

The compact formulations use flow variables to ensure that the solution obtained is connected.
Some of the formulations that we propose are similar to the ones for the TSP proposed by Gavish
and Graves (1978) and Wong (1980). The main difference between the FTSP and the TSP is the
fact that in the FTSP we, usually, do not need to visit all the nodes.

Figure 4.1 shows a graphical representation of the flow systems associated with the flow formu-
lations that will be presented next, by using the feasible solution for the FTSP instance introduced
in Figure 3.1. We developed flow models associated with three different flow systems: a single-
commodity flow (SCF) model, presented in Section 4.2.1.1, where we send one flow from the depot
with V units (see Figure 4.1a); a family-commodity flow (FCF) model, available in Section 4.2.1.2,
in which, as the name suggests, we send L different flows from the depot to each of the families,
each one with vl units (see Figure 4.1b); and a node-commodity flow (NCF) model, presented in
Section 4.2.1.3, where we send V different one-unit flows from the depot to each of the nodes that
will be visited. Additionally, we developed the node-commodity flow + (NCF+) model, which
we also present in Section 4.2.1.3 and uses the same flow system as the NCF model but has an
additional set of constraints.

Models SCF and NCF for the FTSP are straightforward adaptations of the SCF and the multi-
commodity flow models for the TSP, respectively, and may be applied, with slight modifications,
to several routing problems, whereas the FCF and the NCF+ models are specifically developed for
the FTSP.

Figure 4.1 highlights the differences between the flow systems introduced previously in terms

39

CHAPTER 4. MATHEMATICAL FORMULATIONS

of the number of different flows and the amount of flow. Figures 4.1b and 4.1c have several arcs
to represent the different flows associated with the corresponding flow systems. The values above
each arc represent the amount of flow that traverses that arc. Observing the nodes that are not the
depot, it is possible to verify how the flow conservation works in each model.

Note that the FCF and NCF are obtained by disaggregating the SCF model per family and per
visited node, respectively, and the NCF model is also a disaggregation of the FCF model per node,
which can also be seen in Figure 4.1. This statement will be formalized later on when establishing
relationships between the LP relaxation of the proposed models.

1 2

3

45

0

3
2

1

(a) SCF model.

1 2

3

45

0

1

2
2

1

(b) FCF model.

1 2

3

45

0

1
1
1 1

1

1

(c) NCF model.

Figure 4.1: Representation of the several flow systems.

4.2.1.1 The single-commodity flow model

In order to define the single-commodity flow model we introduce variables fij which indicate the
amount of flow that traverses the arc (i, j) ∈ A and which correspond to the number of nodes that
still have to be visited in the circuit. These variables can be defined as non-negative since their
integrality is guaranteed by the other constraints of the model. If we replace the generic subtour
elimination constraints (4.6) by the set of constraints∑

j∈N

f0j = V (4.9)

∑
j∈0∪N

fji =
∑

j∈0∪N

fij + yi ∀i ∈ N (4.10)

fij ≤ V xij ∀(i, j) ∈ A (4.11)

fij ≥ 0 ∀(i, j) ∈ A, (4.12)

40

CHAPTER 4. MATHEMATICAL FORMULATIONS

we obtain a formulation for the FTSP. Constraint (4.9) guarantees that one flow with V units leaves
the depot. Constraints (4.10) are the flow conservation constraints. These constraints are similar to
the ones presented by Gavish and Graves (1978) for the TSP although, since we may not wish to
visit every node, we will only leave one unit of flow in the nodes that are visited, which is indicated
by the value of the y variables. Constraints (4.11) represent the relationship between the x and the
f variables and state that flow can only traverse an arc that was chosen to be in the solution and that
the flow has at most V units. Finally, constraints (4.12) define the domain of the f variables.

The equation system (4.9)–(4.12) guarantees that the solution obtained does not contain subtours
since V units of flow leave the depot and are sent through a path that goes by each one of the visited
nodes. If there were to be a subtour with visited nodes, then there would be no path between the
depot and the nodes on that subtour.

4.2.1.2 The family-commodity flow model

As we already mentioned, the FCF model is a disaggregation of the SCF model. More precisely,
the FCF model is obtained from the SCF model by disaggregating the flow variables f and the
flow conservation constraints (4.10) per family. Let tlij be the amount of flow for family l ∈ L that
traverses the arc (i, j) ∈ A, which corresponds to the number of nodes from family l ∈ L that will
still be visited in the circuit when we traverse the arc (i, j) ∈ A. Once again, the t variables may be
defined as non-negative since their integrality is ensured by the other constraints in the model. A
formulation for the FTSP is obtained by replacing the generic subtour elimination constraints (4.6)
with the following set of constraints:∑

j∈N

tl0j = vl ∀l ∈ L (4.13)

∑
j∈0∪N

tlji =
∑

j∈0∪N

tlij + yi ∀l ∈ L, ∀i ∈ Fl (4.14)

∑
j∈0∪N

tlji =
∑

j∈0∪N

tlij ∀l ∈ L, ∀i ∈ N \ Fl (4.15)

tlij ≤ vlxij, ∀l ∈ L, ∀(i, j) ∈ A (4.16)

tlij ≥ 0 ∀l ∈ L, ∀(i, j) ∈ A. (4.17)

Constraints (4.13) guarantee that there are L different flows, each one with vl units, leaving the
depot. Constraints (4.14) and (4.15) are the flow conservation constraints which are divided in two
cases: either a node belongs to the same family as the flow variable or not. In the former, constraints
(4.14) are similar to constraints (4.10) presented in the SCF model, that is, we only leave one unit
of flow in the visited nodes, while in the latter, the amount of flow that enters and leaves a node

41

CHAPTER 4. MATHEMATICAL FORMULATIONS

remains the same (see Figure 4.1b). Constraints (4.16), which model the relationship between the x
and the t variables, guarantee that flow can only traverse an arc that was chosen to be in the solution
and that, for each family l ∈ L, the flow has at most vl units. Finally, constraints (4.17) are the
domain constraints for the t variables.

By using a similar argument to the one for the SCF model, the equation system (4.13)–(4.17)
prevents subtours because it ensures that, for each family l ∈ L, there is a path that starts at the depot
and passes through every visited node of family l. If there were to be a subtour with visited nodes,
then there would be no path between the depot and the nodes in the subtour. Besides preventing
subtours, the equation system (4.13)–(4.17) also ensures that we visit the required number of nodes
per family.

Due to the definition of the f and the t variables, the following relationship holds (see figure
4.1)

fij =
∑
l∈L

tlij. (4.18)

This relationship highlights the fact that the t variables are a disaggregation of the f variables per
family and it is important further on to relate the LP relaxations of the two formulations.

Considering any general three-index variable vkij wewill use the following notation vk(S1, S2) =∑
i∈S1

∑
j∈S2

vkij henceforth.

4.2.1.3 The node-commodity flow model

The NCF and the NCF+ models are obtained by disaggregating the f variables and the flow con-
servation constraints (4.14)-(4.15) per node. Let zkij be a binary variable which has value 1 if the
arc (i, j) ∈ A is used to send one unit of flow from the depot to node k ∈ N , with k ̸= i, and value
0 otherwise. Even though variables z are binary, we only need to add non-negativity constraints
since their integrality and bounds are ensured by the other constraints of the model. A model for the
FTSP is obtained by replacing the generic subtour elimination constraint (4.6) with the following

42

CHAPTER 4. MATHEMATICAL FORMULATIONS

system of inequalities:∑
j∈N

zk0j = yk ∀k ∈ N (4.19)

∑
j∈0∪N

zkjk = yk ∀k ∈ N (4.20)

∑
j∈(0∪N)\{k}

zkji =
∑

j∈0∪N

zkij ∀k ∈ N, ∀i ∈ N : i ̸= k (4.21)

zkij ≤ ykxij, ∀k ∈ N, ∀(i, j) ∈ A : i ̸= k (4.22)

zkij ≥ 0 ∀k ∈ N, ∀(i, j) ∈ A : i ̸= k. (4.23)

The first three sets of constraints are similar to the ones presented by Wong (1980) for the TSP.
The main difference is that, in constraints (4.19) and (4.20), we will only use arcs to send one unit
of flow from the depot to a node k ∈ N if k is visited. Constraints (4.21) are the flow conservation
constraints for the nodes that are not the destination node of the flow and, in that case, the amount
of flow that enters a node is equal to the amount of flow that leaves that node (see Figure 4.1c). The
set of constraints (4.22), which represent the relationship between the z variables and the x and the
y variables, ensure that the flow intended for a specific node can only be sent through an arc if: (i)
the node is visited; and (ii) the arc was chosen to be on the solution. We address the non-linearity
of these constraints later on in this section. Finally, constraints (4.23) define the domain of the z
variables.

Variables zkij may also be seen as having value 1 if the arc (i, j) ∈ A is used in the path from the
depot to node k ∈ N : k ̸= i, and value 0 otherwise. Therefore, this flow system prevents subtours
since it ensures that there exists a path from the depot to every node k ∈ N such that yk = 1.
Consequently, if there were to be a subtour with visited nodes (nodes k such that yk = 1) then there
would be no path from the depot to the nodes in the subtour.

From the definition of the t and the z variables we can derive the following relationship (see
Figure 4.1)

tlij =
∑
k∈Fl

zkij, (4.24)

since the z variables are a disaggregation of the t variables per family node. This relationship will
be used further on to compare the node-commodity flow models to the other compact models.

Linearization of constraints (4.22)

When we face non-linear constraints, the most common approach, when possible, is to linearize
them. Constraints (4.22) allow the variable z to have value 1 if the corresponding x and y variables

43

CHAPTER 4. MATHEMATICAL FORMULATIONS

have value 1 and has value 0 if either x or y have value 0. Consequently, constraints (4.22) can be
linearized by replacing them with:

zkij ≤ xij ∀k ∈ N, ∀(i, j) ∈ A : i ̸= k (4.25)

zkij ≤ yk ∀k ∈ N, ∀(i, j) ∈ A : i ̸= k. (4.26)

Constraints (4.25) and (4.26) ensure the relationships between the z variables and the x and the
y variables stated previously. When x and y have value 1 variable z can have value 1, whilst when
either x or y have value 0, the value of variable z is bounded by 0. Note that constraints (4.26) are
implied by constraints (4.19), (4.20) and (4.21) which makes them redundant. Therefore, in order
to obtain a linear formulation for the FTSP, which is the NCF formulation, we replace constraints
(4.22) by constraints (4.25).

There is another set of valid inequalities for the FTSP that can be derived from the non-linear
constraints (4.22). Given an arc (i, j) ∈ A and a family l ∈ L, we aggregate constraints (4.22) for
k ∈ Fl: ∑

k∈Fl

zkij ≤
∑
k∈Fl

ykxij ⇐⇒
∑
k∈Fl

zkij ≤ vlxij

The previous constraints are equivalent to constraints (4.16) from the FCFmodel, which is easily
seen through the relationship between the t and the z variables (4.24). Thus, we can define a new
model, the NCF+ model which is the NCF model with the additional set of constraints:∑

k∈Fl\{i}

zkij ≤ vlxij, ∀l ∈ L, ∀(i, j) ∈ A. (4.27)

Table 4.1 summarizes the proposed formulations that use the z variables.

Table 4.1: Node-commodity flow models summary.

Constraints (4.19)-(4.21) and (4.23)

NCF zkij ≤ xij ∀k ∈ N, ∀(i, j) ∈ A : i ̸= k (4.25)

NCF+
zkij ≤ xij ∀k ∈ N, ∀(i, j) ∈ A : i ̸= k (4.25)∑
k∈Fl\{i} z

k
ij ≤ vlxij ∀l ∈ L, ∀(i, j) ∈ A (4.27)

4.2.2 Non-compact formulations

In this subsection, we propose three non-compact formulations for the FTSP. The connectivity cuts
(CC) model, presented in Section 4.2.2.1, which is an adaptation of the well-known TSP connec-
tivity cuts model; the rounded visits (RV) model in Section 4.2.2.2 and the rounded family visits

44

CHAPTER 4. MATHEMATICAL FORMULATIONS

(RFV) model. Both the RV and the RFV models were developed specifically for the FTSP. These
models are solved by using a branch-and-cut algorithm, which will be presented in Chapter 5.

4.2.2.1 Connectivity cuts model

The connectivity cuts for the TSP ensure that we must choose at least one arc from every possible
cut-set in order to obtain a single connected circuit. As in the FTSP we are only required to visit V
nodes, we only need to ensure that the visited nodes form a single connected circuit.

The CC model for the FTSP arises when we replace the generic subtour elimination constraints
(4.6) with the following constraints:

x(S ′, S) ≥ yk ∀S ⊆ N, ∀k ∈ S. (4.28)

Constraints (4.28) are valid for the FTSP. When yk = 0, constraints (4.28) are redundant and,
when yk = 1, there is a node in S that is visited which implies that there must be at least one arc in
the cut-set [S ′, S] that has to be used in order to obtain a feasible circuit for the FTSP. To be easily
identified, constraints (4.28) will be called CC inequalities.

4.2.2.2 Rounded visits model

Consider the flow conservation constraints (4.10) associated with the SCF model presented in Sec-
tion 4.2.1.1. By adding them for i ∈ S with S ⊆ N , we obtain:

f(0 ∪N,S) = f(S,N) + y(S)

⇐⇒ f(S ′, S) + f(S, S) = f(S, S) + f(S, S ′) + y(S)

⇐⇒ f(S ′, S) = f(S, S ′) + y(S)

=⇒ f(S ′, S) ≥ y(S),

this results from the fact that f(S, S ′) ≥ 0. By using the relationship between the f and the x

variables (4.11) we obtain the following set of inequalities:

V x(S ′, S) ≥ y(S) ⇐⇒ x(S ′, S) ≥ y(S)

V
∀S ⊆ N, (4.29)

which describes the projection of the system of inequalities (4.9)-(4.12) onto the subspace of the x
and the y variables. This result will be presented in the next proposition, but before doing so, we
define the following polytopes:

• PSCF = {(x, y, f) ∈ R|A|+|N |+|A| : satisfy the equation system (4.2)-(4.5), (4.9)-(4.12), 0 ≤
xij ≤ 1, ∀(i, j) ∈ A, and 0 ≤ yi ≤ 1, ∀i ∈ N}

45

CHAPTER 4. MATHEMATICAL FORMULATIONS

• PV = {(x, y) ∈ R|A|+|N | : satisfy the equation system (4.2)-(4.5), (4.29), 0 ≤ xij ≤
1, ∀(i, j) ∈ A, and 0 ≤ yi ≤ 1, ∀i ∈ N}

The PSCF is the polytope that corresponds to the LP relaxation of the SCF model whereas the
PV is the polytope associated with the LP relaxation of the model which is obtained by replacing the
generic subtour elimination constraints (4.6) with constraints (4.29). Note that due to the ensuing
proposition we may conclude that PV is a formulation for the FTSP.

Proposition 10. PV = projx,yPSCF

Proof. In order to prove this result, first we show that projx,yPSCF ⊆ PV and, then, that PV ⊆
projx,yPSCF .

space
(i) projx,yPSCF ⊆ PV

This inclusion was proven when we derived constraints (4.29) at the beginning of this section,
as we implicitly considered a point (x, y, f) ∈ PSCF and we verified that its projection onto the
subspace of the x and the y variables satisfies constraints (4.29).

space
(ii) PV ⊆ projx,yPSCF

Consider (x, y) ∈ PV . To show the inclusion under (ii) we must verify that is possible to
construct a flow f such that (x, y, f) ∈ PSCF , that is, we want to construct a flow f that satisfies the
SCF constraints (4.9)-(4.12). According to the Theorem of Compatible Flow (Theorem 4) presented
in Section 2.5.3, there exists a feasible circular flow f in a capacitated network, in which the lower
and the upper capacities of the arc (i, j) ∈ A are lij and uij , respectively, that satisfies the flow
conservation constraints f(0 ∪ N, i) = f(i, 0 ∪ N) + ei, ∀i ∈ 0 ∪ N if and only if for any
Q ⊂ 0 ∪N and Q′ = (0 ∪N) \Q:∑

i∈Q′

∑
j∈Q

uij ≥
∑
i∈Q

∑
j∈Q′

lij +
∑
i∈Q

ei (4.30)

In order to apply the Theorem of Compatible Flow we must have flow conservation constraints
for all the nodes in the network. Since we know that when we define a flow system there is a
flow conservation constraint which is redundant in the presence of the other flow conservation
constraints, when we presented the SCF model we did not define the flow conservation constraint
for the depot, thus, we will deduce it immediately.

We start by adding the flow conservation constraints (4.10) of the SCF model for i ∈ N and we

46

CHAPTER 4. MATHEMATICAL FORMULATIONS

obtain:

f(0 ∪N,N) = f(N, 0 ∪N) + y(N)

⇐⇒ f(0, N) + f(N,N) = f(N, 0) + f(N,N) + y(N)

⇐⇒ f(0, N)− f(N, 0) = y(N)

⇐⇒ f(N, 0)− f(0, N) = −V, (4.31)

which is the flow conservation constraint for the depot. Note that the last equivalence holds because
by adding the visits constraints (4.5) for l ∈ L we obtain y(N) = V .

Consequently, to show that there exists a flow satisfying (4.9)-(4.12) we need to show that the
relationship (4.30) holds considering ei = yi, ∀i ∈ N , e0 = −V and, for (i, j) ∈ A, lij = 0 and
uij = V × xij .

As the ei values differ for i ∈ N and i = 0, in order to prove that the relationship (4.30) holds,
we must consider two different cases depending on whether 0 ∈ Q or not.

• Case 1: 0 /∈ Q

In this case the relationship (4.30) is as follows:

V × x(Q′, Q) ≥ y(Q) ⇐⇒ x(Q′, Q) ≥ y(Q)

V

Since 0 /∈ Q and Q ⊂ N , the previous inequality corresponds to constraints (4.29) which the x
and the y variables satisfy.

• Case 2: 0 ∈ Q

To simplify the notation during the ensuing calculations we defineQ0 = Q\0. The relationship
(4.30) that must be satisfied in this case is the following:

V x(Q′, Q) ≥ y(Q0)− V

⇐⇒ x(N \Q0, Q0 ∪ 0) ≥ y(Q0)

V
− 1

⇐⇒ x(Q0 ∪ 0, N \Q0) ≥
y(Q0)

V
− 1

⇐⇒ x(Q0 ∪ 0, N \Q0) ≥
V − y(N \Q0)

V
− 1

⇐⇒ x(Q0 ∪ 0, N \Q0) ≥ −y(N \Q0)

V

The second equivalence is due to the x variables satisfying constraints (4.4) and the third one
is because sets Q0 and N \Q0 are a partition of the set N and we know that y(N) = V by adding

47

CHAPTER 4. MATHEMATICAL FORMULATIONS

constraints (4.5) for l ∈ L. As the x and the y variables are non-negative, the previous inequality
is trivially satisfied and, consequently, there exists a feasible flow f that satisfies constraints (4.9)-
(4.12).

The proof of Proposition 10 also showed that f(N, 0) = 0, since f(0, N) − f(N, 0) = V and
constraint (4.9) states that f(0, N) = V .

space
We can derive a new set of valid inequalities for the FTSP that, under specific conditions, domi-

nate inequalities (4.29). This new set of valid inequalities is called the rounded visits (RV) inequal-
ities. We start by presenting the RV inequalities intuitively, and then, we formalize its definition.

In the FTSP instance presented in Figure 3.1, the total number of visits is three, that is, V = 3.
Consider the sets S ′ and S presented in Figure 4.2. As the set S ′ only contains two nodes, besides
the depot, there is a node in S that has to be visited, thus there must be an arc in the cut-set [S ′, S]

that is used in order to obtain a feasible solution for this FTSP instance, which is the motivation for
the RV inequalities.

1 2

3

45

0

S ′

S

Figure 4.2: RV inequalities motivation.

Recall constraints x(S ′, S) ≥ y(S)
V

, ∀S ⊆ N (4.29). Their right-hand side is less than or equal
to 1, as the maximum number of visited nodes inN is V . Nonetheless, under specific circumstances
we can round up the right-hand side of constraints (4.29) to 1, as we saw in Figure 4.2. Consider
that |N ∩ S ′| < V thus, since we are required to visit V nodes and the set S ′ contains less than V

nodes we know that, in order to have a feasible solution for the FTSP, we have to use an arc in the
cut-set [S ′, S] to visit a node in S. Since (S ′ \0)∪S = N , saying that |S ′ \0| ≤ V −1 is equivalent
to saying that |S| ≥ |N | − V + 1. Therefore, we obtain the following set of inequalities:

x(S ′, S) ≥ 1 ∀S ⊆ N : |S| ≥ |N | − V + 1, (4.32)

48

CHAPTER 4. MATHEMATICAL FORMULATIONS

which, for the reasons stated previously, are valid inequalities for the FTSP. Note that the RV in-
equalities are only defined when |S| ≥ |N | − V + 1 and, in this case, they dominate inequalities
(4.29). The following result shows that the RV inequalities may be used as subtour elimination
constraints.

Proposition 11. A formulation for the FTSP can be obtained by replacing the generic subtour
eliminations constraints (4.6) with the RV inequalities (4.32).

Proof. Let (x∗, y∗) be an unfeasible solution for the FTSP that satisfies the equation system (4.2)–
(4.5), (4.7) and (4.8). As we have already mentioned, the only way in which solution (x∗, y∗) can
be unfeasible is if it contains subtours. Let S = {i ∈ N : y∗i = 0} be the set of nodes that were
not chosen to be in the solution and S = {i1, . . . , ik} be the set of nodes that form a subtour. Let
S = S ∪ S. Since: (i) S ′ is only composed by visited nodes and the depot; (ii) S ′ does not contain
all visited nodes due to subtour S; and, (iii) solution (x∗, y∗) visits V nodes due to constraints (4.5);
we can conclude that |S ′ \ 0| ≤ V − 1. Equivalently, |S| ≥ |N | − V + 1. Therefore, S satisfies
the conditions in which constraints (4.32) are valid. Note that there is no arc between S ′ and S, as
S only includes non-visited nodes and a subtour. Hence, there is a violated inequality (4.32).

The proof of Proposition 11 not only shows that if an integer solution contains subtours it is
always possible to find a violated RV inequality, but also shows how to construct the set S in order
to obtain such violated inequality. Moreover, the model which is obtained by replacing the generic
subtour elimination constraints (4.6) with the RV inequalities (4.32) will be designed as the rounded
visits (RV) model.

4.2.2.3 Rounded family visits model

The rounded family visits model can be related to the FCF model, much like the relationship of the
SCFmodel and the RVmodel of the previous section, and is based on the idea that each family l ∈ L
has a specific number of required visits. Therefore, consider the flow conservation constrains (4.14)
and (4.15) from the FCF model, presented in Section 4.2.1.2, for a given family l ∈ L. Similarly to
what we did in Section 4.2.2.2, we can add those constraints for i ∈ S ⊆ N which originates:

tl(0 ∪N,S) = tl(S,N) + y(S ∩ Fl)

⇐⇒ tl(S ′, S) + tl(S, S) = tl(S, S) + tl(S, S ′) + y(S ∩ Fl)

⇐⇒ tl(S ′, S) = tl(S, S ′) + y(S ∩ Fl)

=⇒ tl(S ′, S) ≥ y(S ∩ Fl)

49

CHAPTER 4. MATHEMATICAL FORMULATIONS

By using the relationship between the t variables and the x variables stated in constraints (4.16),
we obtain:

vlx(S
′, S) ≥ y(S ∩ Fl) ⇐⇒ x(S ′, S) ≥ y(S ∩ Fl)

vl
∀S ⊆ N. (4.33)

Constraints (4.33) correspond to the projection of constraints (4.13)-(4.17) from the FCF model
onto the subspace of the x and the y variables, as we will show in Proposition 12.

Consider the following polytopes:

• PFCF = {(x, y, t) ∈ R|A|+|N |+L×|A| : satisfy the equation system (4.2)-(4.5), (4.13)-(4.17),
0 ≤ xij ≤ 1, ∀(i, j) ∈ A, and 0 ≤ yi ≤ 1, ∀i ∈ N}

• PFV = {(x, y) ∈ R|A|+|N | : satisfy the equation system (4.2)-(4.5), (4.33), 0 ≤ xij ≤
1, ∀(i, j) ∈ A, and 0 ≤ yi ≤ 1, ∀i ∈ N}

The PFCF is the polytope which corresponds to the LP relaxation of the FCF model while the
PFV is the polytope associated with the formulation which is obtained by replacing the generic
subtour elimination constraints (4.6) with constraints (4.33). The following result besides showing
that the PFV polytope is the projection of the PFCF polytope onto the subspace of the x and the y
variables also shows that the polytope PFV is a formulation for the FTSP.

Proposition 12. PFV = projx,yPFCF

Proof. This proof is very similar to the proof of Proposition 10, which means that we start by
showing that projx,yPFCF ⊆ PFV and, then, we show that PFV ⊆ projx,yPFCF .

space
(i) projx,yPFCF ⊆ PFV

We already proved this inclusion when we deduced constraints (4.33) since we considered a
point (x, y, t) ∈ PFCF and we verified that the referred point projected onto the subspace of the x
and the y variables satisfies constraints (4.33).

space
(ii) PFV ⊆ projx,yPFCF

Consider (x, y) ∈ PFV . Similarly to what we did in the proof of Proposition 10, we must verify
if it is possible to construct a flow t such that (x, y, t) ∈ PFCF . For a given family l ∈ L, we want
to construct a flow tl that satisfies the FCF model constraints (4.13)-(4.17). As the proof will be
done using the Theorem of the Compatible Flow (Theorem 4) presented in Section 2.5.3 we must
deduce the flow conservation constraint for the depot, like in the proof of Proposition 10.

50

CHAPTER 4. MATHEMATICAL FORMULATIONS

For a given family l ∈ L we add the flow conservation constraints (4.14)-(4.15) for i ∈ N and
we obtain:

tl(0 ∪N,N) = tl(N, 0 ∪N) + y(N ∩ Fl)

⇐⇒ tl(0, N) + tl(N,N) = tl(N, 0) + tl(N,N) + y(Fl)

⇐⇒ tl(0, N)− tl(N, 0) = y(Fl)

⇐⇒ tl(N, 0)− tl(0, N) = −vl (4.34)

the flow conservation constraint for the depot. Note that the last equivalence holds due to the visits
constraints (4.5). Consequently, in this case we have that ei = yi, ∀i ∈ Fl, ei = 0, ∀i ∈ N \ Fl

and e0 = −vl. Additionally, for (i, j) ∈ A we have lij = 0 and uij = vl × xij .
Now we must check whether or not the relationship

∑
i∈Q′

∑
j∈Q uij ≥

∑
i∈Q

∑
j∈Q′ lij +∑

i∈Q ei (4.30) is verified for any Q ⊂ 0 ∪N and Q′ = (0 ∪N) \Q.

• Case 1: 0 /∈ Q

In this case the relationship (4.30) is as follows:

vl × x(Q′, Q) ≥ y(Q ∩ Fl) ⇐⇒ x(Q′, Q) ≥ y(Q ∩ Fl)

vl

Since Q ⊆ N , the previous inequality corresponds to a constraint (4.33) which the x and the y
variables satisfy.

• Case 2: 0 ∈ Q

To simplify the notation during the following calculations we define Q0 = Q \ 0. The relation-
ship (4.30) that must be satisfied in this case is the following:

vlx(Q
′, Q) ≥ y(Q0 ∩ Fl)− vl

⇐⇒ x(N \Q0, Q0 ∪ 0) ≥ y(Q0 ∩ Fl)

vl
− 1

⇐⇒ x(Q0 ∪ 0, N \Q0) ≥
y(Q0 ∩ Fl)

vl
− 1

⇐⇒ x(Q0 ∪ 0, N \Q0) ≥
vl − y((N \Q0) ∩ Fl)

vl
− 1

⇐⇒ x(Q0 ∪ 0, N \Q0) ≥ −y((N \Q0) ∩ Fl)

vl

The second equivalence is due to the x variables satisfying the indegree and outdegree con-
straints (4.4) and the third one is because sets Q0 and N \ Q0 are a partition of the set N and we

51

CHAPTER 4. MATHEMATICAL FORMULATIONS

know that y(N ∩ Fl) = vl from constraints (4.5). As the x and the y variables are non-negative,
the previous inequality is trivially satisfied and, consequently, for any family l ∈ L there exists a
feasible flow tl that satisfies constraints (4.13)-(4.17). Hence, we proved (ii).

Once again, the proof of Proposition 12 showed that tl(N, 0) = 0, ∀l ∈ L.
space
Similarly to what we did in Section 4.2.2.2, we can derive a set of valid inequalities for the FTSP

that under specific conditions dominate inequalities x(S ′, S) ≥ y(S∩Fl)
vl

(4.33) and may be seen as
a disaggregation of the RV inequalities per family. This new set of valid inequalities is called the
rounded family visits (RFV) inequalities. Firstly, we present the RFV inequalities intuitively, and
then, we formalize its definition.

Consider the FTSP instance presented in Figure 3.1 and the sets S ′ and S presented in Figure
4.3. Note that the set S does not satisfy the conditions of the RV inequalities, since |S| = 2 <

5 − 3 + 1 = 3, however, if we only consider the nodes in S ′ we could never obtain a feasible
solution for this FTSP instance as the number of nodes that we are required to visit in family 2 is
two and the set S ′ only contains one node from family 2. So, in order to complete family 2, we must
visit the set S which implies that there is at least one arc in the cut-set [S ′, S] that has to be used in
any feasible circuit for this FTSP instance.

1 2

3

45

0

S ′

S

Figure 4.3: RFV inequalities motivation.

The right-hand side of constraints x(S ′, S) ≥ y(S∩Fl)
vl

(4.33) is less than or equal to 1 since
y(S ∩ Fl) ≤ vl. As we saw in Figure 4.3, we can round up the right-hand side of constraints (4.33)
to 1 if there are not enough nodes in S ′ to fulfill the family visits of, at least, one family, that is,
∃l ∈ L : |S ′ ∩ Fl| ≤ vl − 1. As |(S ′ ∪ S) ∩ Fl| = nl ⇐⇒ |(S ′ ∩ Fl) ∪ (S ∩ Fl)| = nl, ensuring
that |S ′ ∩ Fl| ≤ vl − 1 is equivalent to guaranteeing that |S ∩ Fl| ≥ nl − vl + 1. Consequently, we

52

CHAPTER 4. MATHEMATICAL FORMULATIONS

obtain the RFV inequalities:

x(S ′, S) ≥ 1 ∀S ⊆ N : ∃l ∈ L : |S ∩ Fl| ≥ nl − vl + 1. (4.35)

These constraints are valid for the FTSP for the reasons stated previously. The next result shows
that the RFV inequalities work as subtour elimination constraints.

Proposition 13. A formulation for the FTSP is obtained by replacing the generic subtour elimina-
tion constraints (4.6) with the RFV inequalities (4.35).

Proof. Let (x∗, y∗) be an unfeasible FTSP solution that satisfies the equation system (4.2)–(4.5),
(4.7) and (4.8) and consider S and S defined as in the proof of Proposition 11. Let S = S∪S. Since
solution (x∗, y∗) satisfies the visit requirements per family and S does not contain all the nodes that
were chosen to be in the solution, we know that there is at least a family l such that Fl ∩ S ̸= ∅
(due to subtour S). Consequently, for the same family l, |S ∩ Fl| ≤ vl − 1, which implies that
|S ∩ Fl| ≥ nl − vl + 1. Thus, S satisfies the conditions in which constraints (4.35) are valid. As
there is no arc in the cut-set [S ′, S] used in the solution, there is a constraint (4.35), more precisely,
constraint x((0 ∪N) \ (S ∪ S), S ∪ S) ≥ 1, that is violated.

The above proof shows that if an integer solution contains subtours it is always possible to find
a violated RFV inequality and, additionally, it also shows how to construct the set S in order to
obtain the violated inequality. Moreover, the model which is obtained by replacing the generic
subtour elimination constraints (4.6) with the RFV inequalities (4.35) is called the rounded family
visits (RFV) model.

4.3 Theoretical comparison of the several formulations

This section is devoted to comparing theoretically the LP relaxation of the several proposed models
for the FTSP in Section 4.2. In Section 4.3.1 we compare the compact models, in Section 4.3.2 we
establish relationships between the compact and the non-compact models and, finally, in Section
4.3.3 we compare the non-compact models.

All the results presented throughout this section are stated in terms of the LP relaxation value.
As we have been doing, the LP relaxation of the several proposed models is obtained by replacing
the domain constraints (4.7) and (4.8) with constraints

0 ≤ xij ≤ 1 ∀(i, j) ∈ A (4.36)

0 ≤ yi ≤ 1 ∀i ∈ N, (4.37)

53

CHAPTER 4. MATHEMATICAL FORMULATIONS

respectively. Recall that we defined, in Section 2.3, VLP (M) as the LP relaxation value of model
M .

4.3.1 Comparing the compact models

In this sectionwe compare the compactmodels, namely the SCFmodel, presented in Section 4.2.1.1,
the FCF model, presented in Section 4.2.1.2, and the NCF and the NCF+ models, presented in
Section 4.2.1.3. The first result relates the compact models SCF, FCF and NCF+.

Proposition 14. VLP (SCF) ≤ VLP (FCF) ≤ VLP (NCF+).

Proof. Consider the following polytopes:

• PSCF = {(x, y, f) ∈ R|A|+|N |+|A| : satisfy the equation system (4.2)− (4.5), (4.9)− (4.12),
(4.36) and (4.37)}

• PFCF = {(x, y, f, t) ∈ R|A|+|N |+|A|+L×|A| : satisfy the equation system (4.2)− (4.5), (4.13)
− (4.17), (4.36), (4.37) and (4.18)}

• PNCF+ = {(x, y, t, z) ∈ R|A|+|N |+L×|A|+|N |×|A| : satisfy the equation system (4.2)− (4.5),
(4.19)− (4.21), (4.23), (4.25), (4.27), (4.36), (4.37) and (4.24)}.

More precisely, thePSCF corresponds to the formulation associated with the LP relaxation of the
SCFmodel, thePFCF to the one associated to the LP relaxation of the FCFmodel with the additional
constraints that relate the f and the t variables (4.18) and, finally, the PNCF+ corresponds to the
formulation associated to the LP relaxation of the NCF+ model with the additional constraints that
relate the t and the z variables (4.24). Consequently, proving this result is equivalent to proving that
projx,y,fFCF ⊆ PSCF and projx,y,tNCF+ ⊆ PFCF . We start by showing that projx,y,fFCF ⊆
PSCF .

Consider (x, y, f, t) ∈ PFCF . We need to show that (x, y, f, t) satisfies the SCF constraints
(4.9)-(4.12). Since the polyhedra PFCF and PSCF are defined in different subspaces, we need to
use the relationship between the f and the t variables (4.18) to project the polytope PFCF onto the
space of the polytope PSCF .

By adding constraints (4.13) for l ∈ L we obtain∑
l∈L

tl(0, N) =
∑
l∈L

vl ⇐⇒ f(0, N) = V,

which shows that constraint (4.9) is satisfied.

54

CHAPTER 4. MATHEMATICAL FORMULATIONS

For a fixed node i ∈ Fl∗ from a given family l∗ ∈ L, we add the flow conservation constraints
(4.14)-(4.15) for l ∈ L. For node i the flow conservation constraints are

tl∗(0 ∪N, i) = tl∗(i, 0 ∪N) + yi

tl(0 ∪N, i) = tl(i, 0 ∪N) ∀l ∈ L \ {l∗},

thus, by adding them we obtain

tl∗(0 ∪N, i) +
∑

l∈L\l∗
tl(0 ∪N, i) = tl∗(i, 0 ∪N) +

∑
l∈L\l∗

tl(i, 0 ∪N) + yi

⇐⇒
∑
l∈L

tl(0 ∪N, i) =
∑
l∈L

tl(i, 0 ∪N) + yi

⇐⇒ f(0 ∪N, i) = f(i, 0 ∪N) + yi,

which are the flow conservation constraints (4.10) of the SCF model.
With respect to the constraints (4.11), consider an arc (i, j) ∈ A and add constraints (4.16) for

l ∈ L: ∑
l∈L

tlij ≤
∑
l∈L

vlxij ⇐⇒ fij ≤ V xij, ∀(i, j) ∈ A.

All there is left now is to show that the constraints that define the domain of variables f are
satisfied. Once again, if we consider an arc (i, j) ∈ A and add constrains (4.17) for l ∈ Lwe obtain∑

l∈L

tlij ≥
∑
l∈L

0 ⇐⇒ fij ≥ 0, ∀(i, j) ∈ A,

which are the domain constraints for the SCF model.
To finalize this proof, we need to show that projx,y,tNCF+ ⊆ PFCF . In order to do so, consider

a point in PNCF+ , that is, (x, y, f, z) ∈ PNCF+ .
By adding constraints (4.19) for k ∈ Fl we obtain:∑

k∈Fl

zk(0, N) =
∑
k∈Fl

yk ⇐⇒ tl(0, N) = vl, ∀l ∈ L,

which means that the solution (x, y, z) satisfies constraints (4.13) from the FCF model.
Concerning the satisfaction of constraints (4.14)-(4.15), consider a node i ∈ N and a family

l ∈ L. There are two cases either i /∈ Fl or i ∈ Fl. If i /∈ Fl, by adding constraints (4.21) for k ∈ Fl

we obtain the following expression and consequent proof:∑
k∈Fl

zk(0 ∪N, i) =
∑
k∈Fl

zk(i, 0 ∪N) ⇐⇒ tl(0 ∪N, i) = tl(i, 0 ∪N), ∀i ∈ N \ Fl.

55

CHAPTER 4. MATHEMATICAL FORMULATIONS

Now, if i ∈ Fl we must add constraints (4.20)-(4.21) for k ∈ Fl. This implies that when k = i we
must consider constraint (4.20) and when k ∈ Fl and k ̸= i we must consider constraints (4.21),
that is:

zi(0 ∪N, i) = yi

zk(0 ∪N, i) = zk(i, 0 ∪N), ∀k ∈ Fl \ {i}.

By adding the previous constraints we obtain the following expression:

zi(0 ∪N, i) +
∑

k∈Fl\i

zk(0 ∪N, i) = yi +
∑

k∈Fl\i

zk(i, 0 ∪N)

⇐⇒
∑
k∈Fl

zk(0 ∪N, i) = yi +
∑

k∈Fl\i

zk(i, 0 ∪N).

As variables ziij are not defined, then
∑

k∈Fl\i z
k(i, 0 ∪N) =

∑
k∈Fl

zk(i, 0 ∪N), therefore∑
k∈Fl

zk(0 ∪N, i) = yi +
∑
k∈Fl

zk(i, 0 ∪N) ⇐⇒ tl(0 ∪N, i) = yi + tl(i, 0 ∪N), ∀i ∈ Fl.

Thus, we were able to show that constraints (4.15) and (4.14) of the FCF model are satisfied by
the point (x, y, t, z) ∈ PNCF+ .

Consider now constraints (4.27). If we replace z with t by using the relationship (4.24) we
immediately obtain that constraints (4.16) from the FCF model are satisfied.

Finally, as the z variables are non-negative variables and the t variables are a summation of the
z variables we can deduce that variables t are non-negative and the domain constraints for the t

variables are verified.

Concerning the compact models, we still need to establish relationships with the NCF model.
Intuitively, it seems that the NCF model is a better formulation than the SCF and the FCF models,
since it is a disaggregation, however that may not be true. In fact, the LP relaxation of these models
are not comparable. By using the FTSP instance presented in Figure 3.1, we show in Figure 4.4 a
feasible solution for LP relaxation of the FCF model that is unfeasible for the LP relaxation of the
NCF model and, conversely, Figure 4.5 shows a feasible solution for the LP relaxation of the NCF
model that is unfeasible for the LP relaxation of both the SCF and the FCF models.

The solution presented in Figure 4.4 is feasible for the LP relaxation of the FCF model. Figure
4.4a shows the feasible solution in terms of the x variables, whereas Figures 4.4b and 4.4c show
the solution in terms of the flow associated with family 1 (t1 variables) and family 2 (t2 variables),
respectively. The figure’s legend (in Figure 4.4a) relates the value of the variables to the type of

56

CHAPTER 4. MATHEMATICAL FORMULATIONS

arcs used. Note that the variables with value 0 were omitted from the figure. The values at the top
or at the bottom of each node correspond to the value of the y variable associated with that node.

1

1

2

0

3

0.75

4

0.25

5

1

0
variable value = 1
variable value = 0.50
variable value = 0.375
variable value = 0.25
variable value = 0.125

(a) Variables x.

1

1

2

0

3

0.75

4

0.25

5

1

0

(b) Variables t1.

1

1

2

0

3

0.75

4

0.25

5

1

0

(c) Variables t2.

Figure 4.4: Feasible solution for the LP relaxation of the FCF model.

Consider node 3 and the disjoint fractional paths (on the arcs) from the depot to node 3 presented
in Figure 4.4a, which are the paths: Π1 = {(0, 3)} andΠ2 = {(0, 1), (1, 5), (5, 4), (4, 3)}. The NCF
model ensures that the total amount of flow that traverses both paths and reaches node 3 must be
0.75 = y3 and the value of the z variables cannot exceed the value of the x variables. It is possible
to send 0.50 units of flow through pathΠ1 but it is only possible to send 0.125 units of flow through
path Π2, as x43 = 0.125. Hence, the maximum amount of flow that can reach node 3 through Π1

and Π2 is 0.625(= 0.50 + 0.125) < 0.75 which implies that the solution presented does not satisfy
constraint (4.20) from the NCF model that states that

∑
j∈0∪N z3j3 = y3. Due to the relationship

57

CHAPTER 4. MATHEMATICAL FORMULATIONS

between the t and the f variables (4.18) it is possible, by using the solution presented in Figure 4.4
for the FCF model, to construct a feasible solution for the LP relaxation of the SCF model that is
unfeasible for the LP relaxation of the NCF model.

Consider now Figure 4.5, which shows a feasible solution for the LP relaxation of the NCF
model. Figure 4.5a shows the feasible solution in terms of the x variables while Figures 4.5b, 4.5c,
4.5d and 4.5e show the solution in terms of the variables z1, z2, z3 and z4, respectively. The filled
arcs correspond to the ones in which the variables have value 0.50 and the dashed ones correspond
to a variable value of 0.25. The values at the top or at the bottom of each node correspond to the
value of the y variable associated with that node, like in Figure 4.4.

58

CHAPTER 4. MATHEMATICAL FORMULATIONS

1

0.50

2

0.50

3

1

4

1

5

0

0

variable value = 0.50
variable value = 0.25

(a) Variables x.

1

0.50

2

0.50

3

1

4

1

5

0

0

(b) Variables z1.

1

0.50

2

0.50

3

1

4

1

5

0

0

(c) Variables z2.

1

0.50

2

0.50

3

1

4

1

5

0

0

(d) Variables z3.

1

0.50

2

0.50

3

1

4

1

5

0

0

(e) Variables z4.

Figure 4.5: Feasible solution for the LP relaxation of the NCF model.

59

CHAPTER 4. MATHEMATICAL FORMULATIONS

In order to show that the feasible solution for the LP relaxation of the NCF model presented in
Figure 4.5 is not feasible for the LP relaxation of the SCF and the FCF models we will focus on the
arc (0, 1). Observing the several subfigures we verify that x01 = z101 = z201 = z301 = z401 = 0.50.
Firstly, consider the SCF model. The value of variable f01 can be obtained as

∑5
k=1 z

k
01 = 2,

and we know that f01 ≤ V x01 = 3 × 0.5 = 1.50. However 2 > 1.50, which shows that the
solution presented does not satisfy constraint (4.11) associated with the arc (0, 1) of the SCF model.
Secondly, to show that the LP relaxation of the NCFmodel is not comparable to the LP relaxation of
the FCF model we use a similar argument, but now we must consider variable t101 = z101 + z201 = 1.
Constraints (4.16) state that t101 ≤ v1x01 = 1×0.50 = 0.50, therefore the solution presented violates
them. Proposition 15 states these findings.

Proposition 15. The LP relaxation of the NCF model is not comparable to the LP relaxation of the
SCF model and to the LP relaxation of the FCF model.

Finally, we relate the NCF model to the NCF+ model. Recall that the NCF+ model is the
NCF model with the additional set of constraints (4.27), which, as we saw in Section 4.2.1.3, are
equivalent, under the constraints that relate the t variables to the z variables (4.24), to constraints
(4.16) from the FCF model. By using the arguments previously stated we know that constraints
(4.16) are not redundant for the NCF model, since they are violated by the feasible solution for the
LP relaxation of the NCF model presented in Figure 4.5, thus neither are constraints (4.27). For this
reason, we have the result of Proposition 16.

Proposition 16. VLP (NCF) ≤ VLP (NCF+).

As we will see in the empirical comparison of Section 4.4, there are instances for which the
relationship stated in Proposition 16 is satisfied with the strict inequality.

4.3.2 Comparing the compact and the non-compact models

During this section we establish a comparison between the LP relaxation of the compact models,
which are the SCF model, the FCF model and the NCF and the NCF+ models presented in Sections
4.2.1.1, 4.2.1.2 and 4.2.1.3, respectively, and the non-compact models, namely the CC model, RV
model and the RFV model presented in Sections 4.2.2.1, 4.2.2.2 and 4.2.2.3, respectively.

First, we compare the LP relaxation of the RVmodel to the LP relaxation of the compact models.
This will be done by using a feasible solution for the LP relaxation of the RVmodel which is shown
in Figure 4.6, which is not feasible for the LP relaxation of the NCF+ model, and a feasible solution
for the LP relaxation of the NCF+ model presented in Figure 4.7 that is not feasible for the LP

60

CHAPTER 4. MATHEMATICAL FORMULATIONS

relaxation of the RV model. Consider a new FTSP instance in which family 1, which is represented
by the light gray color, is composed by two nodes (nodes 1 and 2) and family 2, which is represented
by the dark gray color, has four family members (nodes 3-6). The number of nodes that are required
to be visited in family 1 is one and in family 2 is two. Figure 4.6 shows a feasible solution for the
LP relaxation of the RV model considering the FTSP instance described previously. The filled arcs
correspond to the ones in which the x variables have value 0.50 and the dashed ones correspond to
the x values equal to 0.25. The value on the top or at the bottom of each node corresponds to the
value of the y variable associated with that node.

1

0.50

2

0.50

3

0.25

4

0.25
5

1

6

0.5

0

x value = 0.50

x value = 0.25

Figure 4.6: Feasible solution for the LP relaxation of the RV model.

As mentioned in Section 4.2.1, the compact models guarantee that there exists paths that have
as initial node the depot that go through every visited node. More precisely, the SCF model ensures
that a path goes through every visited nodes, the FCF model makes sure that there are L paths and
each one traverses every visited node from the respective family and, finally, the NCF and the NCF+

models guarantee that there is a path from the depot to every visited node. Note that the solutions
that are feasible for the LP relaxation of the compact models are also connected, the main difference
to the integer solutions of the compact models is that the paths may have fractional values and may
be in bigger number. Obviously, in Figure 4.6, there is no path from the depot to nodes 3 and 4,
which are visited nodes since y3 = y4 = 0.25 > 0. Therefore, this particular solution is feasible
for the LP relaxation of the RV model but does not satisfy the LP relaxation of any of the compact
models.

Focus now on Figure 4.7. As mentioned previously, the solution presented is feasible for the LP

61

CHAPTER 4. MATHEMATICAL FORMULATIONS

relaxation of the NCF+ model considering the FTSP instance presented in Figure 3.1. Subfigure
4.7a shows the fractional solution in terms of the x variables whilst Subfigures 4.7b, 4.7c, 4.7d
and 4.7e show the solutions in terms of variables z1, z3, z4 and z5, respectively. The filled arcs
correspond to the ones in which variables have value 0.75, the dashed ones correspond to a variable
value of 0.50 and the dotted arcs correspond to a variable with value 0.25. The values on the top or
at the bottom of each node correspond to the value of the y variable associated with that node.

62

CHAPTER 4. MATHEMATICAL FORMULATIONS

1

1

2

0

3

0.50

4

0.50

5

1

0

variable value = 0.75
variable value = 0.50
variable value = 0.25

(a) Variables x.

1

1

2

0

3

0.50

4

0.50

5

1

0

(b) Variables z1.

1

1

2

0

3

0.5

4

0.5

5

1

0

(c) Variables z3.

1

1

2

0

3

0.50

4

0.50

5

1

0

(d) Variables z4.

1

1

2

0

3

0.50

4

0.50

5

1

0

(e) Variables z5.

Figure 4.7: Feasible solution for the LP relaxation of the NCF+ model.

63

CHAPTER 4. MATHEMATICAL FORMULATIONS

The set S = {2, 3, 4} is in the conditions of the RV inequalities since |S| = 3 ≥ |N | −V +1 =

5 − 3 + 1 = 3. However, considering the solution presented in Figure 4.7, x(S ′, S) = 0.50 (=

x04 + x53) < 1. Therefore, there is an RV inequality that is not satisfied by the feasible solution
of the LP relaxation of the NCF+ model. Moreover, due to the results presented in Propositions 14
and 16, we can construct, based on the former, a feasible solution of the LP relaxation of the SCF
and the FCF models by using the solution presented in Figure 4.7 and the relationships between the
f and the t variables (4.18) and between the t and the z variables (4.24), and, based on the latter,
we know that a solution that is feasible for the LP relaxation of the NCF+ model is also feasible
for the LP relaxation of the NCF model. Consequently, we can construct feasible solutions for the
LP relaxation of the several compact models that violate an RV inequality. Thus, considering also
the conclusions drawn when we analyzed Figure 4.6, namely that there is a feasible solution for the
LP relaxation of the RV model which is unfeasible for the LP relaxation of any compact model, we
can deduce that the LP relaxation of the RV model is not comparable to the LP relaxation of the
compact models. Proposition 17 summarizes these findings.

Proposition 17. The LP relaxation of the RV model is not comparable to the LP relaxation of the
SCF model, to the LP relaxation of the FCF model, to the LP relaxation of the NCF model and to
the LP relaxation of the NCF+ model.

Observe that one might think that the non-dominance relationship between the LP relaxation of
the RV model and the LP relaxation of the SCF model is not intuitive. In fact, in Section 4.2.2.2 we
proved that the projection of the constraints (4.9)-(4.12) from the SCF model onto the space of the
x and the y variables is defined as constraints x(S ′, S) ≥ y(S)

V
, ∀S ⊆ N (4.29), and, that the RV

inequalities dominate constraints (4.29). However, the RV inequalities are only valid inequalities
for the FTSP when |S| ≥ |N | − V + 1, while constraints (4.29) are valid for any subset of nodes
S, thus, the LP relaxation of the models RV and SCF being not comparable. In order to construct a
formulation with the RV inequalities that is a better formulation than the LP relaxation of the SCF
model, we could add the inequalities (4.29) when |S| ≤ |N | − V .

We can also show that the RFV model is not comparable to the compact models. In order
to prove so, we will present a feasible solution for the LP relaxation of the RFV model which is
unfeasible for the LP relaxation of the several compact models and use the solution presented in
Figure 4.7 to show the reverse.

We start by considering the feasible solution for the NCF+ model shown in Figure 4.7. We have
already seen that: (i) using that solution we can construct a feasible solution for the LP relaxation
of the SCF and the FCF models, based on Proposition 14; and (ii) the referred solution is feasible
for the LP relaxation of the NCF model, due to Proposition 16. Recall the set S = {3, 4, 5} defined

64

CHAPTER 4. MATHEMATICAL FORMULATIONS

previously. As we are interested in finding violated RFV inequalities, consider S ∩ F2 = {3, 4, 5}.
Since |S ∩ F2| = 3 ≥ n2 − v2 + 1 = 3 − 2 + 1 = 2, the set S is in the conditions of the RFV
inequalities which implies that there is a violated RFV inequality since we verified previously that
x(S ′, S) = 0.50. More precisely, we found a feasible solution for the LP relaxation of the compact
models which is unfeasible for the LP relaxation of the RFV model.

All there is left now is to find a feasible solution for the LP relaxation of the RFV model which
is unfeasible for the LP relaxation of the compact models. In order to do so, consider a new FTSP
instance with two families. Family 1, which is represented by the light gray color, has two family
members (nodes 1 and 2) while family 2, which is represented by the dark gray color, has five family
members (nodes 3-7). Additionally, consider that we are required to visit one node from family 1

and two nodes from family 2. Figure 4.8 shows a feasible solution for the LP relaxation of the RFV
model considering the FTSP instance described previously. The filled arcs correspond to the ones
in which the x variables have value 0.50 and the dashed ones correspond to the x values equal to
0.25. The values on the top or at the bottom of each node correspond to the value of the y variable
associated with that node.

1

0

2

1

3

0.25

4

0.25
5

0.5
6

0.5

7

0.5

0

x value = 0.50

x value = 0.25

Figure 4.8: Feasible solution for the LP relaxation of the RFV model.

By using the same argument that we used when we analyzed Figure 4.6, namely that the compact
models ensure that there exists paths, which may have fractional value, that have as initial node the
depot and go through the visited nodes, we verify that the feasible solution for the LP relaxation of
the RFV model presented in Figure 4.8 is not feasible for the LP relaxation of any of the compact
models. Therefore, the LP relaxation of the RFV model is not comparable to the LP relaxation of
the compact models, which is stated in Proposition 18.

65

CHAPTER 4. MATHEMATICAL FORMULATIONS

Proposition 18. The LP relaxation of the RFV model is not comparable to the LP relaxation of the
SCF mode, to the LP relaxation of the FCF model, to the LP relaxation of the NCF model and to
the LP relaxation of the NCF+ model.

The reason why the RFV model and the FCF model are not comparable is similar to the reason
why the LP relaxation of the SCF model and the LP relaxation of the RV model are also not compa-
rable. Also similarly, a formulation with the RFV inequalities that is a better formulation than the
LP relaxation of the FCF model could be obtained by adding constraints x(S ′, S) ≥ y(S∩Fl)

vl
(4.33)

when |S ∩ Fl| ≤ nl − vl, ∀l ∈ L to the RFV model.
Finally, we must relate the LP relaxation of the CC model to the LP relaxation of the compact

models. We start by relating the LP relaxation of the CC model to the LP relaxation of the NCF
model as this relationship will help us to establish all the other ones.

Proposition 19. VLP (NCF) = VLP (CC).

Proof. Consider the following polytopes:

• PNCF = {(x, y, z) ∈ R|A|+|N |+|N |×|A| : satisfy the equation system (4.2)− (4.5),
(4.19)− (4.21), (4.23), (4.25), (4.36) and (4.37)}

• PCC = {(x, y) ∈ R|A|+|N | : satisfy the equation system (4.2)− (4.5), (4.28), (4.36) and
(4.37)}

Proving the result stated in Proposition 19 is equivalent to proving that projx,yPNCF = PCC .
More precisely, we need to prove that constraints (4.19)-(4.21), (4.23) and (4.25) from the NCF
model projected onto the subspace of the x and the y variables are the CC inequalities (4.28).

Constraints (4.19)-(4.21) from the NCFmodel may be seen as |N | different flows from the depot
to each node k ∈ N . Consider a particular node k ∈ N . We wish to send yk units of flow from
the depot to node k in a capacitated network in which the lower and the upper capacities of the
arc (i, j) ∈ A are 0 and xij , respectively, which is stated in constraints (4.23) and (4.25). From
the max-flow/min-cut theorem (Theorem 3), presented in Section 2.5.3, we know that yk units of
flow are sent from the depot to node k if and only if every cut-set separating the depot from k has a
capacity of at least yk, which is mathematically expressed by the CC inequalities (4.28) of the CC
model.

By using the result of the previous proposition and the one of Proposition 15, which states that
the LP relaxation of the NCF model is not comparable to the LP relaxation of the SCF and the LP
relaxation of the FCF models, we can deduce Proposition 20.

66

CHAPTER 4. MATHEMATICAL FORMULATIONS

Proposition 20. The LP relaxation of the CC model is not comparable to the LP relaxation of the
SCF model and to the LP relaxation of the FCF model.

Additionally, from Proposition 19 and from the fact that the LP relaxation of the NCF+ model
is a better formulation than the LP relaxation of the NCF model, which is stated in Proposition
16, we can conclude that the LP relaxation of the NCF+ model is a better formulation than the LP
relaxation of the CC model, which is stated in Proposition 21.

Proposition 21. VLP (CC) ≤ VLP (NCF+).

4.3.3 Comparing the non-compact models

In this section we establish the relationships between the non-compact models, which include the
CC model presented in Section 4.2.2.1, the RV model presented in Section 4.2.2.2 and the RFV
model presented in Section 4.2.2.3.

Before comparing the RV and the RFV models, we define the sets:

SV = {S ⊆ N : |S| ≥ |N | − V + 1}

SFV = {S ⊆ N : ∃l ∈ L : |S ∩ Fl| ≥ nl − vl + 1},

that is, intuitively, the set SV is the set of sets S ⊆ N in which the RV inequalities are defined while
the set SFV is the set of sets S ⊆ N in which the RFV inequalities are defined.

Proposition 22. VLP (RV) ≤ VLP (RFV).

Proof. Proving that VLP (RV) ≤ VLP (RFV) is equivalent to proving that SV ⊆ SFV . Consider
S ∈ SV . Suppose that S /∈ SFV , that is, ∀l ∈ L, |S ∩ Fl| < nl − vl + 1 ⇐⇒ |S ∩ Fl| ≤ nl − vl.
Since ∪l∈LFl is a partition of the set N , we have:

|S| =
∑
l∈L

|S ∩ Fl| ≤
∑
l∈L

(nl − vl) =
∑
l∈L

nl −
∑
l∈L

vl = |N | − V,

which is a contradiction since S ∈ SV .

An example of a set S ∈ SFV that does not belong to SV is the one presented in Figure 4.3,
where we presented the motivation for the RFV model. Additionally, a consequence of Proposition
22 is that the RV inequalities are a particular case of the RFV inequalities. Nevertheless, the RV
inequalities may be applied to routing problems in which the feasible solutions are single elementary
circuits with a fixed number of nodes that are not Hamiltonian, while the RFV inequalities are
specific for the FTSP.

67

CHAPTER 4. MATHEMATICAL FORMULATIONS

We already verified that the LP relaxation of the NCF model is not comparable to the LP relax-
ation of the RV model and to the LP relaxation of the RFV model in Propositions 17 and 18, and
since, according to Proposition 19, the CC model is the projection of the NCF model onto the space
of the x and the y variables, we can deduce the following proposition

Proposition 23. The LP relaxation of the CC model is not comparable to the LP relaxation of the
RV model and to the LP relaxation of the RFV model.

Note that it is obvious that when a set S belongs to SFV , the RFV inequalities dominate the CC
inequalities, however, there are many subsets of nodes that do not belong to SFV .

Figure 4.9 shows a summary of the results stated throughout Section 4.3.

FCF

SCF

NCF+

RFV

RV

NCF CC

A B VLP (A) ≤ VLP (B)

A B VLP (A) = VLP (B)

A B LP relaxations of A and B not comparable

Figure 4.9: Known relationships between the proposed formulations.

4.4 Empirical comparison of the several formulations

The purpose of this section is to establish which are the best models in practice. The evaluation of
the different formulations takes into account two factors: (i) the LP relaxation value, and (ii) the
computational efficiency, that is, the time taken to obtain the LP relaxation value. As we only wish
to choose the best models, we only present computational results for a subset of small dimensioned
benchmark instances, with a number of nodes between 14 and 48. A thorough computational study
will be carried out further on in this dissertation, more specifically, in Chapter 5, where we present
a branch-and-cut algorithm for the FTSP. Additionally, we also present the setting with which these
results were obtained in Chapter 5, Section 5.4.

68

CHAPTER 4. MATHEMATICAL FORMULATIONS

Tables 4.2 and 4.3 show the LP relaxation values obtained using the compactmodels and the non-
compact ones, respectively. The referred tables are divided into several parts, each one dedicated
to a different model. Each of those parts has three columns, one with the LP relaxation value
(VLP), another with the percentage of gap between the LP relaxation value and the optimal value
(gap = 100× (optimal value - LP relaxation value)/optimal value) and the final one with the time,
in seconds, to obtain the LP relaxation value (ts). The tables also contain, in the last row, the average
of the results obtained.

To simplify the notation, the instance that is presented in Table A.1 as tspinstancename|N |+
1_L_1001_100i_2, with i ∈ {1, 2, 3}, will be designated by tspinstancename_i.

Table 4.2: Linear programming relaxation results obtained with the compact models.

SCF FCF NCF NCF+

Instance VLP gap ts VLP gap ts VLP gap ts VLP gap ts

burma_1 10.00 28.19% 0 11.36 18.46% 0 12.07 13.34% 0 12.72 8.70% 0
burma_2 23.25 9.38% 0 24.33 5.18% 0 25.66 0.00% 0 25.66 0.00% 0
burma_3 7.92 33.40% 0 10.22 13.98% 0 9.93 16.47% 0 10.51 11.57% 0

bayg_1 4767.12 10.83% 0 4982.57 6.80% 0 5273.32 1.36% 2 5273.32 1.36% 6
bayg_2 4837.19 16.47% 0 5100.93 11.92% 0 5754.64 0.63% 3 5754.64 0.63% 16
bayg_3 4945.35 10.80% 0 5127.44 7.52% 0 5544.33 0.00% 1 5544.33 0.00% 9

att_1 18224.40 23.06% 1 18957.50 19.96% 1 23686.00 0.00% 53 23686.00 0.00% 447
att_2 14288.90 30.67% 0 14862.20 27.89% 2 20609.10 0.00% 73 20609.10 0.00% 2519
att_3 7262.57 19.52% 0 7925.97 12.17% 2 8742.08 3.13% 40 9017.84 0.07% 1307

average 20.26% 0 13.76% 1 3.88% 19 2.48% 478

69

CHAPTER 4. MATHEMATICAL FORMULATIONS

Table 4.3: Linear programming relaxation results obtained with the non-compact models.

CC RV RFV
Instance VLP gap ts VLP gap ts VLP gap ts

burma_1 12.07 13.34% 0 12.57 9.79% 0 13.93 0.00% 0
burma_2 25.66 0.00% 0 25.02 2.50% 0 25.66 0.00% 0
burma_3 9.93 16.47% 0 8.39 29.44% 1 11.89 0.00% 0
bayg_1 5273.32 1.36% 0 4937.39 7.64% 10466 5316.85 0.54% 0
bayg_2 5754.64 0.63% 0 5349.98 7.62% 8575 5791.01 0.00% 0
bayg_3 5544.33 0.00% 0 5269.57 4.69% 6577 5544.33 0.00% 0
att_1 23686.00 0.00% 0 - - - 23580.50 0.45% 1
att_2 20609.10 0.00% 1 - - - 20609.10 0.00% 6
att_3 8742.08 3.13% 1 - - - 8760.03 2.93% 2

average 3.88% 0 10.32% 5087 0.44% 1

All the computational results obtained are consistent with the theoretical results stated in Section
4.3. By observing Table 4.2 we verify that, in general, the LP relaxation value obtained using the
SCF model is the lowest followed by the one obtained with the FCF model and the highest LP
relaxation value was obtained with the NCF+ model. The computational time increases with the
quality of the LP relaxation value. For instances att_3, the SCF model takes 0 seconds to provide
the LP relaxation value with a percentage of gap of 19.52%, whilst the NCF+ model finds the
optimal value while solving the LP relaxation, but it takes 1307 seconds. According to Proposition
15, the NCFmodel is not comparable to either the SCF or the FCF models, nonetheless it provides a
much lower average gap. More precisely, the LP relaxation values obtained with the NCFmodel are
always better than the ones obtained with the SCF model and with the FCF model for the instances
tested, except for instance burma_2. Regarding the NCF and the NCF+ models, the NCF+ provides
a better LP relaxation value than the NCF model in three instances but its computational time is
significantly higher. By observing instance att_2 we verify that both models obtain the optimal
value when solving the LP relaxation but the NCF+ model takes 2519 seconds while the NCF
model takes 73 seconds.

Consider now Table 4.3. As it was expected, due to Proposition 19, the LP values obtained with
the NCF and the CC models are the same. However, if we focus on the computational time we
verify that the CC model is much more efficient with an average time of 0 seconds compared to an
average time of 19 seconds. For this reason, it is preferable to use the CC model in practice instead
of the NCF model. Since the CC model is able to obtain significantly better LP relaxation values

70

CHAPTER 4. MATHEMATICAL FORMULATIONS

than the SCF model and the FCF model in a similar computational time, then it is also preferable
to use the CC model instead of the SCF and the FCF models.

Due to the computational time needed to obtain the LP relaxation values for instances bayg
using the RV model, we did not compute the LP relaxation values of instances att, which have a
bigger dimension. Even though the RV model is not comparable to the SCF model, it was able to
obtain a higher LP relaxation value in every instance tested. Regarding the computational time, the
RV model is much more time consuming than the SCF model as its average computational time
is of 5087 seconds, whereas the SCF model, as mentioned before, obtains the LP relaxation value
in an average of 0 seconds. The RV model and the FCF model are not comparable, however, the
FCF model only outperforms the RV model, in terms of quality of the LP relaxation value, in two
instances, namely instances burma_3 and bayg_1. Once again, in terms of computational time
the FCF model is more efficient. When we consider only the non-compact models, the RV model
is the worst non-compact model both in terms of average LP relaxation value and computational
time. Even though it is not comparable to the CC model, the RV model only provides a better LP
relaxation value than the CC model in one instance, namely instance burma_1, and it is always
significantly worse than the RFV model. From the previous arguments, we can conclude that there
is no advantage in using the RV model instead of the other non-compact models.

In spite of the fact that the only theoretical dominance that we were able to establish with the
RFVmodel was over the RVmodel, the RFVmodel was the model that provided the lowest average
gap. More precisely, the average gap obtained with the RFV model was 0.44% while the second
lowest gap obtained was 2.48%, which was obtained with the NCF+ model. The RFV model out-
performs the SCF, the FCF and the RV models, in terms of quality of the LP relaxation value, in
every instance. Regarding the computational time, the RFV model is competitive with the fastest
models that take an average of 0 seconds. If we compare the RFV model to the CC model, we
verify that the CC model only provides a better LP relaxation value in one instance, while the RFV
model is strictly better in five. Regarding the computational time, it is similar for both models.
The conclusions when we compare the RFV model to the NCF+ model are similar, except for the
fact that the NCF+ is much more time consuming as it took, on average, 478 seconds to obtain the
LP relaxation values, while the RFV model took an average of 1 second. Since the RFV model
provides a lower average gap than the NCF+ model in a more efficient fashion we decided not to
pursue the study of the NCF+ model any further.

Recall that, as we saw in Section 4.2.2.3, the RFV inequalities x(S ′, S) ≥ 1 (4.35) are only
defined if S ∈ SFV , and, in that case, they dominate the CC inequalities x(S ′, S) ≥ yk (4.28),
however, the CC inequalities are valid for every set S ⊆ N and, thus, they may always be applied.

71

CHAPTER 4. MATHEMATICAL FORMULATIONS

Therefore, we decided to combine both sets of inequalities, which is shown in Section 4.4.1.

4.4.1 Combining the CC inequalities and the RFV inequalities

Since both the CC inequalities and the RFV inequalities may be used as subtour elimination con-
straints, as we showed in Sections 4.2.2.1 and 4.2.2.3, respectively, we can create a formulation
for the FTSP in which the CC inequalities replace the generic subtour elimination constraints (4.6)
as the subtour elimination constraints and the RFV inequalities are valid inequalities added to im-
prove the quality of the LP relaxation value, or vice-versa. We denote this new formulation by the
CC+RFV model. From Proposition 23, we know that the CC model and the RFV model are not
comparable. Therefore, the LP relaxation of the CC+RFV model will be greater than or equal to
the LP relaxation of both the CC model and the RFV model.

Table 4.4 shows the LP relaxation values obtained with the CC+RFV model. The referred table
contains the LP relaxation value obtained with the CC+RFV model (VLP), the percentage of gap
between the LP relaxation value and the optimal value (gap), the computational time, in seconds,
to obtain the LP relaxation value (ts) and the average of the results obtained, in the last row.

Table 4.4: Linear programming relaxation results obtained with the CC+RFV model.

Instance VLP gap ts

burma_1 13.93 0.00% 0
burma_2 25.66 0.00% 1
burma_3 11.89 0.00% 0
bayg_1 5330.17 0.29% 0
bayg_2 5791.01 0.00% 1
bayg_3 5544.33 0.00% 0
att_1 23686.00 0.00% 1
att_2 20609.10 0.00% 1
att_3 9024.58 0.00% 1

average 0.03% 1

With the CC+RFV model we were able to obtain the optimal value of all the instances tested
when solving the LP relaxation, except for instance bayg_1. The CC+RFV model was able to
obtain significantly better results than the CC and the RFV models independently, which makes the
CC+RFV model a promising formulation to pursue. Regarding the computational time, it is of the
same magnitude as the computational time of the CC and the RFV models. Nevertheless, when

72

CHAPTER 4. MATHEMATICAL FORMULATIONS

addressing instances of higher dimension, the fact that we are adding two sets of constraints that are
in exponential number may slow down the resolution process. Therefore, we continue to consider
both the CC model and the RFV model.

Summary

Throughout this chapter we presented seven different formulations for the FTSP that can be divided
into compact formulations and non-compact formulations. There are four compact formulations:
the SCF model, presented in Section 4.2.1.1; the FCF model, presented in Section 4.2.1.2; the NCF
model and the NCF+ model, both presented in Section 4.2.1.3. We were able to establish that, in
what concerns the LP relaxation, the NCF+ model is a better formulation than all the other compact
models and that the NCF model is not comparable to the SCF and the FCF models. Despite the LP
relaxation of the NCF model not being comparable to the LP relaxation of the SCF model and to the
LP relaxation of the FCF model, in the empirical experiment presented in Section 4.4, it provided a
much lower average gap. Regarding the non-compact models, we developed three distinct models,
namely the CC model, presented in Section 4.2.2.1, the RV model, presented in Section 4.2.2.2
and the RFV model, presented in Section 4.2.2.3. From the theoretical comparison of Section 4.3,
we verified that the LP relaxation of the CC model is not comparable to the LP relaxation of the
RV model and to the LP relaxation of the RFV model and that the RV inequalities are a particular
case of the RFV inequalities. We also verified that the LP relaxation of the compact models is not
comparable to the LP relaxation of the non-compact models, except for the LP relaxations of the
NCF and the CC models, in which the latter is the projection of the former onto the subspace of the
x and the y variables. Even though the LP relaxation of the RFV model is not comparable to the LP
relaxation of the majority of the proposed models, it provided the lowest average gap. Therefore,
we believe that the most promising formulations to use in practice are the CC model and the RFV
model.

As the LP relaxations of the CCmodel and the RFVmodel are not comparable, we created a new
formulation in which one set of constraints is added as subtour elimination constraints and the other
is added as valid inequalities, which originated the CC+RFV model. The practical results obtained
with the CC+RFV model were very promising since this model was able to obtain near-optimal
solutions when solving the LP relaxation. More precisely, the CC+RFV model obtained an average
gap of 0.03% on the tested instances.

Even though the compact models proved to be less effective than the more promising models,
which are non-compact, in terms of LP relaxation value, they have characteristics that justify its
usage. As mentioned previously, in order to use the non-compact models we have to resort to a

73

CHAPTER 4. MATHEMATICAL FORMULATIONS

branch-and-cut algorithm, while the compact models may be used with a standard ILP solver.
Regarding the RV inequalities, the results show that they were not efficient in practice for the

FTSP instances tested. More precisely, the RV model is significantly more time consuming than
all the other proposed models. Nonetheless, these inequalities may be used as valid inequalities
to improve the LP relaxation value of any routing problem that has as feasible solutions single
elementary circuits with a fixed number of nodes and that are not Hamiltonian.

In Chapter 5 we present the branch-and-cut algorithm which was designed to be applied to the
CC model, the RFVmodel and the CC+RFVmodel, and, we also present a thorough computational
study in which we use themost efficient model, in terms of computational time, to obtain the optimal
value of the test instances presented in Section 3.4.

74

Chapter 5

The Branch-and-Cut Algorithm

The branch-and-cut (B&C) algorithm was introduced by Padberg and Rinaldi (1987, 1991) for the
TSP and since then it has been applied to a large number of integer linear programming problems
and, for many of them, the B&C algorithm is the state-of-the-art. In particular, B&C algorithms are
the state-of-the-art when solving large dimensioned instances of routing problems, mostly because
of the non-compact formulations for the subtour elimination constraints.

The purpose of this chapter is to present the B&C algorithm designed to solve the CC model,
presented in Section 4.2.2.1, the RFVmodel, presented in Section 4.2.2.3, and the CC+RFVmodel,
introduced in Section 4.4. In Section 5.1 we present the general outline of the B&C algorithm aswell
as some concepts related to the solver that we will use. In Section 5.2 we present the separation
algorithms for the CC and the RFV inequalities. A heuristic procedure to provide upper bounds
during the B&C algorithm is presented in Section 5.3 and we conclude, in Section 5.4, with the
computational experiment.

5.1 The branch-and-cut algorithm outline

Since the basic framework of the B&C algorithm was already presented in Section 2.3, we will only
present the polytopes that we consider when solving the non-compact models. The B&C algorithm
was designed to solve the CCmodel and the RFVmodel. As the algorithm is similar for both models
we consider the particular case of the CCmodel for this explanation. LetPCC = {(x, y) ∈ R|A|+|N | :

satisfy the equation system (4.2)-(4.5), (4.28), (4.36) and (4.37)} be the polytope associated with
the CC model. By using the B&C algorithm we wish to solve the following ILP problem:

min{cx : (x, y) ∈ PCC ∩ {0, 1}|A|+|N |}.

As the CC inequalities (4.28) are in exponential number, we start the B&Cprocedure considering

75

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

the polytope without them, that is, P 0
CC = {(x, y) ∈ R|A|+|N | : satisfy the equation system (4.2)−

(4.5), (4.36) and (4.37)}, and then the CC inequalities are added by using the cutting plane algorithm
described in Algorithm 2.1 until we find a solution that belongs to the polytope PCC .

Nowadays, commercial solvers provide general purpose B&C algorithms, which use general
purpose cuts and heuristics, to solve ILP problems and that can be tailored by the user. In order
to implement the B&C algorithm described previously, we will use the built-in B&C algorithm
provided by the commercial solver CPLEX (see, e.g., IBM, 2014). More precisely, we use CPLEX
functions, called callback functions, which allow us to provide specific algorithms for the FTSP to
be incorporated in the built-in B&C algorithm. The callbacks used are:

• the user cut callback, which is used to implement separation algorithms for fractional solu-
tions;

• the lazy constraint callback, which is used to implement separation algorithms for integer
solutions; and

• the heuristic callback, which is used to implement heuristic algorithms to provide feasible
FTSP solutions during the B&C algorithm in an attempt to improve the upper bounds obtained
and, hopefully, help to decrease the number of B&C subproblems to solve.

5.2 The separation algorithms

In Chapter 4 we proposed several sets of inequalities that prevent subtours, namely the CC inequal-
ities in Section 4.2.2.1 and the RFV inequalities in Section 4.2.2.3. Throughout this section we
present the separation algorithms for the CC and the RFV inequalities. Moreover, for each set of
inequalities we propose heuristic separation algorithms that accelerate the separation process along
with a summary of computational results that support this statement. More precisely, in Section
5.2.1 we present the separation algorithms for the CC inequalities, in Section 5.2.2 we present the
separation algorithms for the RFV inequalities and, finally, in Section 5.2.2 we present a separation
algorithm that separates, simultaneously, the CC and the RFV inequalities.

5.2.1 Separating the CC inequalities

Given a fractional solution (x∗, y∗) that satisfies the equation system (4.2)-(4.5) presented in Section
4.1 wemust verify if it also satisfies the CC inequalities. Satisfying the CC inequalities is equivalent
to verifying if the optimal solution of the LP problem

ω = minS⊆N{x(S ′, S)− yk : k ∈ S}

76

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

is greater than or equal to zero. If ω ≥ 0, then the solution (x∗, y∗) satisfies all the CC inequalities
and, consequently, it is feasible for the LP relaxation of the CC model. However, if ω < 0 there is
a subset S and a node k ∈ S such that x(S ′, S) < yk.

Consider a capacitated graph G∗ = (0 ∪ N,A) where the capacities of the arc (i, j) ∈ A are
lij = 0 and uij = x∗

ij . For a node k ∈ N we must verify if ω ≥ 0. From the Max-flow/Min-cut
Theorem 3 of Section 2.5.3, we know that the value of the max-flow between the depot and k is
equal to the value of the min-cut that separates the depot from k. Therefore, if the value of the
maximum flow between the depot and k is greater than or equal to y∗k, the minimum cut also has
a value greater than or equal to y∗k. Consequently, all cuts that separate the depot from k have a
value greater than or equal to y∗k and there is no violated CC inequality. Thus, if we compute the
maximum flow from the depot to every node k ∈ N such that y∗k > 0 it is possible to determine
whether all the CC inequalities are satisfied or not and, if not, it is possible to find a violated CC
inequality. Algorithm 5.1 shows the pseudocode for the separation algorithm for the CC inequalities
when (x∗, y∗) is a fractional solution.

Algorithm 5.1 Separation algorithm for the CC inequalities.
Require: A fractional solution (x∗, y∗) that satisfies the equation system (4.2)-(4.5).
1: Create a new complete graph G∗ = (0 ∪N,A).
2: for all (i, j) ∈ A do
3: Set its capacities to lij = 0 and uij = x∗

ij .
4: end for
5: for all k ∈ N such that y∗k > 0 do
6: Determine the max-flow between 0 and k in G∗. Let ν be the value of the max-flow.
7: if ν < y∗k then
8: Determine the sets S and S ′ = (N ∪ 0) \ S such that S ′ is the set of nodes reachable from

node 0 in the residual network associated with the max-flow.
9: Add the violated inequality x(S ′, S) ≥ yk.
10: end if
11: end for

The Separation Algorithm 5.1 may be used to separate the CC inequalities and, consequently,
ensures that the solution obtained is feasible for the FTSP. However, there are several improve-
ments that can be done in order to achieve a more efficient separation algorithm. When we use
the separation algorithm presented previously, we usually find more than one violated inequality
to be added. On the one hand, if we add too many inequalities to the LP problem, the LP problem
becomes very time consuming to solve. On the other hand, if we add too few inequalities the sep-

77

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

aration algorithm has to be performed more times. Thus, we set a limit to the number of violated
inequalities added before we re-solve the B&C subproblem. More precisely, the separation algo-
rithm stops either when it computes the maximum flow from the depot to every node k such that
y∗k > 0 or when the maximum number of added violated inequalities is reached. Due to the limit in
the number of added violated inequalities, instead of computing the maximum flow from the depot
to each node using the lexicographic ordering of the nodes in Step 5, we use a permutation of the
nodes generated randomly every time we execute the separation algorithm. This is done to avoid
computing the maximum flow from the depot to the same target nodes. Letmax_number_cuts be
the maximum number of violated cuts added before re-solving the linear programming relaxation
and π(N) be a permutation of the set N . The pseudocode presented in Algorithm 5.2 corresponds
to the improved separation algorithm for the CC inequalities used in the B&C algorithm.

Algorithm 5.2 Improved separation algorithm for the CC inequalities.
Require: A fractional solution (x∗, y∗) that satisfies the equation system (4.2)-(4.5).
1: Create a new complete graph G∗ = (0 ∪N,A).
2: for all (i, j) ∈ A do
3: Set its capacities to lij = 0 and uij = x∗

ij .
4: end for
5: Set number_added_cuts = 0 and compute π(N).
6: for all k ∈ π(N) such that y∗k > 0 do
7: Determine the max-flow between 0 and k in G∗. Let ν be the value of the max-flow.
8: if ν < y∗k then
9: Determine the sets S and S ′ = (N ∪ 0) \ S such that S ′ is the set of nodes reachable from

node 0 in the residual network associated with the max-flow.
10: Add the violated inequality x(S ′, S) ≥ yk.
11: number_added_cuts = number_added_cuts+ 1.
12: if number_added_cuts ≥ max_number_cuts then
13: BREAK.
14: end if
15: end if
16: end for

78

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Heuristic separation of the CC inequalities

In order to accelerate the separation of the CC inequalities, in the case of fractional solutions, we
developed a heuristic separation based on a standard heuristic separation for the TSP (see, e.g.,
Grötschel and Holland, 1991; Fischetti et al., 1997). By using this heuristic separation we were
able to obtain a significant decrease in the computational time needed to obtain the LP relaxation
value of the CC model.

The idea behind this heuristic separation is to add CC inequalities that are violated by the con-
nected components induced by the fractional solution (x∗, y∗). We consider that nodes i and j

belong to the same connected component if x∗
ij > 0. Note that, according to this definition, the

value of the variables x associated with arcs which have the initial and the final nodes in different
components is zero. Let {C0, C1, . . . , Cp} be the set of connected components associated with so-
lution (x∗, y∗) and S = {i ∈ N : y∗i = 0} be the set of non-visited nodes in the same solution. We
assume that the connected component C0 is the one that contains the depot (node 0). With these
p+ 1 components, we will add a maximum of p+ 1 violated inequalities determined heuristically.
Recall that the set S ′ always includes the depot, therefore, in the first violated inequality, we define
S ′ = C0 and S = C1 ∪ . . . ∪Cp ∪ S and for the remaining p violated inequalities sets S ′ and S are
defined as follows: for the kth-inequality S = Ck and S ′ = (0 ∪N) \ S, k = 1, . . . , p. Notice that
for every S ′ and S defined previously: (i) 0 ∈ S ′, (ii) set S contains visited nodes (i.e., nodes k with
y∗k > 0), and (iii) x∗(S ′, S) = 0, therefore all these sets originate violated CC inequalities. All there
is left now is to choose the right-hand side of these constraints. As x∗(S ′, S) = 0, choosing for the
right-hand side any node i ∈ S such that y∗i > 0 originates a violated CC inequality. However, we
decided to choose the node k ∈ S that maximizes the difference x∗(S ′, S)−y∗k, which is equivalent
to choosing the node with the highest y∗ value. The pseudocode for the heuristic separation of the
CC inequalities is presented in Algorithm 5.3. Once again, we decided to put a limit to the number
of added violated inequalities. Therefore, the heuristic separation algorithm stops either when it
has separated all the CC inequalities induced by the connected components or when the maximum
number of added cuts was reached.

In the user cut callback for the CC inequalities, we start by applying the heuristic separation and
in the end, when the heuristic procedure is not able to provide new violated inequalities, we use the
exact separation algorithm, presented in Algorithm 5.2, either to find more violated CC inequalities
or to conclude that there are no more violated CC inequalities. With this procedure we ensure that
the solution obtained is the optimal solution for LP relaxation of the CC model.

Table 5.1 shows the impact of using the heuristic separation in terms of computational time.
In Table 5.1 it is possible to see the average gap obtained (gap), the average computational time,

79

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Algorithm 5.3 Heuristic separation of the CC inequalities.
Require: A fractional solution (x∗, y∗) that satisfies the equation system (4.2)-(4.5).
1: Determine the connected components {C0, . . . , Cp} and the set of non-visited nodes S induced

by the fractional solution.
2: iter = 0.
3: while iter < p+ 1 do
4: if iter = 0 then
5: Set S ′ = C0 and S = C1 ∪ C2 ∪ . . . ∪ Cp ∪ S.
6: else
7: Set S = Citer and S ′ = (N ∪ 0) \ S.
8: end if
9: Determine k ∈ S such that y∗k ≥ y∗i ,∀i ∈ S.
10: Add the violated inequality x(S ′, S) ≥ yk.
11: iter = iter + 1.
12: end while

in seconds, to obtain the LP relaxation value (ts) and the average number of added violated CC
inequalities (#CC) when we use the heuristic separation of the CC inequalities or when we only
use the exact one. The detailed results obtained performing only the exact separation are available
in appendix, Table B.1, and the ones obtained with the heuristic separation are in Section 5.4.

Table 5.1: Heuristic separation CC inequalities.

gap ts #CC

Without heuristic separation 3.17% 66 1407

With heuristic separation 3.17% 6 591

Average obtained with benchmark instances’ burma, bayg, att and bier.

Table 5.1 shows that, by using the heuristic separation, the computational time decreases by a
factor of ten. This reduction in the computational time is implied by the reduction in the number of
added violated inequalities.

Separation algorithm for integer solutions

When the solution (x∗, y∗) is integer, that is, when it satisfies constraints (4.2)-(4.5),(4.7)-(4.8) pre-
sented in Section 4.1, we use the separation algorithm described inAlgorithm 5.2withmax_number_cuts =

80

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

1, that is, we only add one violated CC inequality before re-solving the LP problem.

5.2.2 Separating the RFV inequalities

Searching for violated RFV inequalities is similar to searching for violated CC inequalities, except
for the fact that there is an additional constraint in the cardinality of S. In order to obtain a violated
RFV inequality, the cardinality of S∩Fl, for some family l ∈ L, has to be at least nl−vl+1. Thus,
if we fix nl − vl +1 nodes from family l to S and determine the minimum cut [S ′, S] we know that
the number of nodes in S will be at least nl − vl + 1 and, consequently, S ∈ SFV . Hence, in order
to determine all violated inequalities we need to compute, for each family l ∈ L, all sets of nodes
from that family with cardinality nl − vl + 1.

Let (x∗, y∗) be a fractional solution that satisfies the equation system (4.2)-(4.5) from Section
4.1 and we define

S=
l = {S ⊆ Fl : |S| = nl − vl + 1} ∀l ∈ L.

Consider a capacitated graphG∗ = ((0∪N)∪ t, A∪At) in which node t is a fictitious node and
At is the set of arcs fromN to t, that is, At = {(i, t) : i ∈ N}. The capacities of the arc (i, j) ∈ A

are lij = 0 and uij = x∗
ij and currently we consider that the capacities of the arc (i, t) ∈ At are both

0 (lit = uit = 0). The arc set At allows us to fix the subsets Sl of Fl with a cardinality equal to
nl−vl+1 to S by setting the upper capacities to infinity of the arcs in (i, t) ∈ At with i ∈ Sl. After
creating this modified graph, we just need to compute the maximum flow from the depot to t in
order to separate the RFV inequalities. More precisely, if the value of the max-flow from the depot
to t is greater than or equal to 1, then all the RFV inequalities are satisfied. Otherwise, there are
violated RFV inequalities. The pseudocode for the separation algorithm for the RFV inequalities is
available in Algorithm 5.4.

Analogously towhat was done for the CC inequalities we also set a limit to themaximumnumber
of added violated RFV inequalities per iteration. As the adaptation of the algorithm is similar to
what was done for the CC inequalities, see Algorithm 5.2, we decided to omit it.

Heuristic separation of the RFV inequalities

A heuristic algorithm to accelerate the separation of the RFV inequalities when the solution (x∗, y∗)

is a fractional solution can be devised by using a procedure similar to the heuristic separation al-
gorithm for the CC inequalities. The only difference is that, after determining sets S and S ′, it still
has to be verified whether S ∈ SFV or not and we only add a violated inequality if S ∈ SFV . Once

81

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Algorithm 5.4 Separation algorithm for the RFV inequalities.
Require: A fractional solution (x∗, y∗) that satisfies the equation system (4.2)-(4.5).
1: Create a new complete graph G∗ = (0 ∪N ∪ t, A ∪ At).
2: for all (i, j) ∈ A do
3: Set its capacities to lij = 0 and uij = x∗

ij .
4: end for
5: for all l ∈ L do
6: Compute all the sets in S=

l (composed of subsets of Fl).
7: while There are sets Sl ∈ S=

l to consider do
8: for all (i, t) ∈ At do
9: Set its capacities to lij = uij = 0.
10: end for
11: Consider Sl ∈ S=

l and set the capacities of the arcs (i, t) ∈ At, with i ∈ Sl, to uit = +∞.
12: Determine the max-flow between 0 and t in G∗. Let ν be the value of the max-flow.
13: if ν < 1 then
14: Determine the sets S and S ′ = (N ∪ 0) \ S such that S ′ is the set of nodes reachable

from node 0 in the residual network associated with the max-flow.
15: Add the violated inequality x(S ′, S) ≥ 1.
16: end if
17: end while
18: end for

82

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

again, we set a limit to the number of added violated inequalities before re-solving the LP problem.
The pseudocode for the heuristic separation of the RFV inequalities is presented in Algorithm 5.5.

Algorithm 5.5 Heuristic separation of the RFV inequalities.
Require: A fractional solution (x∗, y∗) that satisfies the equation system (4.2)-(4.5).
1: Determine the connected components {C0, . . . , Cp} and the set of non-visited nodes S induced

by the fractional solution.
2: iter = 0.
3: while iter < p+ 1 do
4: if iter = 0 then
5: Set S ′ = C0 and S = C1 ∪ C2 ∪ . . . ∪ Cp ∪ S.
6: else
7: Set S = Citer and S ′ = (N ∪ 0) \ S.
8: end if
9: if S ∈ SFV then
10: Add the violated inequality x(S ′, S) ≥ 1.
11: end if
12: iter = iter + 1.
13: end while

To ensure that we obtain a feasible solution for the LP relaxation of the RFV model when it is
not possible to find more violated inequalities by using the heuristic separation procedure, we use
the exact separation algorithm presented in Algorithm 5.4 and, thus, we guarantee that the solution
obtained is the optimal solution for the LP relaxation of the B&C subproblem that we are addressing.

Table 5.2 shows the impact of using the heuristic separation for the RFV inequalities in terms
of computational time. In Table 5.2 it is possible to see the average gap obtained (gap), the average
computational time, in seconds, to obtain the LP relaxation value (ts) and the average number of
added violated RFV inequalities (#RFV) when we use the heuristic separation or when we only
use the exact one. The detailed results obtained without performing the heuristic separation are
available in appendix, Table B.1, and the ones obtained with the heuristic separation are in Section
5.4.

83

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Table 5.2: Heuristic separation RFV inequalities.

gap ts #RFV

Without heuristic separation 0.71% 10998 15645

With heuristic separation 0.71% 1442 7052

Average obtained with benchmark instances’ burma, bayg, att and bier.

Similarly to what happened in the case of the CC inequalities, using the heuristic separation
significantly accelerates the separation process. In fact, the heuristic separation reduces the com-
putational time by more than seven times.

Separation algorithm for integer solutions

When (x∗, y∗) is integer, that is, satisfies the equation system (4.2)-(4.5),(4.7)-(4.8) of the generic
model presented in Section 4.1, the separation algorithm is different. Instead of searching the set
S=
l we take into account the fact that the solution contains subtours. We start by determining all
the subtours that are induced by the solution (x∗, y∗). Let T∗ be the set of all subtours in (x∗, y∗)

and S = {i ∈ N : y∗i = 0} be the set of non-visited nodes in the referred solution. By using the
same argument as in the proof of Proposition 13, which is there are no arcs used between different
subtours, it is possible to construct several sets S that violate RFV inequalities by ensuring that S
contains the nodes in S and the nodes from, at least, one subtour in T∗. The pseudocode for the lazy
constraint callback used for the RFV inequalities is available in Algorithm 5.6.

Algorithm 5.6 Separation algorithm for the RFV inequalities for integer solutions.
Require: An integer solution (x∗, y∗) that satisfies the equation system (4.2)-(4.5).
1: Determine T∗ and S. Let Ti be the i-th subtour in T∗.
2: Set k = 1.
3: while k ≤ |T∗| do
4: Set S = ∪|T∗|

i=kTi ∪ S and S ′ = (N ∪ 0) \ S.
5: Add the violated inequality x(S ′, S) ≥ 1.
6: k = k + 1.
7: end while

84

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

5.2.3 Separating both the CC and the RFV inequalities

In order to devise a separation procedure for the CC+RFV model, we will use the exact separation
algorithms for the CC and the RFV inequalities presented previously. Since the CC inequalities are
faster to separate, observe the computational times in Tables 5.1 and 5.2, we start by performing
the separation algorithm for the CC inequalities and then we perform the separation algorithm for
the RFV inequalities. For the same reasons stated previously, we decided to limit the maximum
number of added violated inequalities per iteration. When the solution obtained is integer, we apply
the same separation algorithm used for the CC inequalities in the integer case, that is, Algorithm
5.2 withmax_number_cuts = 1.

The heuristic separation for the CC+RFV model could simply be the heuristic separation algo-
rithm for the CC inequalities and for the RFV inequalities applied sequentially. However, it is pos-
sible to separate both inequalities simultaneously. Consider the heuristic separation presented for
the CC inequalities in Algorithm 5.3. Every time a set S is computed we verify whether S ∈ SFV or
not. If it is, we add an RFV inequality, otherwise we add a CC inequality. As mentioned in Section
4.3.3, the RFV inequalities dominate the CC inequalities. Therefore, when possible, it is preferable
to add an RFV inequality instead of a CC inequality. The pseudocode for the heuristic separation
algorithm for both the CC and the RFV inequalities is available in Algorithm 5.7.

Once again, to ensure that the solution obtained is feasible for the LP relaxation of the CC+RFV
model, when it is not possible to find more violated inequalities by using the heuristic procedure,
we apply the exact separation algorithm for the CC+RFVmodel guaranteeing that the LP relaxation
is solved optimally.

Table 5.3 shows the impact of using the heuristic separation in the CC+RFV model in terms of
computational time. In Table 5.3 it is possible to see the average gap obtained (gap), the average
computational time, in seconds, to obtain the LP relaxation value (ts) and the average number of
added violated CC (#CC) and of RFV (#RFV) inequalities when we use the heuristic separation,
described in Algorithm 5.7, or whenwe only use the exact ones, described in Algorithms 5.2 and 5.4.
The detailed results obtained without performing the heuristic separation are available in appendix,
Table B.2, and the ones obtained with the heuristic separation are available in Section 5.4.

85

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Algorithm 5.7 Heuristic separation algorithm of both CC and RFV inequalities.
Require: A fractional solution (x∗, y∗) that satisfies the equation system (4.2)-(4.5).
1: Determine the connected components {C0, . . . , Cp} and the set of non-visited nodes S induced

by the fractional solution.
2: Set iter = 0.
3: while iter < p+ 1 do
4: if iter = 0 then
5: Set S ′ = C0 and S = C1 ∪ C2 ∪ . . . ∪ Cp ∪ S.
6: else
7: Set S = Citer and S ′ = (N ∪ 0) \ S.
8: end if
9: if S ∈ SFV then
10: Add the violated inequality x(S ′, S) ≥ 1.
11: iter = iter + 1.
12: else
13: Determine k ∈ S such that y∗k ≥ y∗i ,∀i ∈ S.
14: Add the violated inequality x(S ′, S) ≥ yk.
15: iter = iter + 1.
16: end if
17: end while

86

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Table 5.3: Heuristic separation for both CC and RFV inequalities.

gap ts #CC #RFV

Without heuristic separation 0.15% 161 1012 183

With heuristic separation 0.15% 42 634 137

Average obtained with benchmark instances’ burma, bayg, att and bier.

Similarly to what happened with the previous heuristic separations, using the heuristic separa-
tion in the CC+RFV model leads to a significant decrease in the computational time. Note that the
number of added CC inequalities is considerably higher than the number of added RFV inequalities
due to the order by which the inequalities are separated.

5.2.3.1 Separating only some RFV inequalities

The calculation of the set S=
l is very time consuming, as Table 5.2 shows. Therefore, the importance

of the exact separation of the RFV is purely theoretical, since it could hardly be used to obtain the
optimal values of the test instances within a reasonable computational time. Even in the case of the
CC+RFV model, the RFV inequalities make the separation much more time consuming. In fact,
for the smaller benchmark instances, the CC model takes an average of 6 seconds to obtain the LP
relaxation value whilst the CC+RFV model takes an average of 42 seconds. Therefore, we decided
to experiment using separation algorithms for the CC+RFV model that only separate some RFV
inequalities. To clarify, we propose a new approach in which the RFV inequalities are added in a
heuristic manner, in the sense that, it is not ensured that all RFV inequalities are satisfied. In the
previous conditions, the RFV inequalities are added as valid inequalities for the FTSP and the CC
inequalities are the subtour eliminations constraints. We developed two separation algorithms for
the case in which the RFV inequalities are added in a heuristic manner: the y-separation algorithm
and 1-separation algorithm. The former is a straightforward adaptation of the separation algorithm
for the CC inequalities while the latter is an adaptation, which on average, finds more violated RFV
inequalities. Summarizing, we have three distinct separation algorithms for the CC+RFV model,
an exact one, which ensures that there are no more violated CC and RFV inequalities and two
separation algorithms, the y-separation algorithm and the 1-separation algorithm, in which the RFV
inequalities are separated in a heuristic manner. For simplification purposes, when the CC+RFV
model is solved with the exact separation algorithm we call it the CC+RFV model and, when the
CC+RFV model is solved with the y-separation algorithm and with the 1-separation algorithm, we
will call it the y-separation and the 1-separation, respectively.

87

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

The y-separation algorithm is similar to the separation algorithm for the CC inequalities pre-
sented in Algorithm 5.2, with the difference that every time the set S is determined we check
whether S ∈ SFV or not. If S ∈ SFV the violated inequality found is in the conditions of the
RFV inequalities and so we add an RFV inequality, otherwise we add the violated CC inequality.
Algorithm 5.8 shows the pseudocode for the y-separation algorithm.

Algorithm 5.8 The y-separation algorithm.
Require: A fractional solution (x∗, y∗) that satisfies the equation system (4.2)-(4.5).
1: Create a new complete graph G∗ = (0 ∪N,A).
2: for all (i, j) ∈ A do
3: Set its capacities to lij = 0 and uij = x∗

ij .
4: end for
5: for all k ∈ N such that y∗k > 0 do
6: Determine the max-flow between 0 and k in G∗. Let ν be the value of the max-flow.
7: if ν < y∗k then
8: Determine the sets S and S ′ = (N ∪ 0) \ S such that S ′ is the set of nodes reachable from

node 0 in the residual network associated with the max-flow.
9: if S ∈ SFV then
10: Add the violated inequality x(S ′, S) ≥ 1.
11: else
12: Add the violated inequality x(S ′, S) ≥ yk.
13: end if
14: end if
15: end for

The 1-separation algorithm is also based on max-flow/min-cut computations. We start by com-
puting the maximum flow from the depot to every node k ∈ N . Let ν be the value of the maximum
flow from the depot to node k. If ν ≥ 1 there is neither a violated RFV inequality nor a violated
CC inequality. Otherwise, we start by verifying if S ∈ SFV and if it is we add an RFV inequality.
If S /∈ SFV we check if there is a violated CC inequality, that is, if ν < y∗k. Once again, if that is the
case we add the violated CC inequality. The pseudocode for the 1-separation algorithm is available
in Algorithm 5.9.

Note that by using the y-separation algorithm described in Algorithm 5.8 and the 1-separation
algorithm presented in Algorithm 5.9 we ensure that all the CC inequalities are separated. There-
fore, these separation algorithms can be used in the B&C algorithm to solve the FTSP. To better
understand the difference between the y-separation and the 1-separation, consider the solution pre-

88

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Algorithm 5.9 The 1-separation algorithm.
Require: A fractional solution (x∗, y∗) that satisfies the equation system (4.2)-(4.5).
1: Create a new complete digraph G∗ = (0 ∪N,A).
2: for all (i, j) ∈ A do
3: Set its capacities to lij = 0 and uij = x∗

ij .
4: end for
5: for all k ∈ N such that y∗k > 0 do
6: Determine the max-flow between 0 and k in G∗. Let ν be the value of the max-flow.
7: if ν < 1 then
8: Determine the sets S and S ′ = (N ∪ 0) \ S such that S ′ is the set of nodes reachable from

node 0 in the residual network associated with the max-flow.
9: if S ∈ SFV then
10: Add the violated inequality x(S ′, S) ≥ 1.
11: end if
12: else if ν < y∗k then
13: Determine the sets S and S ′ = (N ∪ 0) \ S such that S ′ is the set of nodes reachable from

node 0 in the residual network associated with the max-flow.
14: Add the violated inequality x(S ′, S) ≥ yk.
15: end if
16: end for

89

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

sented in Figure 4.7, which corresponds to a feasible solution for the LP relaxation of the NCF+

model considering the FTSP instance presented in Figure 3.1. More precisely, consider the solution
in terms of the x variables in Figure 4.7a. Recall that a feasible solution for the LP relaxation of
the NCF+ model is also feasible for the LP relaxation of the NCF model and, consequently, for the
LP relaxation of the CC model. If we compute the maximum-flow between the depot and node 3
in a capacitated network in which the lower capacity of the arc (i, j) is zero and the upper capacity
is given by the value of the variable xij , we verify that the maximum-flow has a value of 0.50 and
as expected, there is no violated CC inequality in this case. Nevertheless, the set S that originates
the minimum cut, which has a capacity of 0.50, is S = {2, 3, 4}. Observe that S ∈ SFV , thus, it
originates a violated RFV inequality x(S ′, S) ≥ 1. Consequently, with the 1-separation algorithm
we would be able to find this violated RFV inequality, as we compare the value of the minimum
cut to 1, whereas by using the y-separation algorithm we could not as the minimum cut is equal to
y.

Observe that we cannot establish any relationship between the LP relaxation value obtained
with the y-separation algorithm and the one obtained with the 1-separation algorithm due to the
RFV inequalities being separated in a heuristic manner. Nevertheless, the y- and the 1-separation
algorithms provide a lower LP relaxation value than the CC+RFVmodel and a higher LP relaxation
value than the CC model. Additionally, we can also state that the LP relaxation of the y- and the
1-separation algorithms are not comparable to the LP relaxation of the RFV model.

Similarly to what we did with the separation algorithm for the CC inequalities, we limited to
the total number of added violated inequalities per iteration and used a permutation of the nodes.
Additionally, when the solution (x∗, y∗) is integer we apply the same separation algorithm that
we applied when separating CC inequalities. Regarding the heuristic separation, we use the one
presented in Algorithm 5.7.

Table 5.4 compares the LP relaxation value obtained with the CC+RFV model to the LP relax-
ation values obtained with the y-separation algorithm and the 1-separation algorithm. In Table 5.4
it is possible to see the average gap obtained (gap), the average computational time, in seconds, to
obtain the LP relaxation value (ts) and the average number of added violated CC inequalities (#CC)
and RFV inequalities (#RFV). The detailed results are available in Section 5.4.

90

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Table 5.4: Separation algorithms for the CC+RFV model.

gap ts #CC #RFV

CC+RFV 0.15% 42 634 137

y-separation algorithm 0.17% 7 152 472

1-separation algorithm 0.17% 9 144 450

Average obtained with benchmark instances’ burma, bayg, att and bier.

The difference in the average gap between separating all the RFV inequalities with the exact
separation algorithm and separating them with the y-separation algorithm and the 1-separation al-
gorithm is not meaningful, however the computational time decreases significantly. In fact, using
the y-separation algorithm leads to a decrease in computational time of approximately 83%. Even
though an average of 42 seconds seems a reasonable computational time, when we tried to obtain
the LP relaxation value of instances a with the CC+RFV model, which have 280 nodes, we were
unable to do so after 48 hours. When comparing the y-separation algorithm and the 1-separation
algorithm to the CC model we verify that adding the RFV inequalities as valid inequalities signif-
icantly improves the LP relaxation value. By observing Table 5.1, we verify that the average gap
obtained with the CC model was 3.17%. Concerning the computational time, the usage of the RFV
inequalities as valid inequalities originates similar computational times as the CCmodel. More pre-
cisely, the CC model takes 6 seconds while the y-separation and 1-separations take 7 and 9 seconds,
respectively. Finally, comparing the y-separation to the 1-separation, we verify that the average gap
and the average time are similar.

Summary

Throughout this section we presented separation algorithms for sets of inequalities associated with
the models: (i) CC model; (ii) RFV model; and (iii) CC+RFV model. Additionally, we presented
heuristic separation algorithms for each of these sets of inequalities, which made the separation pro-
cess much more efficient. Note that, even though we presented the separation algorithms consid-
ering a point that satisfies constraints (4.2)-(4.5) from the generic formulation presented in Section
4.1, these separation algorithms may be used to separate any point.

From the summary of results presented, it seems that all models that require the separation
of all RFV inequalities are much worse in terms of computational time, therefore we proposed two
different separation algorithms, the y-separation algorithm and the 1-separation algorithm, that only
separate some RFV inequalities. Nevertheless, by applying these separation algorithms we ensure

91

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

that a feasible solution for the FTSP is obtained as they guarantee that all the CC inequalities are
separated.

As we saw in Section 4.4, the RV model is not competitive, both in terms of LP relaxation
value and of computational time, with the CC, the RFV and the CC+RFV models. In order to
obtain the results that allowed us to do that comparison, we had to devise an exact and a heuristic
separation algorithm for the RV inequalities, which we decided to omit as they are very similar to
the corresponding separation algorithms for the RFV inequalities. In the exact algorithm for the RV
inequalities, instead of fixing nl − vl + 1, of some family l ∈ L, to S, we fix |N | − V + 1 nodes of
N to S and, in the heuristic separation, every time we compute a set S we need to verify whether
S ∈ SV or not.

5.3 Heuristic callback

During the B&C algorithm, as we explained in Section 2.3, whenever we find a feasible solution for
the ILP problem, since we are addressing aminimization problem, its value provides an upper bound
for the optimal value of the ILP problem. This upper bound allow us to prune B&C subproblems
which have an LP relaxation value higher than the upper bound. Therefore, we devised a heuristic
algorithm in an attempt to obtain better feasible solutions than the ones provided by the general
purpose heuristics of CPLEX, that is, feasible solutions with a lower cost. As the heuristic algorithm
is executed several times during the B&C algorithm, efficiency is of the utmost importance. Thus,
we decided to use the basic heuristics presented in Section 3.3.

In the heuristic callback we used two constructive heuristics which were presented in Section
3.3.2, namely the nearest neighbor and the random heuristic. However, the nearest neighbor heuris-
tic is applied considering a modified cost matrix in order to take into account the solution of the
B&C subproblem that we are currently addressing. Let (x∗, y∗) be the solution of the current B&C
subproblem. The arc costs are modified in such a way that the arcs that have a higher value of
x∗ are more likely to be on the solution constructed. The cost of the arc (i, j) ∈ A is set to
c∗ij = cij × (1 − x∗

ij). Note that, if x∗
ij = 1, then c∗ij = 0 and, since the nearest neighbor is a

greedy heuristic, the arc (i, j) becomes attractive to be selected for the heuristic solution.
After obtaining a feasible solution for the FTSPwe apply a local search procedure which consists

in searching the neighborhoods NI , NO and 2-opt presented in Section 3.3. The pseudocode for
the local search procedure is given in Algorithm 5.10.

All there is left now is to combine the several subroutines and create the heuristic callback used
during the B&C algorithm. It is possible to execute the heuristic callback in every B&C subproblem,

92

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Algorithm 5.10 The local search procedure used in the heuristic callback.
Require: A feasible solution s for the FTSP
1: Search NI(s) and obtain s∗. Set s = s∗.
2: Search NO(s) and obtain s∗. Set s = s∗.
3: if The cost matrix is symmetric then
4: Search 2-opt(s) and obtain s∗.
5: end if

however we decided to apply it less frequently. During the first 250 B&C subproblems, we apply
the heuristic callback with a frequency of 5 and, after that, the frequency drops to 10. We apply both
constructive heuristics according to the following criterion: if the number of the B&C subproblem is
even we use the nearest neighbor with the cost matrix c∗ and if the number of the B&C subproblem
is odd we use the random heuristic.

Table 5.5 shows the impact of using the heuristic algorithm to improve the upper bound in the
B&C algorithmwhen solving the CCmodel or when using the CC+RFVmodel with the y- and the 1-
separation algorithms. For the referred methods it is possible to observe the average computational
time, in seconds, to obtain the optimal value (ts) and the average number of B&C subproblems
solved during the B&C algorithm until reaching the optimal solution (#sub) when using or not
the heuristic callback. The detailed results obtained without the heuristic callback are available in
appendix, Tables B.3 and B.4, and the ones obtained with the heuristic callback are available in
Section 5.4.

Table 5.5: Heuristic callback in the B&C algorithm.

CC y-separation 1-separation

ts #sub ts #sub ts #sub

Without heuristic algorithm 44 89 25 95 38 83

With heuristic algorithm 33 85 10 58 11 59

Average obtained with benchmark instances’ burma, bayg, att and bier.

In Table 5.5 we can observe that using the heuristic algorithm during the B&C algorithm allowed
us to decrease the average computational time, which is a consequence of the decrease in the average
number of B&C subproblems solved during the B&C algorithm. These results show that including
the heuristic callback makes the B&C algorithm more efficient.

93

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

5.4 Computational experiment

Throughout this sectionwe present the computational experiment carried out considering the several
sets of test instances presented in Chapter 3. This section is divided into four sections each one
devoted to one set of instances. We start by presenting the computational experiment for the instance
set 1 in Section 5.4.1, then for the instance set 2 in Section 5.4.2, followed by the one for the instance
set 3 in Section 5.4.3 and, finally, for the instance set 4 in Section 5.4.4.

The computational results were obtained adding a maximum of 20 violated inequalities per iter-
ation. Additionally, due to the conclusions drawn in the previous sections, all results were obtained
using heuristic separations and the heuristic callback when solving the instances optimally.

The LP relaxation of the several formulations were obtained without using the general purpose
cuts generated by CPLEX to allow us to establish a fair comparison between the several models.
However, the optimal solutions for the FTSP models were obtained using these CPLEX generated
cuts and heuristics. Furthermore, we set as a time limit of 10800 seconds for the B&C algorithm
to provide the optimal solutions for the FTSP instances, and, we consider that the B&C algorithm
is an effective method to solve an instance if it is able to find its optimal solution within the time
limit.

The implementation of the proposed methods is original, except for the max-flow algorithm,
for which we used the algorithm to solve the max-flow problem proposed by Goldberg and Tarjan
(1988). The models were implemented in C++ and were solved by using the Concert Technology
from CPLEX 12.6.1 (see e.g., IBM, 2014). All computational experiments were carried out in an
Intel Core i7, 3.60 gigahertz, 8 gigabytes RAM.

5.4.1 Benchmark instances

Tables 5.6 and 5.7 show the LP relaxation values obtained by using the CC model, the RFV model
and the CC+RFVmodel, and, the y-separation and the 1-separation, respectively. The tables are di-
vided into several parts, each one corresponding to a different method. Each of those parts has four
or five columns depending on the number of different valid inequalities separated. The first column
shows the LP relaxation value (VLP), the second the percentage of gap between the LP relaxation
value and the optimal value (gap = 100 × (optimal value − LP relaxation value)/optimal value),
followed by the computational time, in seconds, to obtain the LP relaxation value (ts) and, finally,
the number of added violated inequalities (#name_of_inequality). Additionally, the tables con-
tain, in the last row, the average of the results obtained. These tables correspond to the detailed
results of the tables shown in the Section 4.4.

94

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Table 5.6: Linear programming relaxation results for the instance set 1 with CC, RFV and CC+RFV models.

CC RFV CC + RFV
Instance VLP gap ts #CC VLP gap ts #RFV VLP gap ts #CC #RFV
burma_1 12.07 13.34% 0 34 13.93 0.00% 0 98 13.93 0.00% 0 35 53
burma_2 25.66 0.00% 0 90 25.66 0.00% 0 33 25.66 0.00% 1 22 26
burma_3 9.93 16.47% 0 55 11.89 0.00% 0 51 11.89 0.00% 0 22 22
bayg_1 5273.32 1.36% 0 184 5316.85 0.54% 0 707 5330.17 0.29% 0 259 67
bayg_2 5754.64 0.63% 0 307 5791.01 0.00% 0 261 5791.01 0.00% 1 270 111
bayg_3 5544.33 0.00% 0 146 5544.33 0.00% 0 491 5544.33 0.00% 0 151 39
att_1 23686.00 0.00% 0 501 23580.50 0.45% 1 1219 23686.00 0.00% 1 451 29
att_2 20609.10 0.00% 1 720 20609.10 0.00% 6 2851 20609.10 0.00% 1 841 39
att_3 8742.08 3.13% 1 446 8760.03 2.93% 2 2021 9024.58 0.00% 1 478 102
bier_1 33227.80 1.43% 13 1321 33314.70 1.17% 5484 20937 33446.00 0.78% 29 1365 43
bier_2 88308.90 0.48% 19 1389 87336.20 1.58% 7913 39032 88479.50 0.29% 247 1721 802
bier_3 47162.50 1.18% 35 1903 46830.70 1.88% 3898 16926 47504.40 0.46% 217 1988 305

average 3.17% 6 591 0.71% 1442 7052 0.15% 42 634 137

Table 5.7: Linear programming relaxation results for the instance set 1 with y- separation and 1-separation.

y-separation 1-separation
Instance VLP gap ts #CC #RFV VLP gap ts #CC #RFV
burma_1 13.93 0.00% 0 23 43 13.93 0.00% 0 19 40
burma_2 25.66 0.00% 0 0 27 25.66 0.00% 0 0 35
burma_3 11.89 0.00% 0 11 19 11.89 0.00% 0 11 36
bayg_1 5330.17 0.29% 0 54 235 5330.17 0.29% 0 39 201
bayg_2 5791.01 0.00% 0 9 254 5791.01 0.00% 0 13 224
bayg_3 5544.33 0.00% 0 21 160 5544.33 0.00% 0 21 167
att_1 23686.00 0.00% 0 18 502 23686.00 0.00% 0 18 502
att_2 20609.10 0.00% 1 97 710 20609.10 0.00% 1 110 759
att_3 9024.58 0.00% 0 133 300 9024.58 0.00% 0 167 281
bier_1 33446.00 0.78% 11 349 952 33446.00 0.78% 5 394 747
bier_2 88447.60 0.33% 18 396 1116 88448.10 0.32% 22 261 1008
bier_3 47397.00 0.69% 51 711 1370 47417.20 0.65% 80 672 1394

average 0.17% 7 152 474 0.17% 9 144 450

As we already established, separating all the RFV inequalities is very time consuming. In fact,
the average gap obtained with the RFV model is much smaller than the one obtained with the CC
model, however, the computational times are the reverse, that is, the RFV model is much more time
consuming. When we combine both valid inequalities in the CC+RFV model we obtain very small

95

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

gap values. In particular, we were able to obtain the optimal value when solving the LP relaxation
in eight of the 12 instances presented. Regarding the computational time, the CC+RFV model is
much more efficient than the RFV model but, as we already mentioned, for instances of higher
dimension, it is still very time consuming.

The y-separation and 1-separation proved to be a good alternative for the CC+RFV model as
they take advantage of the RFV inequalities without using its time consuming exact separation. In
fact, these separation algorithms were able to provide LP relaxation values similar to the ones pro-
vided by the CC+RFV model but in a more efficient manner. For instance bier_2, the y-separation
algorithm took 18 seconds to find the LP relaxation value whilst the CC+RFV model took 247 sec-
onds. Additionally, they also provide better results than both the CC and the RFV models, thus,
from now, we will only focus on the y-separation and the 1-separation. Comparing both separation
algorithms, we verify that the y-separation algorithm is usually faster while the 1-separation algo-
rithm provides, in general, lower gap values. These results can be explained due to the fact that the
1-separation algorithm was designed to find more RFV inequalities, thus the increase in time and
the decrease in gap.

With the y- and 1-separation algorithms we tried to obtain the LP relaxation value of instances
a, which are available in Table 5.8. Table 5.8 is organized in a similar manner as Table 5.7.

Table 5.8: Linear programming relaxation results for instances a with y-separation and 1-separation.

y-separation 1-separation
Instance VLP gap ts #CC #RFV VLP gap ts #CC #RFV
a_1 1676.43 11.35%* 1087 1318 2965 1677.52 11.30%* 2626 1359 3206
a_2 1508.99 11.10%* 1375 1660 2877 1509.88 11.05%* 2674 1651 3263
a_3 1386.06 1.57% 1174 1928 2608 1389.31 1.34% 2066 2047 2914

average 8.01% 1212 1635 2817 7.90% 2455 1686 3128

*Gap calculated with the best upper bound obtained by Morán-Mirabal et al. (2014).

The gap values marked with an asterisk (*) were computed by using the best upper bound avail-
able in the literature instead of the optimal value, as the optimal value is unknown. Therefore,
these values are an upper bound for the real gap value. The best upper bounds were obtained by
Morán-Mirabal et al. (2014).

By observing Table 5.8 we see that the difference between the y-separation and the 1-separation
is more noticeable for instances a. The latter provides a lower average gap value while the former
is more efficient to obtain the LP relaxation value. However, the difference between the average
gap obtained by both methods is not meaningful, as it is a difference of 0.11%, but, regarding the
computational time, the y-separation takes less than half of the time to obtain the LP relaxation

96

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

value. These conclusions are due to the fact that the number of RFV inequalities found during the
1-separation is higher. In fact, the average number of RFV inequalities added with the referred
separation is 3128 whereas the average number of RFV inequalities added with the y-separation is
2817.

We tried to compute the LP relaxation values for the remaining benchmark instances, instances
gr and pr, which have 666 and 1002 nodes respectively, however it was impossible to do so due
to lack of computational memory. These instances will be addressed by using heuristic methods in
Chapter 6.

Table 5.9 compares the y-separation to the 1-separation in terms of efficiency, that is, compu-
tational time, to obtain the optimal value. Table 5.9 is divided into two parts, one for each method.
Each part shows the optimal value obtained (V), the computational time, in seconds, to obtain the
optimal value (ts), the number of B&C subproblems solved during the B&C algorithm (#sub) and
the number of added violated CC inequalities (#CC) and RFV inequalities (#RFV). Additionally, it
contains, in the last row, the average of the results obtained.

Table 5.9: Optimal values for the instance set 1 with y-separation and 1-separation.

y-separation 1-separation
Instance V ts #sub #CC #RFV V ts #sub #CC #RFV
burma_1 13.93 0 0 15 24 13.93 0 0 14 48
burma_2 25.66 1 0 5 27 25.66 1 0 5 35
burma_3 11.89 0 0 10 16 11.89 0 0 5 32
bayg_1 5345.89 0 1 24 169 5345.89 1 0 25 227
bayg_2 5791.01 0 0 13 200 5791.01 0 0 13 223
bayg_3 5544.33 0 0 17 105 5544.33 0 0 17 112
att_1 23686.00 1 0 26 461 23686.00 1 0 19 385
att_2 20609.10 1 0 70 571 20609.10 1 0 129 691
att_3 9024.58 0 0 142 213 9024.58 0 0 154 256
bier_1 33709.70 23 252 226 2071 33709.70 15 175 184 1133
bier_2 88736.40 48 243 716 2999 88736.40 51 270 624 2505
bier_3 47726.30 49 205 1006 2578 47726.30 63 263 964 3175

average 10 58 189 786 11 59 179 735

As Table 5.9 shows, the computational time to solve instances burma, bayg and att is neg-
ligible with any of the separation algorithms. If we only focus on instances bier, we verify that
the y-separation algorithm is faster on average, as it takes an average of 40 seconds while the 1-
separation takes an average of 46 seconds even though the 1-separation provided slightly better LP
relaxation values with an average of 0.58% compared to an average of 0.60% provided by the y-

97

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

separation. Nonetheless, these values are very similar which makes it difficult to establish which is
the best method. Summarizing, both methods are suited to solve the FTSP benchmark instances up
to 127 nodes as they were able to provide the optimal value of instances that had never been solved,
optimally, in less than 63 seconds.

Tables 5.10 and 5.11 show the computational results obtained when we tried to solve instances
a optimally with the y-separation and the 1-separation, respectively. Each table contains the op-
timal value (V), the computational time, in seconds, to obtain the optimal value (ts), the number
of B&C subproblems solved during the B&C algorithm (#sub) and the number of added violated
CC inequalities (#CC) and RFV inequalities (#RFV). These tables also contain, in the last row, the
average of the results obtained.

Table 5.10: Optimal value for instances a with y-separation.

Instance V ts #sub #CC #RFV
a_1 [1688.59, 1692.92] 10803 2012 11290 44992
a_2 [1514.30, 1612.39] 10803 816 8730 30605
a_3 1408.14 3730 176 5056 8876

average 8445 1001 8358 28157

Table 5.11: Optimal value for instances a with 1-separation.

Instance V ts #sub #CC #RFV
a_1 [1686.95, 1694.79] 10804 1080 12834 42351
a_2 [1512.40, 1625.84] 10808 421 6557 24709
a_3 1408.14 5005 287 7405 17614

average 8872 596 8932 28225

The results of Tables 5.10 and 5.11 show that, for instances a_1 and a_2, neither of the separa-
tions was able to solve them. Therefore, instead of showing the optimal value we show an interval
[LB,UB], in which LB represents the best lower bound and UB represents the best upper bound
for the optimal value found by the B&C algorithm after 10800 seconds. Regarding instance a_3,
both the y-separation and 1-separation were able to obtain its optimal value within the time limit,
however, we verify that the y-separation algorithm was faster as it took 3730 seconds whereas the
1-separation algorithm took 5005 seconds, despite the fact that the percentage of gap obtained with
the y-separation was higher than the one obtained with the 1-separation (1.57%compared to 1.34%).

98

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Additionally, for the instances that we could not solve within the time limit, the y-separation algo-
rithm provided better lower and upper bounds than the 1-separation algorithm within the same time
limit.

5.4.2 Generated instances based on symmetric TSP instances

In this section we present the computational results regarding the instance set 2, which corresponds
to symmetric instances generated based on TSP instances. As we saw in Section 5.4.1, both the
y-separation and the 1-separation are efficient tools to solve FTSP instances. In fact, they are able
to solve instances with 127 nodes in less than 63 seconds. However, the proposed separation algo-
rithms were only able to solve one instance with 280 nodes within the time limit. Thus, instance
set 2 was designed to help us analyze how the proposed exact approach handles instances with a
number of nodes between 127 and 280.

Table 5.12 shows the average LP relaxation results for the instance set 2 obtained with the y-
separation and the 1-separation. This table contains the average gap between the LP relaxation value
and the optimal value (gap), the average computational time, in seconds, to obtain the LP relaxation
values (ts) and the average number of added violated CC (#CC) and RFV (#RFV) inequalities. The
results obtained for each instance from the instance set 2 are available in appendix, Table B.5. Ad-
ditionally, to simplify the notation, the instance that is presented as tspinstancename.sftsp_L_i,
with i ∈ {1, . . . , 4} in Table A.2 is designated as tspinstancename_i.

Table 5.12: Average LP relaxation results for the instance set 2.

gap ts #CC #RFV

y-separation 1.15% 1142 1109 2132

1-separation 1.13% 1694 1134 2290

Once again, the 1-separation algorithm provides a slightly lower average gap value, nonethe-
less there are instances where the y-separation algorithm provides a lower gap value as, for ex-
ample instance gr136_2 (see Table B.5), which highlights the fact that these separation algorithms
are heuristic regarding the RFV inequalities. Regarding the computational time, the y-separation
algorithm is more efficient, on average, than the 1-separation algorithm.

By observing the detailed results of Table B.5 we verify that there are some gap values marked
with an asterisk (*), which means that those gap values were obtained by using the best upper bound
obtained with the B&C algorithm after 10800 seconds of computational time instead of the optimal
value as we could not obtain it within the time limit, as we shall see in Table 5.14. If we consider

99

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

the average gap obtained without the instances for which the optimal value is not known, both the
y-separation and the 1-separation algorithms provide an average gap of 0.75%, which shows that
the proposed methods provide very good LP relaxation values for this instance set.

In order to verify if there is a pattern relating the instance type to the difficulty to solve it we
clustered the instances by instance type and evaluated the LP relaxation value and the computational
time. Therefore, Table 5.13 shows the average gap (gap) and the average computational time, in
seconds, to obtain the LP relaxation value (ts) for each instance type. Recall that instances of type
reference are the instances of reference, instances of type low were designed to have a smaller
number of visits per family than instances of type reference while instances of type high have a
higher number of visits per family than instances of type reference, and, finally, instances of type
mixed are a random combination of instances of type low and high.

Table 5.13: Average gap and time by instance type for the instance set 2.

y-separation 1-separation

gap ts gap ts

Type reference 1.03% 1783 0.93% 2497

Type low 1.13% 2069 1.20% 2775

Type high 1.15% 214 1.14% 121

Typemixed 1.29% 503 1.26% 1384

Table 5.13 shows that the y-separation algorithm is more efficient than the 1-separation algo-
rithm for all types of instance, except for type high. These results are not surprising considering
the nature of the instances of type high, which were designed to have a higher number of visits, and
consequently, the RFV inequalities are more effective. For illustration purposes, consider a family
l with five nodes (nl = 5). Firstly, we assume that we are required to make few visits, so vl = 1.
As the RFV inequalities are valid if there are in S at least nl − vl + 1 nodes from family l, in this
particular case the RFV inequalities are valid if the number of nodes from family l in S is at least
nl − vl + 1 = 5 − 1 + 1 = 5. Therefore, there is only one subset of Fl that originates an RFV
inequality. Conversely, consider that the number of visits is high, for instance, vl = 4. By using
the same reasoning as previously, in order to obtain an RFV inequality the number of nodes from
family l in S has to be, at least, nl − vl + 1 = 5− 4 + 1 = 2. Consequently, there are 10 subsets of
Fl that originate RFV inequalities. Thus, the RFV inequalities are more effective for instances of
type high and, consequently, the separation that favors them performs better.

Regarding the average gap value, the 1-separation algorithm provides lower average gap values

100

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

for all types of instances, except for the type low. Once again, these results are a consequence from
the fact that instances of type low have a small number of visits per family and the RFV inequalities
are less effective in this case.

According to the results shown in Table 5.13, the logical decision would be to use the y-
separation algorithm to obtain the optimal value of instances of types reference, low and mixed

and use the 1-separation algorithm to obtain the optimal value of instances of type high. However,
we experimented obtaining the optimal solution of the instances of type high using both algorithms
and realized that the 1-separation algorithm is worse than the y-separation algorithm in terms of
average computational time to obtain the optimal solution, with an average of 5423 seconds com-
pared to an average of 4161 seconds of the y-separation algorithm. Therefore, we decided to use
the y-separation algorithm to obtain the optimal values of all instances from the instance set 2 as
well.

Table 5.14 shows the results obtained by using the y-separation algorithm to solve the instances
from the instance set 2 to optimality. This table shows the optimal values of the instance set 2 (V), the
computational time, in seconds, to obtain the optimal value (ts), the number of B&C subproblems
solved during the B&C algorithm (#sub) and the number of added violated CC (#CC) and RFV
(#RFV) inequalities. Table 5.14 also contains, in the last row, the average of the results obtained.
The results obtained with the 1-separation algorithm for the instances of type high from the instance
set 2 are available in appendix, Table B.6.

Table 5.14: Optimal values for the instance set 2 with y-separation.

Instance V ts #sub #CC #RFV
pr136_1 61448 43 56 709 3494
pr136_2 43522 74 47 1724 2222
pr136_3 81481 141 1863 335 9690
pr136_4 63246 19 7 318 1327
gr137_1 44263 12 43 187 987
gr137_2 36435 36 3 677 1270
gr137_3 55919 18 304 50 1511
gr137_4 46620 12 3 125 1228
pr144_1 46376 20 7 300 1603
pr144_2 36518 144 0 1673 1892
pr144_3 54635 992 13878 374 12633

Continues on the next page

101

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Table 5.14
Instance V ts #sub #CC #RFV
pr144_4 [49182.80, 49403] 10801 6050 12152 56573

kroA150_1 14307 33 0 518 1007
kroA150_2 9481 250 11 2344 1034
kroA150_3 [20764.00, 20880] 10801 54566 1912 49762
kroA150_4 13404 190 88 1036 2114
kroB150_1 14522 41 11 439 978
kroB150_2 9555 187 18 3285 2114
kroB150_3 19925 4 9 40 859
kroB150_4 12532 31 19 901 1370
pr152_1 51806 112 60 977 4324
pr152_2 45810 600 38 3341 3676
pr152_3 [64274.50, 64425] 10804 28982 7499 64854
pr152_4 57337 2076 4641 4457 31185
u159_1 29821 181 42 734 3635
u159_2 23404 304 28 1499 3481
u159_3 36399 29 207 201 2220
u159_4 30845 1083 1044 6474 23914
rat195_1 [1258.33, 1285] 10803 1444 12126 52697
rat195_2 912 376 80 3007 3346
rat195_3 [1779.89, 1814] 10805 6231 12140 116441
rat195_4 [1300.13, 1320] 10804 2849 7893 87117
d198_1 10945 1070 244 2194 15348
d198_2 10212 1537 158 3546 7445
d198_3 13843 153 137 484 4855
d198_4 12418 529 488 1505 10735

kroA200_1 [16331.50, 16441] 10803 6890 8436 52307
kroA200_2 12416 785 17 2747 1676
kroA200_3 [24017.30, 24471] 10805 9903 5070 119139
kroA200_4 16518 217 11 880 2010
kroB200_1 17527 1669 870 4406 19511
kroB200_2 12881 1654 180 5489 3452

Continues on the next page

102

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Table 5.14
Instance V ts #sub #CC #RFV

kroB200_3 [23863.50, 24088] 10805 16399 2584 104010
kroB200_4 17583 623 165 1430 4582
gr202_1 23394 2282 1175 2739 32776
gr202_2 14957 813 8 2237 2415
gr202_3 34547 2669 13322 1220 29388
gr202_4 [27948.10, 28039] 10804 2506 6794 66623
pr226_1 52109 828 33 896 3615
pr226_2 47585 10039 54 3667 19235
pr226_3 66812 839 45 209 4353
pr226_4 51905 1162 12 1170 7251
gr229_1 [70423.00, 70741] 10804 4402 5387 66560
gr229_2 31653 3833 214 4387 6392
gr229_3 102841 1613 4928 935 22736
gr229_4 46231 176 29 811 2900
gil262_1 [1506.26, 1529] 10804 1516 4758 48683
gil262_2 1069 3652 33 3860 3015
gil262_3 [1961.23, 2012] 10801 4140 1439 69503
gil262_4 [1642.00, 1773] 10804 649 2251 40714
pr264_1 33904 5010 617 3197 16690
pr264_2 [28151.52, 28748] 10801 1498 12277 13617
pr264_3 40705 1942 1378 704 30622
pr264_4 35153 7099 1637 5920 27513

average 3426 3067 3017 22035

By observing Table 5.14 we verify that there are two distinct cases regarding the resolution of
each instance, which are: (i) we were able to obtain the optimal value within the time limit; or (ii)
we could not obtain the optimal value within the time limit. In instances in which case (ii) happens,
instead of the optimal value we can see the pair of values [LB,UB] corresponding to the lower
bound and the upper bound for the optimal value, respectively, obtained by the B&C algorithm
after 10800 seconds of computational time.

From the instance set 2, we were able to obtain the optimal value, within the time limit, of

103

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

49 out of the 64 instances, which have a maximum of 264 nodes. These results are satisfactory
considering the dimension of these instances. Considering only the instances that were solvedwithin
the time limit, the average computational time obtained was 1167 seconds. We were able to solve
all instances pr136, gr137, kroB150, u159, d198 and pr226. The hardest instances were rat195
and gil262, since we could only solve one of them within the time limit. These results show that
the number of visits per family has more influence in the efficiency of the method than the instance
dimension, as we can solve instances with 198 nodes in an average of 822 seconds but we cannot
solve instance pr144_4 within the time limit.

Although we could not obtain the optimal value of the instances in case (ii), the B&C algorithm
was able to provide an upper bound for their optimal values. Additionally, we can even evaluate
the quality of the upper bound obtained by comparing it to the lower bound. These instances will
be addressed in Chapter 6 with heuristic methods.

For a simplified analysis of the results obtained when solving the instances from the instance set
2 up to optimality, we clustered them by instance type. In Table 5.15 we can see the average time,
in seconds, to obtain the optimal value (ts) and the number of instances solved optimally within the
time limit (#solved) for each instance type. Recall that there are 16 instances of each type.

Table 5.15: Statistics for the optimal value by instance type for the instance set 2.

ts #solved
Type reference 3407 12

Type low 2193 15
Type high 4576 10
Typemixed 3527 12

The y-separation algorithm was more effective when solving instances of type low, not only is
the instance type which was solved in a lower average computational time, but also is the type of
instances where the number of instances solved optimally was higher. Despite the RFV inequalities
being more effective when there is a higher number of visits per family as we saw previously, there
are several single-visit families in instances of type low and, when that happens, we can use the
valid inequalities for the single-visit families, which state that we can never use an arc between two
nodes from a single-visit family. Thus, the instances of type low were easier to solve than the other
instance types. However, if we compute the average computational time ignoring the instances in
which the case (ii) occurred, we obtain an average computational time of 942, 1639, 840 and 1101
seconds for the instances of type reference, low, high andmixed, respectively. By removing the
instances that we could not solve within the time limit, we obtain the expected results, namely the

104

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

y-separation is more efficient when addressing instances of type high and less efficient for instances
of type low.

5.4.3 Generated instances based on asymmetric TSP instances

In this section we present the results obtained for the instance set 3, which corresponds to gener-
ated asymmetric instances based on TSP instances. Table 5.16 shows the average LP relaxation
results for the instance set 3 obtained with the y-separation and the 1-separation and it is orga-
nized in a similar manner as Table 5.16. The LP relaxation values for each instance from the
instance set 3 may be seen in appendix, Table B.7. To simplify the notation the instance that is
presented as atspinstancename.aftsp_L_i, with i ∈ {1, . . . , 4} in Table A.3 is designated by
atspinstancename_i henceforth.

Table 5.16: Average LP relaxation results for the instance set 3.

gap ts #CC #RFV

y-separation 1.46% 17 112 388

1-separation 1.24% 45 132 482

The conclusions drawn from Table 5.16 are similar to the ones drawn for the instance set 2,
namely the y-separation is faster but the 1-separation provides lower gap values. For example and
considering the results of Table B.7, for the instance ftv170_1 the y-separation took 307 seconds
to find the LP relaxation value whilst the 1-separation took 1358 seconds and, considering instance
ftv170_4, the gap value obtained with the y-separation was of 2.28% while the one obtained with
the 1-separation was of 1.71%.

By observing the detailed results of instances rbg in Table B.5 we verify that both methods
provide the same LP relaxation value in the majority of the instances. This unexpected behavior
led us to experiment obtaining the LP relaxation values of the rbg instances using the SCF model,
which was the model that provided the lowest LP relaxation values on average, and we saw that the
SCF model provided the same LP relaxation value as the y-separation for all instances, except for
instance rbg323_2, in which the LP relaxation value obtained with the SCFmodel was of 67.26. The
detailed results obtained with the SCF model are available in appendix, Table B.8. By analyzing the
cost matrix of the rbg instances we realized that these instances have several arc costs with value
zero and, since we are only required to visit some nodes, the majority of the arcs in the solution
has cost zero thus the similarity of the LP relaxation values obtained by the different formulations.

105

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

We could not obtain the LP relaxation value for instance rbg443_2 due to lack of computational
memory, therefore this instance will be solved with heuristic methods in Chapter 6.

Table 5.17 shows the LP relaxation results for the instance set 3 grouped by instance type. The
referred table contains the average gap (gap) and the average computational time, in seconds, to
obtain the LP relaxation value (ts) for each instance type.

Table 5.17: Average gap and time by instance type for the instance set 3.

y-separation 1-separation

gap ts gap ts

Type reference 1.16% 21 1.02% 109

Type low 3.09% 30 2.46% 49

Type high 0.86% 8 0.82% 5

Typemixed 0.79% 3 0.72% 17

Table 5.17 shows that the 1-separation provided a lower average gap than the y-separation for
every type of instances. The biggest difference was obtained in the instances of type low and it
corresponds to a difference of 0.63%. Regarding the computational time, the y-separation was faster
in the instances of types reference, low and mixed, while the 1-separation was more efficient in
instance of type high, however, the difference in computational time for the instances of type high is
not meaningful, as the y-separation, which is the less efficient algorithm for this instance type, took
an average of 8 seconds. Consequently, we will use the y-separation to obtain the optimal values
of the instances from the instance set 3. Considering the results obtained with the y-separation,
we verify that the algorithm is more efficient, in terms of computational time, for the instances of
type high and less efficient for the instances of type low, the opposite of what happened in the
instance set 2. Regarding the gap values, as expected, the highest average gap was obtained for
the instances of type low and the lowest average gap was obtained in instances of typemixed. By
observing the results obtained with the 1-separation, we verify that the referred method provided
the highest average gap for instances of type low and the lowest average gap for instances of type
mixed. Regarding the computational time, the 1-separation took a significantly higher amount of
time to solve the instances of type reference than any other type of instances. When we observe
in detail Table B.7, we conclude that this increase in the computational time in the instances of type
reference is mostly due to instances ftv170_1 and rbg323_1.

Table 5.18 shows the optimal values of the instances from the instance set 3 and it has the same
layout as Table 5.14.

106

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Table 5.18: Optimal values for the instance set 3 with y-separation.

Instance V ts #sub #CC #RFV
br17_1 31 0 0 14 46
br17_2 28 0 0 46 73
br17_3 39 0 0 15 48
br17_4 36 0 0 10 129
ftv33_1 868 0 5 28 205
ftv33_2 401 1 0 52 94
ftv33_3 1286 0 0 7 73
ftv33_4 829 0 0 10 111
ftv35_1 1008 0 0 10 263
ftv35_2 530 1 0 35 161
ftv35_3 1232 0 18 12 243
ftv35_4 1008 0 0 8 347
ftv38_1 830 0 0 9 93
ftv38_2 391 1 0 54 111
ftv38_3 1449 0 0 10 289
ftv38_4 774 0 0 16 124
p43_1 5483 0 0 31 123
p43_2 5473 1 0 210 341
p43_3 5530 0 0 4 86
p43_4 5492 0 0 11 119
ftv44_1 996 1 0 27 220
ftv44_2 625 0 3 132 277
ftv44_3 1343 0 0 13 207
ftv44_4 998 1 60 86 678
ftv47_1 1179 0 22 62 529
ftv47_2 729 1 37 268 623
ftv47_3 1472 1 32 28 385
ftv47_4 1099 0 0 9 135
ry48p_1 10318 1 1 75 483
ry48p_2 6787 1 5 344 314
ry48p_3 12752 1 81 38 372

Continues on the next page

107

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Table 5.18
Instance V ts #sub #CC #RFV
ry48p_4 10139 1 13 61 512
ft53_1 3572 0 3 52 348
ft53_2 2819 2 41 330 1009
ft53_3 5972 1 35 27 619
ft53_4 4734 0 4 60 525
ftv55_1 570 1 0 104 346
ftv55_2 365 1 0 492 190
ftv55_3 1021 1 0 38 569
ftv55_4 579 1 0 55 263
ftv64_1 977 2 3 124 879
ftv64_2 660 4 14 728 776
ftv64_3 1617 1 0 1 255
ftv64_4 1515 5 1 18 2287
ft70_1 21226 1 0 26 335
ft70_2 15360 1 0 10 180
ft70_3 29573 1 5 16 416
ft70_4 26817 1 15 22 426
ftv70_1 849 13 180 761 3881
ftv70_2 676 10 102 821 2210
ftv70_3 1342 1 6 6 552
ftv70_4 1261 1 0 18 464

kro124p_1 25251 9 79 103 2486
kro124p_2 12421 38 77 2397 1729
kro124p_3 32025 2 35 29 665
kro124p_4 18552 40 148 2317 3745
ftv170_1 1652 5781 2560 10365 77580
ftv170_2 1108 9071 952 16941 42632
ftv170_3 2215 19 55 95 1765
ftv170_4 1610 141 132 1270 4186
rbg323_1 337 36 12 46 279
rbg323_2 70 6684 41 510 13065

Continues on the next page

108

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Table 5.18
Instance V ts #sub #CC #RFV
rbg323_3 822 11 0 5 100
rbg323_4 335 31 13 21 155
rbg358_1 209 916 121 434 8711
rbg358_2 50 328 68 79 2825
rbg358_3 658 8 0 3 19
rbg358_4 409 73 20 66 528
rbg403_1 345 17 0 7 74
rbg403_2 32 1316 9 610 5318
rbg403_3 1427 134 90 202 910
rbg403_4 486 12 0 4 60
rbg443_1 539 28 0 3 39
rbg443_2 596*
rbg443_3 1353 42 0 12 210
rbg443_4 729 2138 194 19 4682

average 359 71 534 2615

*Stopped before the time limit due to lack of computational memory.

We were able to obtain the optimal value for all instances from set 3 within the time limit, ex-
cept for instance rbg443_2, which is not surprising since we could not even obtain its LP relaxation
value. The optimal values were obtained in an average time of 359 seconds. The computational
time to solve the instances from the instance set 3 up to 70 nodes is negligible, as the maximum
computational time is of 13 seconds. Instances kro124p are also solved very efficiently, in an av-
erage of 22 seconds. The hardest instances to solve, in terms of computational time, were instances
ftv170, which took an average of 3753 seconds to obtain their optimal value. Although instances
rbg have a much higher number of nodes than instances ftv170, as they have at least 323 nodes
while instances ftv170 have 171, they were faster to solve as they were solved in an average of 785
seconds. This is a consequence of the characteristics of instances rbg that we mentioned previously,
namely having several arcs with cost zero.

Table 5.19 shows the average computational time (ts) and the maximum computational time
(tmax), in seconds, to obtain the optimal value for each instance type.

109

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Table 5.19: Statistics for the optimal value by instance type for the instance set 3.

ts tmax

Type reference 358 5781

Type low 970 9071

Type high 12 134

Typemixed 129 2138

As expected, the y-separation algorithm is more efficient, in terms of computational time, when
solving instances of type high and less efficient when addressing instances of type low due to the
number of visited nodes per family in each type of instances. As we could solve all the instances
from the instance set 3 within the time limit, except for instance rbg443_2, we decided to present
the maximum computational time to obtain the optimal value for each instance type instead of the
number of instances solved. Regarding the maximum computational time, in the instances of type
high, it was of 134 seconds while for all the other types of instances it was bigger than 2000 seconds,
which highlights the fact that the y-separation provides better results, in terms of computational
time, when addressing instances with a high number of visits per family.

5.4.4 Generated instances based on asymmetric UTPP instances

In this section we present results for the instance set 4, which corresponds to asymmetric instances
generated based on UTPP instances. Table 5.20 shows the average LP relaxation results for the
instance set 4 obtained with the y-separation and the 1-separation and it is organized in a sim-
ilar manner as Table 5.16. The LP relaxation values of each instance from the instance set 4
are available in appendix, Table B.9. To simplify the notation the instance that is presented as
tppinstancename.aftsp_|N | + 1_L_i, with i ∈ {1, . . . , 4} in Table A.4 will be designated by
tppinstancename_|N |+ 1_i henceforth.

Table 5.20: Average LP relaxation results for the instance set 4.

gap ts #CC #RFV

y-separation 0.02% 3 2 100

1-separation 0.01% 4 6 137

The instance set 4was created since instances rbg have characteristics that make them not inter-
esting to be used as a base for generating asymmetric FTSP instances. In addition, the majority of

110

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

the other instances from the instance set 3 has a small number of nodes, which makes them easily
solvable by the proposed methods. However, the instance set 4 proved to be very easy to solve. In
fact, by observing Table 5.20 we verify that both the y-separation and the 1-separation obtained a
near optimal average gap. More precisely, when we observe the detailed results of Table B.9 we
verify that both separation algorithms obtained the optimal value when solving the LP relaxation
in 21 of the 24 instances from the instance set 4. Additionally, in the instances in which the op-
timal value is not obtained when solving the LP relaxation, the maximum value of gap obtained
was 0.29%. Regarding the computational time, both separation algorithms provide the LP relax-
ation values in a negligible amount of time. These results show that the proposed methods are very
efficient to solve the instances from set 4.

Even though both separation algorithms provide identical gap values and computational times
for the instances from set 4, we decided to use the y-separation to obtain the optimal values of this
instance set, similarly to what was done for the other instance sets. Table 5.21 shows the optimal
values of the instance set 4 (V), the computational time, in seconds, to obtain the optimal value
(ts), the number of B&C subproblems solved during the B&C algorithm (#sub) and the number of
added violated CC (#CC) and RFV inequalities (#RFV). Table 5.21 also shows, in the last row, the
average of the results obtained.

Table 5.21: Optimal values for the instance set 4 with y-separation.

Instance V ts #sub #CC #RFV
AsimSingh50_1 438 0 0 0 38
AsimSingh50_2 211 0 0 2 31
AsimSingh50_3 694 0 0 0 38
AsimSingh50_4 367 0 0 0 39
AsimSingh100_1 1005 1 0 0 178
AsimSingh100_2 465 1 0 9 78
AsimSingh100_3 1350 1 0 0 80
AsimSingh100_4 705 1 0 0 40
AsimSingh150_1 1185 2 0 5 127
AsimSingh150_2 735 3 0 4 151
AsimSingh150_3 1770 2 0 0 187
AsimSingh150_4 885 3 0 6 161
AsimSingh200_1 1545 5 0 10 140

Continues on the next page

111

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

Table 5.21
Instance V ts #sub #CC #RFV

AsimSingh200_2 1050 4 0 5 82
AsimSingh200_3 2400 2 0 0 135
AsimSingh200_4 1455 10 0 5 369
AsimSingh250_1 2145 7 0 1 93
AsimSingh250_2 1200 11 0 12 129
AsimSingh250_3 3135 2 0 0 20
AsimSingh250_4 2445 11 0 1 149
AsimSingh300_1 2595 12 0 1 79
AsimSingh300_2 1605 19 0 7 165
AsimSingh300_3 3825 19 0 2 313
AsimSingh300_4 2655 10 0 0 80

average 5 0 3 21

As expected from the results of the LP relaxation, we were able to obtain the optimal values
of the instances from set 4 in a short amount of computational time. In fact, by observing column
#sub we verify that all instances were solved without requiring branching, in a maximum time of
19 seconds.

Summary

Throughout this section we concluded that the best methods to solve the FTSP are the ones that
use the RFV inequalities but that do not separate them all, which are the y-separation and the 1-
separation. After some testing, we realized that, usually, the y-separation obtains the LP relaxation
values in the shortest amount of computational time while the 1-separation obtains the highest LP
relaxation values. Nevertheless, the results obtained with the y-separation and the 1-separation were
very similar. Regarding the optimal values, we verified that the y-separation is the most efficient
method to obtain the optimal value of FTSP instances. With this method we were able to obtain
the optimal value of 13 of the 21 instances of the instance set 1. Note that six of the instances from
the instance set 1 that we could not solve optimally have a considerable number of nodes, namely
666 and 1002 nodes. The instance set 1 is the set of the benchmark instances generated by Morán-
Mirabal et al. (2014) and we were able to obtain the optimal value of instances for which the optimal

112

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

value was unknown. In particular, we were able to obtain the optimal value of instances bier in a
maximum of 49 seconds and the optimal value of instance a_3, with 280 nodes, in 3730 seconds.

Recall that the instance sets 2, 3 and 4 were generated by us and we created four different types
of instances in each of those sets. Instances of type reference are considered as the instances of
reference, instances of type low have a smaller number of visits per family than instances of type
reference while instances of type high have a higher number of visits per family than instances
of type reference, finally, instances of typemixed are a random combination of instances of type
low and high.

Regarding the instance set 2, by using the y-separation, we were able to obtain the optimal value
of 49 of 64 instances. Considering that the instances of the instance set 2 have a number of nodes
varying between 136 and 264, these are very satisfactory results. Due to the nature of the different
instance types, we expected instances of type high to be the easiest to solve and the instances
of type low the hardest, as the RFV inequalities are more effective when the number of visits is
high. However, in this set, the instances of type low were the easiest to solve and the instances of
type reference were the hardest. We believe that these results are due to the single-visit families
present in the instances of type low and the valid inequalities added that state that we cannot use an
arc between two nodes from a single-visit family.

From the instance set 3, we were able to obtain the optimal value of all instances except for
instance rbg443_2. Although instances rbg were the instances with the highest dimension from the
instance set 3, the most time consuming instances were instances ftv. In the instance set 3, the
easiest type of instance to solve in terms of computational time was the type reference.

Finally, we were able to obtain the optimal value of all instances from the instance set 4 within
the time limit. More precisely, we were able to obtain the optimal value of the referred instances in
less than 20 seconds. The y-separation proved to be very effective when addressing this instance
set.

We used a directed graph to model the FTSP instead of a nondirected one since it is more ver-
satile. More precisely, with a directed graph and, consequently, formulation we may solve both
symmetric and asymmetric instances while the reverse is not true. If we group the results obtained
in terms of symmetric and asymmetric instances we verify that from the 85 symmetric instances
we were able to obtain the optimal solution of 62 while from the 96 asymmetric instances we were
able to solve 95. Therefore, the percentage of symmetric instances solved is of 73% whereas the
percentage of asymmetric instances solved is 99%, which shows that the symmetric instances are
more challenging to solve with the proposed B&C algorithm.

For the instances that we could not solve optimally within the time limit of 10800 seconds we

113

CHAPTER 5. THE BRANCH-AND-CUT ALGORITHM

present, in Table 5.22, a summary of the best upper bounds obtained with the B&C algorithm. These
instances will be addressed in Chapter 6 with heuristic methods.

Table 5.22: Best upper bounds obtained with the B&C algorithm.

Instance
Best upper bounds
B&C algorithm

Instance set 1
a_1 1692.92
a_2 1612.39

Instance set 2
pr144_4 49403

kroA150_3 20880
pr152_3 64425
rat195_1 1285
rat195_2 1814
rat195_4 1320
kroA200_1 16441
kroA200_3 24471
kroB200_3 24088
gr202_4 28039
gr229_1 70741
gil262_1 1529
gil262_3 2012
gil262_4 1773
pr264_2 28748

Instance set 3
rbg443_2 596

114

Chapter 6

Heuristic Algorithms

The objective of this chapter is two-fold. Firstly, we want to find an efficient method able to provide
good quality feasible solutions for the FTSP instances that the exact methods were unable to solve
up to optimality within the time limit, and, secondly, we wish to improve the best upper bounds
available in the literature for the benchmark instances, which were obtained by Morán-Mirabal
et al. (2014) and are available in Table 6.1. In Table 6.1 the value ts represents the computational
time, in seconds, reported by the authors to obtain the referred best upper bounds.

Table 6.1: Best upper bounds for the benchmark instances obtained by Morán-Mirabal et al. (2014).

Instance
Best upper bounds

by Morán-Mirabal et al. (2014)
ts

a_1 1891.16 218
a_2 1697.48 2701
gr_1 1817.06 6601
gr_2 1443.05 4005
gr_3 1384.18 7200
pr_1 163461.79 21
pr_2 182144.13 9
pr_3 149456.63 228

In order to evaluate the quality of the solutions obtained by the proposed heuristic algorithms
we will use the percentage of gap. However, since the instances that we want to solve with the
heuristic algorithms have an unknown optimal value we will use the best upper bound obtained by
Morán-Mirabal et al. (2014) presented in Table 6.1 to compute the percentage of gap. Therefore,

115

CHAPTER 6. HEURISTIC ALGORITHMS

the formula used to compute the percentage of gap in the subsequent sections is the following:
gap = 100× (heuristic solution− best upper bound)/best upper bound.

We developed three distinct heuristic algorithms for the FTSP. A genetic algorithm which uses
permutations as chromosomes and is presented in Section 6.1. An iterated local search algorithm
that iterates between a local search algorithm and a perturbation algorithm, which is presented in
Section 6.2, and a hybrid algorithm, presented in Section 6.3, which combines the CC+RFVmodel,
using the y-separation, with heuristic procedures. We conclude with Section 6.4 where we present
the results obtained with the best heuristic algorithms proposed.

6.1 The genetic algorithm

Genetic algorithms were created with the aim of imitating the theory of evolution. Usually, genetic
algorithms are composed by: (i) chromosomes, which encode the solution of the problem; (ii)
a fitness function, which measures the quality of each chromosome; (iii) a population, which is
composed by several chromosomes, also called individuals; (iv) selection, which is the measure
used to select the fittest individuals; and (v) crossover and mutation, which allow us to generate new
individuals - the children. For a more detailed explanation of genetic algorithms see, for instance,
Goldberg and Holland (1988); Holland (1992).

Bernardino and Paias (2018b) proposed two genetic algorithms for the UTPP, one using permu-
tations as chromosomes and other using random keys, and concluded that the former proved to be
a more efficient method when the routing part of the problem takes precedence over the acquisition
part. Even thoughMorán-Mirabal et al. (2014) developed a biased random key genetic algorithm for
the FTSP which proved to be less effective when compared to the other heuristic method proposed,
which was a GRASP heuristic with a path-relinking procedure, we decided to develop a genetic
algorithm for the FTSP which uses permutations as chromosomes, since in the FTSP we wish to
establish a circuit and Bernardino and Paias (2018b) obtained good results in a similar problem.

Throughout this section we present several versions of the algorithms created until we obtained
the one we consider is the best. We also present some computational results to justify some pa-
rameter choices, which led to the creation of other algorithms. We start by presenting the genetic
algorithm.

As mentioned previously, each chromosome is a permutation of the nodes that are family mem-
bers, that is, a permutation of the set {1, . . . , |N |}. The depot is where the circuit must start and end
and, therefore, there is no need to include it in the chromosome. Each value of the chromosome is
called an allele. The decoding of a permutation into a feasible solution for the FTSP that we use is

116

CHAPTER 6. HEURISTIC ALGORITHMS

the one used in the random constructive heuristic described in Section 3.3 and that results in a solu-
tion that visits the nodes by the same order as they appear in the chromosome. For a more detailed
explanation of the decoder we refer the reader to Section 3.3, more specifically, to Example 28.

The fitness value of a chromosome is the cost of the solution obtained when the chromosome is
decoded. Thus, the fittest individuals are the ones with the lowest fitness value.

The initial population has η individuals randomly generated. The parents are selected by using
the tournament method, which consists in choosing, at random, τ individuals from the population
and selecting the individual with the best fitness value to enter the mating pool. The tournament
method is repeated until we have selected all the parents necessary to originate the descendants.
The crossover operator chosen was the known order crossover (OX) operator for permutations (see,
e.g., Goldberg and Tarjan, 1988). In the crossover OX we mate two parents, p1 and p2, and we
obtain two children, c1 and c2. We start by generating at random two crossover points. Child c1

inherits the portion of chromosome between the two crossover points from parent p2 while child c2
inherits it from parent p1. The remaining alleles of child c1 are filled, with the nodes that are not in
the chromosome yet, by the same order as they appear in parent p1, starting at the crossover point
with the highest value. The same applies for child c2, but it inherits the order from parent p2. We
generate ζ children to be part of the next population. The children replace the ζ individuals with
the highest fitness function value, that is, the less fit individuals. Since we use a crossover operator
that generates two children, ζ ought to be an even number.

Example 30 (The OX operator). Consider parents p1 = (1, 2, 3, 4, 5) and p2 = (3, 5, 4, 2, 1) as-
sociated with the FTSP instance presented in Figure 3.1. Additionally, consider that the crossover
points are 1 and 4. Therefore, child c1 = (∗, 5, 4, 2, ∗) and child c2 = (∗, 2, 3, 4, ∗), as child c1 in-
herits the portion of chromosome between the crossover points from parent p2 and child c2 inherits
it from parent p1. Now, to fill the remaining alleles of the chromosome c1, we start with the allele
5 from the parent p1. Since 5 is already in c1 we go to the next allele, in this case the allele 1. As
1 is not in c1 we obtain c1 = (∗, 5, 4, 2, 1). Then, we keep going through the alleles until we reach
the one that contains 3 and we obtain c1 = (3, 5, 4, 2, 1). Analogously, c2 = (5, 2, 3, 4, 1).

To add randomness to the population, the children suffer a mutation with probability ϵ. The
mutation consists in determining two random mutation points and flipping the alleles of the chro-
mosome between the mutation points.

Example 31 (The mutation operator). Consider the chromosome (1, 2, 3, 4, 5) associated with the
FTSP instance presented in Figure 3.1 and the mutation points 1 and 4. The chromosome that we
obtain after applying the mutation operator is (1, 4, 3, 2, 5).

117

CHAPTER 6. HEURISTIC ALGORITHMS

This process of selecting parents, mating them and inserting the children in the population is
repeated for a fixed number of iterations. The pseudocode for the genetic algorithm, which will be
designated by algorithm GA, is available in Algorithm 6.1. In order to evaluate the quality of the
solutions provided by the GA algorithm we decided to experiment two sets of parameters, which
differ significantly on the size of the population. The set of parameters 1 is characterized by the
following setting: η1 = 20, τ 1 = 4, ζ1 = 16, ϵ1 = 0.25, while the set of parameters 2 contains
the following parameters: η2 = 120, τ 2 = 10, ζ2 = 100, ϵ2 = 0.50. The number of iterations
performed with both parameter sets is 10000. Table 6.2 compares the two sets of parameters both in
terms of quality of the solutions obtained and of computational time. This table shows the average
percentage of gap between the best solution provided by the GA algorithm and the best upper bound
obtained by Morán-Mirabal et al. (2014) (gap) and the average computational time, in seconds, to
obtain the best solution using the GA algorithm (ts). The detailed results are available in appendix,
Table C.1.

Algorithm 6.1 The basic framework of the genetic algorithm.
Require: η, ζ , τ , ϵ
1: Initialize the population with η random individuals (permutations).
2: while The maximum number of iterations is not reached do
3: Select ζ parents from the population using the tournament method.
4: Mate the parents to produce children, that is, to each pair of parents apply the crossover

operator OX.
5: Apply to children, with probability ϵ, the mutation operator.
6: Substitute the ζ individuals of the population with the highest fitness value by the children.
7: end while

Table 6.2: Experimenting parameter sets for the GA algorithm.

gap ts

Parameter set 1 584.07% 1

Parameter set 2 330.35% 15

Average obtained with instances a_1, a_2, gr and pr.

The average gap obtained with the GA algorithm with both parameter settings was of at least
300%, which means that the best solution provided by the GA algorithm is too expensive when
compared to the best upper bounds obtained by Morán-Mirabal et al. (2014). In fact, the cost of the

118

CHAPTER 6. HEURISTIC ALGORITHMS

solutions obtained with the GA algorithm is more than the triple of the best upper bound provided by
Morán-Mirabal et al. (2014). Note that the decoder used is a surjective function but not an injective
one as every feasible solution has several chromosomes that could be decoded into it. Due to this
property, it is possible that different chromosomes have the same fitness value. Additionally, we
verified that the values of the elements of the cost matrices associated with the benchmark instances
vary significantly. More precisely, in instances pr, the cost of the arc (42, 43) is 100while the cost of
the arc (58, 65) is 18200.30, which implies that structurally similar solutions may have costs that are
significantly different. The parameter set 2 provided a lower average gap then the parameter set 1.
Regarding the computational time, since the parameter set 2 has a bigger population, it was expected
that the parameter set 1would be faster. Nonetheless, 15 seconds is a reasonable computational time
considering the dimension of the instances we are addressing. Therefore, we decided to choose the
parameter set 2.

By observing the detailed results in Table C.1, we verify that the percentage of gap increases with
the instance’s dimension, which led us to believe that the GA algorithm did not converge. In order
to overcome this situation we could either increase the number of iterations, which would make
our algorithm less efficient in terms of computational time, or populate the initial population with
solutions of good quality. We decided to adopt the latter methodology, so we populated the initial
population with feasible solutions for the FTSP obtained by using the random nearest neighbor
heuristic presented in Section 3.3, which originated the GA+NN algorithm.

Table 6.3 shows a summary of the results obtained by using the GA+NN algorithm. We experi-
mented generating 60 and 120 individuals with the random nearest neighbor, which corresponds to
changing the Step 1 of Algorithm 6.1 to generating 60 individuals of η by using the random nearest
neighbor or to generating 120 individuals of η by using the random nearest neighbor, respectively.
The detailed results are available in appendix, Table C.2. Table 6.3 shows the average percentage of
gap between the best solution provided by the GA+NN algorithm and the best upper bound obtained
by Morán-Mirabal et al. (2014) (gap) and the average computational time, in seconds, to obtain the
best solution by the GA+NN algorithm (ts).

Table 6.3: Experimenting generating individuals for the GA+NN algorithm.

gap ts

Generate 60 individuals 11.28% 31

Generate 120 individuals 11.34% 46

Average obtained with instances a_1, a_2, gr and pr.

119

CHAPTER 6. HEURISTIC ALGORITHMS

The results obtained with the GA+NN algorithm were satisfactory since the average percentage
of gap plummeted. In fact, the average gap decreased more than 300%. Even though the difference
between generating 60 or 120 individuals with the random nearest neighbor is not very significant,
generating only 60 individuals provided a sightly lower average percentage gap. This is not surpris-
ing since it is known that genetic algorithms behave better when the population is varied. When we
generate all the population, that is, 120 individuals, with the random nearest neighbor the likelihood
of obtaining similar solutions is high since the random nearest neighbor is a greedy constructive
heuristic. However, when we generate 60 individuals with the random nearest neighbor the rest of
the population is more varied. Additionally, generating 60 individuals also leads to a slightly lower
computational time. Consequently, all the results presented subsequently were obtained using the
GA+NN algorithm with 60 individuals in the initial population generated with the random nearest
neighbor and the remaining 60 individuals are randomly generated chromosomes.

To further improve the quality of the solutions provided by the GA+NN algorithmwe developed
a local search procedure, which is presented next.

The local search procedure

The local search procedure uses as input a feasible solution for the FTSP. This procedure searches
the three neighborhoodsNI ,NO and 2-opt, which were introduced in Section 3.3, and has two ran-
dom procedures called switchOutRandom and insertAllRemoveExtra, which have the purpose
of adding some randomness to the local search and will be presented further on. Recall that the
neighborhood NI consists in switching two nodes that belong to the solution, the neighborhood
NO in switching a visited node with a non-visited node from the same family and, when we have a
symmetric cost matrix, the neighborhood 2-opt in inverting the order of a path in the solution.

The first local search procedure that we developed is very simple as it only consists in searching
neighborhoods NI , 2-opt and NO iteratively during a predefined number of iterations and then,
once the iterations are complete, we search neighborhood NI and 2-opt once more. The algorithm
used to search the neighborhoods is the one presented in Algorithm 3.1 in Section 3.3. This local
search procedure, which will be designated by LS algorithm, is applied to the best solution found
by the GA+NN algorithm, that is, to the solution with the lowest cost. Algorithm 6.2 shows the
pseudocode of the LS algorithm.

Table 6.4 shows the average percentage of gap between the best solution provided by the LS
algorithm and the best upper bound obtained by Morán-Mirabal et al. (2014) (gap) and the average
computational time, in seconds, to obtain the best solution (ts). The results presented in Table 6.4
were obtained after 1000 and 5000 iterations of the LS algorithm. The detailed results are available

120

CHAPTER 6. HEURISTIC ALGORITHMS

Algorithm 6.2 The LS algorithm.
Require: A feasible solution s for the FTSP.
1: Set number_iterations = 0.
2: while number_iterations < maximum_number_iterations do
3: Search NI(s) and obtain s∗. Set s = s∗.
4: if The cost matrix is symmetric then
5: Search 2-opt(s) and obtain s∗. Set s = s∗.
6: end if
7: Search NO(s) and obtain s∗. Set s = s∗.
8: end while
9: Search NI(s) and obtain s∗. Set s = s∗.
10: if The cost matrix is symmetric then
11: Search 2-opt(s) and obtain s∗. Set s = s∗.
12: end if
Ensure: Solution s∗ such that Cost(s∗) ≤ Cost(s).

in appendix, Table C.3.

Table 6.4: Experimenting the LS algorithm.

gap ts

1000 iterations -2.49% 33

5000 iterations -2.49% 37

Average obtained with instances a_1, a_2, gr and pr.

The average gap obtained by applying the LS algorithm is significantly lower than the one ob-
tained with the GA+NN algorithm. In fact, the average gap decreased 13.77%. Moreover, the
average gap is negative which means that the LS algorithm provided solutions with a lower cost
than the best upper bounds from the literature. More precisely, when we observe Table C.3 we ver-
ify that we were able to improve the best upper bound available in the literature of five benchmark
instances with unknown optimal values, performing both 1000 and 5000 iterations. Regarding the
computational time, if we consider the 1000 iterations we verify that the heuristic algorithm pro-
posed is very efficient as it takes a maximum of 61 seconds to obtain solutions with a lower cost
than the best upper bounds obtained by Morán-Mirabal et al. (2014) considering the highest dimen-
sioned benchmark instances. The increase in the number of iterations of the LS algorithm from

121

CHAPTER 6. HEURISTIC ALGORITHMS

1000 iterations to 5000 did not provide better quality solutions, which makes us believe that the
local search procedure converged to a local optimum and it was unable to escape it.

In an attempt to improve the quality of the solutions obtained with the LS algorithm we de-
cided to randomize it so that it could escape from local optima. Thus, we developed the procedure
switchOutRandom, which is based on the search of neighborhood NO, as we replace one node
that belongs to the solution by one node that does not, from the same family. The main difference
is that, the node that is inserted in the solution is chosen randomly. Then, we remove from the
solution the node from the same family that originates the switch that leads to the lowest increase
in the solution value. Note that this procedure does not guarantee that the solution obtained has a
lower cost than the initial solution.

The LS_random algorithm is obtained by replacing the search of the neighborhoodNO with the
procedure switchOutRandom in the LS algorithm. This algorithm is applied to the best solution
found by theGA+NN algorithm. Table 6.5 shows the average percentage of gap between the best so-
lution provided by the LS_random algorithm and the best upper bound obtained by Morán-Mirabal
et al. (2014) (gap) and the average computational time, in seconds, to obtain the best solution with
the LS_random algorithm (ts). The results shown in Table 6.5 were obtained after 1000 iterations
of the LS_random algorithm and the detailed results are available in appendix, Table C.4.

Table 6.5: Experimenting the LS_random algorithm.

gap ts

1000 iterations -0.48% 42

Average obtained with instances a_1, a_2, gr and pr.

The solutions obtained with the LS_random algorithm are worse than the ones obtained with the
LS algorithm considering the same number of iterations. More precisely, the LS_random provided
an average gap of−0.48%whereas the LS algorithm obtained an average gap of−2.49%. Nonethe-
less, by using the LS_random we continue to obtain a negative average gap. In fact, we were able to
improve the best upper bound available in the literature of four benchmark instances. Due to these
results we realized that, probably, the switchOutRoute algorithm did not provided enough ran-
domness to the algorithm, which motivated the creation of the procedure insertAllRemoveExtra.
This procedure was designed not only to add more randomness to the local search procedure but
also to accelerate its convergence. The main idea of the procedure is to make the solution unfeasible
and then restore its feasibility, in the hope of guiding the search of the solution space in a different
direction.

122

CHAPTER 6. HEURISTIC ALGORITHMS

In the insertAllRemoveExtra procedure we start by destroying a feasible solution by inserting
extra nodes in the solution. We randomly choose a node that does not belong to the solution and
determine to which family it belongs. Let l ∈ L be that family. Then, we insert all the nodes from
family l, which do not belong to the solution, in the solution, in the best possible position, that is,
in the position where the insertion leads to the lowest increase in the solution cost. Now, we have
an unfeasible solution since we are visiting nl nodes from family l and we are only required to visit
vl. Note that nl ̸= vl as we chose the family based on the non-visited nodes, which implies that
there exists at least one node from the chosen family that is not in the solution. In order to restore
the solution’s feasibility we must remove the extra nodes. As it was said before, we need to remove
nl − vl nodes from family l. In order to do that we compute the value of removing every node from
family l and we remove the node which the removal originates the biggest decrease in the solution
cost. This process is repeated until we have vl nodes from family l in the solution.

A new local search procedure, called LS_insertRemove, is obtained by replacing the search of
neighborhoodNO with the procedure insertAllRemoveExtra in the LS Algorithm 6.2. The algo-
rithm LS_insertRemove is applied to the best solution found by the GA+NN algorithm. Table 6.6
shows the average percentage of gap between the best solution provided by the LS_insertRemove
algorithm and the best upper bound obtained by Morán-Mirabal et al. (2014) (gap) and the average
computational time, in seconds, to obtain the best solution with the LS_insertRemove algorithm
(ts). These results were obtained performing 1000 and 5000 iterations of the LS_insertRemove
algorithm. The detailed results are available in appendix, Table C.5.

Table 6.6: Experimenting the LS_insertRemove algorithm.

gap ts

1000 iterations -8.19% 52

5000 iterations -8.19% 141

Average obtained with instances a_1, a_2, gr and pr.

With the LS_insertRemove algorithmwe obtained a significant improvement in the average gap.
More precisely, considering 1000 iterations, we were able to decrease the average percentage of gap
from −2.49%, which were obtained with the LS algorithm, to −8.19%. By observing the detailed
results in Table C.5 we verify that the solution obtained with the LS_insertRemove algorithm is
better than the best upper bound available in the literature for all benchmark instances, except for
the instance a_2. By performing 5000 iterations, the average gap is the same but the computational
time is approximately three times bigger. Nonetheless, 141 seconds continues to be a reasonable

123

CHAPTER 6. HEURISTIC ALGORITHMS

computational time considering that we are addressing instances with 1002 nodes. Instead of in-
creasing the number of iterations of the LS_insertRemove algorithm we experimented applying
it to more solutions present in the final population of the GA+NN algorithm. More precisely, we
decided to apply the LS_insertRemove algorithm to 12 solutions from the final population of the
GA+NN algorithm. These solutions are varied as they span from the best solution to the worst
solution present in the final population of the GA+NN algorithm. With this procedure and consid-
ering the benchmark instances a_1, a_2, gr and pr, the average percentage of gap obtained was
of −9.83% and the average computational time was of 305 seconds. The detailed results obtained
when we applied the LS_insertRemove algorithm to several solutions from the final population
of the NN+GA algorithm are available in appendix, Table C.6. When we compare these results to
the ones obtained with 5000 iterations of the LS_insertRemove algorithm, which were the best
results obtained so far, we verify that the average gap decreased 1.64% and that the average compu-
tational time increased by a factor of two. By applying the LS_insertRemove algorithm to several
solutions we were able to obtain solutions with a lower value than the best upper bound obtained
by Morán-Mirabal et al. (2014) for all benchmark instances with an unknown optimal value, which
are very good results. We could experiment applying the LS_insertRemove algorithm to several
solutions and performing 5000 iterations, however, from our experience, the increase in the number
of iterations of the local search procedure does not improve significantly the quality of the solutions
obtained but increases the computational time considerably.

Even though the best heuristic method presented until now consists in applying the local search
procedure LS_insertRemove to 12 solutions present in the final population obtained with the genetic
algorithm GA+NN, we will refer to it as genetic algorithm to be easily identified.

6.2 The iterated local search algorithm

We decided to develop an iterated local search (ILS) algorithm since the local search procedure that
provided the best results in the genetic algorithm presented in Section 6.1 was the LS_insertRemove
algorithm, which consists in a neighborhood search method mixed with a random procedure. The
purpose of the LS_insertRemove algorithm was to use the random procedure to escape from local
optima, which corresponds to the basic idea of an ILS algorithm.

As mentioned in the previous paragraph, the main idea behind the ILS algorithm is to find a
local optimum, by using a local search procedure, and then to apply a perturbation method in order
to escape from that local optimum and continue the search of the solution space. This process is
done iteratively, for example during a fixed number of iterations. For more details on ILS algo-

124

CHAPTER 6. HEURISTIC ALGORITHMS

rithms see, for instance, Lourenço et al. (2003) and Boussaïd et al. (2013). Algorithm 6.3 shows
the basic framework of an ILS algorithm with generic procedures. The procedures used in practice
are presented throughout this section as well as some computational results to justify the parameter
choices made. Note that every time we are testing a parameter the rest of the ILS algorithm remains
the same, the only change is the parameter under testing.

Algorithm 6.3 The basic framework of the ILS algorithm.
1: Determine a feasible solution s for the FTSP.
2: Apply a local search algorithm to s and obtain a new solution s∗.
3: number_iterations = 0

4: while number_iterations < maximum_number_iterations do
5: Apply a perturbation procedure to s∗ and obtain solution p.
6: Apply a local search procedure to p and obtain a new solution p∗.
7: if Cost(p∗) < Cost(s∗) then
8: Update the best solution to p∗.
9: end if
10: s∗ = p∗.
11: end while

In order to obtain an initial feasible solution for the FTSP we use the nearest neighbor heuristic
presented in Section 3.3. The local search procedure used in the ILS algorithm consists in searching
the neighborhoodsNI ,NO and 2-opt, whichwere presented in Section 3.3. Note that we only search
the neighborhood 2-opt if we have a symmetric cost matrix since the referred neighborhood is only
easily searched when the cost of the arcs (i, j) and (j, i) are the same. Additionally, recall that the
neighborhood NI consists in switching two nodes in the circuit and the neighborhood NO consists
in switching a visited node with a non-visited node from the same family. The pseudocode of the
neighborhood search is available in Algorithm 3.1 presented in Section 3.3 while the pseudocode
for the local search algorithm used in the ILS algorithm is available in Algorithm 6.4. Note that
this local search is different from the local search presented in Algorithm 6.2 used in the genetic
algorithm since this algorithm searches the neighborhoods until reaching a local optimum in all of
them while Algorithm 6.2 searches the neighborhoods during a fixed number of iterations.

All there is left now is to present the perturbation method. The idea behind the perturbation
method is similar to the idea of the procedure insertAllRemoveExtra presented in Section 6.1,
which consists in making a feasible solution for the FTSP unfeasible by inserting nodes and then
restore its feasibility by removing nodes. The perturbation method has as input a feasible solution

125

CHAPTER 6. HEURISTIC ALGORITHMS

Algorithm 6.4 The local search procedure used in the ILS algorithm.
Require: A feasible solution s for the FTSP.
1: cost_old = Cost(s).
2: cost_new = −∞.
3: while cost_old > cost_new do
4: cost_old = Cost(s).
5: Search NI(s) and obtain s∗. Set s = s∗.
6: Search NO(s) and obtain s∗. Set s = s∗.
7: if The cost matrix is symmetric then
8: Search 2-opt(s) and obtain s∗.
9: end if
10: Set cost_new = Cost(s∗) and s = s∗.
11: end while
Ensure: Solution s∗ such that Cost(s∗) ≤ Cost(s).

for the FTSP, which will most likely become unfeasible since we will insert vl nodes, from each
family l ∈ L, chosen according to a criterion. These chosen nodes are inserted in the solution in
the best possible position, that is, in the position that leads to the lowest increase in the solution
cost. After inserting the chosen nodes, we must remove the extra nodes to restore the solutions’
feasibility, which is also done according to a criterion. The subroutines used in the perturbation
method are presented next.

We start by presenting the choosing phase of the perturbation method, which, essentially, con-
sists in choosing vl nodes from each family l ∈ L. As in the FTSP there are no costs associated
with the nodes, we decided to create metrics which allow us to establish relationships between them.
Therefore, we created three different metrics: (i) mean in which the cost of node i ∈ N is the av-
erage cost of the arcs that have i as initial node, that is,

∑
j:(i,j)∈A cij

|N | ; (ii) min which assigns to the
node i ∈ N the cost of the arc with the lowest cost between the arcs that have i as initial node,
that is, minj:(i,j)∈A{cij}; and (iii) max which assigns to node i ∈ N the cost of the arc with the
highest cost between the arcs that have i as initial node, that is, maxj:(i,j)∈A{cij}. We developed
five different criteria to choose the nodes to be inserted in the solution, three of them based on the
metrics presented previously, which are:

• Mean: Choose the nodes with the lowest metricmean.

• Min: Choose the nodes with the lowest metricmin.

126

CHAPTER 6. HEURISTIC ALGORITHMS

• Max: Choose the nodes with lowest metricmax.

• Random_choice: Choose the nodes randomly.

• Least_choosen: Choose the nodes that were chosen fewer times during the ILS algorithm.

The Least_chosen criterion is the only criterion that is updated during the ILS algorithm.
Table 6.7 compares the several choosing criteria in terms of quality of the solution obtained and

of computational time. Table 6.7 shows the average gap between the best solution obtained with
the ILS algorithm and the best upper bound provided by Morán-Mirabal et al. (2014) (gap) and the
average computational time, in seconds, to obtain the best solution with the ILS algorithm (ts). The
results were obtained performing 1000 iterations of the ILS algorithm and maintaining all the other
parameters unchanged. The detailed results are available in appendix, Tables C.7 and C.8.

Table 6.7: Comparison of the different choosing criteria in the perturbation method.

gap ts

CriterionMean -3.75% 98

CriterionMin -4.83% 542

CriterionMax -3.09% 105

Criterion Random_choice -9.73% 177

Criterion Least_chosen -9.74% 172

Average obtained with instances a_1, a_2, gr and pr.

From Table 6.7 we verify that all the criteria were able to obtain a negative average gap, which
means that we were able to improve, on average, the best upper bounds available in the literature
with all the proposed choosing criteria. The criteria Random_choice and Least_chosen provided
solutions of better quality. In fact, the average gap obtained with the criterionRandom_choice and
Least_chosen was of−9.74%whereas the average gap obtained with the criteriaMean,Min and
Maxwas of−3.89%. Consequently, wewill not consider criteriaMean,Min andMax any longer.
Criteria Random_choice and Least_chosen are identical in terms of average gap. Regarding the
computational time, the criterion Least_chosen is only slightly faster. Essentially, both criteria
Random_choice and Least_chosen produce similar results and, thus, we will continue to consider
both of them for now.

As explained before, after choosing the nodes according to the criteria presented in the insertion
phase, we insert them in the solution in the best possible position. Note that the chosen nodes that

127

CHAPTER 6. HEURISTIC ALGORITHMS

already belong to the solution do not need to be inserted. After the insertion of the chosen nodes we
will, most likely, have an unfeasible solution. Therefore, in order to restore the solution’s feasibility
we must remove the extra nodes, which corresponds to the removal phase of the ILS algorithm. We
also developed two different removal criteria, which are:

• Greedy: Remove the nodes that lead to the highest decrease in the solution cost.

• Random_removal: Remove nodes chosen randomly.

Table 6.8 shows the average gap between the best solution obtained with the ILS algorithm and
the best upper bound obtained by Morán-Mirabal et al. (2014) (gap) and the average computational
time, in seconds, to obtain the best solution with the ILS algorithm (ts) using as removal criterion
the criterion Random_removal and using as choosing criterion both criteria Random_choice and
Least_chosen. The results were obtained performing 1000 iterations of the ILS algorithm. The
detailed results are available in appendix, Table C.9.

Table 6.8: Evaluation of the removal criterion Random_removal.

gap ts

Criterion Random_choice -2.02% 126

Criterion Least_chosen -1.79% 148

Average obtained with instances a_1, a_2, gr and pr.

Regarding the removal criterion Greedy, the results are the ones presented in Table 6.7, which
provided an average gap of −9.73% and −9.74% for the choosing criteria Random_removal

and Least_chosen, respectively. The results for the removal criterion Random_removal are
significantly worse than the ones obtained with the removal criterion Greedy. More precisely
and considering the choosing criteria Random_choice and Least_chosen, the removal criterion
Random_removal provided an average gap of −1.70% while the removal criterion Greedy pro-
vided an average gap of −9.74%. Thus, we will not use the removal criterion Random_removal.

We experimented combining both removal criteria to increase the randomness of the removal
phase as we already eliminated the removal criterion Random_removal due to the worse results
obtained. Therefore, we decided to use the removal criterionGreedy but once in every ρ iterations
we apply the criterion Random_removal. Table 6.9 shows the results obtained using several ρ
values and using the choosing criteria Random_choice and Least_chosen. This table shows the
average gap between the best solution obtained with the ILS algorithm and the best upper bound
obtained by Morán-Mirabal et al. (2014) (gap) and the average computational time, in seconds, to

128

CHAPTER 6. HEURISTIC ALGORITHMS

obtain the best solution with the ILS algorithm (ts). The results presented were obtained performing
1000 iterations of the ILS algorithm. The detailed results obtained by using as choosing criterion the
criterionRandom_choice are available in appendix, Tables C.10 and C.11, while the ones obtained
by using the choosing criterion Least_chosen are available in Tables C.12 and C.13.

Table 6.9: Combining both removal criteria using several ρ values.

Random_choice Least_chosen

gap ts gap ts

ρ = 200 -10.21% 148 -10.09% 164

ρ = 100 -9.73% 165 -9.56% 185

ρ = 50 -10.58% 165 -10.15% 169

ρ = 25 -10.91% 166 -10.29% 157

ρ = 10 -10.91% 163 -11.38% 176

ρ = 5 -10.59% 242 -10.67% 176

Average obtained with instances a_1, a_2, gr and pr.

The combination of both removal criteria provides better average gap values than using only the
removal criterion Greedy for all values of ρ tested, except for ρ = 100. Therefore, we will use the
combination of both removal criteria instead of using the removal criterionGreedy. Both choosing
criteria Random_choice and Least_chosen continue to provide similar results in terms of average
gap and computational time, except for ρ = 5 in which the difference in the average computational
time is of 66 seconds. Since the lowest average gap was obtained considering ρ = 10 and using the
choosing criterion Least_chosen we decided to use this setting.

To summarize, the best parameter setting for the perturbation phase of the ILS algorithm ac-
cording to the test results is to use the choosing criterion Least_chosen and a combination of both
removing criteria, that is, we use the criterion Greedy but once in every ρ = 10 iterations we use
criterion Random. Algorithm 6.5 shows the pseudocode of the perturbation method, specified for
the chosen setting.

Table 6.10 compares the results obtained with the ILS algorithm, using the setting described
previously, considering different numbers of iterations, namely 1000 and 5000 iterations. This ta-
ble shows the average gap between the best solution obtained with the ILS algorithm and the best
upper bound obtained by Morán-Mirabal et al. (2014) (gap) and the average computational time,
in seconds, to obtain the best solution with the ILS algorithm (ts). The complete results obtained
performing 1000 iterations are available in appendix, Table C.11, whereas the ones obtained per-

129

CHAPTER 6. HEURISTIC ALGORITHMS

Algorithm 6.5 The perturbation method used in the ILS algorithm.
Require: A feasible solution s for the FTSP.
1: for all l ∈ L do
2: Choose vl nodes from family l according to the choosing criterion Least_chosen.
3: Insert the chosen nodes in s in the best possible position.
4: end for
5: Remove the extra nodes by using the combination of both removal criteria: apply criterion

Greedy but once in every 10 iterations apply criterion Random.

forming 5000 iterations are available in Table C.14.

Table 6.10: Comparing different number of iterations in the ILS algorithm.

gap ts

1000 iterations -11.43% 207

5000 iterations -12.20% 735

Average obtained with instance a_1, a_2, gr and pr.

As expected, when we increase the number of iterations the average percentage of gap decreases
whilst the computational time increases. In particular, the average computational time increased by
a factor of approximately four, while the average gap decreased 0.92%. By observing in detail
Tables C.11 and C.14, we verify that we were able to obtain a solution with a lower cost than
the best upper bound from the literature for all benchmark instances with unknown optimal value
performing both 1000 and 5000 iterations. There is a clear trade-off between the quality of the
solutions obtained and the computational time. Therefore, the number of iterations that we should
use depends only on the purpose of the method. If we wish to have a more efficient method that
still provides solutions of good quality it is preferable to use less iterations. However, as we wish to
improve the best upper bound obtained by Morán-Mirabal et al. (2014) as much as possible, within
a reasonable computational time, we decided to perform 5000 iterations of the ILS algorithm.

6.3 The hybrid algorithm

In this section we present the hybrid algorithm, which consists in combining the methods that pro-
vided the best results gathered so far. For a more detailed explanation of hybrid heuristics see, for
example, Raidl and Puchinger (2008) and Raidl (2015). On the one hand, the CC+RFV model with

130

CHAPTER 6. HEURISTIC ALGORITHMS

the y-separation proposed in Chapter 4 is very efficient when addressing benchmark instances up
to 127 nodes as it is able to provide its optimal solution in less than 50 seconds, however, it cannot
solve the highest dimensioned benchmark instances due to the number of variables associated with
them. On the other hand, the ILS algorithm is able to improve the best upper bound available in the
literature of all benchmark instances, obtaining the best results so far with the lowest average gap
of −12.20%.

The hybrid algorithm combines the referred exact model and the ILS algorithm and has two
phases: the constructive phase, where we use the exact method, and the improvement phase, where
we apply the ILS algorithm. The purpose of the constructive phase is to obtain a feasible solution
for the FTSP. In order to do so we use the exact method to provide an intelligent initialization for
the algorithm. Nonetheless, as we are addressing high dimensioned instances, the exact method
only considers and solves a partial problem. In order to complete the partial solution obtained with
the exact method, we use a savings heuristic. The purpose of the second phase is to improve the
solution obtained in the first phase. Consequently, due to the successful results achieved previously,
we apply the ILS algorithm to the solution obtained in the constructive phase. We also created an
improvement method that transfers information from the first phase to the second phase.

We start by presenting in Section 6.3.1 the constructive phase of the hybrid algorithm and then
we present the improvement phase in Section 6.3.2.

6.3.1 Constructive phase

As mentioned previously, the exact method cannot address the highest dimensioned benchmark
instances. Nevertheless, we can use the CC+RFV model with the y-separation to solve optimally a
partial problem of the FTSP, which we designated by core problem. The core problem is induced
by considering a subset of L. Therefore, the core problem only contains a subset of nodes of 0∪N .
We start by deciding which families will be on the core problem.

From the computational study carried out in Section 5.4 it seems that the exact method is more
efficient when the number of visits per family is high. Thus, we created several variations of instance
bier to better evaluate the efficiency of the CC+RFV model with the y-separation depending on the
number of visits per family. The several variations have the same families and cost matrix, they
only differ on the number of visits per family. There are ten different variations of instance bier,
which are designated by bieri in which the number of visits for family l ∈ L is computed in the
following manner: vil = ⌈(0.1× i)× nl⌉, with i ∈ {1, . . . , 10}. For example, in instance bier3 the
number of visits per family is, approximately, 30% of the number of family members. Table 6.11
shows the computational time, in seconds, to obtain the optimal value of instances bier with the

131

CHAPTER 6. HEURISTIC ALGORITHMS

CC+RFV model with the y-separation (ts) depending on the percentage of nodes visited per family
(i%). The detailed results, with the optimal value and the number of added violated inequalities,
are available in appendix, Table C.15.

Table 6.11: Optimal solution times for the variations of instance bier.

i% 10 20 30 40 50 60 70 80 90 100
ts 33 147 252 95 306 45 78 38 7 5

The results of Table 6.11 show that the exact method is more efficient when solving instances
bier9 and bier10, which is not surprising since we already concluded that the CC+RFV model with
the y-separation is more efficient when the number of family visits is high due to the RFV in-
equalities being more effective. Note that solving instance bier10 is equivalent to solving a TSP,
which shows that the FTSP is more challenging, computationally, than the TSP. Instance bier1 is
also easily solved, which we believe is a consequence from the fact that instance bier1 has several
single-visit families, and, thus, we add the valid inequalities that state that an arc between two nodes
from a single-visit family can never be used in a feasible solution.

Due to these results, we defined a metric for each family l ∈ L which we called ratio of family
l, with the notation rl, which is defined as the ratio between the number of family visits and the
number of family members, that is, rl = vl

nl
, ∀l ∈ L. The families chosen to be in the core problem

are the ones with a ratio bigger than r∗, which is a parameter of the hybrid algorithm. Let Core =

0 ∪ {i ∈ N : i ∈ Fl and rl ≥ r∗}. Observe that families with a high ratio have a similar number of
family nodes and of family visits.

From Table 6.11 we know that the y-separation is able to solve instances with 127 nodes and
families with a high ratio very efficiently. However, the number of nodes in the core problemmay be
significantly higher. In fact, if wewere to consider r∗ = 0.8 the number of nodes in the core problem
of instance pr_2would be 301 and, from the computational experiment carried out in Section 5.4.1,
we know that the CC+RFV model with the y-separation cannot solve optimally instances with 280
nodes efficiently. Therefore, we decided to create an iterative process to obtain a solution of the
core problem, which may not be the optimal solution as we may have to apply variable fixing. In
the iterative process we start by solving, optimally, a partial core problem, which has a maximum
of∆ nodes, then we apply variable fixing to reduce the size of the partial core problem and, finally,
we insert more families in the partial core problem, until reaching a maximum number of Λ nodes.
Notice that the last two steps are repeated until we have inserted all the families l ∈ L with rl ≥ r∗

in the core problem. Next we present the iterative process in more detail.
If |Core| ≤ ∆, we insert all the families in the initial core problem and solve it up to optimality.

132

CHAPTER 6. HEURISTIC ALGORITHMS

Note that this is the only case in which the solution obtained after solving the core problem cor-
responds to its optimal solution. If |Core| > ∆, then we must use the iterative process described
previously, which consists in obtaining the optimal solution of a partial core problem, applying
variable fixing and inserting more families. In the initial partial core problem, while the number of
nodes in the initial core problem is less than∆, we insert families l ∈ L such that rl ≥ r∗ according
to a descending order of rl. Then, we solve the initial partial core problem optimally and obtain
its optimal solution (x∗, y∗). Before inserting more families in the partial core problem, we apply
variable fixing, which in this particular case consists in removing variables from the core problem
as we will fix to zero the variables that in the optimal solution of the partial core problem have value
zero. Equivalently, we are removing from the partial core problem arcs and nodes that were not
used in its optimal solution. This implies that, for now, we are not allowing to change the relative
ordering of the nodes in the optimal solution of the partial core problem as well as the visited nodes
from the families which have a ratio bigger than r∗. After reducing the partial core problem’s size
with variable fixing, we will insert families with the ratio bigger than r∗ that were not inserted yet,
according to a descending order of rl. Then, we solve the resulting core problem up to optimality.
Once again, we decided to set a limit to the number of nodes included in the several iterations of Λ.
The last two steps, that is, the variable fixing and the insertion of more families in the core problems
are repeated until all families which have a ratio greater than or equal to r∗ are in the core problem.

After this process we obtain a feasible solution for an FTSP instance which only contains the
families l ∈ L such that rl ≥ r∗. Therefore, in order to obtain a feasible solution for the original
FTSP instance we must complete solution with the families which have a ratio less than r∗, this is
done by using a savings heuristic. Consider a family l ∈ L such that rl < r∗. For every node in Fl,
that is not in the partial solution, we determine the cost of inserting it in every possible position of
the partial solution. Then, we insert the node which the insertion cost is the lowest in the position
that originated the lowest insertion cost. After inserting a node we recalculate the insertion costs.
This process is repeated until we obtain a feasible solution for the FTSP. Note that the solution
obtained preserves the relative ordering of the nodes from the core problem.

Algorithm 6.6 shows the pseudocode of the constructive phase of the hybrid algorithm.

Parameter testing

In order to choose the best possible parameter setting for the constructive phase of the hybrid al-
gorithm we carried out a computational study considering the benchmark instances with unknown
optimal value, which will be presented next. All the computational results presented during this
section were obtained by performing only the constructive phase of the hybrid algorithm. Addi-

133

CHAPTER 6. HEURISTIC ALGORITHMS

Algorithm 6.6 Constructive phase of the hybrid algorithm.
Require: r∗, ∆, Λ
1: LetR = {l ∈ L : rl ≥ r∗}.
2: Set i = 0 and Corei = {0}.
3: while Number of nodes in Core0 < ∆ do
4: Insert family l ∈ R in Core0 according to a descending order of rl.
5: end while
6: Solve to optimality Core0 as an FTSP and obtain the solution (x∗, y∗)Core0 .
7: while There are families inR not in Corei do
8: Remove arcs (i, j) and nodes i which have variables associated that satisfy: x∗

Corei
= 0 and

y∗Corei
= 0.

9: i = i+ 1.
10: while Number of inserted nodes in Corei ≤ Λ do
11: Insert a family l ∈ R \ Corei−1 in Corei according to a descending order of rl.
12: end while
13: Solve to optimality Corei as an FTSP and obtain the solution (x∗, y∗)Corei .
14: end while
15: Complete the families l ∈ L \ R with a savings heuristic.
Ensure: A feasible solution for the FTSP.

134

CHAPTER 6. HEURISTIC ALGORITHMS

tionally, every time we are testing a parameter the rest of the algorithm remains the same, the only
change is the parameter under testing.

Table 6.12 evaluates the usage of different r∗ values, in particular, the r∗ values of 0.70, 0.80
and 0.90. Table 6.12 shows the average percentage of gap between the solution obtained with the
constructive phase of the hybrid algorithm using the different r∗ values and the best upper bounds
presented in Table 6.1 (gap) and the average computational time, in seconds, to obtain the solution
using the constructive phase of the hybrid algorithm (ts). The complete results are available in
appendix, Table C.16.

Table 6.12: Comparing several values of r∗.

gap ts

r∗ = 0.70 -7.10% 1988

r∗ = 0.80 -2.17% 67

r∗ = 0.90 2.98% 1

Average obtained with instances a_1, a_2, gr and pr.

The computational time is inversely proportional to the r∗ value, since lower values of r∗ imply
that more families must be included in the core problem. As the computational time increased
significantly from r∗ = 0.80 to r∗ = 0.70 we did not experiment lower values of r∗. Regarding the
average gap, with r∗ equal to 0.80 and 0.70 we were able to obtain a negative average gap, which
shows that only the constructive phase of the hybrid algorithm is able to provide better quality
solutions than the other heuristic methods available in the literature. More precisely, by using r∗ =
0.70 we were able to obtain a solution with a lower value than the best upper bound obtained by
Morán-Mirabal et al. (2014) for every instance tested. Observe that r∗ = 0.70 makes the method
very time consuming and r∗ = 0.90 worsens the quality of the solutions obtained significantly due
to the core problem being too small. To reach a compromise between the quality of the solutions
obtained and the computational time we decided to choose r∗ = 0.80.

Next, we experimented several ∆ values, that is, different values for the maximum number of
nodes in the initial partial core problem. More precisely, we considered ∆ values of 140, 160, 180
and 200. Table 6.13 shows the results obtained with the constructive phase of the hybrid algorithm
considering the values of ∆ mentioned previously in terms of average gap between the solution
obtained with the constructive phase of the hybrid algorithm and the best upper bound presented
in Table 6.1 (gap) and of average computational time, in seconds, to obtain the solution using the
constructive phase of the hybrid algorithm (ts). Recall that all the results were obtained using the

135

CHAPTER 6. HEURISTIC ALGORITHMS

same parameter setting, except for the ∆ value. The complete results considering ∆ = 180 are
available in appendix, Table C.16, while the detailed results considering the other ∆ values are
available in Table C.17.

Table 6.13: Comparing several values of∆.

gap ts

∆ = 140 -1.69% 35

∆ = 160 -1.96% 2158

∆ = 180 -2.17% 67

∆ = 200 -1.74% 387

Average obtained with instances a_1, a_2, gr and pr.

The results of Table 6.13 are not the expected ones both in terms of percentage of gap and of
computational time. Regarding the percentage of gap, we expected it to decrease when the∆ value
increased as we are considering more nodes in the first partial core problem and, consequently, we
should be able to obtain a better quality solution. However, that is not the case since the highest
value of∆ provides the second highest average gap. If we only consider the results for∆ = 140, 160

and 180 we obtain the expected relationship, which is, lower ∆ values provide higher gap values.
Concerning the computational time, we were expecting it to be proportional to the ∆ value. By
observing the detailed results in Table C.17 we verify that the computational time for instance pr_2
is very high as it took 16782 seconds, which shows that even by limiting the number of nodes in the
initial partial core problem there is an unpredictability associated with this method. If we compute
the average time ignoring instance pr_2we obtain the expected results as the average computational
time is 11 seconds with∆ = 140, 69 seconds with∆ = 160, 65 seconds with∆ = 180 and, finally,
84 seconds with∆ = 200. We decided to choose∆ = 180 as it is the value of∆ that allowed us to
obtain the best average gap in an average time of 67 seconds, which is reasonable considering the
dimension of the test instances that we are using to tune the parameters.

Table 6.14 shows the average percentage of gap between the solution obtained by using the
constructive phase of the hybrid algorithm and the best upper bound obtained by Morán-Mirabal
et al. (2014) considering several Λ values (gap) and the average computational time, in seconds,
to obtain the solution by using the constructive phase of the hybrid algorithm (ts). The complete
results obtained with the Λ values of 30, 50 and 90 are available in appendix, Table C.18 while the
ones obtained with Λ = 70 are available in Table C.16.

136

CHAPTER 6. HEURISTIC ALGORITHMS

Table 6.14: Comparing several values of Λ.

gap ts

Λ = 30 -2.31% 67

Λ = 50 -2.31% 69

Λ = 70 -2.17% 67

Λ = 90 -2.17% 69

Average obtained with instances a_1, a_2, gr and pr.

The results presented in Tables 6.12 and 6.13 were obtained by considering Λ = 70. The results
shown in Table 6.14 are similar for the severalΛ values, both in terms of average gap and of average
computational time, which shows that the value of the parameterΛ has a small impact on the overall
quality of the solution obtained by the constructive phase of the hybrid algorithm. In fact, there was
only one instance in which the solution obtained with the several Λ values was different, which was
instance pr_2. Since the average gap is the same for Λ = 30 and Λ = 50 and with Λ = 30 we
obtained a sightly lower average computational time we decided to use Λ = 30.

According to the parameter tuning performed, the best parameter setting, amongst the ones
tested, for the constructive phase of the hybrid algorithm is the following: r∗ = 0.80,∆ = 180 and
Λ = 30. By using this parameter setting we were able to obtain an average gap of −2.31%, which
means that with the constructive phase of the hybrid algorithmwe were able to improve, on average,
the best upper bounds obtained by Morán-Mirabal et al. (2014) of the benchmark instances with
unknown optimal value. More precisely, we were able to improve the best upper bound presented
in Table 6.1 of five instances, namely instances a_1, gr_1, pr_1, pr_2 and pr_3. Regarding the
computational time, taking into account that we are using the y-separation to solve the core problem,
an average of 67 seconds seems reasonable. Now, we must apply to the solution obtained in the
constructive phase of the hybrid algorithm an improvement algorithm, which is presented next.

6.3.2 Improvement phase

Due to the satisfactory results obtained with the ILS algorithm we experimented applying it directly
to the feasible FTSP solution obtained in the constructive phase of the hybrid algorithm as an im-
provement algorithm. The ILS algorithm used is the one presented in Algorithm 6.3 with the first
step being the constructive phase presented in the previous section, in Algorithm 6.6. Table 6.15
shows the average gap between the best upper bound obtained by Morán-Mirabal et al. (2014) and
the best solution provided by the hybrid algorithm performing 1000 and 5000 iterations of the ILS

137

CHAPTER 6. HEURISTIC ALGORITHMS

algorithm (gap) and the computational time, in seconds, to obtain the best solution with the hybrid
algorithm (ts). The complete results are available in appendix, Table C.19.

Table 6.15: Results obtained with the hybrid algorithm.

gap ts

1000 iterations -11.97% 244

5000 iterations -12.77% 904

Average obtained with instances a_1, a_2, gr and pr.

By comparing the results presented in Table 6.15 to the ones presented in Table 6.10, which
were obtained with the ILS algorithm presented in Section 6.2 in which the initial FTSP solution
is obtained by using the nearest neighbor heuristic, we verify that the hybrid algorithm obtained
the lowest average gap performing both 1000 and 5000 iterations. Even though the difference is
not very significant, considering 5000 iterations, the hybrid algorithm was able to obtain a better
solution than the ILS algorithm in six of the eight benchmark instances which have an unknown
optimal value. Regarding the computational time, as expected, the hybrid algorithm is more time
consuming than the ILS algorithm. Nevertheless, as our main objective is to improve the best upper
bounds available in the literature for the benchmark instances which have an unknown optimal
value, the hybrid algorithm seems to be a suitable method.

By applying the ILS directly to the solution obtained in the constructive phase of the hybrid
algorithm we are not exchanging information between both phases. Thus, in Section 6.3.2.1 we
present a procedure that exchanges information between both phases of the hybrid algorithm.

6.3.2.1 Transferring information from the constructive phase to the improvement phase

In the hybrid algorithm we complete the partial solution provided by the core problem by using
a savings heuristic, however, when completing the solution, we only take into account the costs
associated to the arcs. Therefore, we decided to use dual information to choose nodes which are
not contemplated in a greedy procedure, such as the savings heuristic, but which may be good
candidates to be visited in higher quality solutions.

Recall that in linear programming the optimality conditions may be expressed in terms of dual
feasibility, meaning that a variable does not satisfy the optimality conditions if the corresponding
dual constraint is violated. Therefore, we decided to use dual variables to identify violated dual
constraints associated with variables xij linking nodes in the core problem to nodes not in the core

138

CHAPTER 6. HEURISTIC ALGORITHMS

problem and consider the corresponding arcs (i, j) ∈ A as potentially interesting arcs to be included
in a feasible solution for the FTSP.

To obtain the value of the dual variables we will use the SCF model as this is the fastest com-
pact model to obtain the LP relaxation value. Consequently, we reintroduce the SCF model, more
precisely, the objective and the constraints that contain x variables:

Minimize
∑

(i,j)∈A

cijxij (4.1)

Subject to:

x(0, N) = 1 α0 (4.2)

x(i, 0 ∪N)− yi = 0 ∀i ∈ N αi (4.3)

x(0 ∪N, i)− x(i, 0 ∪N) = 0 ∀i ∈ 0 ∪N βi (4.4)

(4.5)− (4.9) and (4.10)

fij − V xij ≤ 0 ∀(i, j) ∈ A \ A0 µij (4.11)

0 ≤ xij ≤ 1 ∀(i, j) ∈ A γij (4.36)

(4.37) and (4.12).

The LP relaxation of the SCF model is used to solve the FTSP instance defined by the set of
nodes in Core. As we are only interested in the arcs, we only presented the constraints, and the
corresponding dual variables, that contain x variables. Letα0,αi, βi, µij and γij be the dual variables
associated with constraints (4.2), (4.3), (4.4), (4.11) and (4.36), respectively. The dual constraint
associated with variable xij , with (i, j) ∈ A is: αi − βi + βj −V µij + γij ≤ cij . Consider now that
j ∈ N \Core. In this case, we can assume that the dual variables associated with j have value zero
and the dual constraint associated with xij becomes αi − βi ≤ cij . If there is a variable xij such
that αi − βi − cij > 0, then the dual constraint associated with xij is violated and the variable does
not satisfy the corresponding optimality condition. Therefore, we will choose the arcs (i, j) ∈ A,
with i ∈ Core and j ∈ N \ Core, such that αi − βi − cij > 0 to be in a pool of arcs.

Before applying the savings heuristic, we insert some of the arcs from the pool of arcs in the
partial solution to visit more nodes and be closer to obtaining a feasible solution for the FTSP.
We start by inserting the arcs (i, j) which have the highest value of αi − βi − cij , meaning that,
we prioritize the insertion of the arcs which are associated with the most violated dual constraints.
Assume that we wish to insert the arc (i, j) in the partial solution, with i ∈ Core and j ∈ N \Core.
To do so we remove node i from the partial solution and verify which is the best position, in terms of
solution cost, to insert the arc (i, j). When choosing the arc to insert we also need to make sure that
node j’s family is not complete. Additionally, for each node i ∈ Core, we insert at the most one

139

CHAPTER 6. HEURISTIC ALGORITHMS

arc from the pool of arcs which has node i as its initial node. The arcs that were chosen according
to dual information are considered taboo, that is, they cannot be removed from the solution. If after
inserting all the possible arcs from the pool of arcs the partial solution remains unfeasible, then we
apply the savings heuristic.

After obtaining a feasible solution for the FTSP, we apply the ILS algorithm presented in Al-
gorithm 6.3. We experimented considering the arcs from the pool of arcs taboo not only during the
savings heuristic and the first local search procedure (step 2 Algorithm 6.3) but also during the first
100 iterations of the perturbation and the local search procedures. The results obtained are shown in
Table 6.16. This table shows the average percentage of gap between the best upper bound obtained
by Morán-Mirabal et al. (2014) and the best solution obtained by the hybrid algorithm with dual
information (gap) and the average computational time, in seconds, to obtain the solution with the
hybrid algorithm with dual information (ts). The results shown were obtained by performing 1000
iterations of the ILS algorithm. The detailed results obtained with the hybrid algorithm with dual
information are available in appendix, Table C.20.

Table 6.16: Using the hybrid algorithm with dual information.

gap ts

Taboo first local search -11.88% 283

Taboo first 100 iterations -11.36% 283

Average obtained with instances a_1, a_2, gr and pr.

By comparing the results presented in the previous table we conclude that the best approach, in
terms of average percentage of gap, is to consider the arcs from the pool of arcs as taboo only during
the initial local search. When we compare these results to the ones presented in Table 6.15 we verify
that these results are slightly worse. More precisely, without using the dual information we obtain
an average percentage of gap of −11.97%. When we analyze the detailed results obtained with the
hybrid algorithm with dual information we verify that it only provided a better solution than the
hybrid algorithm in instance a_1. The results obtained with and without using dual information are
similar, however we expected that the dual information would lead us to better quality solutions.
We believe that these results are a consequence from the fact that we are solving an ILP problem
using information of its LP relaxation. Additionally, when we insert an arc from the pool of arcs
in the partial solution we may be forcing the node that belongs to the solution to change place.
Nevertheless, the hybrid algorithm with dual information was able to obtain a better solution than
the hybrid algorithm in one instance which means that this idea could be promising provided that

140

CHAPTER 6. HEURISTIC ALGORITHMS

we improve the quality of the approximation used. Consequently, we will use the hybrid algorithm
without the dual information, that is, we use the algorithm presented in Algorithm 6.6 to obtain a
feasible solution for the FTSP and then we apply, to that solution, the ILS algorithm presented in
Section 6.2.

6.4 Computational experiment

In this section we start by comparing the results obtained with the proposed heuristics to verify
which are the best heuristic methods. Then, we present the final computational experiment with the
heuristic algorithms.

All the algorithms presented in this chapter were developed within the scope of this dissertation
and were implemented in C++ and the computational experiment was carried out in an Intel Core
i7, 3.60 gigahertz, 8 gigabytes RAM, as before.

space
Table 6.17 shows a summary of the best results obtained with the genetic algorithm, the ILS

algorithm and the hybrid algorithm. We refer the reader to Sections 6.1, 6.2 and 6.3 to verify which
is the best parameter setting for the genetic algorithm, the ILS algorithm and the hybrid algorithm,
respectively. Table 6.17 contains the average percentage of gap (gap) and the average computational
time, in seconds, to obtain the best solution with the several heuristic algorithms (ts).

Table 6.17: Summary of the best results obtained with the proposed heuristic algorithms.

gap ts

Genetic algorithm -9.83% 305

ILS algorithm -12.20% 735

Hybrid algorithm -12.77% 904

Average obtained with instances a_1, a_2, gr and pr.

In order to establish a fairer comparison, the results obtained with the ILS algorithm and the hy-
brid algorithm where obtained performing 5000 iterations while the ones obtained with the genetic
algorithm were obtained by applying 1000 iterations of the local search algorithm to 12 solutions
present in the final population of the genetic algorithm. By observing Table 6.17 we verify that
the average percentage of gap is inversely proportional to the average computational time as less
time consuming heuristics lead to higher percentage of gap values. Nevertheless, all the proposed
heuristics were able to improve the best upper bound obtained by Morán-Mirabal et al. (2014) for

141

CHAPTER 6. HEURISTIC ALGORITHMS

all the benchmark instances with unknown optimal value. As our main objective is to obtain the
best solution possible for the instances that the exact methods cannot solve within the time limit we
analyzed the detailed results and verified which methods provided the best solution. Tables C.6,
C.14 and C.19 show the detailed results of the best version of the genetic algorithm, the ILS algo-
rithm and the hybrid algorithm, respectively. From these tables we verify that the hybrid algorithm
obtained the solution with the lowest cost in six instances and the ILS algorithm obtained the low-
est cost solution in two, namely instances gr_2 and pr_2. Even though the genetic algorithm is the
most efficient method in terms of computational time, it is dominated by the ILS algorithm and the
hybrid algorithm in terms of quality of the solutions obtained as it never provides the solution with
the lowest cost. Therefore, as we are more interested in the quality of the solutions obtained than
in the computational efficiency of the algorithm and as neither the ILS algorithm nor the hybrid
algorithm provided the lowest cost solution in every benchmark instance with unknown optimal
value we decided to carry out a computational study with both methods.

Since there are instances from the instance sets 2 and 3 that the exact methods could not find
their optimal value within the time limit, we decided to use the heuristic methods to solve them.
Note that since these instances were never addressed in the literature there are no upper bounds
available for us to use to evaluate the quality of the solutions obtained by the proposed heuristics.
Therefore, we decided to use as reference values the upper bounds provided by the B&C algorithm,
which are available in Table 5.22. In the case of the instances from the instance sets 2 and 3 the
percentage of gap is computed by using the following formula: gap = 100× (heuristic solution−
B&C solution)/B&C solution.

As the ILS algorithm and the hybrid algorithm use random procedures we did five runs, con-
sidering different seeds, for each instance that we intend to solve. This allowed us to evaluate the
robustness of the methods. Tables 6.18 and 6.19 show a summary of the results obtained in the
five runs with the ILS algorithm and the hybrid algorithm, respectively, with the most important
statistics. The detailed results for all the different runs are available in appendix, Table C.21. Ta-
bles 6.18 and 6.19 contain, besides the instance name, the value of the best solution obtained by
the proposed method (Best value), the minimum percentage of gap (min), the average percentage
of gap (average) and the maximum percentage of gap (max) obtained in the five runs, the range
between the maximum and the minimum percentage of gap (range = max−min) and the average
computational time, in seconds, also considering the five distinct runs (ts).

142

CHAPTER 6. HEURISTIC ALGORITHMS

Table 6.18: Summary of the final results obtained with the ILS algorithm.

Instance Best value min average max range ts

Instance set 1
a_1 1771.25 -6.34% -5.76% -4.86% 1.48% 33
a_2 1573.27 -7.32% -5.62% -4.38% 2.94% 33
gr_1 1554.80 -14.43% -13.93% -13.56% 0.87% 452
gr_2 1246.21 -13.64% -13.27% -12.69% 0.95% 461
gr_3 1227.50 -11.32% -10.58% -9.78% 1.53% 478
pr_1 134283.00 -17.85% -16.99% -15.32% 2.53% 1436
pr_2 144621.00 -20.60% -19.90% -19.24% 1.36% 1417
pr_3 128562.00 -13.98% -12.81% -11.69% 2.29% 1608

Instance set 2
pr144_4 49527 0.25% 0.60% 1.04% 0.79% 4

kroA150_3 21645 3.66% 3.68% 3.75% 0.08% 4
pr152_3 65339 1.42% 1.71% 1.86% 0.44% 5
rat195_1 1300 1.17% 2.26% 3.27% 2.10% 12
rat195_3 1841 1.49% 1.86% 2.21% 0.72% 9
rat195_4 1359 2.95% 3.83% 4.09% 1.14% 10
kroA200_1 17318 5.33% 6.62% 8.02% 2.69% 12
kroA200_3 25487 4.15% 4.51% 4.70% 0.55% 9
kroB200_3 25410 5.49% 5.77% 6.28% 0.79% 8
gr202_4 28766 2.59% 4.28% 5.02% 2.43% 11
gr229_1 72238 2.12% 2.39% 2.63% 0.52% 19
gil262_1 1567 2.49% 3.96% 5.30% 2.81% 23
gil262_3 2069 2.83% 3.06% 3.53% 0.70% 16
gil262_4 1737 -2.03% -1.55% -1.07% 0.96% 20
pr264_2 28892 0.50% 0.80% 1.00% 0.50% 25

Instance set 3
rbg443_2 400 -32.89% -29.80% -27.52% 5.37% 131

143

CHAPTER 6. HEURISTIC ALGORITHMS

Table 6.19: Summary of the final results obtained with the hybrid algorithm.

Instance Best value min average max range ts

Instance set 1
a_1 1741.14 -7.93% -6.82% -6.00% 1.93% 36
a_2 1568.56 -7.59% -6.64% -5.37% 2.23% 33
gr_1 1551.27 -14.63% -13.43% -12.06% 2.57% 462
gr_2 1236.96 -14.28% -13.69% -13.22% 1.07% 481
gr_3 1240.23 -10.40% -10.01% -9.72% 0.68% 497
pr_1 135848.93 -16.89% -16.28% -15.04% 1.85% 2046
pr_2 146596.93 -19.52% -19.06% -18.74% 0.78% 1621
pr_3 123164.62 -17.59% -14.56% -12.81% 4.78% 1887

Instance set 2
pr144_4 49650 0.50% 0.58% 0.88% 0.38% 4

kroA150_3 21038 0.76% 0.76% 0.76% 0.00% 5
pr152_3 64718 0.45% 0.62% 0.83% 0.38% 5
rat195_1 1314 2.26% 2.54% 2.96% 0.70% 12
rat195_3 1840 1.43% 1.71% 2.54% 1.10% 12
rat195_4 1331 0.83% 1.05% 1.21% 0.38% 11
kroA200_1 17099 4.00% 4.78% 5.41% 1.41% 12
kroA200_3 24580 0.45% 0.46% 0.54% 0.09% 5152
kroB200_3 24542 1.88% 1.88% 1.88% 0.00% 196
gr202_4 28117 0.28% 0.98% 1.66% 1.38% 12
gr229_1 71667 1.31% 1.78% 2.42% 1.11% 19
gil262_1 1577 3.14% 3.14% 3.14% 0.00% 24
gil262_3 1987 -1.24% -0.67% -0.30% 0.94% 8196
gil262_4 1712 -3.44% -2.64% -1.30% 2.14% 64
pr264_2 28863 0.40% 0.80% 1.21% 0.81% 28

Instance set 3
rbg443_2 399 -33.05% -31.24% -28.86% 4.19% 132

We start by analyzing Table 6.18. The average gap obtained considering all instances and all
seeds with the ILS algorithm was of−3.54%while the average computational time was of 260 sec-
onds. Considering the instance set 1, the ILS algorithmwas able to find solutions with a lower value
than the best upper bound obtained by Morán-Mirabal et al. (2014) for every instance for which the

144

CHAPTER 6. HEURISTIC ALGORITHMS

optimal value is not known. In fact, even the worst solution obtained in the five runs is better than
the best upper bound from the literature. The method seems to provide good quality solutions con-
sistently as the maximum range obtained was 2.94%, thus this is a robust method. Regarding the
computational time, taking into account the size of instances gr and pr, which have 666 and 1002

nodes, respectively, we can state that the ILS algorithm is able to obtain good quality solutions
in a very reasonable amount of computational time. We cannot establish a fair comparison to the
metaheuristics proposed by Morán-Mirabal et al. (2014) for the FTSP in terms of computational
time due to the different stopping criterion used. The referred metaheuristics stops either when they
reach the time limit, which is 7200 seconds, or when they find a solution with a cost which is less
than or equal to the target solution. The target solution is the best solution found by the referred
metaheuristics, after 36000 seconds of computational time. We reported the computational times
obtained by Morán-Mirabal et al. (2014) in Table 6.1.

From the 15 instances of the instance set 2 which have an unknown optimal value, the ILS al-
gorithm could only improve the reference solution, which was obtained with the B&C algorithm,
in one instance, namely instance gil262_4. We were expecting that the ILS algorithm would obtain
better solutions than the B&C algorithm, however that was not the case. These results make us
believe that the heuristic callback presented in Section 5.3 is able to provide good quality solutions
during the B&C algorithm. Regarding the computational time, the B&C algorithm took 10800 sec-
onds to obtain the reference solutions while the ILS algorithm provided solutions for these instances
in an average of 12 seconds, which shows that we cannot establish a fair comparison between the
solutions obtained by the B&C algorithm and the ones obtained with the ILS algorithm due to the
discrepancy in the average computational time.

Finally, there was only one instance from the instance set 3 that the exact method could not
solve within the time limit, which was instance rbg443_2. Recall that this is one of the instances
which have arcs with cost zero. The ILS algorithm was able to provide a good quality solution for
this instance. In fact, the solution provided by the B&C algorithm has a value of 596 whilst the best
solution obtained by the ILS algorithm has a value of 400. Moreover, the ILS algorithm took an
average of 131 seconds to obtain that solution.

Consider now the results obtained with the hybrid algorithm presented in Table 6.19. The aver-
age gap obtained considering all instances and all runswas−4.75%while the average computational
time was 873 seconds. Observing the referred table, we verify that the high average computational
time is due to instances kroA200_3 and gil262_3. If we compute the average computational time
without these two instances we obtain an average of 345 seconds, which is of the same magnitude
as the time obtained with the ILS algorithm.

145

CHAPTER 6. HEURISTIC ALGORITHMS

From the benchmark instances with unknown optimal values, the hybrid algorithm was able to
obtain a solution of better quality in every run as the maximum value of gap obtained is negative.
From these results, it is clear that the hybrid algorithm outperforms the heuristics methods available
in the literature in terms of the quality of the solutions obtained. Regarding the robustness of the
method, it seems to be less robust than the ILS algorithm as themaximum range obtainedwas 4.78%.
When we compare the hybrid algorithm to the ILS algorithm, the hybrid algorithm provides a lower
average gap while the ILS algorithm is faster. Moreover, both methods were able to improve the
best upper bounds from the literature. In fact, the hybrid algorithm obtained the solution with the
lowest value in five instances whereas the ILS algorithm provided the best quality solution in three
instances, more precisely, instances gr_3, pr_1 and pr_2.

Regarding the instance set 2, the hybrid algorithm was able to improve the upper bounds ob-
tained by the B&C algorithm in two instances, namely instances gil262_3 and gil262_4. Once
again, the B&C algorithm is able to provide better quality solutions after 10800 seconds of compu-
tational time which makes the comparison of the hybrid algorithm to the B&C algorithm unfair. The
hybrid algorithm was very time consuming when addressing instances kroA200_3 and gil262_3,
which shows that even with all the measures taken to ensure the efficiency of the resolution of the
core problem, there is an underlying uncertainty. This characteristic is a drawback of the hybrid
algorithm. However, even considering the time consuming instances, the average time to solve the
instance set 2 is 917 seconds, which is significantly smaller than the time limit used in the B&C
algorithm. Without the time consuming instances, the average computational time for the instance
set 2 is 38 seconds. When we compare the best solutions provided by the hybrid algorithm to the
one obtained with the ILS algorithm, we verify that the hybrid algorithm provided the best solu-
tion in 14 instances whereas the ILS algorithm only obtained the solution of better quality in three
instances, namely instances pr144_4, rat195_1 and gil262_1.

The hybrid algorithm was able to improve the reference value obtained for instance rbg443_2
from the instance set 3. In fact, the hybrid algorithm was the method that provided the best solution
for the referred instance. In terms of computational time, it was similar to the one obtained with the
ILS algorithm.

Summary

We proposed three different heuristics for the FTSP to solve the instances that the exact methods
could not solve optimally within the time limit, which are a genetic algorithm, an ILS algorithm
and a hybrid algorithm.

All the proposed heuristics were able to improve the best upper bound obtained by Morán-

146

CHAPTER 6. HEURISTIC ALGORITHMS

Mirabal et al. (2014) for the benchmark instances with unknown optimal value. The genetic al-
gorithm was the most efficient heuristic algorithm as considering its best version took an average
of 305 seconds to provide feasible solutions for the FTSP while the ILS algorithm and the hybrid
algorithm took 735 and 904 seconds, respectively. Regarding the quality of the solutions obtained,
the genetic algorithm is the heuristic algorithm that provides the worst quality solutions on average.
In fact, the other heuristic methods provide solutions of better quality than the genetic algorithm in
every instance tested. As our main objective is to obtain the solutions with the lowest possible cost,
we decided to carry out a computational study with the ILS algorithm and the hybrid algorithm,
since we could not establish any relationship of dominance between them.

From the 24 instances that the exact methods failed to obtain the optimal solution within the
time limit, the hybrid algorithm was able to obtain the best solution in 18 instances whilst the ILS
algorithm provided the best solution in six. This shows that even though the methods are similar,
there is a dominance of the hybrid algorithm in terms of quality of the solutions obtained. Regarding
the computational time, the ILS algorithm is more efficient than the hybrid algorithm. Addition-
ally, as we are using an exact method in the hybrid algorithm there is an unpredictability in the
computational time of the referred method since it is highly dependent on the difficulty of the core
problem. Thus, when the first concern is to obtain the best solutions possible in a reasonable amount
of computational time the hybrid algorithm is the best heuristic method. However, if the goal is too
achieve good quality solutions quickly the genetic algorithm is preferable.

Consider now the feasible solutions obtained by the B&C algorithm. These solutions are of
very good quality. In fact, the B&C algorithm was able to obtain the best solution in 14 out of the
24 instances with unknown optimal value. Nonetheless, the B&C algorithm requires an effective
formulation and it has limitations regarding the instance’s dimension, for example, we were unable
to apply the y-separation to the benchmark instances gr and pr. Table 6.20 shows a summary of the
best known upper bounds for the instances with unknown optimal value, which were all obtained
by applying methods developed within the scope of this dissertation.

147

CHAPTER 6. HEURISTIC ALGORITHMS

Table 6.20: Current best known upper bounds.

Instance
Best known
upper bounds

Instance set 1
a_1 1692.92
a_2 1568.56∗

gr_1 1551.27
gr_2 1236.96
gr_3 1227.50
pr_1 134283.00
pr_2 144621.00
pr_3 123164.62

Instance set 2
pr144_4 49403∗

kroA150_3 20880∗

pr152_3 64425∗

rat195_1 1285∗

rat195_2 1814∗

rat195_4 1320∗

kroA200_1 16441∗

kroA200_3 24471∗

kroB200_3 24088∗

gr202_4 28039∗

gr229_1 70741∗

gil262_1 1529∗

gil262_3 1987
gil262_4 1712
pr264_2 28748∗

Instance set 3
rbg443_2 399

*Obtained with the B&C algorithm.

148

Chapter 7

The Family Traveling Salesman Problem: a
Variant

In this chapter we address a variant of the FTSP. Assume that, besides the usual requirements for a
circuit to be a feasible solution for the FTSP, it also needs to visit the nodes from the same family
consecutively. This assumptionmakes sense as wemaywant to cluster the products of the same type
for delivery purposes. This additional constraint originates the restricted family traveling salesman
problem (RFTSP). To clarify, the objective of the RFTSP is to find the minimum cost elementary
circuit that: (i) starts and ends at the depot; (ii) visits a predefined number of nodes per family;
and (iii) visits the nodes from the same family consecutively. We will refer to condition (iii) as the
consecutiveness condition henceforth.

This chapter is organized as follows. In Section 7.1 we formally introduce the RFTSP. In Sec-
tion 7.2 we present some basic constructive heuristics and neighborhoods for the RFTSP, which will
be used as subroutines in the exact and the heuristic algorithms presented in the subsequent sections.
In Section 7.3 we present mathematical formulations for the RFTSP. Some are adaptations of for-
mulations for the FTSP while others are specific for the RFTSP. In Section 7.4 we present the B&C
algorithm to solve the non-compact formulations proposed and, finally, in Section 7.5 we present
the heuristic algorithms for the RFTSP.

7.1 The restricted family traveling salesman problem

In order to illustrate the difference between the FTSP and the RFTSP, consider a new FTSP instance
which has two families. Family 1, which is represented by the light gray color, has two family nodes
(nodes 1 and 2) while family 2, represented by the dark gray color, has four family nodes (nodes

149

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

3-6). The number of nodes that we are required to visit in family 1 is one and in family 2 is three.
Figure 7.1 shows an example of a feasible (Figure 7.1a) and of an unfeasible solution (Figure 7.1b)
for the RFTSP considering the instance described previously.

1 2

3

4

56

0

(a) Feasible solution.

1 2

3

4

56

0

(b) Unfeasible solution.

Figure 7.1: An example of a feasible and an unfeasible solution for the RFTSP.

Both solutions presented in Figure 7.1 are feasible for the FTSP but the solution presented in
Figure 7.1b is not feasible for the RFTSP since we are visiting node 1 between nodes 4 and 3 which
are from family 2. By analyzing Figure 7.1a we verify that the number of arcs used in the cut-set
[(N ∪ 0) \ F2, F2] is one. Note that if the number of arcs used in the referred cut-set was lower,
we would have a disconnected solution, while if the number of arcs used was higher, like in the
case of Figure 7.1b, the solution would not satisfy the consecutiveness condition. Additionally and
considering family 2, we see that there is an elementary three node path using only arcs linking
nodes from family 2. Generalizing, given a family l ∈ L, a feasible solution for the RFTSP that
satisfies the consecutiveness condition has two characteristics:

(a) there is one, and only one, arc used in the cut-set [Fl, (N ∩ 0) \ Fl]; and

(b) there is an elementary path with vl nodes and with arcs (i, j) ∈ A, such that i, j ∈ Fl.

Given a feasible solution for the FTSP, if we ensure either one of the conditions (a) or (b) stated
previously, we obtain a feasible solution for the RFTSP. Note that conditions (a) or (b) are redundant
for the single-visit families as, firstly, condition (a) is ensured by the constraints (4.2)-(4.5) presented
in the generic model of Section 4.1 and, secondly, it is not possible to define a path that only visits
one node, according to the definition of a path given in Section 2.1. Therefore, we only need to
ensure that conditions (a) or (b) are satisfied for the multi-visit families, which we recall is the set
of familiesM = L \ U .

150

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

7.2 Basic heuristics and neighborhoods for the RFTSP

Throughout this section we present some basic constructive heuristics and neighborhoods for the
RFTSP. The proposed methods are an adaptation of the basic FTSP heuristics and neighborhoods
presented in Section 3.3.

Regarding the basic FTSP heuristics presented in Section 3.3, we will adapt the nearest neighbor
algorithm and the random constructive heuristic. The adaptation of both heuristic procedures is
similar and it relies on the idea that once we start visiting nodes from a family we can only visit
nodes from a different family when the former family is complete.

In the case of the nearest neighbor, if the family of the last node inserted in the circuit is not
complete, then we must choose the nearest node which belongs to the same family as the last node
inserted in the circuit. Otherwise, that is, when we complete a family, we may choose the nearest
node to be inserted in the circuit like we did in the FTSP.

The adaptation of the random constructive heuristic is similar to the one made for the nearest
neighbor. More precisely, the permutation defines the order of the visits but we need to visit all the
nodes from the same family consecutively. This implies that the families are visited according to the
order as their first nodes appear in the permutation and, for each family, we will visit the nodes of
that family by the order as they appear in the permutation ignoring the remaining families until the
current family is complete. Example 32 shows how the random constructive heuristic transforms a
permutation into a feasible solution for the RFTSP.

Example 32 (Random Heuristic RFTSP). Consider the RFTSP instance presented in Figure 7.1
and the permutation π = (3, 1, 4, 2, 5, 6). The circuit starts at node 0 and then visits node 3. As we
cannot leave family 2 before visiting all the required nodes, we will visit nodes 4 and 5. Family 2

is now complete, so we will return to the second position of the permutation and we will visit node
1 from family 1. The circuit obtained is {(0, 3), (3, 4), (4, 5), (5, 1), (1, 0)}.

The neighborhoods for the FTSP defined in Section 3.3 consist in switching the position of
nodes that belong to the circuit, in switching a visited node with a non-visited node and, in the case
of a symmetric cost matrix, in inverting the order of one path in the circuit. As the moves that
define the neighborhoods must originate feasible solutions, we have to adapt them for the case of
the RFTSP.We propose five different neighborhoods for the RFTSP, four of which are similar to the
neighborhoodsNI ,NO and 2-opt and the fifth one is specific for the RFTSP. The neighborhoods that
are similar to FTSP neighborhoods will be called the same for simplification purposes. Therefore,
the five RFTSP neighborhoods are NI , NO, 2-opt-intra, 2-opt-inter and NF . Considering s as a
feasible solution for the RFTSP, these neighborhoods are defined as follows:

151

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

• NI(s) ={s′ feasible : s′ can be obtained from s by switching a maximum of two nodes,

from the same family, in the circuit}

• NO(s) = {s′ feasible : s′ can be obtained from s by switching a maximum of two nodes,

from the same family, such that, one belongs to the circuit and the other does

not}

• 2-opt-intra(s) ={s′ feasible : s′ can be obtained from s by inverting the order of one

path in the circuit such that the initial and the final node of the path

belong to the same family}

• 2-opt-inter(s) ={s′ feasible : s′ can be obtained from s by inverting the order of one

path in the circuit that has i and j (i ̸= j) as its initial and final nodes,

respectively, such that: i is either the depot or the first visited node

from family l1 ∈ L and j is either the depot or the last visited node

from family l2 ∈ L : l1 ̸= l2}

• NF (s) ={s′ feasible : s′ can be obtained from s by switching the position of a maximum

of two families in the circuit}

Neighborhoods NI and NO are similar to the ones presented in Section 3.3 for the FTSP. More
precisely, the former has an additional condition that states that we can only switch the position of
nodes in the circuit which are from the same family while the latter is exactly the same. Neigh-
borhood 2-opt presented in Section 3.3 originated neighborhoods 2-opt-intra and 2-opt-inter, which
intuitively consist in inverting a path inside a family or a path with several families, respectively.
Additionally, the path that is inverted in neighborhood 2-opt-inter may contain the depot and it must
contain complete families. Finally, neighborhood NF is similar to neighborhood NI for the FTSP
if we look at each family as a node.

Example 33 (Neighborhoods RFTSP). Consider the feasible solution for the RFTSP instance pre-
sented in Figure 7.1a, that is, s = {(0, 1), (1, 3), (3, 4), (4, 5), (5, 0)}. Then, the neighborhoods
associated with s are:

NI(s) = {{(0, 1), (1, 3), (3, 4), (4, 5), (5, 0)}, {(0, 1), (1, 4), (4, 3), (3, 5), (5, 0)},

{(0, 1), (1, 5), (5, 4), (4, 3), (3, 0)}, {(0, 1), (1, 3), (3, 5), (5, 4), (4, 0)}}

152

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

NO(s) = {{(0, 1), (1, 3), (3, 4), (4, 5), (5, 0)}, {(0, 2), (2, 3), (3, 4), (4, 5), (5, 0)},

{(0, 1), (1, 6), (6, 4), (4, 5), (5, 0)}, {(0, 1), (1, 3), (3, 6), (6, 5), (5, 0)},

{(0, 1), (1, 3), (3, 4), (4, 6), (6, 0)}}

2-opt-intra(s) = {{(0, 1), (1, 3), (3, 4), (4, 5), (5, 0)}, {(0, 1), (1, 4), (4, 3), (3, 5), (5, 0)},

{(0, 1), (1, 5), (5, 4), (4, 3), (3, 0)}, {(0, 1), (1, 3), (3, 5), (5, 4), (4, 0)}}

2-opt-inter(s) = {{(0, 1), (1, 3), (3, 4), (4, 5), (5, 0)}, {(0, 3), (3, 4), (4, 5), (5, 1), (1, 0)},

{(0, 5), (5, 4), (4, 3), (3, 1), (1, 0)}}

NF (s) = {{(0, 1), (1, 3), (3, 4), (4, 5), (5, 0)}, {(0, 3), (3, 4), (4, 5), (5, 1), (1, 0)}}

The sizes of the neighborhoods NI(s) and 2-opt-intra(s) are at most 1 +
∑

l∈M
vl×(vl−1)

2
, the

size of the neighborhood 2-opt-inter(s) is, at most, 1 + 2 × (L − 1) + L×(L−1)
2

and the size of
neighborhood NF (s) has a maximum value of 1 + (L+1)×L

2
.

To conclude, all the neighborhoods for the RFTSP are searched by using Algorithm 3.1 pre-
sented in Section 3.3.

7.3 Mathematical formulations for the RFTSP

We introduced the RFTSP in the beginning of Chapter 7 as being the FTSP with the additional
consecutiveness condition, thus, any formulation for the FTSP can be used as a formulation for the
RFTSP as long as we include constraints to model the consecutiveness condition. This section in
divided into twomain parts. The first part consists in adapting themathematicalmodels proposed for
the FTSP in Chapter 4 by including constraints to guarantee the satisfaction of the consecutiveness
condition, while in the second part we propose a new modeling approach for the RFTSP in which
we address the interfamily and the intrafamily relationships as different subproblems. The latter
formulation is called the inter- and intrafamily formulation. Considering amulti-visit family l ∈ M,
the set of constraints developed to formulate the consecutiveness condition is based on characteristic

153

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

(a) presented in Section 7.1, which states that there exists one and only one arc used in the cut-set
[(0∪N)\Fl, Fl], whereas the formulation for the intrafamily subproblem of the inter- and intrafamily
formulation is based on characteristic (b), which states that there must be a path with vl nodes that
only uses arcs linking nodes from the same family.

In Section 7.3.1 we present a formulation for the consecutiveness condition, and, consequently,
how to adapt the FTSP formulations into RFTSP formulations. In Section 7.3.2 we present the inter-
and intrafamily formulation. We conclude in Section 7.3.3 with an empirical comparison between
the two modeling approaches proposed.

7.3.1 Formulating the consecutiveness condition

As we mentioned previously, in a feasible solution for the RFTSP, for a given multi-family l ∈ M,
there must be one and only one arc used in the cut-set [Fl, (0 ∩N) \ Fl]. Therefore, a formulation
for the RFTSP may be obtained by adding the following constraints

x(Fl, (N ∪ 0) \ Fl) = 1 ∀l ∈ M, (7.1)

to an FTSP formulation. Note that the consecutiveness constraints (7.1) are in polynomial number,
since |M| ≤ L.

Any FTSP formulation may be used to solve the RFTSP as long as we include in the formulation
the consecutiveness constraints (7.1). For simplification purposes, the RFTSP formulation which
consists in adding the consecutiveness constraints to an FTSP formulation will be designated by the
name of the FTSP formulation.

7.3.2 The inter- and intrafamily formulations

This formulation is based on the fact that the interfamily and the intrafamily relationships in the
RFTSP may be seen as two different subproblems. As we must visit the nodes from the same
family consecutively, the families may be seen as “supernodes”. Consequently, as we must visit
every family, a feasible solution for the RFTSP is an Hamiltonian circuit that goes through the
“supernodes”. Hence, we can formulate the interfamily subproblem as a TSP in which the nodes
are the different families. Regarding the intrafamily subproblem, as we mentioned before, for each
family l, with l ∈ M, we wish to have an elementary path that only uses arcs (i, j), such that i and
j are from family l. Consequently, we can formulate the intrafamily subproblem as an elementary
path problem, with the additional constraints that: (i) the initial and the final nodes of the path
are not predetermined; and (ii) the path must have vl nodes. Recall that we are only required to
formulate the intrafamily subproblem for the multi-visit families.

154

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Consider the binary x variables defined in the generic formulation for the FTSP presented in
Section 4.1, which have value 1 if the arc (i, j) ∈ A is used in the circuit and value 0 otherwise.
We start by presenting a generic formulation in which the inter- and intrafamily subproblems are
modeled in a generic manner and then we provide formulations for the generic constraints. Thus, a
generic formulation for the RFTSP based on the intrafamily and the interfamily subproblems is the
following:

Minimize
∑

(i,j)∈A

cijxij (4.1)

Subject to:

{(i, j) ∈ A : xij = 1} is a solution for the intrafamily subproblem (7.2)

{(i, j) ∈ A : xij = 1} is a solution for the interfamily subproblem (7.3)

xij ∈ {0, 1} ∀(i, j) ∈ A. (4.7)

The objective is to minimize the cost of the circuit, which is represented in (4.1). Constraints
(7.3) and (7.2) are a generic representation of the inter- and intrafamily subproblems, respectively.
Constraints (4.7) define the domain of the x variables.

In Section 7.3.2.1 we present different formulations for the intrafamily generic constraints (7.2),
which will originate several inter- and intrafamily formulations, in Section 7.3.2.2 we present a
formulation for the interfamily generic constraints (7.3) and in Section 7.3.2.3 we present a theo-
retical comparison of the several inter- and intrafamily formulations. Before doing so, we denote
by Al the set of arcs which have its initial and final nodes belonging to family l ∈ M, that is,
Al = {(i, j) ∈ A : i ∈ Fl, j ∈ Fl} and by R a subset of family nodes R ⊆ Fl and by R′ its
complementary subset, that is, R′ = Fl \R.

7.3.2.1 Formulating the intrafamily subproblem

Considering a multi-visit family l ∈ M, we wish to determine an elementary path that visits vl
nodes. Additionally, the path does not have a predefined initial nor final node. Thus, in order to
formulate the intrafamily subproblem of the inter- and intrafamily formulation, we define binary
variables wk

ij = 1 if the arc (i, j) ∈ Al : j ̸= k is used in the path that has k ∈ Fl as its initial
node, and wk

ij = 0 otherwise. Binary variables pk have value 1 if node k ∈ Fl is the initial node of
the path, and value 0 otherwise. Variables qki are binary and have value 1 if node i ∈ Fl : k ̸= i is
visited in the path which has k ∈ Fl as its initial node, and value 0 otherwise and, finally, binary
variables uk

i = 1 if node i ∈ Fl : i ̸= k is the final node of the path that has k ∈ Fl as its initial
node, and uk

i = 0 otherwise. Note that the w variables and the p, the q and the u variables may be

155

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

seen as a disaggregation of the x variables and the y variables introduced in the generic formulation
for the FTSP in Section 4.1, respectively, per possible initial node of the path. More precisely, if
an arc (i, j) ∈ Al is used in the path then it is used in the circuit, thus, xij =

∑
k∈Fl:k ̸=j w

k
ij and if

k ∈ Fl is the initial node of the path or is visited in a path that has other initial node, then k is visited
in the circuit, that is, yk = pk +

∑
i∈Fl:i ̸=k q

i
k. The relationship between the x and the w variables

is explicitly incorporated in the interfamily subproblem in Section 7.3.2.2, while the relationship
between the y variables and the p and the q variables is implicit in the formulation of the intrafamily
subproblem.

In order to obtain a formulation for the intrafamily subproblem, the generic intrafamily con-
straints (7.2) can be replaced with:∑

j∈Fl

wk
kj = pk ∀l ∈ M, ∀k ∈ Fl (7.4)

∑
j∈Fl

wk
ji =

∑
j∈Fl:k ̸=j

wk
ij + uk

i ∀l ∈ M, ∀k ∈ Fl, ∀i ∈ Fl : i ̸= k (7.5)

∑
j∈Fl

wk
ji = qki ∀l ∈ M, ∀k ∈ Fl, ∀i ∈ Fl : i ̸= k (7.6)

{k ∈ Fl, (i, j) ∈ Al : w
k
ij = 1} is a connected path (7.7)

qki ≤ pk ∀l ∈ M, ∀k ∈ Fl, ∀i ∈ Fl : i ̸= k (7.8)

uk
i ≤ pk ∀l ∈ M, ∀k ∈ Fl, ∀i ∈ Fl : i ̸= k (7.9)∑

k∈Fl

pk = 1 ∀l ∈ M (7.10)

∑
k∈Fl

(pk +
∑

i∈Fl:i ̸=k

qik) = vl ∀l ∈ M (7.11)

wk
ij ∈ {0, 1} ∀l ∈ M, ∀k ∈ Fl, ∀(i, j) ∈ Al : j ̸= k

(7.12)

pk ∈ {0, 1} ∀l ∈ M, ∀k ∈ Fl (7.13)

qki ∈ {0, 1} ∀l ∈ M, ∀k ∈ Fl, ∀i ∈ Fl : i ̸= k (7.14)

uk
i ∈ {0, 1} ∀l ∈ M, ∀k ∈ Fl, ∀i ∈ Fl : i ̸= k. (7.15)

Constraints (7.4)-(7.7) define the path in each multi-visit family and are similar to constraints
(4.2)-(4.4) of the generic model for the FTSP presented in Section 4.1. Constraints (7.4) state that if
a path has k as its initial node, then there is an arc leaving k in the path. Constraints (7.5) ensure that
the indegree and the outdegree of every node in the path, except for the initial and the final nodes
of the path, are the same. The indegree of the final node of the path is 1, which is expressed by the
value of the variable u. Constraints (7.6) guarantee that if node i is visited in the path which has k

156

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

as its initial node, then there is an arc in the referred path that has i as its final node. Constraints
(7.8) and (7.9) state, respectively, that a node can only be used or be the final node of the path which
has k as initial node, if k is, in fact, the initial node of the path. Constraints (7.10) ensure that there
exists exactly one initial node in each multi-visit family, and consequently, in each path. The set
of constraints (7.11) guarantees the family visits as, we already mentioned, if a node is visited, it is
either the initial node of the path (variables p) or a visited node in a path that has a different node
as initial node (variables q). Finally, constraints (7.12), (7.13), (7.14) and (7.15) define the domain
of the w, the p, the q and the u variables, respectively. Similarly to what happened in Section 4.1,
for a given family l ∈ M a solution that satisfies the equation system (7.4)-(7.6), (7.8)-(7.15) has
an arc leaving k ∈ Fl, visits vl nodes and each node that is visited, except for the initial and the
final nodes of the path, has the same indegree and outdegree. However, it is not ensured that the
solution is a connected path. If the solution is not connected, then there exists a subtour, which in
this case means that there exists a circuit that does not contain the node chosen as the initial node
of the path. Therefore, in order to guarantee that the path obtained is connected we may use an
adaptation of the subtour elimination constraints proposed in Section 4.2 for the FTSP. We propose
four different formulations for the path connectivity constraints (7.7) which are based on the SCF
model presented in Section 4.2.1.1, the NCF model presented in Section 4.2.1.3, the CC model
presented in Section 4.2.2.1 and the RV model presented in Section 4.2.2.2 for the FTSP. Note that
we do not have formulations for the path connectivity based on the FCF model presented in Section
4.2.1.2 nor on the RFV model presented in Section 4.2.2.3 since the paths are already defined for a
single family.

The several formulations for the path connectivity are presented considering a multi-visit family
l ∈ M. The formulation that is based on the SCF model is called the path single-commodity flow
(P-SCF) and ensures the path connectivity by sending one flow with vl − 1 units from the initial
node of the path to the remaining nodes of the path. In the path multi-commodity flow (P-MCF)
formulation, which is based on the NCF model, the path connectivity is guaranteed by sending
vl − 1 different flows, each one with one unit, from the initial node of the path to the remaining
nodes of the path. The path connectivity cuts (P-CC) formulation, which is similar to the CCmodel,
guarantees the path connectivity by ensuring that if there is a path from k ∈ Fl to m ∈ Fl,m ̸= k,
then there exists an arc that is used in the path in every k-m cut. Finally, the path rounded visits
(P-RV) formulation is similar to the RV model since it ensures that there exists an arc that is used
in the cut-set [R′, R] if there are not enough nodes in R′ to fulfill the family visits, however, as the
initial node of the path is not predefined, the right-hand side of these constraints must be adapted.

In the ensuing sections we present the sets of constraints that ensure the path connectivity and

157

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

that will allow us to develop several inter- and intrafamily formulations, which will only differ on
the path connectivity constraints and which will be formalized in Section 7.3.2.3. More precisely,
in Section 7.3.2.1.1 we present the P-SCF formulation, in Section 7.3.2.1.2 we present the P-MCF
formulation, the P-CC formulation is presented in Section 7.3.2.1.3 and the P-RV formulation is
presented in Section 7.3.2.1.4.

7.3.2.1.1 The path single-commodity flow
Variables gkij represent the amount of flow that traverses arc (i, j) ∈ Al sent from node k ∈ Fl, k ̸=
j, which corresponds to the number of nodes that will still be visited in family l ∈ M. Variables
g are non-negative as their integrality is ensured by the other constraints of the model. The P-SCF
formulation is the following:∑

j∈Fl

gkkj = (vl − 1)pk ∀l ∈ M, ∀k ∈ Fl (7.16)

∑
j∈Fl

gkji =
∑

j∈Fl:j ̸=k

gkij + qki ∀l ∈ M, ∀k ∈ Fl, ∀i ∈ Fl : i ̸= k (7.17)

gkij ≤ (vl − 1)wk
ij ∀l ∈ M, ∀k ∈ Fl, ∀(i, j) ∈ Al : j ̸= k (7.18)

gkij ≥ 0 ∀l ∈ M, ∀k ∈ Fl, ∀(i, j) ∈ Al : j ̸= k. (7.19)

Constraints (7.16)-(7.19) are similar to constraints (4.9)-(4.12) from the SCF model presented
in Section 4.2.1.1. More precisely, constraints (7.16) ensure that vl − 1 units of flow must leave
k if k is the initial node of the path. Otherwise, if pk = 0 then there is no flow leaving k. Note
that we only send vl − 1 units of flow from k because we already visited k, which is a family node.
Constraints (7.17) are the flow conservation constraints for the nodes in the path that are not its
initial node and state that if node i is visited in the path that starts in k then one unit of flow from
k must be left in i. Constraints (7.18) guarantee that the flow sent from k can only traverse an arc
if that arc is used in the path that has k as its initial node and that the maximum amount of flow in
each arc is vl − 1. Finally, constraints (7.19) define the domain of the g variables.

7.3.2.1.2 The path multi-commodity flow
Variables hkm

ij are binary and have value 1 if the arc (i, j) ∈ Al is used to send one unit of flow
from node k ∈ Fl, k ̸= j to node m ∈ Fl,m ̸= i, with l ∈ M. The P-MCF formulation is the

158

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

following:∑
j∈Fl

hkm
kj = qkm ∀l ∈ M, ∀k ∈ Fl, ∀m ∈ Fl : k ̸= m (7.20)

∑
j∈Fl

hkm
jm = qkm ∀l ∈ M, ∀k ∈ Fl, ∀m ∈ Fl : k ̸= m (7.21)

∑
j∈Fl:j ̸=m

hkm
ji =

∑
j∈Fl:j ̸=k

hkm
ij ∀l ∈ M, ∀k ∈ Fl, ∀m ∈ Fl : m ̸= k, ∀i ∈ Fl : i ̸= k, i ̸= m

(7.22)

hkm
ij ≤ wk

ij ∀l ∈ M, ∀k ∈ Fl, ∀m ∈ Fl : m ̸= k, ∀(i, j) ∈ Al : i ̸= m, j ̸= k

(7.23)

hkm
ij ≥ 0 ∀l ∈ M, ∀k ∈ Fl, ∀m ∈ Fl : m ̸= k, ∀(i, j) ∈ Al : i ̸= m, j ̸= k.

(7.24)

Constraints (7.20)-(7.24) are similar to constraints (4.19)-(4.21), (4.25) and (4.23) from the NCF
model presented in Section 4.2.1.3. Constraints (7.20) and (7.21) ensure that if k is the initial node
of the path andm is a visited node in the same path, then there is an arc leaving k and an arc entering
m, respectively, which are used to send one unit of flow from k tom. Constrains (7.17) are the flow
conservation constraints for the nodes that are neither the origin nor the destination of the flow
and guarantee that the flow remains constant. Constraints (7.23), which represent the relationship
between the h and the w variables, state that flow originated from node k can only traverse an arc
that was chosen to be in the path that has k as its initial node. Finally, constraints (7.19) define the
domain of the h variables.

7.3.2.1.3 The path connectivity cuts
Consider that for a specific multi-visit family l ∈ M we have a cut-set [R′, R] with R ⊆ Fl.
Additionally, consider that k ∈ R′ and m ∈ R. Assuming that k is the initial node of the path and
m is a visited node of the path, that is, qkm = 1, then there is an arc in the cut-set [R′, R] that has to
be used in the path that starts in k in order to obtain a feasible solution for the RFTSP. The P-CC
formulation is as follows:

wk(R′, R) ≥ qkm ∀l ∈ M, ∀R ⊆ Fl, ∀k ∈ R′, ∀m ∈ R. (7.25)

For simplification purposes, constraints (7.25) will be designated as P-CC constraints henceforth.

7.3.2.1.4 The path rounded visits
Considering R ⊆ Fl, the P-RV formulation is the following:

wk(R′, R) ≥ pk ∀l ∈ M, ∀R ⊆ Fl : |R| ≥ nl − vl + 1, ∀k ∈ R′. (7.26)

159

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Constraints (7.26), which will be called P-RV inequalities henceforth, are similar to the RV
inequalities presented in Section 4.2.2.2 for the FTSP. However, as the initial node of the path is
not predefined, the P-RV inequalities have a variable in their right-hand side instead of the value
1. Note that when pk = 0 the P-RV inequalities are redundant, whereas, when pk = 1 the path
has k ∈ R′ as its initial node and there are not enough nodes in R′ to fulfill the family visits since
|R| ≥ nl − vl + 1 =⇒ |R′| ≤ vl, therefore there exists an arc in the cut-set [R′, R] that has to be
used in the path in order to obtain a feasible solution for the RFTSP.

7.3.2.2 Formulating the interfamily subproblem

As we mentioned at the beginning of Section 7.3.2, the interfamily subproblem of the inter- and
intrafamily formulation may be seen as a TSP in which each node is a family. Therefore, the generic
interfamily subproblem (7.3) may be formulated as follows:∑

j∈N

x0j = 1 (4.2)

∑
j∈N

xj0 =
∑
j∈N

x0j (7.27)

∑
j∈0∪N

xji =
∑

j∈0∪N

xij ∀l ∈ U , ∀i ∈ Fl (7.28)

∑
i∈(0∪N)\Fl

∑
j∈Fl

xij = 1 ∀l ∈ U (7.29)

∑
i∈S′

∑
j∈S

xij ≥ 1 ∀S ⊆ N : ∃l ∈ L : Fl ⊆ S (7.30)

∑
j∈(0∪N)\Fl

xjk = pk ∀l ∈ M, ∀k ∈ Fl (7.31)

∑
j∈Fl

xji =
∑

k∈Fk:k ̸=i

qki ∀l ∈ M, ∀i ∈ Fl (7.32)

∑
j∈(0∪N)\Fl

xij =
∑

k∈Fk:k ̸=i

uk
i ∀l ∈ M, ∀i ∈ Fl (7.33)

∑
k∈Fl:k ̸=j

wk
ij = xij ∀l ∈ M, ∀(i, j) ∈ Al. (7.34)

Constraint (4.2) was already presented in the generic formulation for the FTSP in Section 4.1.
Additionally, constraints (7.27) and (7.28) are a particular case of constraints (4.4) when i = 0 and
when node i belongs to a single-visit family, respectively. Constraints (7.29) guarantee that one
node is visited in a single-visit family and constraints (7.30) are the subtour elimination constraints
for the interfamily subproblem. Constraints (7.30) may be seen as the connectivity cuts for the TSP

160

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

however, since we are considering that each family is a node, we must ensure that S contains at
least one family. Constraints (7.30) will be designated as the subtour elimination constraints for
the interfamily subproblem henceforth. Constraints (7.31)-(7.34) relate the x variables to the other
decision variables of the inter- and intrafamily formulation, namely the p, the q, the u and the w
variables. Constraints (7.31) state that if k is the initial node of a family path there exists an arc
entering kwhich has as initial node the depot or a node from a different family. The set of constraints
(7.32) guarantees that if node i is visited in a family path that does not start in i, then there is an arc
entering i which has as initial node a node from the same family as i. Constraints (7.33) ensure that
if i is the last node to be visited in a multi-visit family, then there is an arc leaving i which has as
final node the depot or a node from a different family. Finally, constraints (7.34) state that if an arc
is in a family path then it is also in the circuit.

7.3.2.3 Theoretical comparison of the inter- and intrafamily formulations

As mentioned previously, we will define four distinct inter- and intrafamily models that only dif-
fer on how the generic path connectivity constraints (7.7) are formulated and which are designated
by the same name as the path connectivity formulation. Consequently, all the inter- and intrafam-
ily formulations are comprised of the domain of the x variables (4.7), the intrafamily subproblem
(7.4)-(7.15) and the interfamily subproblem (4.2), (7.27)-(7.34). The P-SCF model is obtained by
replacing the generic path connectivity constraints (7.7) with the P-SCF formulation (7.16)-(7.19).
Similarly, the P-MCF model is obtained by replacing the generic path connectivity constraints (7.7)
with the P-MCF formulation (7.20)-(7.24). The P-CC model is obtained by changing the generic
path connectivity constraints (7.7) to the P-CC inequalities (7.25). Finally, the P-RV model is ob-
tained by replacing the generic path connectivity constraints (7.7) with the P-RV inequalities (7.26).

Since the four inter- and intrafamily models, namely the P-SCF, the P-MCF, the P-CC and the
P-RV models, only differ on the path connectivity constraints and such constraints are similar to the
subtour elimination constraints for the FTSP presented in Section 4.2, their relationships in terms
of LP relaxation are also similar. Therefore, we only present the results and we refer to reader
to Section 4.2 for the detailed proofs. Recall that we defined, in Section 2.3, VLP (M) as the LP
relaxation value of the modelM .

Proposition 24. The LP relaxation of the P-SCF model is not comparable to the LP relaxation of
the P-MCF model, to the LP relaxation of the P-CC model and to the LP relaxation of the P-RV
model.

Proof. The proofs are similar to the ones of Propositions 15, 17 and 20.

161

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Proposition 25. VLP (P -MCF) = VLP (P -CC)

Proof. Similar to the proof of Proposition 19.

Proposition 26. The LP relaxation of the P-MCF model is not comparable to the LP relaxation of
the P-RV model.

Proof. Similar to the proof of Proposition 17.

Proposition 27. The LP relaxation of the P-CC model is not comparable to the LP relaxation of
the P-RV model.

Proof. Similar to the proof of Proposition 23.

7.3.3 Empirical comparison between the adapted formulations and the inter-
and intrafamily formulations

This section is devoted to establishing an empirical comparison between the RFTSP formulations
obtained by adapting the FTSP formulations and the inter- and intrafamily formulations. In order
to do so we selected a subset of test instances, namely the symmetric instances burma, bayg and
att from the instance set 1 and the asymmetric instances br17, ftv33 and ftv35 from the instance
set 3. We wish to compare the adapted FCF, CC, RFV and CC+RFV models for the RFTSP to
the inter- and intrafamily formulations, which are the P-SCF, the P-MCF, the P-CC and the P-RV
models. Recall that we denote by adapted model the FTSP model which has the same name with
the additional consecutiveness constraints (7.1). Additionally, even though the P-SCF and the P-RV
models are based on the SCF and the RV models for the FTSP, respectively, we are interested in
comparing them to the FCF and the RFV models. Note that the P-SCF model may be seen as a flow
model disaggregated per family, which intuitively corresponds to the FCF model, and in the P-RV
model we ensure that, in each multi-visit family, an arc is used in the cut-set [R′, R] if the number
of nodes in R′ is not enough to fulfill the family visits, which is the underlying idea of the RFV
model.

We expect that the relationships between the FCF, the CC, the RFV and the CC+RFV models
remain the same for the RFTSP both in terms of LP relaxation value and of computational effi-
ciency as the ones established in Sections 4.3 and 4.4 for the FTSP, since the only difference to the
case of the FTSP is that we add the consecutiveness constraints (7.1). Even though the most effi-
cient model to obtain the optimal values of the FTSP was the CC+RFVmodel with the y-separation
algorithm, we will use the CC+RFV model with the exact separation for the RFTSP in the com-
parison since, in a first phase, we are only interested in comparing the LP relaxation values of

162

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

adapted models when solving the RFTSP. Table 7.1 shows the average percentage of gap between
the LP relaxation value and the optimal value (gap) and the average computational time, in sec-
onds, to obtain the LP relaxation value (ts) with the several adapted models. The percentage of
gap for each instance was computed with the following formula: gap = 100 × (optimal value −
LP relaxation value)/optimal value . The detailed results for the instance set 1 are available in ap-
pendix, Table D.1 while the ones for the instance set 3 are available in appendix, Table D.2.

Table 7.1: Average of linear programming relaxation results with the adapted models for the RFTSP.

Instance set 1 Instance set 3
gap ts gap ts

FCF model 12.05% 1 7.79% 0
CC model 4.64% 0 1.53% 0
RFV model 0.71% 11 0.45% 5

CC+RFV model 0.34% 0 0.24% 0

As we expected the results shown in Table 7.1 are consistent with the theoretical and practical
comparison established in Sections 4.3 and 4.4 for the FTSP. Even though the FCF model is not
comparable to the CC and to the RFV models it provides a significantly higher average percentage
of gap. In fact, it was the model that provided the highest gap in every instance tested. The CC
model and the RFV model are not comparable, by observing the detailed Table D.1 we verify that
the CC model provides a lower percentage of gap in instance bayg_1 while the RFV model obtains
a lower percentage of gap in instance bayg_2. Similarly to what happened in the FTSP, the RFV
model is the model that provides the lowest average gap amongst the FCF model, the CCmodel and
the RFV model. When we combine the CC inequalities with the RFV inequalities in the CC+RFV
model, which was solved with the exact separation, we were able to further improve the results
obtained. More precisely, the CC+RFV model was the method that provided the lowest average
gap both in the instance set 1 and in the instance set 3.

Table 7.2 shows the LP relaxation value obtained with the inter- and intrafamily formulations,
namely the P-SCF, the P-MCF, the P-CC and the P-RV models, for the instances from the instance
set 1. This table is divided into four parts, each one devoted to a different formulation and shows the
LP relaxation value (VLP), the percentage of gap between the LP relaxation value and the optimal
value (gap) and the computational time, in seconds, to obtain the LP relaxation value (ts). The
tables also contain, in the last row, the average of the results obtained.

163

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Table 7.2: Linear programming relaxation results for the instance set 1 with the inter- and intrafamily formulations.

P-SCF P-MCF P-CC P-RV

Instance VLP gap ts VLP gap ts VLP gap ts VLP gap ts

burma_1 14.70 0.00% 0 14.70 0.00% 0 14.70 0.00% 0 14.70 0.00% 0
burma_2 26.78 0.00% 1 26.78 0.00% 0 26.78 0.00% 0 26.78 0.00% 0
burma_3 11.89 0.00% 0 11.89 0.00% 0 11.89 0.00% 1 11.89 0.00% 1

bayg_1 7131.08 2.44% 1 7300.47 0.12% 1 7300.47 0.12% 0 7309.21 0.00% 0
bayg_2 6084.63 20.34% 0 7483.84 2.02% 1 7483.84 2.02% 0 7638.47 0.00% 0
bayg_3 7223.81 11.58% 1 8101.96 0.83% 1 8101.96 0.83% 0 8157.82 0.15% 0

att_1 42194.40 12.53% 2 45623.80 5.42% 11 45623.80 5.42% 2 45997.60 4.64% 4
att_2 26241.20 8.89% 4 28554.70 0.85% 8 28554.70 0.85% 1 28800.10 0.00% 2
att_3 11302.60 5.76% 2 11992.80 0.00% 5 11992.80 0.00% 1 11992.80 0.00% 0

average 6.84% 1 1.03% 3 1.03% 1 0.53% 1

The relationships between the several inter- and intrafamily formulations are consistent with the
ones stated in Section 7.3.2.3. Even though the P-SCF is not comparable to all the other models, it
provides the highest percentage of gap in every instance tested from the instance set 1. The P-MCF
and the P-CC models provide the same LP relaxation value. The P-CC and the P-RV models are
not comparable, see for example instances bayg_1 and bayg_2. The P-RV model was the model
that provided the lowest average gap. More precisely, with the P-RV model we obtained an average
gap of 0.53% while the second lowest average gap was of 1.03% obtained with the P-CC model
and with the P-MCF model.

By comparing the results obtained with the inter- and intrafamily formulation to the ones ob-
tained with the adapted formulations presented in Table 7.1, and ignoring the CC+RFV model,
we verify that the best results in terms of LP relaxation value for the instance set 1 were obtained
with the P-RV model. The P-SCF model provided lower gap values than the FCF model for ev-
ery instance tested. The same conclusions can be drawn for the CC model and the P-CC model.
More precisely, the P-CC model always provides a higher LP relaxation value than the CC model.
Additionally, the P-RV model also provides a lower average gap than the RFV model.

Table 7.3 shows the LP relaxation value obtained with the inter- and intrafamily formulations
for the test instances from the instance set 3 and it has the same layout as Table 7.2.

164

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Table 7.3: Linear programming relaxation results for the instance set 3 with the inter- and intrafamily formulations.

P-SCF P-MCF P-CC P-RV

Instance VLP gap ts VLP gap ts VLP gap ts VLP gap ts

br17_1 36 0.00% 0 36 0.00% 4 36 0.00% 0 36 0.00% 1
br17_2 28 0.00% 1 28 0.00% 16 28 0.00% 1 28 0.00% 2
br17_3 71.36 8.52% 0 76.33 2.14% 2 76.33 2.14% 1 78 0.00% 0
br17_4 70 0.00% 1 70 0.00% 4 70 0.00% 0 70 0.00% 0

ftv33_1 934.50 2.96% 1 956.50 0.67% 1 956.50 0.67% 0 956.50 0.67% 0
ftv33_2 438.00 1.35% 0 438.00 1.35% 0 438.00 1.35% 1 442.00 0.45% 0
ftv33_3 1720.20 4.65% 1 1801.00 0.17% 1 1801.00 0.17% 0 1801.00 0.17% 0
ftv33_4 922.86 3.47% 0 956 0.00% 0 956 0.00% 0 956 0.00% 0

ftv35_1 1080.96 2.70% 1 1111 0.00% 1 1111 0.00% 0 1111 0.00% 0
ftv35_2 521.43 6.89% 0 560 0.00% 1 560 0.00% 1 560 0.00% 0
ftv35_3 1365.46 4.11% 1 1424 0.00% 1 1424 0.00% 0 1424 0.00% 1
ftv35_4 1039.67 1.73% 1 1058 0.00% 1 1058 0.00% 0 1058 0.00% 0

average 3.03% 1 0.36% 3 0.36% 0 0.11% 0

Once again, the results presented in Table 7.3 are compatible with the theoretical results shown
in Section 7.3.2.3 and we can draw conclusions similar to ones drawn when we analyzed Table
7.2. More precisely, the P-SCF model was the formulation that provided the highest average gap,
followed by the P-MCF and the P-CCmodels, which provided the same average gap, and the model
that provided the lowest average gap was the P-RV model. Additionally, when we compare these
results to the ones shown in Table 7.2 we verify the lowest average gap was obtained with the
P-RV model in the instance set 3, which is not surprising since all the proposed formulations are
asymmetric and they usually provide higher LP relaxation values in instances with an asymmetric
cost matrix.

Consider the detailed results shown in Table D.2. We verify that the inter- and intrafamily
formulation provides a lower percentage of gap than the corresponding adapted formulation for
every instance tested from the instance set 3. More precisely, the P-SCF model provides a lower
gap than the FCF model, the P-CC model than the CC model and the P-RV model than the RFV
model. Additionally, considering instance ftv33_2, we verify that the LP relaxation value obtained
with the P-SCF model is higher than the LP relaxation value obtained with the CC model. With
these results we may conclude that the P-SCF model is not comparable to the CC model.

From the results shown in Tables 7.2 and 7.3 we verify that the P-CC and the P-RV models
are not comparable. Therefore, by using a similar reasoning as the one used when we created the

165

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

CC+RFVmodel in Section 4.4.1 we decided to create the P-CC+RVmodel, which consists in using
the P-CC inequalities (7.25) to ensure the path connectivity and the P-RV inequalities (7.26) as
valid inequalities to improve the LP relaxation value, or vice-versa. Table 7.4 shows the average
percentage of gap between the LP relaxation value and the optimal value (gap) and the average
computational time, in seconds, to obtain the LP relaxation value (ts) with the P-CC+RV model.
The detailed results for the instances from the instance set 1 are available in appendix, Table D.3
and the ones for the instances from the instance set 3 are available in Table D.4.

Table 7.4: Average of linear programming relaxation results with P-CC+RV model.

gap ts

Instance set 1 0.32% 1
Instance set 3 0.11% 0

Considering the instance set 1, the average gap obtained with the P-CC+RV model is lower
than the one obtained with the best inter- and intrafamily formulation so far, which was the P-RV
model. Nonetheless, the P-CC+RV model was only able to obtain a lower percentage of gap in one
instance, instance att_1. Regarding the instance set 3, when we compare the P-CC+RV model to
the P-RV model we verify that the P-CC+RV model did not provide a higher LP relaxation value in
any instance.

space
Throughout this section we presented and analyzed the LP relaxation values provided by the

proposed formulations for the RFTSP and concluded that the inter- and intrafamily formulations
provide, in general, higher LP relaxation values than the adapted formulations. During our first
analysis we did not take into account the computational time since the test instances are of small
dimension and, thus, we cannot properly evaluate the efficiency of the several formulations. Conse-
quently, we decided to solve the LP relaxation of the benchmark instances with higher dimensions.
However, using the inter- and intrafamily formulations we could not solve the LP relaxation of in-
stances bier, which have 127 nodes, due to lack of computational memory. Note that the number
of variables and constraints in the inter- and intrafamily formulation are significantly higher than
in the adapted formulations. Therefore, even though the inter- and intrafamily formulations are
promising formulations considering their LP relaxation values, they require a more thorough study
to be used in practice, namely in what regards the resolution method. Consequently, we will use
the adapted formulations to solve the RFTSP as they are the most efficient ones to be used within a
B&C approach.

166

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

7.4 The branch-and-cut algorithm for the RFTSP

In Chapter 5 we presented the B&C algorithm developed for the FTSP.More precisely, we presented
the callback functions created, namely the user cut callback, the lazy constraint callback and the
heuristic callback, which is what we are going to do throughout this section for the RFTSP. In
Section 7.3 we proposed two distinct approaches to formulate the RFTSP. From the results shown
in Section 7.3.3, we verified that the adapted formulations are more efficient in practice than the
inter- and intrafamily formulations. Additionally, since the results of Section 7.3.3 are consistent
with the ones for the FTSP presented in Section 4.4 we decided to use the most efficient method for
the FTSP to solve the RFTSP, which is the CC+RFV model with the y-separation. Nevertheless,
we decided to compute the LP relaxation values of the test instances used in Section 7.3.3 with
the CC+RFV model with the y-separation to fully understand which is the impact, in terms of LP
relaxation value, of separating the RFV inequalities heuristically instead of exactly. Table 7.5 shows
the average percentage of gap between the LP relaxation value and the optimal value (gap) and the
average computational time, in seconds, to obtain the LP relaxation value (ts) obtained with the
y-separation. The detailed results for the instance set 1 are available in appendix, Table D.5 and the
ones for the instance set 3 are available in Table D.6.

Table 7.5: Average of linear programming relaxation results with y-separation.

gap ts

Instance set 1 0.36% 1
Instance set 3 0.92% 0

Throughout this section we present the callback functions used in the B&C algorithm for the
RFTSP considering the CC+RFV model with the y-separation. The B&C algorithm for the inter-
and intrafamily formulations is presented in Appendix E.

Since the consecutiveness constraints (7.1) are in polynomial number, the constraints that are in
exponential number in CC+RFV model for the RFTSP are the same as in the CC+RFV model for
the FTSP, which are the CC inequalities (4.28) and the RFV inequalities (4.35). Consequently, the
outline of the B&C algorithm for the CC+RFV model is similar to the one presented in Section 5.1
for the corresponding model for the FTSP. Therefore, the user cut callback and the lazy constraint
callback for the RFTSP are the ones presented in Section 5.2. More precisely, the user cut callback
is comprised of the heuristic separation algorithm that finds violated CC and RFV inequalities pre-
sented in Algorithm 5.7 and of the y-separation algorithm presented in Algorithm 5.8, which we
recall separates all the CC inequalities but the RFV inequalities are separated in a heuristic manner.

167

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Regarding the lazy constraint callback, we use Algorithm 5.2 withmax_number_cuts = 1.
All there is left now is to present the heuristic callback used in the B&C algorithm for the RFTSP,

which is done in Section 7.4.1.

7.4.1 Heuristic callback

The heuristic callback presented in Section 5.3 provides feasible solutions for the FTSP, conse-
quently, it has to be adapted to provide feasible solutions for the RFTSP. Recall that the heuristic
callback used in the B&C algorithm for the FTSP consisted in two constructive heuristics: the near-
est neighbor heuristic considering a different cost matrix in which the cost of the arcs (i, j) ∈ A is
c∗ij = cij × (1− x∗

ij), being (x∗, y∗) the solution of the LP relaxation of the B&C subproblem that
we are addressing; and the random heuristic. These heuristics were presented in Section 3.3. After
obtaining a feasible solution for the FTSP with the previous heuristics, we applied the local search
procedure presented in Algorithm 5.10.

The heuristic callback used in a B&C algorithm to solve the RFTSP is similar to the heuristic
callback described in the previous paragraph, with the heuristics and neighborhoods defined for the
RFTSP in Section 7.2. Regarding the local search procedure, we search the RFTSP neighborhoods
NI , NO, NF , 2-opt-inter and 2-opt-intra. Algorithm 7.1 shows the pseudocode for the local search
algorithm used in the B&C algorithm for the RFTSP.

Algorithm 7.1 The local search procedure for the B&C algorithm for the RFTSP.
Require: A feasible solution s for the RFTSP
1: Search NI(s) and obtain s∗. Set s = s∗.
2: Search NO(s) and obtain s∗. Set s = s∗.
3: Search NF (s) and obtain s∗. Set s = s∗.
4: if The cost matrix is symmetric then
5: Search 2-opt-inter(s) and obtain s∗. Set s = s∗.
6: Search 2-opt-intra(s) and obtain s∗. Set s = s∗.
7: end if
Ensure: A feasible solution s∗ such that Cost(s∗) ≤ Cost(s).

The heuristic callback used in the B&C algorithm for the RFTSP is similar to the one used in the
B&C algorithm for the FTSP, that is, during the first 250 B&C subproblems, we apply the heuristic
callback with a frequency of 5 and, after that, the frequency drops to 10. We apply both constructive
heuristics according to the following criterion: if the number of the B&C subproblem is even we

168

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

use the nearest neighbor with the cost matrix c∗ and if the number of the B&C subproblem is odd
we use the random heuristic. Then, we apply the local search algorithm presented in Algorithm 7.1.

7.4.2 Computational experiment

In this section we present the computational experiment for the RFTSP considering the several
sets of instances presented in Section 3.4. As we already established which formulation is the
best in practice, we only present the results in terms of optimal value obtained with the CC+RFV
model with the y-separation. In Section 7.4.2.1 we present the results obtained for the benchmark
instances (instance set 1), the results for the generated instances based on symmetric TSP instances
are presented in Section 7.4.2.2 (instance set 2), in Section 7.4.2.3 we present the results obtained
for the generated instances based on asymmetric TSP instances (instance set 3) and, finally, in
Section 7.4.2.4 we show the results obtained for the generated instances based on asymmetric UTPP
instances (instance set 4).

The results were obtained by using the setting described in Section 5.4. More precisely, the
results were obtained using the heuristic separation, considering 20 as the maximum of violated
inequalities added per iteration and using the heuristic callback presented in Section 7.4.1. As we
are focused on obtaining the optimal value of the test instances, we use the general purpose cuts and
heuristics from CPLEX. To conclude, similarly to what was done when we addressed the FTSP, we
set a time limit of 10800 seconds. Therefore, we consider that the B&C algorithm proposed for the
RFTSP is an efficient method to solve an instance if it is able to obtain its optimal value within the
time limit. Otherwise, the instance must be solved with heuristic methods.

The implementation of the proposed methods is original, except for the max-flow algorithm,
for which we used the algorithm to solve the max-flow problem proposed by Goldberg and Tarjan
(1988). The models were implemented in C++ and were solved by using the Concert Technology
from CPLEX 12.6.1 (see e.g., IBM, 2014). All computational experiments were carried out in an
Intel Core i7, 3.60 gigahertz, 8 gigabytes RAM.

7.4.2.1 Benchmark instances

Table 7.6 shows the optimal values for the RFTSP considering the instance set 1. This table contains
the optimal value (V), the computational time, in seconds, to obtain the optimal value (ts), the
number of B&C subproblems solved during the B&C algorithm (#sub) and the number of added
violated CC inequalities (#CC) and RFV inequalities (#RFV). Table 7.6 also contains, in the last
row, the average of the results obtained.

169

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Table 7.6: Optimal values of the benchmark instances considering the RFTSP.

Instance V ts #sub #CC #RFV
burma_1 14.70 0 0 8 25
burma_2 26.78 1 0 0 0
burma_3 11.89 0 0 6 17
bayg_1 7309.21 0 0 4 46
bayg_2 7638.47 1 2 12 171
bayg_3 8169.95 0 0 16 110
att_1 48237.80 2 387 172 1499
att_2 28800.10 0 0 42 158
att_3 11992.80 0 0 53 130
bier_1 46113.10 33 102 506 1203
bier_2 133285.00 225 743 2074 10988
bier_3 58809.90 157 473 1911 8012
a_1 1817.34 5634 567 9236 33598
a_2 [1616.94, 1654.95] 10803 696 6885 31844
a_3 [1479.00, 1497.69] 10801 942 8686 28966

average 1844 261 1974 7784

Table 7.6 does not contain all the benchmark instances, in fact, it does not contain the instances
gr and pr, which have 666 and 1002 nodes, respectively, as we could not compute its optimal value
due to lack of computational memory.

By observing Table 7.6 we verify that all instances have the optimal value in the column V ,
except for instances a_2 and a_3. For these instances instead of the optimal value we have a pair
[LB,UB], where the value LB represents the best lower bound and the value UB the best upper
bound for the optimal value obtained by the B&C algorithm after 10800 seconds of computational
time. The average computational time to obtain the optimal value of the benchmark instances,
ignoring instances a_2 and a_3, is of 643 seconds. The computational time of instances burma,
bayg and att is negligible, similarly to what happen when we obtained the optimal values of the
FTSP for this instance set. However, the average time to obtain the optimal value of the instances
bier is of 152 seconds. When we compare this value to the average computational time obtained
when we addressed the FTSP, which was 20 seconds, we verify that obtaining the optimal values of
the RFTSP is more time consuming for the instances bier. Regarding instances a, similarly to what
happened when we solved these instances for the FTSP we could only obtain the optimal value of

170

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

one instance a within the time limit. Nevertheless, the instance that we could solve considering the
FTSP was instance a_3 while in the case of the RFTSP we were able to obtain the optimal value of
instance a_1. The average computational time to solve instances a in the RFTSP is higher, in fact, it
took an average of 9079 seconds whereas for the FTSP the average computational time considering
only instances a presented in Table 5.10 was of 8872 seconds.

To conclude, the number of benchmark instances that we could solve optimally is the same when
we address the FTSP or the RFTSP. Nonetheless, the computational time to obtain the optimal value
of the RFTSP is higher. More precisely, the average time to obtain the optimal value of instances
that we could solve within the time limit considering the FTSPwas of 296 seconds while the average
computational time considering the RFTSP was of 466 seconds.

7.4.2.2 Generated instances based on symmetric TSP instances

Table 7.7 shows the optimal values for the RFTSP considering the instance set 2. This table shows
the optimal value (V), the computational time, in seconds, to obtain the optimal value (ts), the
number of B&C subproblems solved during the B&C algorithm (#sub) and the number of added
violated CC inequalities (#CC) and RFV inequalities (#RFV). Table 7.7 also presents, in the last
row, the average of the results obtained.

Table 7.7: Optimal values of the instances from the instance set 2 considering the RFTSP.

Instance V ts #sub #CC #RFV
pr136_1 [91782.80, 92294] 10803 16318 2853 41391
pr136_2 47137 37 5 1244 1436
pr136_3 143663 2276 42907 264 11630
pr136_4 95354 35 14 275 1430
gr137_1 46595 8 23 131 612
gr137_2 37524 38 220 678 1665
gr137_3 61858 5 22 40 664
gr137_4 51862 24 168 216 1823
pr144_1 [52857.00, 53739] 10801 11135 4921 41400
pr144_2 36780 214 198 1610 4952
pr144_3 64614 506 8006 171 7506
pr144_4 54534 88 161 819 3313

Continues on the next page

171

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Table 7.7
Instance V ts #sub #CC #RFV

kroA150_1 42531 161 274 1886 3294
kroA150_2 21093 464 146 3706 3450
kroA150_3 73944 771 4329 2925 17903
kroA150_4 31952 494 25 3327 3224
kroB150_1 45505 449 514 3004 8231
kroB150_2 20531 4105 1846 10396 16296
kroB150_3 74338 34 6 372 1700
kroB150_4 32037 22 0 402 558
pr152_1 67407 274 202 1522 2971
pr152_2 47198 587 22 2619 3071
pr152_3 95005 163 896 962 5838
pr152_4 73109 578 2858 1560 9023
u159_1 30605 26 3 430 1591
u159_2 24356 276 23 1505 3048
u159_3 37397 8 0 82 973
u159_4 33435 115 223 805 3060
rat195_1 [1483,54, 1548] 10801 690 8303 23949
rat195_2 964 663 97 2150 2072
rat195_3 2148 649 1141 1548 9841
rat195_4 1447 335 42 1321 3852
d198_1 [11588.00, 11607] 10802 3016 5596 75015
d198_2 10524 2682 98 3783 5779
d198_3 16012 185 86 401 4194
d198_4 13974 2100 1331 1957 23417

kroA200_1 56410 1098 631 2316 8258
kroA200_2 [30284.60, 32282] 10801 671 6883 22231
kroA200_3 112865 879 2678 1446 14072
kroA200_4 60220 7950 1841 6573 42356
kroB200_1 54520 1749 167 3351 7434
kroB200_2 [29890.30, 30684] 10805 2178 14650 45342
kroB200_3 107239 2227 6256 1827 24564

Continues on the next page

172

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Table 7.7
Instance V ts #sub #CC #RFV

kroB200_4 52541 1721 74 3975 8412
gr202_1 27231 2049 1495 2887 21950
gr202_2 15811 900 231 2366 6110
gr202_3 40966 65 123 197 1852
gr202_4 [31014.00, 31203] 10801 2486 5503 57767
pr226_1 [61828.80, 65194] 10802 159 2863 58880
pr226_2 59677 9994 0 4036 3398
pr226_3 [88633.20, 89682] 10801 3155 4742 93671
pr226_4 63670 741 0 1570 4378
gr229_1 74432 1500 1716 2116 13043
gr229_2 31761 2205 65 3286 3240
gr229_3 109222 267 275 1116 8017
gr229_4 48338 1527 283 2100 13117
gil262_1 5305 9944 2557 3891 33046
gil262_2 [2794.47, 2965] 10807 382 9682 13282
gil262_3 9331 508 852 640 5412
gil262_4 [6669.50, 6696] 10802 2316 3422 45760
pr264_1 37561 5197 661 4345 26145
pr264_2 [28564.30, 33626] 10802 0 2907 3133
pr264_3 [53991.40, 56144] 10802 1897 2472 56032
pr264_4 [42778.00, 45737] 10803 1000 3427 50848

average 3439 2050 2787 16280

From Table 7.7 we verify that, similarly to what happened when we addressed the FTSP, there
are several instances that we could not solve within the time limit. For these instances in column V
we present a pair [LB,UB] where LB is the best lower bound and UB is the best upper bound for
the optimal value found by the B&C algorithm after 10800 seconds of computational time.

We were able to obtain the optimal value of 50 instances from the instance set 2 within the
time limit. More precisely, we were able to obtain the optimal value of instances gr137, kroA150,
kroB150, pr152, u159 and gr229. As for the instances pr136, pr144, rat195, d198, kroA200,
kroB200 and gr202, we were able to obtain the optimal value of three of the four existing types of

173

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

each instance. Instances pr226, gil262 and pr264 were the most difficult instances to solve since
we could only obtain the optimal value of two types of instances pr226 and gil262 and of instance
pr264_1. Similarly to what we saw in Section 5.4.2 when we addressed the FTSP, the difficulty
of each instance is more correlated with the family visits than with the dimension of the instance,
as we could obtain the optimal value of instance pr264_1 within the time limit but we could not
solve instance pr136_1, which corresponds to one of the smallest instances from this instance set.
In order to evaluate the behavior of the exact method for the RFTSP for each instance type we
clustered the results obtained by instance type. Table 7.8 shows the average computational time,
in seconds, to obtain the optimal value (ts) and the number of instances solved optimally (#solved)
for each instance type. Recall that, in the instance set 2, there are 16 instances of each type.

Table 7.8: Statistics for the optimal value by instance type for the instance set 2 considering the RFTSP.

ts #solved
Type reference 4779 11

Type low 4086 12
Type high 1884 14
Typemixed 3009 13

Table 7.8 shows that CC+RFV model with the y-separation algorithm for the RFTSP obtained
the best results for the instances of type high. More precisely, the average computational time
for instances of type high was 1884 while the second lowest average computational time was of
3009, obtained in instances of type mixed, which is significantly higher. In addition, the largest
number of instances solved were of the type high, for which we could obtain the optimal value of
all instances, except for instances pr226_3 and pr264_3. These results are not surprising since we
concluded in Section 5.4.2 that the RFV inequalities are more effective when the number of visits
per family is high, which characterizes instances of type high. The worst results both in terms of
average computational time and of number of instances solved within the time limit were obtained
for the reference type instances.

We were able to solve up to optimality 50 instances from the instance set 2while, when address-
ing the FTSP in Section 5.4.2, we were only able to solve to optimality 49 instances. Even though
the number of instances solved in the RFTSP is slightly higher, the average computational time is
also slightly higher. More precisely, the average computational time to obtain the optimal values of
the FTSP was of 3426 seconds while for the RFTSP was of 3439. This shows that the exact method
for the RFTSP is as efficient as the corresponding method for the FTSP.

174

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

7.4.2.3 Generated instances based on asymmetric TSP instances

Table 7.9 shows the optimal values for the RFTSP considering the instances from the set 3. This
table displays the optimal value (V), the computational time, in seconds, to obtain the optimal value
(ts), the number of B&C subproblems solved during the B&C algorithm (#sub) and the number of
added violated CC inequalities (#CC) and RFV inequalities (#RFV). Table 7.9 also contains, in the
last row, the average of the results obtained.

Table 7.9: Optimal values of the instances from the instance set 3 considering the RFTSP.

Instance V ts #sub #CC #RFV
br17_1 36 1 0 15 54
br17_2 28 0 0 17 46
br17_3 78 0 0 5 24
br17_4 70 0 0 6 30
ftv33_1 963 1 0 8 184
ftv33_2 444 0 0 85 137
ftv33_3 1804 0 0 6 115
ftv33_4 956 0 0 8 134
ftv35_1 1111 1 0 12 284
ftv35_2 560 0 0 35 147
ftv35_3 1424 0 0 8 163
ftv35_4 1058 0 0 12 133
ftv38_1 961 1 22 45 432
ftv38_2 392 0 0 76 81
ftv38_3 1782 0 6 23 123
ftv38_4 830 1 28 72 417
p43_1 5510 1 7 70 729
p43_2 5481 0 0 174 418
p43_3 5633 1 3 7 208
p43_4 5508 0 0 5 199
ftv44_1 1237 1 0 33 367
ftv44_2 732 0 1 104 278
ftv44_3 1734 1 0 6 266
ftv44_4 1207 0 29 61 557

Continues on the next page

175

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Table 7.9
Instance V ts #sub #CC #RFV
ftv47_1 1740 1 27 52 446
ftv47_2 986 1 20 318 446
ftv47_3 2205 0 0 5 229
ftv47_4 1769 1 0 33 279
ry48p_1 15969 1 4 70 598
ry48p_2 9035 3 21 1002 1235
ry48p_3 21602 0 0 4 122
ry48p_4 15578 1 31 61 433
ft53_1 4146 1 13 163 517 3
ft53_2 2925 0 0 111 263 1
ft53_3 7571 1 25 21 359
ft53_4 5514 1 51 108 711 8
ftv55_1 590 0 0 49 252
ftv55_2 365 1 0 364 164
ftv55_3 1402 2 119 182 1447
ftv55_4 737 2 6 280 758
ftv64_1 1885 5 100 466 1998
ftv64_2 1101 3 25 971 753
ftv64_3 3194 1 0 5 309
ftv64_4 2825 1 17 20 675
ft70_1 22735 1 0 18 364
ft70_2 16182 4 45 150 1338
ft70_3 331454 0 0 10 392
ft70_4 28560 1 4 16 496
ftv70_1 1089 3 10 317 896
ftv70_2 741 6 47 594 769
ftv70_3 2078 8 411 85 3322
ftv70_4 1919 3 115 127 1674

kro124p_1 57908 37 522 960 7158
kro124p_2 19059 61 119 2548 2215
kro124p_3 82931 8 231 81 1540

Continues on the next page

176

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Table 7.9
Instance V ts #sub #CC #RFV
kro124p_4 35002 17 45 725 1895
ftv170_1 2516 8203 5124 7978 80957
ftv170_2 [1489.93, 1612] 10803 640 16177 45936
ftv170_3 3657 175 790 280 8706
ftv170_4 [2449.66, 2522] 10802 2594 5729 70697
rbg323_1 [1485.84, 1668] 10813 0 388 7554
rbg323_2 [624.91, 836] 10807 0 2135 4405
rbg323_3 [2604.84, 2887] 10806 0 274 11166
rbg323_4 [1391.19, 1572] 10815 0 372 7208
rbg358_1 [1623.63, 1974] 10807 0 383 6958
rbg358_2 [650.09, 908] 10807 0 825 5974
rbg358_3 2976 717 13 135 3374
rbg358_4 2135 848 35 75 5830
rbg403_1 [1453.81, 1966] 10809 0 314 4887
rbg403_2 [598.05, 1039] 10819 0 932 4248
rbg403_3 [3077.33, 3619] 10801 0 56 9644
rbg403_4 [1655.86, 2113] 10809 0 294 5627
rbg443_1 [2005.56, 2511] 10811 0 404 4454
rbg443_2 [1034.65, 1392] 10808 0 461 3733
rbg443_3 3393 4057 0 69 3619
rbg443_4 [2184.87, 2649] 10808 0 70 5210

average 2320 149 634 4471

From the instance set 3 we were able to obtain the optimal value of 57 out of the 76 instances
within the time limit. For the instances that we could not solve within the time limit we present, in
column V , a pair [LB,UB] in which LB is the best lower bound and UB is the best upper bound
for the optimal value found by the B&C algorithm after 10800 seconds of computational time. By
observing the computational times to obtain the optimal value we verify that they are negligible
for the instances up to 70 nodes, namely instances br17, ftv33, ftv35, ftv38, p43, ftv44, ftv47,
ry48p, ft53, ftv55, ftv64, ft70 and ftv70, as the maximum computational time obtained in these
instances was of 8 seconds. Instances kro124p were also efficiently solved optimally, in fact, the

177

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

average computational time to obtain the optimal value of these instances was of 31 seconds. From
the 20 instances which have a number of nodes greater than or equal to 170, we were only able to
obtain the optimal value of five instances within the time limit, which were instances ftv170_1,
ftv170_3, rbg358_3, rbg358_4 and rbg443_3. Notice that, three of the five instances that we could
solve within the time limit are instances of type high. Therefore, similarly to what we did in Section
7.4.2.2, we clustered the results obtained by instance type to verify whether or not, for this instance
set, there are types of instance that are easier to solve than the others. Table 7.10 shows the average
computational time, in seconds, to obtain the optimal value (ts) and the number of instances solved
optimally (#solved) for each instance type. Recall that, in the instance set 3, there are 19 instances
of each type.

Table 7.10: Statistics for the optimal value by instance type for the instance set 3 considering the RFTSP.

ts #solved
Type reference 2710 15

Type low 2849 14
Type high 1399 17
Typemixed 2322 15

Table 7.10 shows that the instance type high was not only one with the lowest average compu-
tational time but also the type of instances with the highest number of instances solved to optimality
within the time limit, whereas for the instance type low was the opposite. More precisely, the in-
stance type low was the one with the highest computational time and with the lowest number of
instances solved up to optimality within the time limit. These results are not surprising due to the
effectiveness of the RFV inequalities when the number of visits per family is high.

In order to compare the RFTSP to the FTSP regarding the instance set 3, consider the results
presented in Section 5.4.3. We observe that for the instance set 3 and concerning the RFTSP, the
number of instances that we could not solve within the time limit increases significantly. More
precisely, when considering the FTSPwe could not solve one instance within the time limit, whereas
when addressing the RFTSP we could not solve 15 instances. Considering only the instances that
we could solve within the time limit in both problems, the average computational time obtained was
of 101 and 233 seconds for the FTSP and the RFTSP, respectively. These results show that, for the
instance set 3, the RFTSP is more computationally challenging than the FTSP.

178

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

7.4.2.4 Generated instances based on asymmetric UTPP instances

Table 7.11 shows the optimal values for the RFTSP considering the instances from the set 4. This
table shows the optimal value (V), the computational time, in seconds, to obtain the optimal value
(ts), the number of B&C subproblems solved during the B&C algorithm (#sub) and the number
of added violated CC inequalities (#CC) and RFV inequalities (#RFV). In addition, Table 7.11
presents, in the last row, the average of the results obtained.

Table 7.11: Optimal values of the instances from the instance set 4 considering the RFTSP.

Instance V ts #sub #CC #RFV
AsimSingh50_1 466 0 9 30 380
AsimSingh50_2 212 0 0 1 3
AsimSingh50_3 750 1 0 11 137
AsimSingh50_4 383 0 0 1 19
AsimSingh100_1 1101 15 54 244 3560
AsimSingh100_2 476 2 0 179 169
AsimSingh100_3 1492 1 0 8 223
AsimSingh100_4 748 80 90 1433 8084
AsimSingh150_1 [1274.33, 1285] 10803 0 2436 21124
AsimSingh150_2 770 22 0 267 6031
AsimSingh150_3 1933 24 8 124 1895
AsimSingh150_4 [946.87, 951] 10805 0 2672 34295
AsimSingh200_1 1631 17 0 29 603
AsimSingh200_2 1090 18 0 39 445
AsimSingh200_3 2612 138 58 757 3753
AsimSingh200_4 1563 52 0 44 948
AsimSingh250_1 2279 65 0 15 751
AsimSingh250_2 1241 17 0 21 281
AsimSingh250_3 3420 1309 101 224 12994
AsimSingh250_4 2630 25 0 12 334
AsimSingh300_1 [2717.01, 2732] 10804 0 228 10297
AsimSingh300_2 1647 66 0 52 926
AsimSingh300_3 [4099.90, 4145] 10801 0 201 15429
AsimSingh300_4 [2820.75, 2845] 10801 0 52 10401

average 2328 13 378 5545

179

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

When addressing the RFTSP, we could obtain the optimal value of 19 of the 24 instances
from the instance set 4. The instances that we could not obtain the optimal value within the time
limit were instancesAsimSingh150_1,AsimSingh150_4,AsimSingh300_1,AsimSingh300_2
and AsimSingh300_4. The computational time to solve instances AsimSingh50 is negligible.
The B&C algorithm proposed is also efficient when addressing instances AsimSingh100 and
AsimSingh200 since it takes an average computational time of 25 and 56 seconds, respectively,
to find their optimal value. Regarding instances AsimSingh250, we were also able to find their
optimal value in a reasonable amount of computational time. More precisely, the average com-
putational time to find the optimal value of instances AsimSingh250 is 354 seconds. Apart from
the instances AsimSingh150 and AsimSingh300 that we could not solve within the time limit,
the others were solved very efficiently. In fact, we were able to obtain the optimal value of in-
stances AsimSingh150_2, AsimSingh150_3 and AsimSingh300_2 in 22, 24 and 66 seconds,
respectively. Once again, we decided to group the instances by instances type. Table 7.12 shows
the average computational time, in seconds, to obtain the optimal value (ts) and the number of in-
stances solved optimally (#solved) for each instance type. Note that, in the instance set 4, there are
6 instances of each type.

Table 7.12: Statistics for the optimal value by instance type for the instance set 4 considering the RFTSP.

ts #solved
Type reference 3617 4

Type low 21 6
Type high 2046 5
Typemixed 3627 4

Unlike what happens in the instance sets 2 and 3, the easiest type of instance to solve was the
type low. In addition, the instance type low was the only one for which we could obtain the optimal
value of every instance within the time limit. Note that the significant difference in the average
computational time between the instance type low and the other types of instances is due to the fact
that for the latter types there are instances that were not solved within the time limit. However, if we
compute the average computational time only considering the instances that we could solve within
the time limit we obtain an average of 24, 295 and 39 seconds for the type of instances reference,
high andmixed.

When we compare these results to the ones obtained for the FTSP for this instance set, which
were presented in Section 5.4.4, we verify that the RFTSP is significantly more challenging to
solve than the FTSP. More precisely, when we were addressing the FTSP we were able to obtain the

180

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

optimal value of every instance from the instance set 4 within the time limit, in fact, we were able
to obtain the optimal values of the instances from the instance set 4 in a maximum computational
time of 20 seconds.

Summary

In this section we presented the B&C algorithm with the CC+RFV model with the y-separation
algorithm for the RFTSP. We used the test instances presented in Section 3.4 as RFTSP instances
and tried to solve them within the time limit of 10800 seconds. Regarding the benchmark instances,
and similarly towhat happened for the FTSP,wewere able to obtain the optimal value of 13 instances
within the time limit, which correspond to all instances up to 127 nodes and one instance with 280
nodes.

Considering the instance set 2, we were able to find the optimal value of 50 out of 64 instances
when solving the RFTSP, which are similar results to the ones obtained when we solved the FTSP.
The B&C algorithm proposed was more efficient, in terms of computational time, for the instances
of type high and less efficient for the instances of type reference.

From the 72 instances from the instance set 3, we were able to obtain the optimal value of
57 instances. The type of instance from this instance set for which the B&C algorithm was more
efficient was type high whereas the more time consuming was type low. When we solved this
instance set in the FTSP case we were able to obtain the optimal value of all instances, except for
one. Therefore, we can conclude that these instances are significantly more complicated to address
in the RFTSP case.

Finally, we were able to obtain the optimal value of 19 instances from the 24 instances from
the instance set 4. Unlike the other instance sets, the B&C algorithm was more efficient for the
instances of type low and less efficient for the instances of typemixed. When we solved the FTSP,
we were able to obtain the optimal value of every instance from the instance set 4 within the time
limit. Therefore, the RFTSP is significantly more difficult to solve than the FTSP considering this
instance set.

The methods proposed for the FTSP behave similarly when addressing the RFTSP, which was
expected as the RFTSP only has to satisfy the additional consecutiveness constraints (7.1). Nonethe-
less, the number of instances that we could solve optimally when addressing the RFTSP is lower
when compared to the number of instances solved when considering the FTSP, specially for the
asymmetric instances of the instance sets 3 and 4. Although the adapted B&C algorithm presented
for the RFTSP provide satisfactory results in practice, we believe that we would have obtained a
better performance if we had developed a specific method for the RFTSP that takes into account

181

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

the specificities of this variant.
Similarly to what we did when we addressed the FTSP, the instances that we could not solve

within the time limit will be solved with heuristic procedures in Section 7.5. Table 7.13 shows a
summary of the best upper bounds found by the B&C algorithm after 10800 seconds of computa-
tional time for the instances which still have an unknown optimal value.

Table 7.13: Best upper bounds found by the B&C algorithm for the RFTSP.

Instance
Best upper bounds
B&C algorithm

Instance set 1
a_2 1654.95
a_3 1497.69

Instance set 2
pr136_1 92294
pr144_1 53739
rat195_1 1548
d198_1 11607

kroA200_2 32282
kroB200_2 30684
gr202_4 31203
pr226_1 65194
pr226_3 89682
gil262_2 2965
gil262_4 6696
pr264_2 33626
pr264_3 59144
pr264_4 45737

Instance set 3
ftv170_2 1612
ftv170_4 2522
rbg323_1 1668
rbg323_2 836
rbg323_3 2887

Continues on the next page

182

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Table 7.13

Instance
Best upper bounds
B&C algorithm

rbg323_4 1572
rbg358_1 1974
rbg358_2 908
rbg403_1 1966
rbg403_2 1039
rbg403_3 3619
rbg403_4 2113
rbg443_1 2511
rbg443_2 1392
rbg443_4 2449

Instance set 4
AsimSingh150_1 1285
AsimSingh150_4 951
AsimSingh300_1 2732
AsimSingh300_3 4145
AsimSingh300_4 2845

7.5 Heuristic algorithms for the RFTSP

In Chapter 6 we proposed three distinct heuristics for the FTSP, namely a genetic algorithm in
Section 6.1, an ILS algorithm in Section 6.2 and an hybrid algorithm in Section 6.3. From the
summary of the results presented in Section 6.4, we concluded that the methods that provided the
best quality solutions were the ILS algorithm and the hybrid algorithm. Therefore, these are the
methods that we are going to use to obtain feasible solutions for the RFTSP instances that the exact
methods could not solve within the time limit.

We present the adaptation of the ILS algorithm for the RFTSP in Section 7.5.1 while the adap-
tation of the hybrid algorithm is shown in Section 7.5.2. We conclude this section with the compu-
tational experiment in Section 7.5.3.

183

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

7.5.1 The iterated local search algorithm

We presented the ILS algorithm in Section 6.2 as an iterative process that iterates between a local
search algorithm and a perturbation method. To apply the ILS algorithm to the RFTSP we must
adapt the referred method.

The first step of the ILS algorithm (see Algorithm 6.3) is to determine a feasible solution for the
RFTSP. In order to do so we use the nearest neighbor heuristic presented in Section 7.2. The local
search procedure used when we are addressing the RFTSP consists in searching the neighborhoods
NI , NO, 2-opt-intra, 2-opt-inter and NF , which were presented in Section 7.2. Recall that we
only search neighborhoods 2-opt-intra and 2-opt-inter when we have a symmetric cost matrix. The
neighborhoods are searched by using the Algorithm 3.1 presented in Section 3.3 and the pseudocode
for the local search algorithm used in the ILS algorithm developed for the RFTSP is available in
Algorithm 7.2.

Algorithm 7.2 The local search procedure used in the ILS algorithm for the RFTSP.
Require: A feasible solution s for the RFTSP.
1: cost_old = Cost(s).
2: cost_new = −∞.
3: while cost_old > cost_new do
4: cost_old = Cost(s).
5: Search NI(s) and obtain s∗. Set s = s∗.
6: Search NO(s) and obtain s∗. Set s = s∗.
7: Search NF (s) and obtain s∗. Set s = s∗.
8: if The cost matrix is symmetric then
9: Search 2-opt-inter(s) and obtain s∗. Set s = s∗.
10: Search 2-opt-intra(s) and obtain s∗. Set s = s∗.
11: end if
12: Set cost_new = Cost(s∗) and s = s∗.
13: end while
Ensure: Solution s∗ such that Cost(s∗) ≤ Cost(s).

Regarding the perturbation method and the FTSP, we recall that given a feasible solution it con-
sists in choosing vl nodes from each family l ∈ L according to the choosing criterionLeast_chosen,
inserting the chosen nodes in the solution in the best possible position and, finally, removing the
extra nodes according to a combination of the removal criteria Greedy and Random_removal. In
order to apply the perturbation method to the RFTSP we must ensure that the solution obtained after

184

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

removing the extra nodes is feasible for the RFTSP. Therefore, the only adaptation that has to be
made is concerning the insertion of the chosen nodes since if we ensure that the solution with the
extra nodes satisfies the consecutiveness condition, then when we remove the extra nodes the so-
lution obtained also satisfies the consecutiveness condition. In order for the solution with the extra
nodes to satisfy the consecutiveness condition we can only insert the chosen nodes from the family
l ∈ L in the middle of arcs (i, j) ∈ A such that i ∈ Fl or j ∈ Fl. To conclude, the perturbation
method used in the ILS algorithm for the RFTSP is similar to the perturbation method presented
in Algorithm 6.5 except for the insertion of the chosen nodes, which must be inserted in the best
possible position such that at least one of the adjacent nodes is from the same family. Algorithm
7.3 shows the pseudocode for the perturbation algorithm used in the ILS algorithm for the RFTSP.

Algorithm 7.3 The perturbation method used in the ILS algorithm for the RFTSP.
Require: A feasible solution s for the RFTSP.
1: for all l ∈ L do
2: Choose vl nodes from family l according to the choosing criterion Least_chosen.
3: Insert the chosen nodes in s in the best possible position such that at least one adjacent node

is from family l.
4: end for
5: Remove the extra nodes by using the combination of both removal criteria: apply criterion

Greedy but once in every 10 iterations apply criterion Random.

7.5.2 The hybrid algorithm

The hybrid algorithm presented in Section 6.3 has two phases: the constructive phase and the im-
provement phase. The improvement phase consists in applying the ILS algorithm described in
Section 6.2 directly to the solution obtained in the constructive phase of the hybrid algorithm. As
we already presented the ILS algorithm for the RFTSP in Section 7.5.1, we only need to show how
the constructive phase of the hybrid algorithm should be adapted to provide a feasible solution for
the RFTSP.

In the constructive phase of the hybrid algorithm applied to the FTSP, we use the CC+RFV
model with the y-separation to obtain a solution for a partial FTSP which is defined by the nodes in
the set Core. Then, the partial solution is completed by using a savings heuristics. In order for the
procedure described previously to be used to provide feasible solutions for the RFTSP we must use
the exact method for the RFTSP described in Section 7.3, which is basically using the y-separation
to solve the CC+RFV model with the additional consecutiveness constraints (7.1). The savings

185

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

procedure consists in completing the partial solution by inserting the necessary nodes to make it
feasible in terms of visited nodes. The nodes are inserted in the best possible position. Since we
must ensure that the nodes from the same family are visited consecutively, if the number of family
nodes in the partial solution is zero then the node has to be inserted between two nodes such that:
one is the depot or both are from different families. Otherwise, that is, if there are family nodes
in the partial solution, then the node can only be inserted in a position in which at least one of the
adjacent nodes is from the same family.

7.5.3 Computational experiment

A preliminary computational experiment showed that, similarly to what happened in Chapter 6
when we addressed the FTSP, we cannot establish a relationship of dominance between the ILS
algorithm and the hybrid algorithm since there are instances in which the ILS algorithm provides
the solution with the lowest cost while there are others where the hybrid algorithm provides the best
solution. Therefore, we decided to carry out a computational study with both heuristic algorithms.

All the algorithms presented in this chapter were developed within the scope of this dissertation
and were implemented in C++. The computational experiment was carried out in an Intel Core i7,
3.60 gigahertz, 8 gigabytes RAM, as before.

Since the RFTSP was never addressed in the literature there are no upper bounds available.
Therefore, in order to evaluate the quality of the solutions provided by the proposed heuristics
we decided to use as reference values the upper bounds provided by the B&C algorithm available
in Table 7.13. Consequently, the percentage of gap is computed by using the following formula:
gap = 100×(heuristic solution−B&C solution)/B&C solution. Recall that we could not compute
any lower or upper bounds for instances gr and pr from the instance set 1 due to its dimension. Thus,
we decided to use as reference value the best solution found by the proposed heuristics. Table 7.14
shows the reference values for the instances gr and pr. Note that for these instances the percentage
of gap is computed by using the formula presented previously with the values presented in Table
7.14 instead of the B&C solution.

186

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Table 7.14: Reference values for the instance gr and pr considering the RFTSP.

Instance Reference value
gr_1 1842.25
gr_2 1342.17
gr_3 1327.26
pr_1 158362.92
pr_2 176086.63
pr_3 129436.70

As the ILS algorithm and the hybrid algorithm use random procedures we did five runs, with
different seeds, for each instance. This allowed us to evaluate the robustness of the methods. Tables
7.15 and 7.16 show a summary of the results obtained in the five runs with the ILS algorithm and
the hybrid algorithm, respectively, with some statistics. The detailed results for all the different runs
are available in appendix, Table D.7. Tables 6.18 and 6.19 contain, besides the instance name, the
value of the best solution obtained by the proposed method (Best value), the minimum percentage
of gap (min), the average percentage of gap (average) and the maximum percentage of gap (max)
obtained in the five runs, the range between the maximum and the minimum percentage of gap
(range = max −min) and the average computational time, in seconds, also considering the five
distinct runs (ts).

Table 7.15: Summary of the final results obtained with the ILS algorithm for the RFTSP.

Instance Best value min average max range ts

Instance set 1
a_2 1662.03 0.43% 1.62% 2.63% 2.20% 33
a_3 1644.12 9.78% 10.11% 10.36% 0.58% 29
gr_1 1892.55 2.73% 3.12% 3.87% 1.14% 435
gr_2 1344.53 0.18% 0.61% 1.22% 1.05% 440
gr_3 1338.52 0.85% 1.92% 4.12% 3.27% 459
pr_1 158433.00 0.04% 0.79% 1.62% 1.58% 1439
pr_2 176788.00 0.40% 2.19% 4.06% 3.66% 1423
pr_3 131433.00 1.54% 3.45% 4.94% 3.40% 1630

Instance set 2
Continues on the next page

187

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Table 7.15
Instance Best value min average max range ts

pr136_1 92581 0.31% 2.01% 3.46% 3.15% 4
pr144_1 58125 8.16% 8.21% 8.28% 0.12% 4
rat195_1 1544 -0.26% -0.04% 0.26% 0.52% 12
d198_1 11632 0.22% 0.77% 1.46% 1.24% 12

kroA200_2 31824 -1.42% -0.10% 0.80% 2.22% 12
kroB200_2 31425 2.41% 2.84% 3.35% 0.93% 12
gr202_4 32142 3.01% 4.28% 4.93% 1.92% 11
pr226_1 63178 -3.09% -2.92% -2.85% 0.24% 19
pr226_3 92715 3.38% 3.42% 3.44% 0.06% 10
gil262_2 3014 1.65% 2.36% 3.44% 1.79% 27
gil262_4 6918 3.32% 4.02% 4.58% 1.27% 20
pr264_2 30670 -8.79% -5.16% -3.06% 5.73% 26
pr264_3 55914 -0.41% 0.01% 0.36% 0.77% 17
pr264_4 45342 -0.86% -0.64% -0.46% 0.40% 23

Instance set 3
ftv170_2 1727 7.13% 13.61% 21.34% 14.21% 7
ftv170_4 2650 5.08% 8.20% 10.94% 5.87% 8
rbg323_1 1644 -1.44% -0.48% 0.54% 1.98% 46
rbg323_2 763 -8.73% -7.68% -5.86% 2.87% 50
rbg323_3 2804 -2.87% -1.61% -0.59% 2.29% 29
rbg323_4 1571 -0.06% 0.78% 1.34% 1.40% 41
rbg358_1 1814 -8.11% -7.39% -6.79% 1.32% 68
rbg358_2 764 -15.86% -11.06% -5.62% 10.24% 68
rbg403_1 1682 -14.45% -13.58% -12.82% 1.63% 99
rbg403_2 782 -24.74% -23.60% -21.17% 3.56% 99
rbg403_3 3373 -6.80% -6.02% -4.53% 2.27% 56
rbg403_4 1933 -8.52% -6.94% -4.59% 3.93% 77
rbg443_1 2222 -11.51% -9.74% -8.48% 3.03% 103
rbg443_2 1262 -9.34% -7.46% -5.60% 3.74% 120
rbg443_4 2437 -0.49% 0.28% 0.86% 1.35% 84

Instance set 4
Continues on the next page

188

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Table 7.15
Instance Best value min average max range ts

AsimSingh150_1 1296 0.86% 1.04% 1.32% 0.47% 6
AsimSingh150_4 973 2.31% 2.78% 3.36% 1.05% 5
AsimSingh300_1 2798 2.42% 2.61% 2.75% 0.33% 40
AsimSingh300_3 4236 2.20% 2.33% 2.41% 0.22% 24
AsimSingh300_4 2882 1.30% 1.88% 2.11% 0.81% 31

Table 7.16: Summary of the final results obtained with the hybrid algorithm for the RFTSP.

Instance Best value min average max range ts

Instance set 1
a_2 1662.48 0.45% 1.00% 1.53% 1.07% 32
a_3 1518.09 1.36% 1.48% 1.57% 0.20% 29
gr_1 1842.25 0.00% 0.56% 1.23% 1.23% 455
gr_2 1342.17 0.00% 0.47% 1.13% 1.13% 456
gr_3 1327.26 0.00% 1.02% 1.76% 1.76% 506
pr_1 158362.92 0.00% 0.28% 0.54% 0.54% 1406
pr_2 176086.63 0.00% 2.25% 4.42% 4.42% 1368
pr_3 129436.70 0.00% 1.82% 4.00% 4.00% 1521

Instance set 2
pr136_1 93478 1.28% 1.51% 2.16% 0.88% 4
pr144_1 53739 0.00% 0.16% 0.61% 0.61% 4
rat195_1 1522 -1.68% -0.37% 0.97% 2.65% 12
d198_1 11640 0.28% 0.56% 0.94% 0.65% 13

kroA200_2 32640 1.11% 1.68% 2.22% 1.11% 12
kroB200_2 32031 4.39% 5.03% 6.01% 1.62% 12
gr202_4 31303 0.32% 0.35% 0.49% 0.17% 11
pr226_1 63178 -3.09% -2.95% -2.78% 0.31% 18
pr226_3 89524 -0.18% 0.34% 1.10% 1.28% 19
gil262_2 3053 2.97% 3.87% 4.42% 1.45% 26
gil262_4 6921 3.36% 3.98% 4.72% 1.36% 24

Continues on the next page

189

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Table 7.16
Instance Best value min average max range ts

pr264_2 30614 -8.96% -8.16% -7.49% 1.47% 24
pr264_3 55493 -1.16% -1.10% -1.05% 0.11% 23138
pr264_4 44758 -2.14% -2.04% -1.99% 0.15% 69

Instance set 3
ftv170_2 1715 6.39% 12.08% 18.24% 11.85% 7
ftv170_4 2726 8.09% 10.44% 12.53% 4.44% 8
rbg323_1 1654 -0.84% -0.32% 0.30% 1.14% 46
rbg323_2 778 -6.94% -5.93% -5.26% 1.67% 49
rbg323_3 2726 -5.58% -5.15% -4.81% 0.76% 37
rbg323_4 1547 -1.59% -0.45% 0.70% 2.29% 40
rbg358_1 1819 -7.85% -7.28% -6.53% 1.32% 68
rbg358_2 809 -10.90% -8.52% -6.72% 4.19% 68
rbg403_1 1682 -14.45% -14.05% -13.73% 0.71% 98
rbg403_2 778 -25.12% -23.46% -20.98% 4.14% 99
rbg403_3 3214 -11.19% -9.96% -9.17% 2.02% 107
rbg403_4 1908 -9.70% -8.99% -8.38% 1.33% 84
rbg443_1 2243 -10.67% -9.85% -9.12% 1.55% 110
rbg443_2 1260 -9.48% -9.11% -8.62% 0.86% 124
rbg443_4 2379 -2.86% -2.43% -1.55% 1.31% 92

Instance set 4
AsimSingh150_1 1292 0.54% 0.68% 0.86% 0.31% 6
AsimSingh150_4 965 1.47% 1.75% 2.00% 0.53% 5
AsimSingh300_1 2776 1.61% 1.94% 2.27% 0.66% 52
AsimSingh300_3 4157 0.29% 0.54% 0.65% 0.36% 110
AsimSingh300_4 2883 1.34% 1.37% 1.51% 0.18% 34

Considering Table 7.15, the average gap obtained was of −0.46% and the average computa-
tional time was of 170 seconds. Focus now on the instance set 1, the average gap obtained was of
2.98% and the average computational time was of 736 seconds, which is higher than the average
computational time obtained when we consider all sets of instances. Nonetheless, the instance set 1
contains the highest dimensioned test instances, which are instances pr with 1002 nodes, thus, 1497

190

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

seconds seems to be a reasonable computational time to obtain feasible solutions for these instances.
The ILS algorithm is a reasonably robust method for this instance set as the average range obtained
was of 2.11%. When we compare the ILS algorithm with the B&C algorithm, we conclude that
the ILS algorithm was unable to obtain better solutions than the B&C algorithm in instances a_2
and a_3. Nevertheless, the ILS algorithms provided solutions for instances a in an average of 31
seconds while the B&C algorithm took 10800 seconds. Additionally, with the ILS algorithm we
could obtain feasible solutions for the instances gr and pr, which we could not address with the
B&C algorithm.

Regarding the instance set 2, the ILS algorithm provided an average gap of 1.36% while the
average computational time was of 15 seconds. By observing the columnmin we verify that there
are several instances with a negative percentage of gap, which implies that the ILS algorithm was
able to obtain solutions with a lower cost than the solutions obtained by the B&C algorithm. More
precisely, the ILS algorithm was able to improve the best bound obtained by the B&C algorithm in
six instances, namely instances rat195_1, kroA200_2, pr226_1, pr264_2, pr264_3 and pr264_4.
Regarding the robustness of the method for this instance set, the average range obtained was of
1.45% and the maximum range obtained was of 5.73%, which seems to be an outlier.

The average gap obtained considering the instance set 3 was of −4.85% and the average com-
putational time was of 64 seconds. Since the average gap obtained is negative, the ILS algorithm
was able to improve, on average, the upper bounds provided by the B&C algorithm. More pre-
cisely, with the ILS algorithm we were able to improve the best upper bound obtained by the B&C
algorithm in 13 instances, which correspond to all the instances rbg323, rbg358, rbg403 and rbg443
which have an unknown optimal value. These results can be explained by the cost matrix of these
instances having arcs with zero cost, which makes the B&C algorithm less effective. Additionally,
this was the instance set where the ILS algorithm provided the best results in terms of average gap
obtained. The ILS algorithm was less robust in this instance set. In fact, the average range was
of 5.98% and the maximum range was of 14.21%. Nonetheless, considering the maximum value
of gap obtained in the five runs we were still able to improve the solution provided by the B&C
algorithm in 10 instances.

Finally, considering the instance set 4, the average gap obtained was of 2.13% and the average
computational time was of 21 seconds. By observing the column min, we verify that all the gap
values are positive thus we could not improve the best solutions obtained by the B&C algorithm in
any instance from the instance set 4. The average range obtained was of 0.58% and the maximum
range was of 1.05%, which makes this the instance set for which the ILS algorithm was the most
robust.

191

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Consider now Table 7.16, which contains the results obtained with the hybrid algorithm. The
average gap obtained was of−1.55%whereas the average computational time was of 724 seconds.
The former is significantly lower than the average gap obtained with the ILS algorithm while the
latter is significantly higher than the average computational time obtained with the ILS algorithm. If
we observe the column ts we verify that the computational time of instance pr264_3was abnormally
high. More precisely, the average computational time to obtain a feasible solution for instance
pr264_3 was of 23138 seconds. These results are a consequence of the drawback of the hybrid
algorithm, which is the fact that the efficiency of the algorithm is highly dependent on the difficulty
of the core problem. When we remove instance pr264_3 the average gap obtained was of −1.56%
and the average computational time of 177 seconds, which is similar to the average computational
time obtained with the ILS algorithm.

The hybrid algorithm provided an average gap of 1.11% and an average computational time of
722 seconds for the instance set 1. By comparing these to the ones obtained with the B&C algorithm,
we verify that the B&C algorithm obtained a better quality solution than the hybrid algorithm for
instances a. Nonetheless, the B&C algorithm took 10800 seconds to obtain those solutions while the
hybrid algorithm took 31 seconds. The average range obtained was of 1.79% while the maximum
range obtained was of 4.42%. By comparing the results obtained with both heuristic algorithms for
the instance set 1, we verify that the hybrid algorithm provided a lower average gap and a lower
computational time. In fact, the hybrid algorithm obtained the solution with the lowest cost for
every instance with unknown optimal value from the instance set 1, except for instance a_2.

The average gap and the average computational time obtained with the hybrid algorithm for
the instance set 2 was of 0.20% and of 1670 seconds. Recall that this was the instance set which
had an instance with an abnormally high computational time; if we remove that instance we obtain
an average gap of −0.18% and an average computational time of 19 seconds. By observing the
column min we verify that we were able to obtain a better solution than the one provided by the
B&C algorithm in six instances, namely instances rat195_1, pr226_1, pr226_3, pr264_2, pr264_3
and pr264_4. Note that some of these instances are not the same ones which we could improve with
the ILS algorithm. The average range obtained was of 0.99% while the maximum range obtained
was of 2.65%. By comparing the hybrid algorithm to the ILS algorithm we verify that the hybrid
algorithm provided the solution with the lowest cost in seven instances, namely instances pr144_1,
rat195_1, gr202_4, pr226_3, pr264_2, pr264_3 and pr264_4, which corresponds to half of the
instances from the instance set 2 which have an unknown optimal value.

Consider now the instance set 3, the average gap obtained was of −5.53% and the average
computational time was of 69 seconds. We were able to obtain a solution with a lower cost than the

192

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

solution obtained by the B&C algorithm in 13 instances. More precisely, the hybrid algorithm was
able to provide a lower cost solution than the B&C algorithm in every instance from the instance
set 3 with an unknown optimal value, except for instances ftv170. The variability of the solutions
provided by the hybrid algorithm for this instance set was high, in fact, the average range obtained
was of 2.64% and the maximum range obtained was of 11.35%. Similarly to what happened with
the ILS algorithm, this is the set of instances with the biggest average range. When we compare
the lowest cost solution found by the proposed heuristic algorithms for this set of instances we
verify that the hybrid algorithm provided the best solution in eight instances, which are instances
ftv170_2, rbg323_3, rbg323_4, rbg403_2, rbg403_3, rbg403_4, rbg443_2 and rbg443_4.

Finally, the hybrid algorithm provided an average gap of 1.26% and an average computational
time of 41 seconds when addressing the instance set 4. By observing the columnmin we conclude
that the hybrid algorithm could not improve the solutions obtained with the B&C algorithm. The
average range obtained was of 0.41% and the maximum range obtained was of 0.66%, making
this the instance set where the hybrid algorithm provided the most robust results. The average gap
obtained with the ILS algorithm for this instance set was significantly higher. More precisely, the
ILS algorithm provided an average gap of 2.13%. When we analyze the best solution obtained
for each instance with the ILS algorithm and with the hybrid algorithm we verify that the hybrid
algorithm provided the lowest cost solution in every instance from the instance set 4 with unknown
optimal value, except for instance AsimSingh300_4.

Summary

We adapted the ILS algorithm and the hybrid algorithm developed for the FTSP to the RFTSP, since
these were the heuristic algorithms that provided the best quality solutions for the FTSP. These
methods were applied to the instances that the exact methods could not solve within the time limit.

There were 42 instances that the exact method could not solve to optimality within the time
limit. To further support the claim that the RFTSP is more challenging than the FTSP, recall that
the number of instances with unknown optimal value in the FTSP was 24. From the 42 instances
with unknown optimal value, the hybrid algorithm provided the lowest cost solution in 26 instances
whereas the ILS algorithm obtained the best solution in 16 instances. Similarly to what we con-
cluded when we addressed the FTSP, the hybrid algorithm provides better quality solutions than
the ILS algorithm and the ILS algorithm is more efficient than the hybrid algorithm. The hybrid
algorithm is more robust than the ILS algorithm, on average, since the average range obtained with
the hybrid algorithm was of 1.46%while the average range obtained with the ILS algorithm was of
2.61%. Therefore, when addressing the RFTSP, it is preferable to use the hybrid algorithm when

193

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

the first concern is to obtain the best solutions possible in a reasonable amount time, however, if
the objective is to achieve good quality solutions quickly then the ILS algorithm is the most suited
method.

When we compare the solutions obtained with the heuristic methods to the ones provided by the
B&C algorithm, we verify that the B&C algorithm was able to obtain the solution with the lowest
cost in 26 of the 42 instances with unknown optimal value. However, the B&C algorithm provided
these solutions in 10800 seconds. Even though we concluded in Section 7.4.2 that the performance
of the B&C algorithm is worse for the RFTSP than for the FTSP, specially for asymmetric instances,
the proportion of instances in which the B&C algorithm provides the lowest cost solution is similar
in the FTSP and in the RFTSP. In fact, the proportion of instances in the FTSP where the B&C
algorithm provided the lowest cost solution was of 58% while in the RFTSP is of 62%. Table 7.17
shows a summary of the best known upper bounds for the RFTSP for the instances with unknown
optimal value, which were obtained by applying the methods proposed during this dissertation.

Table 7.17: Current best known upper bounds for the RFTSP.

Instance
Best known
upper bounds

Instance set 1
a_2 1654.95∗

a_3 1497.69∗

gr_1 1842.25
gr_2 1342.17
gr_3 1327.26
pr_1 158362.92
pr_2 176086.63
pr_3 129436.70

Instance set 2
pr136_1 92294∗

pr144_1 53739∗

rat195_1 1522
d198_1 11607∗

kroA200_2 31824
kroB200_2 30684∗

Continues on the next page

194

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

Table 7.17

Instance
Best known
upper bounds

gr202_4 31203∗

pr226_1 63178
pr226_3 89524
gil262_2 2965∗

gil262_4 6696∗

pr264_2 30614
pr264_3 55493
pr264_4 44758

Instance set 3
ftv170_2 1612∗

ftv170_4 2522∗

rbg323_1 1644
rbg323_2 763
rbg323_3 2726
rbg323_4 1547
rbg358_1 1814
rbg358_2 764
rbg403_1 1682
rbg403_2 782
rbg403_3 3214
rbg403_4 1908
rbg443_1 2222
rbg443_2 1260
rbg443_4 2379

Instance set 4
AsimSingh150_1 1285∗

AsimSingh150_4 951∗

AsimSingh300_1 2732∗

AsimSingh300_3 4145∗

AsimSingh300_4 2845∗

*Obtained with B&C algorithm.

195

CHAPTER 7. THE FAMILY TRAVELING SALESMAN PROBLEM: A VARIANT

196

Chapter 8

Conclusion

We start by summarizing and presenting the main conclusions of the work developed within the
scope of this dissertation in Section 8.1 and, in Section 8.2, we present some ideas for future work.

8.1 Main conclusions

This dissertation focused on the family traveling salesman problem, a recent problem which may
be seen as a generalization of well-known problems from the literature, such as the traveling sales-
man problem. Given a depot and a partition of the set of cities into families, the FTSP consists in
establishing the minimum cost elementary circuit that starts and ends at the depot and visits a given
number of cities in each family.

The literature regarding the FTSP is limited, in fact, there are only two articles that address
it, namely by Morán-Mirabal et al. (2014) and Bernardino and Paias (2018a), and the latter is a
result from the work developed during this dissertation. Morán-Mirabal et al. (2014) proposed
the FTSP and focus their study on heuristic methods. Additionally, they proposed an ILP model
for the FTSP which consists in a TSP model with the additional constraints that ensure the family
visits. Therefore, we decided to carry out a comprehensive study concerning the development of
formulations for the FTSP.

We developed seven different formulations for the FTSP, three of which are adaptations of
known formulations for the TSP, namely the SCF model, the NCF model and the CC model. The
other four formulations, which are the FCF model, the NCF+ model, the RV model and the RFV
model, take into account the specificities of the FTSP, particularly, the fact that, usually, we are not
required to visit every node from each family and that the total number of visits may be disaggre-
gated per family. The formulationsmay also be classified as compact formulations and non-compact

197

CHAPTER 8. CONCLUSION

formulations. The compact formulations, namely the SCF model, the FCF model, the NCF model
and the NCF+ model, use flow variables to ensure that the solution obtained does not contain sub-
tours while the non-compact formulations, which are the CC model, the RV model and the RFV
model, use cut inequalities. We established a theoretical comparison between the proposed formu-
lations and concluded that, except for the NCF model and the CC model, the compact formulations
are not comparable to the non-compact formulations. Nevertheless, the non-compact formulations
provide, in general, higher LP relaxation values. In fact, the RFV model was the one that provided
the lowest average gap amongst the proposed formulations. After the preliminary computational
tests we concluded that the best models in practice were the CC model and the RFV model. Since
the CCmodel and the RFVmodel are not comparable we decided to combine themwhich originated
the CC+RFV model in which one set of exponential many constraints is added as subtour elimi-
nation constraints and the other is added as valid inequalities to increase the LP relaxation value.
With the CC+RFV model we were able to further improve the LP relaxation values obtained with
the RFV model.

As the CC, RFV and CC+RFV models have sets of constraints that are in exponential number,
we have to resort to a branch-and-cut algorithm to solve them. Therefore, we developed a B&C
algorithm for these models. More precisely, we developed separation algorithms for the CC and
the RFV inequalities. With more computational testing we concluded that the exact separation
algorithm for the RFV inequalities is very time consuming, which led us to create two distinct
separation algorithms for the CC+RFV model which separate the RFV inequalities in a heuristic
manner but ensure the separation of all CC inequalities, which were the y-separation algorithm and
the 1-separation algorithm. In practice we verified that, when addressing the CC+RFVmodel, it was
preferable to use the y-separation and the 1-separation instead of the exact separation algorithms of
both the CC and the RFV inequalities. Additionally, we developed a very simple heuristic procedure
to obtain feasible solutions and, consequently, upper bounds during the B&C algorithm.

Since the number of existing benchmark FTSP instances was small, we developed an instance
generator. This generator has as input a cost matrix and creates several FTSP instances with that
cost matrix and randomly generated families and number of visits per family. We used cost matrices
from symmetric and asymmetric TSP instances as well as from asymmetric UTPP instances to create
instances for the FTSP. We generated a total of 164 FTSP instances. Each cost matrix originated
four different FTSP instances, which were designed to have different characteristics, for example
instances of type low were designed to have a small number of visits per family while instances of
type high were designed to have a big number of visits per family.

We used the y-separation and the 1-separation to obtain the optimal value of the benchmark

198

CHAPTER 8. CONCLUSION

instances and the generated instances. Before solving the instances to optimality, we conducted a
comparison in terms of LP relaxation of the referred separation algorithms in order to determine
which algorithm was the best both in terms of the quality of the LP relaxation value and of compu-
tational time. As these separation algorithms separate the RFV inequalities in a heuristic manner we
cannot establish any theoretical comparison between them. Nevertheless, from the computational
results, the y-separation solved the LP relaxation faster while the 1-separation provided higher LP
relaxation values, since the latter separates more RFV inequalities on average. Moreover, the y-
separation was the most efficient method, in terms of computational time, to obtain the optimal val-
ues of the test instances. For all the reasons stated previously, we advise the usage of the CC+RFV
model with the y-separation to obtain the optimal values of FTSP instances. From the benchmark
instances, we were able to obtain the optimal value of all instances with a maximum of 127 nodes
and of one instance with 280 nodes. The optimal value of the benchmark instances bier and a_3
was unknown. Regarding the generated instances, we were able to obtain the optimal value of 148
instances within the time limit. The majority of the instances that remain with an unknown optimal
value has a symmetric cost matrix.

For the instances which have an unknown optimal value we developed three heuristic algo-
rithms: a genetic algorithm, an iterated local search algorithm and a hybrid algorithm. The compu-
tational tests showed that the ILS algorithm and the hybrid algorithm provided lower cost solutions
for the FTSP than the genetic algorithm. Since we could not establish any relationship of dominance
between the ILS algorithm and the hybrid algorithmwe carried out a computational experiment with
both heuristic methods. The solutions obtained with the proposed heuristic methods were compared
to the best upper bounds provided by Morán-Mirabal et al. (2014), in the case of the benchmark
instances, and to the best upper bound obtained by the B&C algorithm after 10800 seconds, in the
case of the instances generated. By comparing the results obtained with the ILS algorithm to the
ones obtained with the hybrid algorithm we verify that, in general, the ILS algorithm is faster while
the hybrid algorithm provides better quality solutions. By using both the ILS algorithm and the
hybrid algorithm we were able to improve the best upper bounds provided by Morán-Mirabal et al.
(2014) for all the benchmark instances with unknown optimal value. Regarding the generated in-
stances, the upper bounds obtained during the B&C algorithm were better, on average, than the
ones obtained with the heuristic methods. Nevertheless, the upper bounds obtained with the B&C
algorithm were obtained after 10800 seconds of computational time. We advise the usage of the
ILS algorithm as this is the heuristic method proposed that reaches a better compromise between
the quality of the solutions obtained and the computational time, since the genetic algorithm is faster
but provides worse quality solutions and the hybrid algorithm may be significantly slower but, in

199

CHAPTER 8. CONCLUSION

general, provides better quality solutions.
We also created a variant of the FTSP, which we called the restricted family traveling salesman

problem. This variant is obtained by adding the additional condition to the FTSP that nodes from
the same family must be visited consecutively. To the best of our knowledge this variant has never
been proposed in the literature. We created two distinct exact methods for the RFTSP, one is a
straightforward adaptation of the CC+RFV model with the y-separation and the other is the inter-
and intrafamily formulation, which is a formulation that considers the interfamily subproblem and
the intrafamily subproblem. Preliminary computational tests showed that the inter- and intrafamily
formulations provide better LP relaxation values than the corresponding adapted FTSP formula-
tions, however, they cannot be used efficiently within a B&C framework due to the large number
of variables and constraints associated with them. For this reason we used the adapted CC+RFV
model with the y-separation to obtain the optimal values of the RFTSP. With the same time limit,
10800 seconds, the number of symmetric instances that we could solve is similar to the ones solved
when addressing the FTSP while, considering the asymmetric instances, the number of instances
solved decreased significantly. We also developed heuristic methods for the RFTSP, which are
adaptations of the heuristic methods developed for the FTSP, namely the ILS algorithm and the hy-
brid algorithm. The conclusions that we can draw from the computational results obtained with the
heuristic algorithms are similar to the case of the FTSP: the ILS algorithm is faster but the hybrid
algorithm provides better quality solutions.

Summarizing, the main contributions of this dissertation are:

• an efficient B&C algorithm to solve the FTSP;

• heuristic methods that are able to provide good quality solutions for the FTSP in an efficient
manner;

• the introduction of the RFTSP as well as some resolution methods; and

• a set of test instances and their optimal values or upper bounds, when the optimal value is
unknown, which were made available for the scientific community in a website devoted to
the FTSP.

8.2 Future work

There are essentially two main points that could be further explored in this dissertation, namely
the polyhedral analysis of the FTSP and the study of the RFTSP, more precisely, the inter- and
intrafamily formulations.

200

CHAPTER 8. CONCLUSION

We started a polyhedral study for the FTSP and we were able to establish which is the dimension
of the polytope associated with the FTSP. More formally, let PFTSP be the polytope which corre-
sponds to the convex hull of the integer points which are feasible solutions for the FTSP. Then:

dim(PFTSP) = |N |2 − 1− L−
∑
l∈U

nl × (nl − 1)−
∑
l∈W

(nl − 1). (8.1)

We were able to prove the dimension (8.1) by using the result of Proposition 1 and by presenting
a sufficient number of affinely independent points. In Appendix F we present the reasoning and the
affinely independent points which led us to the dimension (8.1).

The advantage of knowing the dimension of the polytope PFTSP is that we can use it to verify if
the CC and the RFV inequalities define facets. We did a brief study and concluded that, for a given
family l ∈ L\U , when S ⊂ Fl and |S∩Fl| = nl−vl+1 the RFV inequality x(S ′, S) ≥ 1 (4.35) is
a facet of PFTSP . Observe that establishing whether or not the CC and the RFV inequalities define
facets would guide our research into different directions. In the former case, we would focus our
study on finding inequalities that dominate the CC and the RFV inequalities while, in the latter case,
we would investigate new sets of valid inequalities for the FTSP.

As mentioned in the introduction, the study of the RFTSP was not as exhaustive as the study
of the FTSP, namely in what concerns the theoretical comparison of the adapted formulations to
the inter- and intrafamily formulations. Moreover, we showed that the B&C algorithm is not the
best approach for the inter- and intrafamily formulations. Nevertheless, these formulations seem
promising since they provide higher LP relaxation values than the adapted formulations, thus, it
would be interesting to develop a different solution approach. The idea that we intend to pursue
in the future is to use a decomposition approach in which the interfamily subproblem is the master
problem.

201

CHAPTER 8. CONCLUSION

202

Bibliography

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms, and applications.
Prentice Hall, 1993.

D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The traveling salesman problem: a
computational study. Princeton University Press, 2006.

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and P. H. Vance. Branch-and-
price: Column generation for solving huge integer programs. Operations Research, 46(3):316–
329, 1998.

M. Bellmore and G. L. Nemhauser. The traveling salesman problem: a survey. Operations Re-
search, 16(3):538–558, 1968.

R. Bernardino and A. Paias. Solving the family traveling salesman problem. European Journal of
Operational Research, 267(2):453–466, 2018a.

R. Bernardino and A. Paias. Metaheuristics based on decision hierarchies for the traveling purchaser
problem. International Transactions in Operational Research, 25(4):1269–1295, 2018b.

F. F. Boctor, G. Laporte, and J. Renaud. Heuristics for the traveling purchaser problem. Computers
& Operations Research, 30(4):491–504, 2003.

I. Boussaïd, J. Lepagnot, and P. Siarry. A survey on optimization metaheuristics. Information
Sciences, 237:82–117, 2013.

N. Christofides. Graph theory: An algorithmic approach (Computer science and applied mathe-
matics). Academic Press, Inc., 1975.

M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming. Springer, 2014.

G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman problem.
Journal of the Operations Research Society of America, 2(4):393–410, 1954.

203

BIBLIOGRAPHY

M. Fischetti, J.-J. Salazar-González, and P. Toth. A branch-and-cut algorithm for the symmetric
generalized traveling salesman problem. Operations Research, 45(3):378–394, 1997.

B. Gavish and S. C. Graves. The travelling salesman problem and related problems. Working paper,
1978.

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. Journal of the
ACM (JACM), 35(4):921–940, 1988.

D. E. Goldberg and J. H. Holland. Genetic algorithms and machine learning. Machine learning, 3
(2):95–99, 1988.

B. Golden, Z. Naji-Azimi, S. Raghavan, M. Salari, and P. Toth. The generalized covering salesman
problem. INFORMS Journal on Computing, 24(4):534–553, 2012.

M. Gondran and M. Minoux. Graphs and algorithms. Wiley, 1984.

L. Gouveia, J. Riera-Ledesma, and J.-J. Salazar-González. Reverse multistar inequalities and ve-
hicle routing problems with a lower bound on the number of customers per route. Networks, 61
(4):309–321, 2013.

M. Grötschel and O. Holland. Solution of large-scale symmetric travelling salesman problems.
Mathematical Programming, 51(1):141–202, 1991.

G. Gutin and A. P. Punnen. The traveling salesman problem and its variations. Springer Science
& Business Media, 2006.

J. H. Holland. Adaptation in natural and artificial systems: an introductory analysis with applica-
tions to biology, control, and artificial intelligence. MIT press, 1992.

IBM. IBM ILOG CPLEX Optimization Studio 12.6.1. https://www.ibm.com/analytics/
cplex-optimizer, 2014.

D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case study in local opti-
mization. Local search in combinatorial optimization, 1:215–310, 1997.

E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys. The traveling salesman problem:
a guided tour of combinatorial optimization. John Wiley & Sons, 1985.

H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In Handbook of metaheuristics,
pages 320–353. Springer, 2003.

204

BIBLIOGRAPHY

L. Morán-Mirabal, J. González-Velarde, and M. G. Resende. Randomized heuristics for the family
traveling salesperson problem. International Transactions in Operational Research, 21(1):41–
57, 2014.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons,
1988.

M. Padberg and G. Rinaldi. Optimization of a 532-city symmetric traveling salesman problem by
branch and cut. Operations Research Letters, 6(1):1–7, 1987.

M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetric
traveling salesman problems. SIAM review, 33(1):60–100, 1991.

C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and complexity.
Courier Corporation, 1998.

G. R. Raidl. Decomposition based hybrid metaheuristics. European Journal of Operational Re-
search, 244(1):66–76, 2015.

G. R. Raidl and J. Puchinger. Combining (integer) linear programming techniques and metaheuris-
tics for combinatorial optimization. In Hybrid metaheuristics, pages 31–62. Springer, 2008.

G. Reinelt. Tsplib — a traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

K. N. Singh and D. L. van Oudheusden. A branch and bound algorithm for the traveling purchaser
problem. European Journal of Operational Research, 97(3):571–579, 1997.

S. Srivastava, S. Kumar, R. Garg, and P. Sen. Generalized traveling salesman problem through n
sets of nodes. CORS journal, 7:97–101, 1969.

L. A. Wolsey. Integer Programming. John Wiley & Sons, 1998.

R. T. Wong. Integer programming formulations of the traveling salesman problem. In Proceed-
ings of the IEEE international conference of circuits and computers, pages 149–152. IEEE Press
Piscataway, NJ, 1980.

205

BIBLIOGRAPHY

206

Appendix A

Instance Description

This chapter contains a complete description of the test instances. Tables A.1, A.2, A.3, A.4 show
the description of the instance set 1, 2, 3 and 4, respectively, presented in Section 3.4. Each table
has six columns with the name of the instance (Instance name), the number of nodes (|N |+ 1), the
number of families (L), the total number of visits (V) and the enumeration, per family, of both the
number of family members (nl) and the number of family visits (vl).

The tables are sorted according to an ascending order of the number of nodes of the instance.

Table A.1: Complete description of the instance set 1.

Instance Name |N |+ 1 L V nl vl

bruma14_3_1001_1001_2 14 3 6 [4, 5, 4] [2, 2, 2]
bruma14_3_1001_1002_2 10 [4, 2, 4]
bruma14_3_1001_1003_2 4 [2, 1, 1]
bayg29_4_1001_1001_2 29 4 16 [7, 9, 6, 6] [6, 4, 5, 1]
bayg29_4_1001_1002_2 17 [2, 9, 1, 5]
bayg29_4_1001_1003_2 18 [6, 6, 1, 5]
att48_5_1001_1001_2 48 5 34 [12, 9, 9, 7, 10] [10, 4, 9, 7, 4]
att48_5_1001_1002_2 25 [8, 2, 9, 1, 5]
att48_5_1001_1003_2 15 [6, 1, 3, 3, 2]
bier127_10_1001_1001_2 127 10 62 [12, 12, 14, 8, 13, 16, 13, 8, 17, 13] [10, 4, 13, 1, 12, 4, 6, 1, 5, 6]
bier127_10_1001_1002_2 85 [8, 2, 12, 7, 9, 9, 5, 5, 17, 11]
bier127_10_1001_1003_2 60 [6, 1, 13, 3, 3, 13, 13, 2, 2, 4]
a280_20_1001_1001_2 280 20 179 [15, 14, 16, 11, 19, 15, 18, 10, 17, 16, [14, 10, 14, 4, 13, 9, 15, 4, 5, 14,

16, 8, 7, 15, 24, 8, 11, 13, 15, 11] 6, 7, 6, 8, 13, 7, 9, 13, 6, 2]
a280_20_1001_1002_2 156 [8, 2, 12, 9, 9, 5, 17, 6, 3, 9,

7, 2, 6, 11, 4, 6, 11, 7, 11, 11]
a280_20_1001_1003_2 141 [14, 14, 6, 1, 13, 3, 18, 3, 2, 4,

10, 4, 4, 8, 5, 4, 9, 4, 14, 1]
gr666_30_1001_1001_2 666 30 357 [27, 24, 24, 17, 29, 19, 20, 17, 27, 24, [14, 10, 15, 4, 13, 9, 15, 4, 22, 5,

26, 15, 15, 30, 40, 11, 19, 28, 27, 20 14, 6, 15, 30, 24, 7, 2, 1, 19, 5,
28, 22, 24, 14, 23, 15, 17, 18, 20, 25] 6, 13, 18, 9, 21, 10, 15, 2, 10, 19]

gr666_30_1001_1002_2 328 [8, 2, 15, 9, 21, 17, 14, 3, 9, 7,
Continues on the next page

207

APPENDIX A. INSTANCE DESCRIPTION

Table A.1
Instance Name |N |+ 1 L V nl vl

10, 6, 11, 4, 39, 11, 11, 26, 7, 8
1, 8, 14, 7, 19, 5, 6, 9, 9, 12]

gr666_30_1001_1003_2 328 [6, 17, 13, 2, 4, 12, 4, 5, 12, 14,
15, 9, 4, 14, 33, 10, 17, 27, 17, 8,
6, 8, 2, 5, 8, 9, 17, 15, 6, 9]

pr1002_40_1001_1001_2 1002 40 486 [22, 28, 27, 30, 32, 24, 21, 22, 29, 30, [14, 10, 15, 4, 13, 9, 15, 4, 22, 25,
27, 16, 20, 30, 38, 16, 21, 23, 27, 28 5, 14, 6, 30, 24, 14, 13, 7, 25, 22,
23, 25, 26, 26, 21, 24, 20, 30, 18, 25 2, 1, 19, 5, 6, 13, 18, 9, 15, 2,
25, 27, 27, 21, 26, 24, 28, 28, 25, 21] 22, 10, 19, 11, 1, 8, 3, 8, 6, 17]

pr1002_40_1001_1002_2 538 [8, 2, 15, 25, 9, 21, 17, 14, 22, 22,
3, 9, 7, 10, 6, 11, 4, 22, 27, 7
11, 7, 8, 1, 8, 14, 19, 21, 6, 9
9, 12, 26, 8, 23, 21, 8, 28, 18, 20]

pr1002_40_1001_1003_2 463 [6, 17, 13, 19, 19, 18, 19, 2, 4, 26,
12, 4, 5, 12, 15, 9, 4, 14, 1, 15,
17, 17, 8, 6, 8, 2, 5, 8, 17, 15,
6, 9, 3, 20, 15, 5, 14, 26, 18, 10]

Table A.2: Complete description of the instance set 2.

Instance Name |N |+ 1 L V nl vl

pr136.sftsp_21_1 136 21 82 [5, 3, 4, 8, 6, 5, 4, 4, 5, 8, [4, 1, 3, 3, 4, 2, 4, 1, 3, 2,
5, 3, 3, 8, 8, 7, 8, 12, 11, 11, 3, 2, 2, 2, 8, 2, 6, 10, 9, 8,
7] 3]

pr136.sftsp_21_2 48 [3, 1, 2, 1, 1, 2, 2, 1, 3, 2,
3, 1, 2, 2, 2, 2, 6, 2, 8, 1,
1]

pr136.sftsp_21_3 114 [5, 2, 4, 4, 5, 5, 4, 3, 4, 7,
4, 3, 3, 3, 8, 5, 7, 11, 10, 11,
6]

pr136.sftsp_21_4 83 [3, 1, 4, 4, 1, 5, 2, 3, 3, 7,
3, 1, 3, 2, 2, 5, 6, 11, 10, 1,
6]

gr137.sftsp_21_1 137 21 87 [5, 3, 4, 8, 6, 5, 7, 4, 5, 8, [4, 1, 3, 3, 4, 2, 7, 1, 3, 2,
5, 3, 3, 5, 8, 7, 8, 12, 11, 11, 3, 2, 2, 2, 8, 2, 6, 10, 9, 8,
8] 5]

gr137.sftsp_21_2 56 [3, 1, 2, 1, 1, 2, 6, 1, 3, 2,
3, 1, 2, 2, 2, 2, 6, 2, 8, 1,
5]

gr137.sftsp_21_3 117 [5, 2, 4, 4, 5, 5, 7, 3, 4, 7,
4, 3, 3, 3, 8, 5, 7, 11, 10, 11,
6]

gr137.sftsp_21_4 87 [3, 1, 4, 4, 1, 5, 6, 3, 3, 7,
3, 1, 3, 2, 2, 5, 6, 11, 10, 1,
6]

pr144.sftsp_22_1 144 22 90 [5, 3, 4, 8, 6, 5, 7, 4, 5, 8, [5, 2, 3, 4, 2, 5, 7, 2, 5, 1,
5, 3, 3, 5, 8, 7, 8, 5, 9, 6, 1, 2, 2, 4, 4, 6, 2, 4, 1, 3,

Continues on the next page

208

APPENDIX A. INSTANCE DESCRIPTION

Table A.2
Instance Name |N |+ 1 L V nl vl

5, 24] 5, 20]
pr144.sftsp_22_2 53 [5, 1, 1, 4, 2, 1, 1, 2, 3, 1,

1, 2, 2, 2, 2, 2, 1, 1, 1, 1,
2, 15]

pr144.sftsp_22_3 122 [5, 3, 4, 6, 3, 5, 7, 3, 5, 7,
2, 3, 3, 5, 6, 7, 3, 5, 7, 4,
5, 24]

pr144.sftsp_22_4 81 [5, 3, 4, 4, 3, 1, 7, 2, 5, 1,
1, 3, 2, 2, 6, 2, 3, 5, 1, 4,
2, 15]

kroA150.sftsp_16_1 150 16 78 [8, 9, 4, 5, 10, 5, 6, 6, 3, 4, [8, 6, 2, 4, 5, 4, 1, 5, 3, 4,
12, 16, 10, 8, 8, 35] 8, 4, 7, 2, 2, 13]

kroA150.sftsp_16_2 48 [2, 5, 2, 4, 5, 2, 1, 4, 1, 1,
3, 4, 6, 1, 1, 6]

kroA150.sftsp_16_3 117 [8, 7, 3, 5, 6, 5, 6, 6, 3, 4,
12, 6, 10, 8, 4, 24]

kroA150.sftsp_16_4 58 [2, 5, 2, 5, 5, 2, 1, 4, 3, 4,
3, 4, 10, 1, 1, 6]

kroB150.sftsp_16_1 150 16 78 [8, 9, 4, 5, 10, 5, 6, 6, 3, 4, [8, 6, 2, 4, 5, 4, 1, 5, 3, 4,
12, 16, 10, 8, 8, 35] 8, 4, 7, 2, 2, 13]

kroB150.sftsp_16_2 48 [2, 5, 2, 4, 5, 2, 1, 4, 1, 1,
3, 4, 6, 1, 1, 6]

kroB150.sftsp_16_3 117 [8, 7, 3, 5, 6, 5, 6, 6, 3, 4,
12, 6, 10, 8, 4, 24]

kroB150.sftsp_16_4 58 [2, 5, 2, 5, 5, 2, 1, 4, 3, 4,
3, 4, 10, 1, 1, 6]

pr152.sftsp_23_1 152 23 77 [5, 3, 4, 8, 6, 5, 7, 4, 5, 8, [3, 3, 4, 8, 6, 2, 3, 2, 3, 2,
5, 3, 3, 5, 10, 10, 4, 5, 11, 7, 4, 2, 2, 5, 4, 4, 1, 1, 5, 2,
8, 3, 22] 4, 2, 5]

pr152.sftsp_23_2 47 [1, 3, 2, 1, 3, 2, 3, 1, 2, 2,
2, 2, 2, 2, 3, 1, 1, 1, 2, 1,
4, 1, 5]

pr152.sftsp_23_3 116 [4, 3, 4, 8, 6, 4, 4, 3, 5, 5,
5, 3, 3, 5, 5, 5, 4, 4, 7, 6,
5, 3, 15]

pr152.sftsp_23_4 86 [4, 3, 4, 1, 6, 2, 3, 3, 2, 2,
5, 2, 3, 5, 3, 5, 1, 1, 2, 6,
5, 3, 15]

u159.sftsp_17_1 159 17 100 [8, 9, 4, 5, 10, 5, 6, 6, 5, 12, [2, 3, 3, 5, 9, 5, 5, 3, 2, 8,
12, 10, 8, 7, 5, 15, 31] 12, 7, 2, 5, 3, 11, 15]

u159.sftsp_17_2 64 [2, 2, 2, 4, 4, 4, 1, 3, 1, 4,
11, 7, 1, 3, 1, 2, 12]

u159.sftsp_17_3 139 [8, 6, 4, 5, 10, 5, 6, 5, 5, 10,
12, 9, 7, 6, 4, 13, 24]

u159.sftsp_17_4 98 [2, 2, 2, 4, 10, 5, 1, 3, 5, 4,
11, 7, 1, 3, 1, 13, 24]

rat195.sftsp_29_1 195 29 94 [5, 3, 4, 6, 4, 9, 7, 4, 5, 8, [3, 2, 1, 2, 1, 8, 2, 4, 4, 2,
5, 3, 5, 7, 8, 3, 4, 4, 11, 9, 4, 1, 4, 2, 4, 2, 1, 1, 4, 7,
9, 7, 10, 8, 6, 4, 14, 9, 13] 8, 1, 6, 5, 1, 4, 6, 2, 2]

Continues on the next page

209

APPENDIX A. INSTANCE DESCRIPTION

Table A.2
Instance Name |N |+ 1 L V nl vl

rat195.sftsp_29_2 62 [3, 2, 1, 1, 1, 2, 1, 3, 4, 1,
2, 1, 1, 1, 1, 2, 1, 1, 2, 3,
7, 1, 6, 2, 1, 2, 5, 2, 2]

rat195.sftsp_29_3 145 [4, 3, 3, 3, 3, 9, 3, 4, 5, 3,
5, 3, 5, 6, 5, 3, 4, 3, 8, 8,
9, 2, 10, 6, 3, 4, 13, 3, 5]

rat195.sftsp_29_4 97 [4, 2, 3, 1, 1, 2, 1, 4, 5, 1,
2, 1, 5, 1, 1, 2, 4, 1, 8, 3,
7, 1, 10, 2, 3, 2, 13, 2, 5]

d198.sftsp_29_1 198 29 94 [5, 3, 8, 8, 6, 5, 7, 4, 5, 8, [3, 2, 1, 2, 5, 2, 2, 4, 4, 2,
5, 3, 5, 7, 8, 3, 4, 4, 11, 9, 4, 1, 4, 2, 4, 2, 1, 1, 4, 7,
9, 7, 10, 5, 6, 4, 14, 3, 21] 8, 1, 6, 3, 1, 4, 6, 2, 6]

d198.sftsp_29_2 67 [3, 2, 1, 1, 5, 2, 1, 3, 4, 1,
2, 1, 1, 1, 1, 2, 1, 1, 2, 3,
7, 1, 6, 1, 1, 2, 5, 2, 4]

d198.sftsp_29_3 160 [4, 3, 8, 5, 6, 5, 3, 4, 5, 3,
5, 3, 5, 6, 5, 3, 4, 3, 8, 8,
9, 2, 10, 5, 3, 4, 13, 3, 15]

d198.sftsp_29_4 115 [4, 2, 8, 1, 5, 2, 1, 4, 5, 1,
2, 1, 5, 1, 1, 2, 4, 1, 8, 3,
7, 1, 10, 1, 3, 2, 13, 2, 15]

kroA200.sftsp_29_1 200 29 102 [5, 3, 8, 6, 4, 9, 7, 4, 5, 8, [3, 2, 1, 2, 1, 8, 2, 4, 4, 2,
5, 3, 5, 7, 10, 3, 4, 4, 11, 9, 4, 1, 4, 2, 10, 2, 1, 1, 4, 7,
9, 7, 10, 5, 6, 4, 14, 3, 21] 8, 1, 6, 3, 1, 4, 6, 2, 6]

kroA200.sftsp_29_2 69 [3, 2, 1, 1, 1, 2, 1, 3, 4, 1,
2, 1, 1, 1, 7, 2, 1, 1, 2, 3,
7, 1, 6, 1, 1, 2, 5, 2, 4]

kroA200.sftsp_29_3 159 [4, 3, 8, 3, 3, 9, 3, 4, 5, 3,
5, 3, 5, 6, 10, 3, 3, 4, 8, 9,
9, 3, 7, 5, 6, 4, 8, 3, 13]

kroA200.sftsp_29_4 96 [3, 3, 1, 3, 1, 2, 1, 3, 5, 3,
2, 1, 1, 6, 7, 2, 1, 4, 2, 9,
7, 1, 6, 5, 1, 4, 5, 3, 4]

kroB200.sftsp_29_1 200 29 102 [5, 3, 8, 6, 4, 9, 7, 4, 5, 8, [3, 2, 1, 2, 1, 8, 2, 4, 4, 2,
5, 3, 5, 7, 10, 3, 4, 4, 11, 9, 4, 1, 4, 2, 10, 2, 1, 1, 4, 7,
9, 7, 10, 5, 6, 4, 14, 3, 21] 8, 1, 6, 3, 1, 4, 6, 2, 6]

kroB200.sftsp_29_2 69 [3, 2, 1, 1, 1, 2, 1, 3, 4, 1,
2, 1, 1, 1, 7, 2, 1, 1, 2, 3,
7, 1, 6, 1, 1, 2, 5, 2, 4]

kroB200.sftsp_29_3 159 [4, 3, 8, 3, 3, 9, 3, 4, 5, 3,
5, 3, 5, 6, 10, 3, 3, 4, 8, 9,
9, 3, 7, 5, 6, 4, 8, 3, 13]

kroB200.sftsp_29_4 96 [3, 3, 1, 3, 1, 2, 1, 3, 5, 3,
2, 1, 1, 6, 7, 2, 1, 4, 2, 9,
7, 1, 6, 5, 1, 4, 5, 3, 4]

gr202.sftsp_30_1 202 30 128 [5, 3, 4, 6, 4, 9, 7, 4, 5, 8, [5, 3, 2, 5, 2, 2, 2, 2, 4, 5,
5, 3, 5, 7, 8, 3, 4, 4, 9, 9, 1, 3, 5, 4, 3, 1, 1, 4, 7, 8,
9, 7, 10, 8, 6, 4, 4, 10, 15, 16] 6, 4, 3, 5, 2, 4, 2, 4, 15, 14]

gr202.sftsp_30_2 74 [2, 2, 1, 2, 1, 1, 2, 1, 2, 1,
Continues on the next page

210

APPENDIX A. INSTANCE DESCRIPTION

Table A.2
Instance Name |N |+ 1 L V nl vl

1, 2, 2, 2, 3, 1, 1, 1, 4, 5,
6, 3, 2, 4, 1, 2, 2, 1, 9, 7]

gr202.sftsp_30_3 172 [5, 3, 3, 6, 4, 8, 4, 3, 5, 6,
2, 3, 5, 7, 4, 3, 4, 4, 9, 9,
8, 6, 5, 7, 4, 4, 4, 7, 15, 15]

gr202.sftsp_30_4 118 [2, 3, 1, 6, 1, 1, 2, 1, 5, 6,
1, 2, 2, 7, 3, 1, 1, 4, 4, 9,
6, 3, 2, 7, 1, 4, 2, 7, 9, 15]

pr226.sftsp_28_1 226 28 121 [7, 9, 6, 10, 4, 9, 10, 4, 3, 4, [7, 7, 2, 3, 2, 5, 2, 4, 2, 2,
4, 10, 10, 8, 8, 7, 8, 5, 11, 11, 2, 9, 6, 5, 3, 4, 3, 3, 2, 4,
3, 7, 6, 5, 12, 16, 16, 12] 1, 5, 3, 1, 9, 13, 8, 4]

pr226.sftsp_28_2 73 [2, 6, 2, 2, 1, 1, 1, 2, 1, 1,
2, 4, 6, 1, 2, 1, 2, 2, 1, 3,
1, 5, 1, 1, 9, 3, 8, 2]

pr226.sftsp_28_3 188 [7, 8, 4, 6, 3, 8, 9, 4, 3, 4,
4, 10, 8, 6, 8, 5, 7, 5, 5, 10,
3, 7, 5, 2, 11, 14, 16, 6]

pr226.sftsp_28_4 112 [2, 8, 2, 2, 3, 1, 9, 2, 1, 1,
2, 10, 8, 1, 2, 1, 7, 2, 1, 3,
3, 5, 5, 1, 9, 3, 16, 2]

gr229.sftsp_24_1 229 24 133 [8, 9, 4, 5, 10, 5, 6, 10, 11, 12, [3, 4, 4, 5, 7, 3, 2, 3, 10, 5,
6, 6, 6, 10, 14, 7, 8, 3, 9, 17, 2, 2, 2, 4, 14, 5, 6, 3, 3, 3,
6, 15, 5, 36] 5, 13, 1, 24]

gr229.sftsp_24_2 55 [1, 1, 1, 1, 4, 1, 2, 1, 4, 4,
2, 2, 1, 1, 3, 2, 3, 1, 2, 1,
5, 6, 1, 5]

gr229.sftsp_24_3 186 [5, 9, 4, 5, 10, 4, 4, 6, 11, 11,
4, 5, 6, 6, 14, 6, 8, 3, 7, 4,
6, 14, 2, 32]

gr229.sftsp_24_4 101 [1, 1, 4, 1, 4, 4, 2, 6, 11, 4,
4, 2, 1, 1, 14, 6, 8, 3, 2, 4,
5, 6, 2, 5]

gil262.sftsp_37_1 262 37 150 [3, 8, 8, 6, 4, 9, 7, 4, 5, 8, [2, 2, 5, 4, 1, 3, 4, 3, 3, 1,
5, 3, 5, 7, 8, 3, 4, 4, 9, 9, 3, 1, 1, 1, 6, 3, 1, 4, 7, 2,
9, 7, 9, 5, 6, 10, 6, 9, 9, 4, 6, 7, 2, 2, 5, 5, 4, 3, 1, 4,
5, 8, 5, 4, 16, 7, 23] 3, 6, 1, 1, 13, 7, 23]

gil262.sftsp_37_2 102 [1, 1, 3, 1, 1, 1, 2, 1, 2, 1,
2, 1, 1, 1, 3, 2, 1, 4, 7, 1,
2, 5, 2, 2, 4, 4, 1, 2, 1, 4,
2, 5, 1, 1, 12, 1, 16]

gil262.sftsp_37_3 212 [3, 3, 8, 5, 3, 4, 6, 4, 5, 7,
4, 3, 2, 7, 7, 3, 2, 4, 9, 3,
8, 7, 3, 4, 6, 6, 6, 7, 4, 4,
4, 7, 5, 3, 16, 7, 23]

gil262.sftsp_37_4 167 [3, 1, 8, 5, 3, 4, 6, 4, 5, 1,
4, 1, 1, 7, 3, 2, 1, 4, 7, 3,
8, 5, 3, 2, 6, 4, 1, 7, 1, 4,
4, 5, 1, 1, 12, 7, 23]

pr264.sftsp_37_1 264 37 144 [3, 8, 8, 6, 4, 9, 7, 4, 5, 8, [2, 2, 5, 4, 1, 3, 4, 3, 3, 1,
Continues on the next page

211

APPENDIX A. INSTANCE DESCRIPTION

Table A.2
Instance Name |N |+ 1 L V nl vl

5, 3, 5, 7, 8, 3, 4, 4, 9, 9, 3, 1, 1, 1, 6, 3, 1, 4, 7, 2,
9, 7, 9, 5, 6, 4, 11, 9, 9, 4, 6, 7, 2, 2, 5, 3, 11, 3, 1, 4,
5, 12, 11, 4, 15, 10, 14] 3, 6, 9, 1, 11, 7, 6]

pr264.sftsp_37_2 93 [1, 1, 3, 1, 1, 1, 2, 1, 2, 1,
2, 1, 1, 1, 3, 2, 1, 4, 7, 1,
2, 5, 2, 2, 4, 3, 10, 2, 1, 4,
2, 5, 8, 1, 2, 1, 2]

pr264.sftsp_37_3 214 [3, 3, 8, 5, 3, 4, 6, 4, 5, 7,
4, 3, 2, 7, 7, 3, 2, 4, 9, 3,
8, 7, 3, 4, 6, 4, 11, 7, 7, 4,
4, 11, 10, 3, 13, 10, 10]

pr264.sftsp_37_4 158 [1, 3, 8, 5, 3, 4, 6, 4, 2, 7,
2, 1, 2, 1, 3, 2, 1, 4, 9, 3,
2, 7, 2, 4, 4, 3, 11, 2, 7, 4,
2, 5, 8, 1, 13, 10, 2]

Table A.3: Complete description of the instance set 3.

Instance Name |N |+ 1 L V nl vl

br17.aftsp_3_1 17 3 9 [3, 2, 11] [2, 2, 5]
br17.aftsp_3_2 6 [1, 2, 3]
br17.aftsp_3_3 14 [3, 2, 9]
br17.aftsp_3_4 8 [3, 2, 3]
ftv33.aftsp_8_1 34 5 23 [5, 8, 4, 10, 6] [3, 7, 4, 8, 1]
ftv33.aftsp_8_2 10 [1, 3, 4, 1, 1]
ftv33.aftsp_8_3 33 [5, 8, 4, 10, 6]
ftv33.aftsp_8_4 19 [5, 8, 4, 1, 1]
ftv35.aftsp_5_1 36 5 21 [3, 9, 8, 6, 9] [1, 9, 8, 2, 1]
ftv35.aftsp_5_2 12 [1, 1, 8, 1, 1]
ftv35.aftsp_5_3 29 [3, 9, 8, 6, 3]
ftv35.aftsp_5_4 20 [1, 9, 8, 1, 1]
ftv38.aftsp_5_1 39 5 23 [3, 9, 6, 4, 16] [1, 9, 2, 2, 9]
ftv38.aftsp_5_2 11 [1, 1, 2, 1, 6]
ftv38.aftsp_5_3 37 [3, 9, 6, 4, 15]
ftv38.aftsp_5_4 21 [3, 9, 2, 1, 6]
p43.aftsp_6_1 43 6 27 [3, 8, 8, 6, 4, 13] [3, 8, 2, 1, 2, 11]
p43.aftsp_6_2 17 [2, 1, 1, 1, 2, 10]
p43.aftsp_6_3 39 [3, 8, 8, 5, 3, 12]
p43.aftsp_6_4 27 [2, 1, 8, 1, 3, 12]
ftv44.aftsp_6_1 45 6 31 [3, 9, 6, 10, 4, 12] [3, 5, 2, 9, 2, 10]
ftv44.aftsp_6_2 20 [2, 3, 1, 6, 2, 6]
ftv44.aftsp_6_3 39 [3, 7, 5, 10, 3, 11]
ftv44.aftsp_6_4 29 [2, 7, 1, 10, 3, 6]
ftv47.aftsp_6_1 48 6 34 [3, 9, 6, 5, 12, 12] [3, 5, 2, 4, 10, 10]
ftv47.aftsp_6_2 20 [2, 3, 1, 4, 4, 6]
ftv47.aftsp_6_3 42 [3, 7, 5, 5, 11, 11]
ftv47.aftsp_6_4 32 [2, 7, 1, 5, 11, 6]

Continues on the next page

212

APPENDIX A. INSTANCE DESCRIPTION

Table A.3
Instance Name |N |+ 1 L V nl vl

ry48p.aftsp_6_1 48 6 34 [3, 9, 6, 5, 12, 12] [3, 5, 2, 4, 10, 10]
ry48p.aftsp_6_2 20 [2, 3, 1, 4, 4, 6]
ry48p.aftsp_6_3 42 [3, 7, 5, 5, 11, 11]
ry48p.aftsp_6_4 32 [2, 7, 1, 5, 11, 6]
ft53.aftsp_8_1 53 7 29 [3, 9, 6, 10, 4, 5, 15] [2, 2, 1, 10, 2, 4, 8]
ft53.aftsp_8_2 22 [1, 2, 1, 6, 2, 3, 7]
ft53.aftsp_8_3 45 [3, 5, 4, 10, 3, 5, 15]
ft53.aftsp_8_4 49 [3, 2, 4, 6, 3, 3, 15]
ftv55.aftsp_7_1 56 7 17 [3, 9, 6, 5, 10, 6, 16] [2, 2, 1, 5, 4, 2, 1]
ftv55.aftsp_7_2 9 [1, 2, 1, 1, 2, 1, 1]
ftv55.aftsp_7_3 33 [3, 5, 4, 5, 7, 6, 3]
ftv55.aftsp_7_4 21 [3, 2, 4, 1, 7, 1, 3]
ftv64.aftsp_8_1 65 8 34 [7, 9, 6, 10, 4, 11, 10, 7] [2, 1, 4, 4, 4, 4, 9, 6]
ftv64.aftsp_8_2 23 [2, 1, 2, 3, 3, 3, 4, 5]
ftv64.aftsp_8_3 59 [6, 5, 6, 10, 4, 11, 10, 7]
ftv64.aftsp_8_4 48 [6, 1, 6, 3, 4, 11, 10, 7]
ft70.aftsp_8_1 70 8 39 [7, 9, 6, 5, 10, 5, 15, 12] [2, 1, 4, 4, 4, 3, 9, 12]
ft70.aftsp_8_2 27 [2, 1, 2, 3, 3, 1, 4, 11]
ft70.aftsp_8_3 55 [6, 5, 6, 5, 5, 5, 11, 12]
ft70.aftsp_8_4 49 [6, 1, 6, 3, 5, 5, 11, 12]
ftv70.aftsp_9_1 71 9 35 [3, 9, 6, 10, 4, 11, 7, 10, 10] [1, 1, 4, 4, 1, 8, 6, 4, 6]
ftv70.aftsp_9_2 25 [1, 1, 3, 3, 1, 7, 3, 4, 2]
ftv70.aftsp_9_3 54 [3, 2, 6, 6, 4, 10, 7, 6, 10]
ftv70.aftsp_9_4 50 [3, 2, 6, 6, 4, 10, 3, 6, 10]
kro124p.aftsp_14_1 100 14 66 [3, 8, 8, 6, 4, 9, 7, 4, 3, 3, [3, 8, 8, 6, 2, 9, 6, 3, 1, 2,

10, 13, 5, 16] 9, 3, 2, 4]
kro124p.aftsp_14_2 30 [1, 2, 2, 3, 2, 5, 2, 2, 1, 2,

4, 1, 2, 1]
kro124p.aftsp_14_3 89 [3, 8, 8, 6, 3, 9, 7, 4, 2, 3,

10, 9, 4, 13]
kro124p.aftsp_14_4 46 [3, 2, 2, 3, 2, 5, 2, 2, 2, 3,

4, 1, 2, 13]
ftv170.aftsp_19_1 171 19 97 [7, 9, 4, 5, 9, 11, 7, 4, 11, 12, [7, 9, 3, 5, 8, 8, 3, 4, 2, 1,

6, 6, 6, 5, 10, 10, 12, 14, 22] 4, 2, 3, 1, 9, 2, 8, 2, 16]
ftv170.aftsp_19_2 65 [7, 4, 1, 4, 3, 4, 2, 1, 1, 1,

2, 1, 3, 1, 9, 1, 8, 2, 10]
ftv170.aftsp_19_3 142 [7, 9, 4, 5, 9, 10, 6, 4, 4, 11,

6, 3, 4, 5, 10, 8, 9, 7, 21]
ftv170.aftsp_19_4 100 [7, 9, 1, 4, 3, 4, 2, 1, 4, 11,

2, 1, 4, 5, 9, 8, 8, 7, 10]
rbg323.aftsp_34_1 323 34 190 [8, 9, 4, 5, 9, 11, 7, 4, 11, 12, [2, 2, 4, 4, 4, 9, 5, 1, 3, 8,

6, 6, 5, 11, 12, 6, 8, 11, 9, 6, 5, 1, 1, 4, 10, 5, 1, 3, 9, 1,
8, 12, 6, 5, 5, 16, 13, 10, 12, 7, 8, 4, 2, 4, 5, 14, 7, 1, 7, 4,
6, 8, 25, 29] 3, 7, 16, 26]

rbg323.aftsp_34_2 105 [2, 1, 1, 1, 1, 2, 5, 1, 2, 1,
4, 1, 1, 3, 8, 4, 1, 3, 4, 1,
3, 3, 1, 4, 2, 13, 5, 1, 4, 2,
2, 3, 5, 10]

rbg323.aftsp_34_3 271 [8, 6, 4, 5, 9, 11, 6, 3, 5, 10,
Continues on the next page

213

APPENDIX A. INSTANCE DESCRIPTION

Table A.3
Instance Name |N |+ 1 L V nl vl

6, 3, 3, 6, 11, 6, 6, 4, 9, 3,
8, 11, 5, 5, 5, 15, 13, 8, 10, 6,
6, 8, 19, 28]

rbg323.aftsp_34_4 174 [8, 1, 1, 1, 9, 2, 6, 1, 5, 1,
6, 1, 3, 6, 11, 6, 6, 4, 9, 1,
8, 3, 1, 5, 2, 13, 5, 1, 4, 6,
6, 3, 19, 10]

rbg358.aftsp_49_1 358 49 219 [3, 8, 8, 6, 4, 9, 7, 4, 5, 8, [2, 1, 6, 3, 1, 5, 6, 2, 4, 6,
5, 3, 5, 7, 8, 3, 4, 4, 9, 9, 2, 2, 1, 3, 2, 3, 3, 4, 4, 6,
9, 7, 9, 5, 6, 10, 6, 3, 4, 4, 5, 6, 8, 2, 2, 5, 1, 2, 1, 3,
5, 4, 7, 10, 4, 12, 6, 6, 11, 10, 5, 2, 4, 8, 2, 5, 6, 4, 5, 9,
7, 5, 10, 3, 15, 3, 21, 18, 18] 7, 5, 4, 3, 6, 2, 19, 12, 10]

rbg358.aftsp_49_2 131 [1, 1, 3, 2, 1, 1, 2, 1, 4, 1,
2, 2, 1, 3, 1, 3, 3, 1, 3, 5,
3, 2, 7, 1, 2, 5, 1, 1, 1, 2,
3, 1, 2, 3, 1, 1, 4, 2, 4, 2,
7, 4, 2, 3, 2, 2, 3, 10, 9]

rbg358.aftsp_49_3 312 [3, 6, 7, 4, 4, 7, 7, 3, 5, 7,
3, 3, 2, 4, 3, 3, 4, 4, 6, 9,
9, 7, 9, 4, 6, 7, 5, 3, 3, 4,
5, 4, 6, 10, 3, 7, 6, 6, 9, 10,
7, 5, 10, 3, 15, 3, 21, 17, 14]

rbg358.aftsp_49_4 243 [3, 1, 7, 4, 4, 7, 7, 1, 4, 1,
3, 2, 1, 4, 1, 3, 3, 1, 6, 9,
9, 2, 9, 4, 6, 7, 1, 3, 1, 4 ,
5, 1, 2, 3, 3, 1, 4, 6, 9, 2,
7, 5, 10, 3, 15, 2, 21, 17, 9]

rbg403.aftsp_50_1 403 50 227 [7, 9, 6, 10, 4, 9, 10, 4, 3, 4, [1, 6, 3, 5, 4, 7, 4, 2, 3, 2,
4, 10, 3, 5, 10, 10, 4, 4, 9, 9, 3, 1, 1, 2, 7, 5, 4, 3, 6, 5, 11,
9, 7, 10, 5, 6, 4, 11, 9, 9, 4, 2, 6, 7, 5, 3, 3, 4, 7, 4, 1,
5, 4, 11, 4, 6, 12, 6, 5, 11, 10, 2, 3, 8, 2, 5, 6, 4, 3, 9, 7,
11, 5, 11, 3, 15, 3, 8, 15, 19, 30] 8, 4, 8, 3, 2, 1, 4, 1, 7, 24]

rbg403.aftsp_50_2 148 [1, 2, 3, 1, 2, 3, 4, 1, 2, 2,
2, 1, 1, 2, 2, 1, 3, 2, 3, 2,
1, 3, 2, 5, 3, 1, 4, 6, 4, 1,
2, 2, 3, 1, 5, 4, 3, 2, 5, 5,
2, 4, 4, 1, 2, 1, 3, 1, 5, 23]

rbg403.aftsp_50_3 341 [2, 9, 6, 9, 4, 8, 5, 3, 3, 4,
4, 7, 2, 3, 8, 7, 4, 4, 9, 8,
8, 7, 8, 5, 6, 4, 9, 9, 5, 3,
4, 4, 10, 3, 6, 10, 6, 5, 10, 8,
10, 5, 11, 3, 10, 3, 6, 9, 16, 29]

rbg403.aftsp_50_4 243 [2, 2, 3, 1, 4, 3, 4, 3, 2, 2,
2, 1, 2, 3, 8, 1, 4, 4, 9, 8,
1, 7, 2, 5, 6, 1, 4, 6, 5, 1,
2, 4, 10, 1, 5, 10, 6, 2, 10, 5,
10, 5, 4, 3, 10, 1, 6, 9, 5, 29]

rbg443.aftsp_64_1 443 64 265 [5,3,8, 8, 6, 5, 7, 4, 5, 8, [2, 1, 8, 3, 6, 1, 6, 1, 2, 6,
5, 3, 5, 7, 8, 3, 5, 8, 9, 8, 5, 5, 5, 1, 3, 3, 7, 1, 2, 7, 8, 6,

Continues on the next page

214

APPENDIX A. INSTANCE DESCRIPTION

Table A.3
Instance Name |N |+ 1 L V nl vl

5, 5, 3, 3, 5, 9, 9, 9, 5, 7, 1, 5, 1, 3, 4, 8, 9, 2, 2, 6,
8, 5, 6, 7, 4, 6, 8, 4, 7, 8, 6, 5, 6, 1, 1, 6, 5, 2, 2, 8,
7, 5, 6, 5, 3, 6, 8, 9, 10, 8, 4, 5, 2, 4, 2, 4, 2, 3, 7, 2,
8, 11, 3, 8, 12, 6, 6, 6, 4, 9, 5, 1, 1, 1, 9, 2, 3, 3, 2, 3,
9, 13, 12, 25] 9, 1, 4, 24]

rbg443.aftsp_64_2 180 [2, 1, 6, 2, 5, 1, 4, 1, 1, 5,
2, 1, 2, 3, 7, 1, 2, 2, 3, 6,
1, 2, 1, 3, 2, 7, 7, 1, 1, 4,
6, 2, 5, 1, 1, 4, 4, 2, 1, 7,
2, 5, 1, 3, 2, 2, 2, 2, 3, 2,
3, 1, 1, 1, 7, 2, 3, 1, 2, 2,
9, 1, 2, 2]

rbg443.aftsp_64_3 363 [5, 2, 8, 4, 6, 4, 7, 2, 5, 7,
5, 3, 5, 5, 8, 3, 4, 8, 9, 7,
5, 5, 2, 3, 5, 9, 9, 5, 3, 7,
8, 5, 6, 3, 3, 6, 6, 3, 6, 8,
5, 5, 3, 5, 3, 5, 4, 8, 10, 4,
8, 2, 3, 2, 10, 6, 4, 5, 3, 8,
9, 2, 10, 25]

rbg443.aftsp_64_4 272 [5, 1, 6, 2, 6, 1, 7, 1, 1, 7,
2, 3, 5, 5, 8, 3, 4, 8, 3, 7,
1, 5, 1, 3, 2, 9, 9, 1, 1, 4,
6, 5, 6, 1, 1, 4, 4, 3, 1, 7,
2, 5, 1, 5, 2, 2, 4, 2, 10, 2,
8, 2, 1, 1, 10, 2, 3, 1, 2, 2,
9, 2, 10, 25]

Table A.4: Complete description of the instance set 4.

Instance Name |N |+ 1 L V nl vl

AsimSingh.aftsp_50_6_1 50 6 28 [7, 9, 6, 5, 7, 15] [7, 5, 2, 4, 6, 4]
AsimSingh.aftsp_50_6_2 13 [1, 3, 1, 4, 2, 2]
AsimSingh.aftsp_50_6_3 45 [7, 7, 5, 5, 7, 14]
AsimSingh.aftsp_50_6_4 23 [1, 7, 1, 5, 7, 2]
AsimSingh.aftsp_100_14_1 100 14 66 [3, 8, 8, 6, 4, 9, 7, 4, 3, 3, [3, 8, 8, 6, 2, 9, 6, 3, 1, 2,

10, 13, 5, 16] 9, 3, 2, 4]
AsimSingh.aftsp_100_14_2 30 [1, 2, 2, 3, 2, 5, 2, 2, 1, 2,

4, 1, 2, 1]
AsimSingh.aftsp_100_14_3 89 [3, 8, 8, 6, 3, 9, 7, 4, 2, 3,

10, 9, 4, 13]
AsimSingh.aftsp_100_14_4 46 [3, 2, 2, 3, 2, 5, 2, 2, 2, 3,

4, 1, 2, 13]
AsimSingh.aftsp_150_16_1 150 16 78 [8, 9, 4, 5, 10, 5, 6, 6, 3, 4, [8, 6, 2, 4, 5, 4, 1, 5, 3, 4,

12, 16, 10, 8, 8, 35] 8, 4, 7, 2, 2, 13]
AsimSingh.aftsp_150_16_2 48 [2, 5, 2, 4, 5, 2, 1, 4, 1, 1,

3, 4, 6, 1, 1, 6]
AsimSingh.aftsp_150_16_3 117 [8, 7, 3, 5, 6, 5, 6, 6, 3, 4,

Continues on the next page

215

APPENDIX A. INSTANCE DESCRIPTION

Table A.4
Instance Name |N |+ 1 L V nl vl

12, 6, 10, 8, 4, 24]
AsimSingh.aftsp_150_16_4 58 [2, 5, 2, 5, 5, 2, 1, 4, 3, 4,

3, 4, 10, 1, 1, 6]
AsimSingh.aftsp_200_29_1 200 29 102 [5, 3, 8, 6, 4, 9, 7, 4, 5, 8, [3, 2, 1, 2, 1, 8, 2, 4, 4, 2,

5, 3, 5, 7, 10, 3, 4, 4, 11, 9, 4, 1, 4, 2, 10, 2, 1, 1, 4, 7,
9, 7, 10, 5, 6, 4, 14, 3, 21] 8, 1, 6, 3, 1, 4, 6, 2, 6]

AsimSingh.aftsp_200_29_2 69 [3, 2, 1, 1, 1, 2, 1, 3, 4, 1,
2, 1, 1, 1, 7, 2, 1, 1, 2, 3,
7, 1, 6, 1, 1, 2, 5, 2, 4]

AsimSingh.aftsp_200_29_3 159 [4, 3, 8, 3, 3, 9, 3, 4, 5, 3,
5, 3, 5, 6, 10, 3, 3, 4, 8, 9,
9, 3, 7, 5, 6, 4, 8, 3, 13]

AsimSingh.aftsp_200_29_4 96 [3, 3, 1, 3, 1, 2, 1, 3, 5, 3,
2, 1, 1, 6, 7, 2, 1, 4, 2, 9,
7, 1, 6, 5, 1, 4, 5, 3, 4]

AsimSingh.aftsp_250_35_1 250 35 142 [3, 8, 8, 6, 4, 9, 7, 4, 5, 8, [2, 4, 6, 4, 1, 1, 3, 3, 5, 3,
5, 3, 5, 7, 8, 3, 4, 4, 9, 9, 3, 1, 3, 6, 1, 3, 2, 1, 1, 5,
9, 7, 9, 5, 6, 4, 12, 9, 9, 12, 7, 2, 6, 5, 2, 3, 5, 7, 1, 9,
5, 8, 5, 4, 26] 5, 8, 3, 2, 19]

AsimSingh.aftsp_250_35_2 79 [1, 1, 5, 2, 1, 1, 2, 1, 4, 1,
3, 1, 2, 2, 1, 3, 2, 1, 1, 2,
7, 2, 6, 1, 2, 1, 5, 1, 1, 6,
1, 2, 3, 2, 2]

AsimSingh.aftsp_250_35_3 208 [3, 8, 7, 6, 2, 3, 6, 4, 5, 7,
4, 2, 4, 7, 8, 3, 4, 4, 4, 7,
8, 4, 7, 5, 6, 4, 6, 8, 7, 11,
5, 8, 4, 3, 24]

AsimSingh.aftsp_250_35_4 162 [1, 8, 5, 6, 1, 3, 2, 4, 4, 7,
4, 2, 4, 7, 8, 3, 2, 4, 1, 2,
8, 2, 6, 1, 2, 1, 6, 8, 1, 11,
1, 8, 3, 2, 24]

AsimSingh.aftsp_300_34_1 300 34 172 [7, 9, 6, 10, 4, 11, 7, 4, 3, 3, [5, 2, 2, 4, 2, 9, 5, 1, 3, 2,
3, 6, 5, 11, 12, 6, 8, 12, 11, 7, 2, 1, 1, 4, 10, 5, 1, 6, 6, 6,
8, 12, 6, 10, 7, 10, 14, 3, 12, 14, 8, 4, 2, 4, 7, 2, 7, 2, 7, 4,
15, 12, 16, 15] 12, 7, 16, 13]

AsimSingh.aftsp_300_34_2 106 [5, 1, 1, 1, 1, 2, 5, 1, 2, 1,
1, 1, 1, 3, 8, 4, 1, 6, 4, 3,
3, 3, 1, 4, 7, 1, 5, 1, 4, 2,
5, 3, 5, 10]

AsimSingh.aftsp_300_34_3 254 [7, 6, 4, 9, 4, 10, 7, 2, 3, 3,
3, 3, 3, 6, 11, 6, 6, 9, 8, 7,
8, 7, 4, 7, 7, 8, 14, 3, 11, 12,
14, 12, 16, 14]

AsimSingh.aftsp_300_34_4 [7, 1, 1, 1, 4, 2, 7, 1, 3, 1,
3, 1, 3, 6, 11, 6, 6, 9, 8, 3,
8, 3, 1, 7, 7, 1, 5, 1, 4, 12,
14, 3, 16, 10]

216

Appendix B

Branch-and-cut algorithm detailed results

B.1 Linear programming relaxation results without heuristic
separation

Tables B.1 and B.2 show the LP relaxation results obtained with the CC and the RFV models and
with the CC+RFV model, respectively, without using the heuristic separation algorithms. These
tables contain the LP relaxation value (VLP), the computational time, in seconds, to obtain the LP
relaxation value (ts), the number of added violated CC inequalities (#CC) and the number of added
violated RFV inequalities (#RFV). Additionally, the tables also contain, in the last row, the average
of the results obtained.

217

APPENDIX B. BRANCH-AND-CUT ALGORITHM DETAILED RESULTS

Table B.1: Linear programming relaxation results of the CC and RFVmodels without the heuristic separation algorithm.

CC RFV
Instance VLP gap ts #CC VLP gap ts #RFV
burma_1 12.07 13.34% 1 76 13.93 0.00% 0 92
burma_2 25.66 0.00% 0 68 25.66 0.00% 0 33
burma_3 9.93 16.47% 0 48 11.89 0.00% 0 46
bayg_1 5273.32 1.36% 1 286 5316.85 0.54% 1 673
bayg_2 5754.64 0.63% 0 365 5791.01 0.00% 1 420
bayg_3 5544.33 0.00% 0 352 5544.33 0.00% 0 458
att_1 23686.00 0.00% 1 1092 23580.50 0.45% 2 1537
att_2 20609.10 0.00% 1 960 20609.10 0.00% 14 4165
att_3 8742.08 3.13% 0 732 8760.03 2.93% 5 2566
bier_1 33227.80 1.43% 70 3260 33314.70 1.17% 49743 57101
bier_2 88308.90 0.48% 116 3538 87336.20 1.58% 46501 61278
bier_3 47162.50 1.18% 599 6101 46830.70 1.88% 35712 59393

average 3.17% 66 1407 0.71% 10998 15647

218

APPENDIX B. BRANCH-AND-CUT ALGORITHM DETAILED RESULTS

Table B.2: Linear programming relaxation results of the CC+RFV model without the heuristic separation.

CC+RFV
Instance VLP gap ts #CC #RFV
burma_1 13.93 0.00% 0 56 97
burma_2 25.66 0.00% 0 68 70
burma_3 11.89 0.00% 0 32 46
bayg_1 5330.17 0.29% 0 363 125
bayg_2 5791.01 0.00% 0 353 81
bayg_3 5544.33 0.00% 0 352 8
att_1 23686.00 0.00% 1 1072 28
att_2 20609.10 0.00% 0 960 0
att_3 9024.58 0.00% 1 763 137
bier_1 33446.00 0.78% 337 3653 540
bier_2 88479.50 0.29% 330 3829 531
bier_3 47504.40 0.46% 1265 646 533

average 0.15% 161 1012 183

B.2 Optimal results without the heuristic callback

Tables B.3 and B.4 show the optimal results obtained with the CC model and with the y-separation
and 1-separation, respectively, without using the heuristic callback during the B&C algorithm.
These tables contain the optimal value (V), the computational time, in seconds, to obtain the optimal
value (ts), the number of B&C subproblems solved (#sub) and the number of added violated CC
inequalities (#CC) and RFV inequalities (#RFV). Additionally, the tables also contain, in the last
row, the average of the results obtained.

219

APPENDIX B. BRANCH-AND-CUT ALGORITHM DETAILED RESULTS

Table B.3: Optimal values of the CC model without the heuristic callback.

CC
Instance V ts #sub #CC
burma_1 13.93 0 0 70
burma_2 25.66 0 0 36
burma_3 11.89 0 0 52
bayg_1 5345.86 0 0 263
bayg_2 5791.01 1 0 238
bayg_3 5544.33 0 0 207
att_1 23686.00 0 0 440
att_2 20609.10 1 0 757
att_3 9024.58 1 0 450
bier_1 33709.70 37 210 1809
bier_2 88736.40 344 592 10438
bier_3 47726.30 145 271 6056

average 44 89 1735

220

APPENDIX B. BRANCH-AND-CUT ALGORITHM DETAILED RESULTS

Table B.4: Optimal values of the y-separation and the 1-separation without the heuristic callback.

y-separation 1-separation
Instance V ts #sub #CC #RFV V ts #sub #CC #RFV
burma_1 13.93 0 0 16 24 13.93 0 0 18 36
burma_2 25.66 0 0 5 27 25.66 0 0 5 35
burma_3 11.89 0 0 8 17 11.89 0 0 6 34
bayg_1 5345.86 1 0 24 215 5345.86 0 1 41 244
bayg_2 5791.01 0 0 13 225 5791.01 1 0 11 211
bayg_3 5544.33 0 0 15 161 5544.33 0 0 15 181
att_1 23686.00 1 0 18 442 23686.00 0 0 15 467
att_2 20609.10 1 0 95 796 20609.10 1 0 95 646
att_3 9024.58 0 0 165 276 9024.58 0 0 172 252
bier_1 337709.70 23 317 292 2125 33709.70 20 185 287 1299
bier_2 88736.40 143 467 1394 8562 88736.40 73 208 867 4086
bier_3 47726.30 132 355 1880 7007 47726.30 366 600 2045 8425

average 27 95 327 1656 38 83 298 1326

B.3 Linear programming relaxation results for instance set 2

Table B.5 shows the LP relaxation results for the instance set 2 obtained using the y-separation
algorithm and the 1-separation algorithm. Table B.5 is divided into two parts, each one associated
with one of the separation algorithms. Each of those parts shows the LP relaxation value (VLP), the
percentage of gap between the LP relaxation value and the optimal value (gap), the computational
time, in seconds, to obtain the LP relaxation value (ts), the number of added violated CC inequalities
(#CC) and the number of added violated RFV inequalities (#RFV). Table B.5 shows, in the last row,
the average of the results obtained.

Table B.5: Linear programming relaxation results for instance set 2.

y-separation 1-separation
Instance VLP gap ts #CC #RFV VLP gap ts #CC #RFV
pr136_1 61088.90 0.58% 24 342 1196 61101.20 0.56% 45 364 1452
pr136_2 43136.70 0.89% 45 1457 1177 43111.50 0.94% 36 1348 1135
pr136_3 80836.20 0.79% 5 53 780 80836.30 0.79% 4 57 651

Continues on the next page

221

APPENDIX B. BRANCH-AND-CUT ALGORITHM DETAILED RESULTS

Table B.5
y-separation 1-separation

Instance Name VLP gap ts #CC #RFV VLP gap ts #CC #RFV
pr136_4 62917.60 0.52% 13 369 1188 63080.40 0.26% 50 416 1341
gr137_1 43905.70 0.81% 6 167 865 44032.50 0.52% 19 212 1301
gr137_2 36223.30 0.58% 90 712 1371 36212.80 0.61% 75 726 1372
gr137_3 55196.30 1.29% 3 30 666 55220.40 1.25% 5 37 729
gr137_4 46500.00 0.26% 10 155 983 46568.20 0.11% 30 140 1157
pr144_1 45947.70 0.92% 25 314 1335 46319.20 0.12% 958 459 2834
pr144_2 36453.50 0.18% 116 1647 1740 36518.00 0.00% 1029 1902 2639
pr144_3 53974.50 1.21% 9 59 869 53999.00 1.16% 23 72 1038
pr144_4 48405.60 2.02%* 87 951 1936 48412.40 2.01%* 173 1325 2093

kroA150_1 14295.00 0.08% 25 611 1121 14295.00 0.08% 25 705 1179
kroA150_2 9372.01 1.15% 139 2098 955 9402.32 0.83% 96 1905 904
kroA150_3 20556.50 1.55%* 9 72 952 20556.50 1.55%* 8 74 990
kroA150_4 13360.50 0.32% 75 821 1822 13360.50 0.32% 109 1156 2107
kroB150_1 14498.40 0.16% 189 792 1464 14497.20 0.17% 58 745 1125
kroB150_2 9369.97 1.94% 198 1911 907 9333.28 2.32% 49 1581 589
kroB150_3 19880.50 0.22% 6 52 792 19880.50 0.22% 7 55 731
kroB150_4 12525.50 0.05% 67 976 1486 12525.50 0.05% 57 968 1374
pr152_1 51613.50 0.37% 198 713 1772 51487.40 0.61% 65 723 1344
pr152_2 45563.40 0.54% 858 2121 2103 45358.40 0.99% 627 2322 2252
pr152_3 63622.90 1.25%* 17 187 1049 63676.00 1.16%* 105 362 1782
pr152_4 56478.50 1.50% 55 546 1433 56481.00 1.49% 130 647 1922
u159_1 29524.20 1.00% 40 442 1524 29655.50 0.55% 179 618 2282
u159_2 23100.00 1.30% 213 1301 2121 22945.10 1.96% 105 1183 1943
u159_3 36269.60 0.36% 19 112 1191 36267.10 0.36% 15 82 994
u159_4 30313.30 1.72% 74 722 1804 30332.80 1.66% 232 753 2065
rat195_1 1237.47 3.70% 195 1461 1735 1238.25 3.64% 175 1152 1559
rat195_2 903.25 0.96% 380 2387 1409 904.88 0.78% 1151 2521 2026
rat195_3 1762.05 2.86% 43 307 1199 1761.73 2.88% 57 301 1311
rat195_4 1285.15 2.64% 257 912 2040 1286.10 2.57% 246 993 1965
d198_1 10884.50 0.55% 864 1642 3423 10882.00 0.58% 920 2303 3902
d198_2 10142.90 0.68% 1579 3363 3867 10143.20 0.67% 1209 3167 3704
d198_3 13779.70 0.46% 182 238 2481 13768.90 0.54% 109 193 1714
d198_4 12361.40 0.46% 862 858 3629 12362.40 0.45% 1597 891 4128

kroA200_1 16220.00 1.34%* 115 868 1557 16220.00 1.34%* 116 943 1682
kroA200_2 12345.90 0.56% 327 2329 1258 12345.90 0.56% 292 2232 1254
kroA200_3 23941.00 2.17%* 59 75 1551 23941.00 2.17%* 48 103 1383
kroA200_4 16479.00 0.24% 175 894 2059 16481.30 0.22% 209 1060 2198

Continues on the next page

222

APPENDIX B. BRANCH-AND-CUT ALGORITHM DETAILED RESULTS

Table B.5
y-separation 1-separation

Instance Name VLP gap ts #CC #RFV VLP gap ts #CC #RFV
kroB200_1 17195.40 1.89% 169 958 1808 17177.60 1.99% 176 1096 1810
kroB200_2 12451.60 3.33% 244 2537 828 12428.20 3.52% 320 2557 1038
kroB200_3 23671.00 1.73%* 62 132 1346 23671.20 1.73%* 75 136 1498
kroB200_4 17406.30 1.00% 629 1057 2763 17414.10 0.96% 1653 1001 2845
gr202_1 23215.70 0.76% 457 622 2165 23210.00 0.79% 418 672 2394
gr202_2 14924.50 0.22% 447 3600 1899 14941.20 0.11% 380 2356 1740
gr202_3 34361.90 0.54% 41 123 1396 34353.80 0.56% 34 125 1245
gr202_4 27722.20 1.13%* 474 1224 2906 27735.30 1.08%* 426 1155 3210
pr226_1 51994.50 0.22% 6270 1002 4699 52041.30 0.13% 27672 1154 9000
pr226_2 47456.90 0.27% 23542 5045 6274 47540.60 0.09% 31580 4467 6182
pr226_3 66583.00 0.34% 1893 322 5599 66652.50 0.24% 269 146 1930
pr226_4 51892.00 0.03% 3051 1213 3816 51893.50 0.02% 12860 1143 6431
gr229_1 69553.80 1.68%* 132 710 1841 69864.00 1.24%* 265 873 2405
gr229_2 30923.90 2.30% 1390 3016 2064 30776.40 2.77% 1671 3344 2113
gr229_3 102496.00 0.34% 73 211 1569 102526.00 0.31% 126 275 1883
gr229_4 45899.30 0.72% 330 1238 2332 45816.70 0.90% 385 1252 2267
gil262_1 1497.97 2.03%* 961 1144 3347 1497.25 2.08%* 2202 1122 3452
gil262_2 1059.35 0.90% 1136 2924 2109 1059.59 0.88% 1008 2839 2034
gil262_3 1954.50 2.86%* 222 150 1935 1954.79 2.34%* 373 193 2175
gil262_4 1641.00 7.45%* 1057 909 3757 1641.00 7.45%* 907 960 3566
pr264_1 33785.10 0.35% 18860 2952 7744 33761.90 0.42% 6660 2089 5805
pr264_2 28093.50 2.28%* 2393 3336 4702 28106.50 2.23%* 4770 4981 5108
pr264_3 40521.00 0.45% 778 347 3230 40502.00 0.50% 684 266 3198
pr264_4 34920.20 0.66% 825 1105 3526 34924.60 0.65% 3079 1564 5076

average 1.15% 1142 1109 2132 1.13% 1694 1134 2290

*Gap computed with the best upper bound shown in Table 5.22 instead of the optimal value

The gap valuesmarkedwith an asterisk (*) were obtained by using the best upper bound obtained
with the B&C algorithm after 10800 seconds of computational time instead of the optimal value as
we could not obtain it within the time limit.

B.4 Optimal results obtained with the 1-separation

Table B.6 shows the results obtained using the 1-separation for the instances of type high from the
instance set 2. This table shows the optimal value (V), the computational time, in seconds, to obtain

223

APPENDIX B. BRANCH-AND-CUT ALGORITHM DETAILED RESULTS

the optimal value (ts), the number of B&C subproblems solved (#sub) and the number of added
violated CC inequalities (#CC) and RFV inequalities (#RFV). This table also contains, in the last
row, the average of the results obtained.

Table B.6: Optimal values for the instances of type high from the instance set 3 with 1-separation.

Instance V ts #sub #CC #RFV
pr136_3 81481 129 1815 211 7713
gr137_3 55919 17 238 78 1902
pr144_3 54635 6272 52386 855 50308

kroA150_3 [20774.00, 20880] 10801 60276 1201 46322
kroB150_3 19925 5 5 27 828
pr152_3 [63933.70, 65347] 10801 13608 7028 96874
u159_3 36399 18 74 151 1464
rat195_3 [1778.29, 1827] 10804 5210 8530 106388
d198_3 13843 146 144 247 4516

kroA200_3 [24048.00, 24320] 10804 10796 4324 120222
kroB200_3 [23768.00, 24297] 10803 10102 2476 102907
gr202_3 34547 803 3734 609 15008
pr226_3 66812 1536 38 370 8906
gr229_3 102840 2229 4771 1281 32477
gil262_3 [1963.51, 1980] 10804 7099 2951 92105
pr264_3 [40646.90, 40774] 10803 1189 2230 94387

average 5423 10718 2036 48895

B.5 Linear programming relaxation results for instance set 3

Table B.7 shows the LP relaxation results obtained using the y-separation algorithm and the 1-
separation algorithm for the instance set 3 and it is organized in the same manner as Table B.5.

Table B.7: Linear programming relaxation results for the instance set 3.

y-separation 1-separation
Instance VLP gap ts #CC #RFV VLP gap ts #CC #RFV
br17_1 31 0.00% 0 17 64 31 0.00% 0 13 99

Continues on the next page

224

APPENDIX B. BRANCH-AND-CUT ALGORITHM DETAILED RESULTS

Table B.7
y-separation 1-separation

Instance Name VLP gap ts #CC #RFV VLP gap ts #CC #RFV
br17_2 28 0.00% 0 1 32 28 0.00% 0 1 69
br17_3 39 0.00% 0 4 76 39 0.00% 0 3 77
br17_4 36 0.00% 0 6 110 36 0.00% 0 1 151
ftv33_1 842.00 3.00% 0 15 214 842.00 3.00% 0 20 228
ftv33_2 377.50 5.86% 0 33 88 395.50 1.37% 1 162 264
ftv33_3 1286.00 0.00% 0 0 144 1286.00 0.00% 0 0 144
ftv33_4 827.00 0.24% 0 0 136 827.00 0.24% 0 0 148
ftv35_1 1002.50 0.55% 1 3 344 1002.83 0.51% 0 3 432
ftv35_2 523.00 1.32% 0 21 187 523.00 1.32% 0 15 178
ftv35_3 1203.67 2.30% 0 0 132 1203.67 2.30% 1 0 133
ftv35_4 1000.00 0.79% 0 4 391 1000.00 0.79% 0 4 412
ftv38_1 830.00 0.00% 0 13 161 830.00 0.00% 0 8 151
ftv38_2 388.41 0.92% 0 118 123 392.00 0.00% 1 101 169
ftv38_3 1424.50 1.69% 1 0 167 1424.50 1.69% 0 0 169
ftv38_4 774.00 0.00% 0 18 185 774.00 0.00% 0 18 220
p43_1 5482.50 0.01% 0 56 202 5483.00 0.00% 0 23 209
p43_2 5472.00 0.02% 1 218 268 5472.13 0.02% 3 210 523
p43_3 5530.00 0.00% 0 1 93 5530.00 0.00% 0 1 103
p43_4 5492.00 0.00% 0 1 106 5492.00 0.00% 0 1 139
ftv44_1 979.15 1.69% 0 13 167 991.17 0.49% 0 15 189
ftv44_2 602.94 3.53% 0 149 234 607.46 2.81% 0 146 268
ftv44_3 1325.00 1.34% 0 6 154 1325.00 1.34% 0 6 145
ftv44_4 954.50 4.36% 1 34 282 958.00 4.01% 1 30 304
ftv47_1 1166.42 1.07% 0 41 294 1167.33 0.99% 0 22 264
ftv47_2 698.98 4.12% 0 169 286 701.56 3.76% 0 133 267
ftv47_3 1438.00 2.31% 0 3 172 1438.00 2.31% 0 3 175
ftv47_4 1099.00 0.00% 0 10 159 1099.00 0.00% 0 10 159
ry48p_1 10252.70 0.63% 0 64 330 10252.70 0.63% 0 46 338
ry48p_2 6716.64 1.04% 1 260 294 6716.64 1.04% 1 284 322
ry48p_3 12535.20 1.70% 0 21 204 12535.20 1.70% 0 21 203
ry48p_4 10025.80 1.12% 0 45 379 10049.40 0.88% 0 46 401
ft53_1 3534.25 1.06% 0 46 321 3553.89 0.51% 1 87 468
ft53_2 2715.46 3.67% 1 152 356 2750.85 2.42% 1 182 408
ft53_3 5892.67 1.33% 0 12 167 5892.67 1.33% 0 12 171
ft53_4 4680.84 1.12% 0 49 310 4683.10 1.08% 0 39 307
ftv55_1 564.67 0.94% 1 69 435 564.17 1.02% 1 76 401
ftv55_2 344.84 5.52% 2 432 190 359.63 1.47% 4 585 256

Continues on the next page

225

APPENDIX B. BRANCH-AND-CUT ALGORITHM DETAILED RESULTS

Table B.7
y-separation 1-separation

Instance Name VLP gap ts #CC #RFV VLP gap ts #CC #RFV
ftv55_3 1010.75 1.00% 3 47 1193 1016.50 0.44% 1 24 908
ftv55_4 579.00 0.00% 1 95 417 579.00 0.00% 0 69 143
ftv64_1 964.83 1.25% 3 157 723 968.39 0.88% 5 208 933
ftv64_2 640.80 2.91% 2 551 342 638.61 3.24% 2 407 378
ftv64_3 1611.00 0.37% 0 0 220 1611.00 0.37% 0 0 180
ftv64_4 1509.00 0.40% 11 0 1941 1509.00 0.40% 9 0 2437
ft70_1 21198.10 0.13% 1 31 549 21198.10 0.13% 0 23 556
ft70_2 15316.60 0.28% 2 78 799 15321.60 0.25% 3 70 910
ft70_3 29499.70 0.25% 1 19 396 29499.70 0.25% 0 26 373
ft70_4 26749.10 0.25% 0 6 277 26758.50 0.22% 0 0 248
ftv70_1 798.73 5.92% 2 281 646 802.23 5.51% 2 254 648
ftv70_2 629.57 6.87% 2 393 456 631.19 6.63% 2 370 488
ftv70_3 1315.80 1.95% 1 21 414 1315.80 1.95% 0 16 483
ftv70_4 1241.31 1.56% 0 30 530 1241.31 1.56% 0 22 398

kro124p_1 25004.00 0.98% 2 20 844 25004.00 0.98% 4 42 919
kro124p_2 12056.80 2.93% 9 1017 448 12009.50 3.31% 8 964 477
kro124p_3 31829.40 0.61% 1 11 365 31829.40 0.61% 1 11 366
kro124p_4 18148.80 2.17% 3 472 488 18148.80 2.17% 3 512 471
ftv170_1 1593.61 3.53% 307 1036 2721 1592.89 3.58% 1358 1345 4086
ftv170_2 1045.17 5.67% 401 2022 2090 1046.11 5.59% 663 2225 2150
ftv170_3 2184.16 1.39% 30 84 1374 2187.77 1.23% 24 51 1402
ftv170_4 1573.30 2.28% 104 608 2027 1582.40 1.71% 255 854 2756
rbg323_1 336.00 0.30% 25 6 174 336.33 0.20% 630 24 2764
rbg323_2 67.30 3.86% 14 2 53 67.32 3.83% 121 2 1075
rbg323_3 822.00 0.00% 12 2 112 822.00 0.00% 8 1 119
rbg323_4 333.67 0.40% 7 1 59 333.67 0.40% 6 1 59
rbg358_1 206.87 1.02% 18 1 68 206.87 1.02% 30 1 138
rbg358_2 48.75 2.50% 62 2 379 48.75 2.50% 24 1 240
rbg358_3 658.00 0.00% 10 0 64 658.00 0.00% 10 0 64
rbg358_4 408.33 0.16% 17 1 126 408.33 0.16% 13 1 71
rbg403_1 345.00 0.00% 11 4 56 345.00 0.00% 16 4 45
rbg403_2 30.50 4.69% 34 11 154 30.50 4.69% 47 12 159
rbg403_3 1425.00 0.14% 77 1 451 1425.00 0.14% 37 0 222
rbg403_4 486.00 0.00% 9 0 20 486.00 0.00% 11 0 20
rbg443_1 539.00 0.00% 32 0 80 539.00 0.00% 0 0 80
rbg443_2 Out of memory Out of memory
rbg443_3 1353.00 0.00% 21 0 40 1353.00 0.00% 20 0 40

Continues on the next page

226

APPENDIX B. BRANCH-AND-CUT ALGORITHM DETAILED RESULTS

Table B.7
y-separation 1-separation

Instance Name VLP gap ts #CC #RFV VLP gap ts #CC #RFV
rbg443_4 728.00 0.14% 23 0 40 728.00 0.14% 22 0 40

average 1.46% 17 122 388 1.24% 45 132 482

B.6 Linear programming relaxation results for instances rbg

with SCF model

Table B.8 contains the LP relaxation results obtained with the SCF model for the rbg instances from
the instance set 3. Table B.8 shows the LP relaxation value obtained (VLP) and the computational
time, in seconds, to obtain the LP relaxation value (ts). Additionally, the table also contains, in the
last row, the average of the results obtained.

227

APPENDIX B. BRANCH-AND-CUT ALGORITHM DETAILED RESULTS

Table B.8: Linear programming relaxation results for instances rbg with SCF model.

Instance VLP gap ts

rbg323_1 336.00 0.30% 167
rbg323_2 67.26 3.91% 102
rbg323_3 822.00 0.00% 48
rbg323_4 333.67 2.28% 74
rbg358_1 206.87 1.02% 102
rbg358_2 48.75 2.50% 123
rbg358_3 658.00 0.00% 44
rbg358_4 408.33 0.16% 61
rbg403_1 345.00 0.00% 188
rbg403_2 30.50 4.69% 341
rbg403_3 1425.00 0.14% 55
rbg403_4 486.00 0.00% 81
rbg443_1 539.00 0.00% 192
rbg443_2 Out of memory
rbg443_3 1353.00 0.00% 68
rbg443_4 728.00 0.14% 80

average 1.01% 115

B.7 Linear programming relaxation results for instance set 4

Table B.9 shows the LP relaxation results obtained using the y-separation algorithm and the 1-
separation algorithm for the instance set 4 and it is organized in a similar manner as Table B.5.

Table B.9: Linear programming relaxation results for the instance set 4.

y-separation 1-separation
Instance VLP gap ts #CC #RFV VLP gap ts #CC #RFV

AsimSingh50_1 437.88 0.03% 0 0 111 437.92 0.02% 2 8 405
AsimSingh50_2 210.39 0.29% 0 0 72 210.50 0.24% 1 2 199
AsimSingh50_3 694.00 0.00% 0 0 29 694.00 0.00% 0 0 32
AsimSingh50_4 366.69 0.09% 1 0 124 366.69 0.09% 0 0 107
AsimSingh100_1 1005 0.00% 1 0 196 1005 0.00% 0 0 55
AsimSingh100_2 465 0.00% 0 12 57 465 0.00% 1 11 198

Continues on the next page

228

APPENDIX B. BRANCH-AND-CUT ALGORITHM DETAILED RESULTS

Table B.9
y-separation 1-separation

Instance Name VLP gap ts #CC #RFV VLP gap ts #CC #RFV
AsimSingh100_3 1350 0.00% 0 0 60 1350 0.00% 0 0 60
AsimSingh100_4 705 0.00% 1 1 91 705 0.00% 0 15 113
AsimSingh150_1 1185 0.00% 1 0 80 1185 0.00% 1 3 90
AsimSingh150_2 735 0.00% 1 2 31 735 0.00% 3 42 342
AsimSingh150_3 1770 0.00% 0 0 40 1770 0.00% 0 0 40
AsimSingh150_4 885 0.00% 1 4 54 885 0.00% 0 4 54
AsimSingh200_1 1545 0.00% 2 8 70 1545 0.00% 2 4 75
AsimSingh200_2 1050 0.00% 0 0 12 1050 0.00% 0 0 16
AsimSingh200_3 2400 0.00% 2 0 180 2400 0.00% 4 1 318
AsimSingh200_4 1455 0.00% 2 0 54 1455 0.00% 1 0 54
AsimSingh250_1 2145 0.00% 1 0 60 2145 0.00% 3 0 100
AsimSingh250_2 1200 0.00% 9 6 166 1200 0.00% 11 6 169
AsimSingh250_3 3135 0.00% 10 0 301 3135 0.00% 8 0 223
AsimSingh250_4 2445 0.00% 2 0 80 2445 0.00% 2 0 80
AsimSingh300_1 2595 0.00% 9 0 131 2595 0.00% 19 8 142
AsimSingh300_2 1605 0.00% 9 14 89 1605 0.00% 19 27 177
AsimSingh300_3 3825 0.00% 7 3 171 3825 0.00% 5 1 79
AsimSingh300_4 2655 0.00% 12 4 141 2655 0.00% 13 8 153

average 0.02% 3 2 100 0.01% 4 6 137

229

APPENDIX B. BRANCH-AND-CUT ALGORITHM DETAILED RESULTS

230

Appendix C

Heuristic algorithms detailed results

C.1 Genetic algorithm

C.1.1 Results obtained with the GA algorithm

Table C.1 shows the results obtained using the GA algorithm with the parameter set 1 and 2.
This table contains the best solution obtained with the GA algorithm (νB), the percentage of gap
between the solution obtained and the best known upper bound presented in Table 6.1 (gap =

100 × (heuristic solution − best upper bound)/best upper bound) and the computational time, in
seconds, to obtain the best solution with the GA algorithm (ts).

The parameter set 1 is characterized by the following setting: η1 = 20, τ 1 = 4, ζ1 = 16,
ϵ1 = 0.25, while the parameter set 2 contains the following parameters: η2 = 120, τ 2 = 10,
ζ2 = 100, ϵ1 = 0.50. The results where obtained performing 10000 iterations.

231

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

Table C.1: Results obtained with the GA algorithm.

Parameter set 1 Parameter set 2
Instance νB gap ts νB gap ts

a_1 5592.09 195.70% 1 4459.99 135.83% 7
a_2 7097.26 318.11% 1 3078.92 81.38% 6
gr_1 10687.2 488.16% 1 9022.13 396.52% 15
gr_2 9198.29 537.42% 1 5777.71 300.38% 15
gr_3 9235.81 567.24% 1 5794.06 318.59% 15
pr_1 1440790 781.42% 2 872291.00 433.64% 22
pr_2 1514560 731.52% 2 995518.00 446.56% 22
pr_3 1723190 1052.97% 2 941466.00 529.93% 20

average 584.07% 1 330.35% 15

C.1.2 Results obtained with the GA+NN algorithm

Table C.2 shows the results obtained with the GA+NN algorithm generating 60 individuals and 120
individuals with the random nearest neighbor in the initial population. This table presents the same
information as Table C.1 but for the GA+NN algorithm and for the parameter under testing.

The results were obtained with the parameter set 2 and performing 10000 iterations of the
GA+NN algorithm.

Table C.2: Results obtained with the GA+NN algorithm.

Generating 60 individuals Generating 120 individuals
Instance νB gap ts νB gap ts

a_1 2215.54 17.15% 7 2213.03 17.02% 9
a_2 1998.53 17.74% 7 1993.66 17.45% 8
gr_1 2110.39 16.14% 25 2089.74 15.01% 34
gr_2 1622.38 12.43% 23 1619.08 12.20% 32
gr_3 1575.05 13.79% 23 1618.34 16.92% 33
pr_1 171618.00 4.99% 81 170553.00 4.34% 81
pr_2 183986.00 1.01% 89 183830.00 0.93% 89
pr_3 159888.00 6.98% 78 159736.00 6.88% 78

average 11.28% 31 11.34% 46

232

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

C.1.3 Results obtained with the LS algorithm

Table C.3 shows the results obtained by applying the LS algorithm to the best solution found by
the GA+NN algorithm. There are results obtained performing 1000 and 5000 iterations of the LS
algorithm. This table contains the same information as Table C.1 but for the LS algorithm and for
the parameter under testing.

The GA+NN algorithm was applied with the following setting: the parameter set used was the
parameter set 2, 10000 iterations were performed and 60 individuals from the initial population were
generated with the random nearest neighbor.

Table C.3: Results obtained with the LS algorithm.

1000 iterations 5000 iterations
Instance νB gap ts νB gap ts

a_1 1904.56 0.71% 8 1904.56 0.71% 9
a_2 1778.50 4.77% 8 1778.50 4.77% 8
gr_1 1790.88 -1.44% 26 1790.88 -1.44% 32
gr_2 1476.67 2.33% 24 1476.67 2.33% 28
gr_3 1380.57 -0.26% 23 1380.57 -0.26% 28
pr_1 151889.00 -7.08% 57 151889.00 -7.08% 63
pr_2 164433.00 -9.72% 61 164433.00 -9.72% 69
pr_3 135688.00 -9.21% 55 135688.00 -9.21% 60

average -2.49% 33 -2.49% 37

C.1.4 Results obtained with the LS_random algorithm

Table C.4 shows the results obtained when we apply the LS_random algorithm to the best solution
found by the GA+NN algorithm. The referred table shows the results obtained performing 1000

iterations of the LS_random algorithm. This table contains the same information as Table C.1 but
for the LS_random algorithm.

The GA+NN algorithm was applied with the following setting: the parameter set used was the
parameter set 2, 10000 iterations were performed and 60 individuals from the initial population were
generated with the random nearest neighbor.

233

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

Table C.4: Results obtained with the LS_random algorithm.

Instance νB gap ts

a_1 1947.08 2.96% 9
a_2 1811.01 6.69% 9
gr_1 1815.22 -0.10% 36
gr_2 1502.66 4.13% 33
gr_3 1411.22 1.95% 32
pr_1 154508.00 -5.48% 72
pr_2 166230.00 -8.74% 78
pr_3 141554.00 -5.29% 67

average -0.48% 42

C.1.5 Results obtained with the LS_insertRemove algorithm

Table C.5 shows the results obtained when we apply the LS_insertRemove algorithm to the best
solution found by the GA+NN algorithm. The referred table shows the results obtained performing
1000 and 5000 iterations of the LS_insertRemove algorithm. This table contains the same informa-
tion as Table C.1 but for the LS_insertRemove algorithm and for the parameter under testing.

The GA+NN algorithm was applied with the following setting: the parameter set used was the
parameter set 2, 10000 iterations were performed and 60 individuals from the initial population were
generated with the random nearest neighbor.

234

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

Table C.5: Results obtained with the LS_insertRemove algorithm.

1000 iterations 5000 iterations
Instance νB gap ts νB gap ts

a_1 1829.91 -3.24% 9 1829.91 -3.24% 15
a_2 1705.25 0.46% 9 1705.25 0.46% 17
gr_1 1649.19 -9.24% 40 1649.19 -9.24% 100
gr_2 1328.46 -7.94% 39 1328.29 -7.95% 101
gr_3 1297.59 -6.26% 38 1297.59 -6.26% 98
pr_1 145799.00 -10.81% 92 145799.00 -10.81% 277
pr_2 155087.00 -14.85% 97 155087.00 -14.85% 271
pr_3 129137.00 -13.60% 89 129024.00 -13.67% 250

average -8.19% 52 -8.19% 141

C.1.6 Results obtained by applying the LS_insertRemove algorithm to sev-
eral solutions

Table C.6 shows the results obtained by applying the LS_insertRemove algorithm to twelve different
solutions present in the final population of the GA+NN algorithm. These results were obtained
by performing 1000 iterations of the LS_insertRemove algorithm. Table C.6 contains the same
information as Table C.1 but for the LS_insertRemove algorithm applied to several solutions.

The GA+NN algorithm was applied with the following setting: the parameter set used was the
parameter set 2, 10000 iterations were performed and 60 individuals from the initial population were
generated with the random nearest neighbor.

235

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

Table C.6: Results obtained by applying the LS_insertRemove algorithm to several solutions.

Instance νB gap ts

a_1 1823.20 -3.59% 26
a_2 1662.88 -2.04% 31
gr_1 1615.72 -11.08% 211
gr_2 1314.29 -8.92% 224
gr_3 1252.53 -9.51% 215
pr_1 141679.00 -13.33% 577
pr_2 151939.00 -16.58% 600
pr_3 129137.00 -13.60% 555

average -9.83% 305

C.2 Iterated local search algorithm

C.2.1 Results obtained with the several choosing criteria of the perturbation
method

Table C.7 shows the detailed results obtained using the choosing criteria Mean, Min and Max

in the perturbation method while Table C.8 shows the results obtained with the choosing criteria
Random_choice and Least_chosen. These tables contain the same information as Table C.1 but
for the ILS algorithm considering the several choosing criteria.

The results presented in Tables C.7 and C.8were obtained by using the removal criterionGreedy

in the perturbation procedure and by performing 1000 iterations of the ILS algorithm.

236

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

Table C.7: Comparison of the choosing criteriaMean,Min andMax.

CriterionMean CriterionMin CriterionMax

Instance νB gap ts νB gap ts νB gap ts

a_1 1842.22 -2.59% 5 1878.17 -0.69% 23 1857.35 -1.79% 5
a_2 1793.08 5.63% 4 1828.65 7.73% 22 1821.94 7.33% 4
gr_1 1773.97 -2.37% 53 1727.07 -4.95% 296 1769.69 -2.61% 58
gr_2 1368.63 -5.16% 51 1314.09 -8.94% 295 1389.77 -3.69% 61
gr_3 1416.86 2.36% 47 1396.45 0.89% 298 1447.73 4.59% 49
pr_1 148721.33 -9.02% 188 148206.79 -9.33% 1130 149540.20 -8.52% 206
pr_2 154039.92 -15.43% 225 152822.84 -16.10% 1135 153805.55 -15.56% 222
pr_3 144288.58 -3.46% 207 138658.71 -7.22% 1134 142751.74 -4.49% 233

average -3.75% 98 -4.83% 542 -3.09% 105

Table C.8: Comparison of the choosing criteria Random_choice and Least_chosen.

Criterion Random Criterion Least_chosen
Instance νB gap ts νB gap ts

a_1 1799.07 -4.87% 7 1791.27 -5.28% 8
a_2 1690.12 -0.43% 7 1654.62 -2.52% 7
gr_1 1643.99 -9.52% 94 1628.81 -10.36% 99
gr_2 1266.80 -12.21% 101 1276.95 -11.51% 106
gr_3 1298.08 -6.22% 106 1299.39 -6.13% 106
pr_1 139740.57 -14.51% 356 139228.33 -14.83% 348
pr_2 146234.26 -19.72% 348 149680.25 -17.82% 338
pr_3 134001.99 -10.34% 398 135351.27 -9.44% 363

average -9.73% 177 -9.74% 172

C.2.2 Results obtained with the removal criterion Random_removal in the
perturbation method

Table C.9 shows the detailed results obtained using as removal criterion in the perturbation method
the criterionRandom_removal. We experimented considering as choosing criterion a combination
of both criteria Random_choice and Least_chosen. The results were obtained performing 1000

237

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

iterations of the ILS algorithm. Table C.9 contains the same information as Table C.1 but for the
ILS algorithm considering the removal criterion Random_removal.

The results were obtained performing 1000 iterations of the ILS algorithm.

Table C.9: Results obtained with the removal criterion Random_removal.

Criterion Random_choice Criterion Least_chosen
Instance νB gap ts νB gap ts

a_1 1897.33 0.33% 6 1897.33 0.33% 6
a_2 1790.61 5.49% 5 1760.77 3.73% 6
gr_1 1769.16 -2.64% 96 1812.48 -0.25% 89
gr_2 1453.82 0.75% 94 1453.82 0.75% 88
gr_3 1447.73 4.59% 94 1447.73 4.59% 91
pr_1 152731.61 -6.56% 252 152731.61 -6.56% 290
pr_2 157153.10 -13.72% 242 157153.10 -13.72% 299
pr_3 142850.50 -4.42% 272 144669.54 -3.20% 311

average -2.02% 126 -1.79% 148

C.2.3 Results obtained combining both removal criteria in the perturbation
method

Tables C.10, C.11, C.12 and C.13 show the detailed results obtained using as removal criterion the
combination of both removal criteria. The removal criterion Greedy is applied, except in every
ρ iterations where the criterion used is the criterion Random_removal. Tables C.10 and C.11
use the choosing criterion Random_choice while tables C.12 and C.13 use the choosing criterion
Least_chosen. These tables contain the same information as Table C.1 but for the ILS algorithm
considering the several ρ values.

The results were obtained performing 1000 iterations of the ILS algorithm.

238

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

Table C.10: Results obtained with the choosing criterionRandom_choice and the combination of both removal criteria
with ρ = 200, ρ = 100 and ρ = 50.

ρ = 200 ρ = 100 ρ = 50

Instance νB gap ts νB gap ts νB gap ts

a_1 1798.82 -4.88% 8 1784.98 -5.61% 7 1801.04 -4.77% 7
a_2 1650.52 -2.77% 7 1688.36 -0.54% 7 1646.50 -3.00% 7
gr_1 1628.54 -10.38% 93 1626.48 -10.49% 93 1601.93 -11.84% 95
gr_2 1266.39 -12.24% 87 1264.77 -12.35% 89 1271.43 -11.89% 95
gr_3 1295.33 -6.42% 91 1296.50 -6.33% 99 1292.73 -6.61% 99
pr_1 139740.57 -14.51% 291 139212.93 -14.83% 327 138295.20 -15.40% 335
pr_2 145501.06 -20.12% 284 147907.01 -18.80% 328 146533.45 -19.55% 317
pr_3 133953.44 -10.37% 321 136161.33 -8.90% 370 132662.93 -11.24% 367

average -10.21% 148 -9.73% 165 -10.58% 165

Table C.11: Results obtained with the choosing criterionRandom_choice and the combination of both removal criteria
with ρ = 25, ρ = 10 and ρ = 5.

ρ = 25 ρ = 10 ρ = 5

Instance νB gap ts νB gap ts νB gap ts

a_1 1783.89 -5.67% 7 1774.92 -6.15% 7 1795.37 -5.07% 11
a_2 1632.04 -3.86% 7 1627.51 -4.12% 7 1639.97 -3.39& 11
gr_1 1608.39 -11.48% 96 1607.67 -11.52% 94 1580.58 -13.01% 94
gr_2 1266.25 -12.25% 92 1261.37 -12.59% 94 1271.37 -11.90% 91
gr_3 1289.04 -6.87% 97 1306.78 -5.59% 97 1315.09 -4.99% 96
pr_1 138232.66 -15.43% 339 137055.01 -16.15% 322 139735.04 -14.52% 317
pr_2 146323.81 -19.67% 323 146653.61 -19.48% 320 146201.62 -19.73% 339
pr_3 131444.90 -12.05% 364 132056.01 -11.64% 365 131331.97 -12.13% 375

average -10.91% 166 -10.91% 163 -10.59% 242

239

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

Table C.12: Results obtained with the choosing criterion Least_chosen and the combination of both removal criteria
with ρ = 200, ρ = 100 and ρ = 50.

ρ = 200 ρ = 100 ρ = 50

Instance νB gap ts νB gap ts νB gap ts

a_1 1786.33 -5.54% 7 1792.52 -5.22% 8 1789.06 -5.40% 8
a_2 1648.81 -2.87% 7 1654.72 -2.52% 8 1651.27 -2.72% 7
gr_1 1626.21 -10.50% 94 1628.89 -10.36% 101 1619.61 -10.87% 90
gr_2 1264.70 -12.36% 100 1266.59 -12.23% 103 1263.79 -12.42% 101
gr_3 1297.96 -6.23% 157 1301.41 -5.98% 109 1296.00 -6.37% 97
pr_1 140041.50 -14.33% 342 141870.34 -13.21% 367 139128.57 -14.89% 326
pr_2 148050.44 -18.72% 303 149161.05 -18.11% 368 149044.17 -18.17% 319
pr_3 134291.54 -10.15% 356 136250.02 -8.84% 419 133980.59 -10.35% 404

average -10.09% 164 -9.56% 185 -10.15% 169

Table C.13: Results obtained with choosing criterion Least_chosen and the combination of both removal criteria with
ρ = 25, ρ = 10 and ρ = 5.

ρ = 25 ρ = 10 ρ = 5

Instance νB gap ts νB gap ts νB gap ts

a_1 1792.51 -5.22% 8 1786.90 -5.90% 7 1786.41 -5.65% 8
a_2 1644.00 -3.15% 7 1619.51 -4.59% 7 1641.48 -3.30% 8
gr_1 1605.86 -11.62% 99 1605.29 -11.65% 94 1606.09 -11.61% 104
gr_2 1269.61 -12.02% 103 1266.43 -12.24% 95 1269.21 -12.05% 102
gr_3 1295.80 -6.39% 107 1247.16 -9.90% 103 1272.17 -8.09% 105
pr_1 138700.66 -15.15% 324 138414.81 -15.32% 338 139262.28 -14.80% 350
pr_2 149298.98 -18.03% 286 146312.92 -19.67% 344 145713.54 -20.00% 350
pr_3 133180.85 -10.89% 322 131329.10 -12.13% 423 134516.68 -10.00% 381

average -10.29% 157 -11.38% 176 -10.67% 176

C.2.4 Results obtained with different numbers of iterations in the ILS algo-
rithm

Table C.14 shows the detailed results obtained performing 5000 iterations of the ILS algorithm. The
results were obtained using the choosing criterion Least_chosen and the removal criterion adopted

240

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

was the combination of both removal criteria, that is, the removal criterion used is the Greedy

criterion but once in every ρ = 10 iterations we apply the removal criterion Random_removal.
This table contains the same information as Table C.1 but for the ILS algorithm.

Table C.14: Results obtained performing 5000 iterations of the ILS algorithm.

Instance νB gap ts

a_1 1783.45 -5.70% 33
a_2 1587.90 -6.46% 33
gr_1 1570.69 -13.56% 443
gr_2 1254.25 -13.08% 452
gr_3 1236.94 -10.64% 465
pr_1 138415.00 -15.32% 1430
pr_2 144621.00 -20.60% 1419
pr_3 131156.00 -12.24% 1603

average -12.20% 735

C.3 Hybrid algorithm

C.3.1 Evaluating the number of visits by using instance bier

Table C.15 shows the optimal values and the respective computational times of the variations of
instance bier presented in Section 6.3. This table shows the optimal value (V), the computational
time, in seconds, to obtain the optimal value with the y-separation (ts), the number of B&C subprob-
lems solved during the B&C algorithm (#sub) and the number of added violated CC inequalities
(#CC) and RFV inequalities (#RFV).

241

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

Table C.15: Optimal results for the variations of instance bier.

Instance V ts #sub #CC #RFV
bier1 11434.90 147 6 2418 509
bier2 15215.60 33 4 1188 856
bier3 23757.30 252 58 3050 2720
bier4 34636.77 95 41 2521 1765
bier5 41777.20 306 357 4098 6468
bier6 53799.80 45 82 1518 2843
bier7 66322.10 78 548 970 4607
bier8 81382.70 38 432 424 2816
bier9 100433.00 7 35 36 639
bier10 118294.00 5 83 3 442

average 101 165 1623 2367

C.3.2 Results obtained with the several r∗ values

Table C.16 shows the detailed results obtained when testing the parameter r∗. This table contains
the same information as Table C.1 but for the constructive phase of the hybrid algorithm and for the
parameter under testing.

These results were obtained by using the parameter setting: ∆ = 180 and Λ = 70.

Table C.16: Results obtained with the several r∗ values.

r∗ = 0.70 r∗ = 0.80 r∗ = 0.90

Instance νB gap ts νB gap ts νB gap ts

a_1 1807.57 -4.42% 19 1838.46 -2.79% 3 2075.80 9.76% 0
a_2 1679.31 -1.07% 4 1731.56 2.01% 0 1761.49 3.77% 0
gr_1 1638.06 -9.85% 46 1788.10 -1.59% 6 1868.98 2.86% 0
gr_2 1441.70 -0.09% 59 1553.02 7.62% 16 1629.61 12.93% 1
gr_3 1339.34 -3.24% 144 1437.48 3.85% 15 1468.84 6.12% 0
pr_1 146935.16 -10.11% 9192 151591.47 -7.26% 408 167540.71 2.50% 2
pr_2 151433.45 -16.86% 6329 158160.59 -13.17% 74 163720.66 -10.11% 3
pr_3 132834.38 -11.12% 112 140399.08 -6.06% 10 143568.22 -3.94% 1

average -7.10% 1988 -2.17% 67 2.98% 1

242

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

C.3.3 Results obtained with the several ∆ values

Table C.17 and show the detailed results obtained considering the values of∆ of 140, 160 and 200.
This table contains the same information as Table C.1 but for the constructive phase of the hybrid
algorithm and for the parameter under testing. Note that the detailed results obtained with∆ = 180

are available in Table C.16.
The results of Table C.17 were obtained by using the parameter setting: r∗ = 0.80 and Λ = 70.

Table C.17: Results obtained with∆ = 140,∆ = 160 and∆ = 200 values.

∆ = 140 ∆ = 160 ∆ = 200

Instance νB gap ts νB gap ts νB gap ts

a_1 1838.46 -2.79% 3 1838.46 -2.79% 3 1838.46 -2.79% 4
a_2 1731.56 2.01% 0 1731.56 2.01% 0 1731.56 2.01% 0
gr_1 1788.10 -1.59% 6 1788.10 -1.59% 7 1788.10 -1.59% 7
gr_2 1553.02 7.62% 16 1553.02 7.62% 17 1553.02 7.62% 17
gr_3 1437.48 3.85% 15 1437.48 3.85% 16 1437.48 3.85% 16
pr_1 154814.76 -5.29% 29 151591.47 -7.26% 426 152529.95 -6.69% 528
pr_2 161633.63 -11.26% 199 161328.90 -11.43% 16782 163419.02 -10.28% 2514
pr_3 140399.08 -6.06% 11 140399.08 -6.06% 13 140399.08 -6.06% 13

average -1.69% 35 -1.96% 2158 -1.74% 387

C.3.4 Results obtained with the several Λ values

Table C.18 shows the detailed results obtained considering the values of Λ of 30, 50 and 90. This
table contains the same information as Table C.1 but for the constructive phase of the hybrid algo-
rithm and for the parameter under testing. Note that the detailed results obtained with Λ = 180 are
available in Table C.16.

The results of Table C.17 were obtained by using the parameter setting: r∗ = 0.80 and∆ = 180.

243

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

Table C.18: Results obtained with Λ = 30, Λ = 50 and Λ = 90 values.

Λ = 30 Λ = 50 Λ = 90

Instance νB gap ts νB gap ts νB gap ts

a_1 1838.46 -2.79% 4 1838.46 -2.79% 4 1838.46 -2.79% 4
a_2 1731.56 2.01% 0 1731.56 2.01% 0 1731.56 2.01% 0
gr_1 1788.10 -1.59% 7 1788.10 -1.59% 6 1788.10 -1.59% 7
gr_2 1553.02 7.62% 17 1553.02 7.62% 17 1553.02 7.62% 17
gr_3 1437.48 3.85% 17 1437.48 3.85% 16 1437.48 3.85% 16
pr_1 151591.47 -7.26% 421 151591.47 -7.26% 437 151591.47 -7.26% 421
pr_2 156104.63 -14.30% 59 156104.63 -14.30% 62 158160.59 -13.17% 77
pr_3 140399.08 -6.06% 12 140399.08 -6.06% 12 140399.08 -6.06% 12

average -2.31% 67 -2.31% 69 -2.17% 69

C.3.5 Results obtained with the hybrid algorithm

Table C.19 shows the detailed results obtained with the hybrid algorithm, that is, with the ILS
algorithm applied to the feasible FTSP solution obtained in the constructive phase, performing 1000
and 5000 iterations of the ILS algorithm. This table contains the same information as Table C.1 but
for the hybrid algorithm.

These results were obtained with the following parameter setting: r∗ = 0.80, ∆ = 180 and
Λ = 30.

Table C.19: Results obtained with the hybrid algorithm.

1000 iterations 5000 iterations
Instance νB gap ts νB gap ts

a_1 1780.21 -5.87% 12 1749.99 -7.46% 36
a_2 1568.56 -7.59% 9 1568.56 -7.59% 33
gr_1 1571.19 -13.53% 108 1551.27 -14.63% 467
gr_2 1279.30 -11.35% 116 1252.33 -13.22% 492
gr_3 1259.08 -9.04% 124 1249.70 -9.72% 485
pr_1 137099.62 -16.13% 782 136092.29 -16.74% 2072
pr_2 147572.96 -18.98% 406 147572.96 -18.98% 1787
pr_3 129624.14 -13.27% 398 128770.54 -13.84% 1858

average -11.97% 244 -12.77% 904

244

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

C.3.6 Results obtained with the hybrid algorithm with dual information

Table C.20 shows the detailed results obtained with the hybrid algorithm with the dual information.
This table contains the same information as Table C.1 but for the hybrid algorithm.

These results were obtained performing 1000 iterations of the ILS algorithm and with the fol-
lowing parameter setting: r∗ = 0.80, ∆ = 180 and Λ = 30.

Table C.20: Results obtained with the hybrid algorithm with dual information.

Taboo first local search Taboo first 100 iterations
Instance νB gap ts νB gap ts

a_1 1773.71 -6.21% 13 1806.52 -4.48% 14
a_2 1577.17 -7.09% 7 1609.13 -5.20% 9
gr_1 1571.19 -13.53% 103 1571.19 -13.53% 102
gr_2 1279.30 -11.35% 125 1279.30 -11.35% 116
gr_3 1259.08 -9.04% 135 1259.08 -9.04% 116
pr_1 137993.90 -15.58% 831 138868.00 -15.05% 773
pr_2 147572.96 -18.98% 693 147572.96 -18.98% 749
pr_3 129624.14 -13.27% 356 129624.14 -13.27% 386

average -11.88% 283 -11.36% 283

C.4 Final results with different seeds

Table C.21 contains the results obtained with the ILS algorithm and the hybrid algorithm using the
best parameter setting and doing five runs for each instance with unknown optimal value. Besides
the instance’s name and the seed used, Table C.21 contains the same information as Table C.1 but
for the ILS algorithm and for the hybrid algorithm.

These results were obtained performing 5000 iterations of each method. In the ILS algorithm
the choosing criterion in the criterion Least_chosen and the removal criterion is a combination of
the removal criterion Greedy and Random_removal, that is, we apply the criterion Greedy but
once in every ρ = 10 iterations the criterion Random_removal is applied. The results with the
hybrid algorithm were obtained with the following parameter setting: r∗ = 0.80, ∆ = 180 and
Λ = 30.

245

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

Table C.21: Results obtained in five runs for the instances with unknown optimal value.

ILS algorithm Hybrid algorithm

Instance Seed νB gap ts νB gap ts

a_1 1 1799.24 -4.86% 35 1741.14 -7.93% 35
2 1778.44 -5.96% 33 1769.33 -6.44% 36
3 1783.45 -5.70% 33 1749.99 -7.46% 36
4 1771.25 -6.34% 33 1772.71 -6.26% 39
5 1778.89 -5.94% 33 1777.64 -6.00% 36

a_2 1 1606.37 -5.37% 34 1585.15 -6.62% 32
2 1623.17 -4.38% 33 1580.75 -6.88% 34
3 1587.90 -6.46% 33 1568.56 -7.59% 32
4 1573.27 -7.32% 33 1582.63 -6.77% 33
5 1619.43 -4.60% 33 1606.33 -5.37% 33

gr_1 1 1559.59 -14.17% 490 1556.70 -14.33% 447
2 1554.80 -14.43% 444 1576.61 -13.23% 465
3 1570.69 -13.56% 443 1551.27 -14.63% 460
4 1565.76 -13.83% 441 1583.01 -12.88% 467
5 1569.28 -13.64% 442 1597.92 -12.06% 473

gr_2 1 1259.92 -12.69% 497 1236.96 -14.28% 466
2 1246.21 -13.64% 453 1245.98 -13.66% 486
3 1254.25 -13.08% 452 1252.33 -13.22% 487
4 1249.24 -13.43% 451 1245.59 -13.68% 474
5 1248.27 -13.50% 450 1246.42 -13.63% 493

gr_3 1 1248.74 -9.78% 533 1246.64 -9.94% 477
2 1227.50 -11.32% 465 1240.23 -10.40% 496
3 1236.94 -10.64% 465 1249.70 -9.72% 509
4 1240.73 -10.36% 464 1242.65 -10.22% 493
5 1234.49 -10.81% 465 1248.71 -9.79% 508

pr_1 1 136231.00 -16.66% 1442 136937.58 -16.23% 1870
2 134283.00 -17.85% 1442 136539.42 -16.47% 1970
3 138415.00 -15.32% 1430 136092.29 -16.74% 1953
4 134353.00 -17.81% 1432 138873.29 -15.04% 1986
5 135201.00 -17.29% 1435 135848.93 -16.89% 2452

pr_2 1 146383.00 -19.63% 1414 147180.43 -19.20% 1642
2 147105.00 -19.24% 1414 146596.93 -19.52% 1608

Continues on the next page

246

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

Table C.21
ILS algorithm Hybrid algorithm

Instance Seed νB gap ts νB gap ts

3 144621.00 -20.60% 1419 147572.96 -18.98% 1509
4 145503.00 -20.12% 1420 148017.03 -18.74% 1650
5 145894.00 -19.90% 1416 147745.14 -18.89% 1694

pr_3 1 130854.00 -12.45% 1608 123164.62 -17.59% 1824
2 128991.00 -13.69% 1607 128138.67 -14.26% 2161
3 131156.00 -12.24% 1603 128770.54 -13.84% 1671
4 128562.00 -13.98% 1607 130306.39 -12.81% 1920
5 131980.00 -11.69% 1613 128127.89 -14.27% 1857

pr144_4 1 49775 0.75% 4 49650 0.50% 4
2 49918 1.04% 4 49650 0.50% 4
3 49706 0.61% 4 49651 0.50% 4
4 49527 0.25% 4 49651 0.50% 4
5 49568 0.33% 4 49839 0.88% 4

kroA150_3 1 21645 3.66% 4 21038 0.76% 5
2 21662 3.75% 4 21038 0.76% 5
3 21645 3.66% 4 21038 0.76% 5
4 21645 3.66% 4 21038 0.76% 5
5 21645 3.66% 4 21038 0.76% 5

pr152_3 1 65621 1.86% 5 64921 0.77% 5
2 65621 1.86% 5 64758 0.52% 5
3 65578 1.79% 5 64960 0.83% 5
4 65461 1.61% 5 64718 0.45% 6
5 65339 1.42% 5 64758 0.52% 6

rat195_1 1 1310 1.95% 12 1314 2.26% 12
2 1300 1.17% 12 1323 2.96% 12
3 1327 3.27% 12 1317 2.49% 12
4 1317 2.49% 12 1314 2.26% 12
5 1316 2.41% 12 1320 2.72% 12

rat195_3 1 1850 1.98% 9 1840 1.43% 12
2 1854 2.21% 9 1845 1.71% 11
3 1849 1.93% 9 1840 1.43% 12
4 1841 1.49% 9 1860 2.54% 12

Continues on the next page

247

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

Table C.21
ILS algorithm Hybrid algorithm

Instance Seed νB gap ts νB gap ts

5 1845 1.71% 9 1840 1.43% 12

rat195_4 1 1374 4.09% 10 1331 0.83% 10
2 1373 4.02% 10 1333 0.98% 10
3 1374 4.09% 10 1336 1.21% 11
4 1373 4.02% 10 1334 1.06% 11
5 1359 2.95% 10 1335 1.14% 11

kroA200_1 1 17318 5.33% 12 17223 4.76% 12
2 17647 7.34% 12 17331 5.41% 12
3 17540 6.68% 12 17321 5.35% 12
4 17380 5.71% 12 17099 4.00% 12
5 17760 8.02% 12 17159 4.37% 12

kroA200_3 1 25590 4.57% 9 24580 0.45% 6886
2 25592 4.58% 9 24603 0.54% 4665
3 25586 4.56% 9 24580 0.45% 4643
4 25621 4.70% 9 24580 0.45% 4649
5 25487 4.15% 9 24580 0.45% 4916

kroB200_3 1 25410 5.49% 8 24542 1.88% 190
2 25437 5.60% 8 24542 1.88% 207
3 25600 6.28% 8 24542 1.88% 182
4 25498 5.85% 8 24542 1.88% 202
5 25440 5.61% 8 24542 1.88% 199

gr202_4 1 29425 4.94% 11 28290 0.90% 12
2 29447 5.02% 11 28339 1.07% 12
3 29374 4.76% 11 28504 1.66% 12
4 29186 4.09% 11 28117 0.28% 13
5 28766 2.59% 11 28318 1.00% 12

gr229_1 1 72238 2.12% 19 71667 1.31% 19
2 72456 2.42% 19 72455 2.42% 20
3 72477 2.45% 19 71796 1.49% 19
4 72603 2.63% 19 71752 1.43% 20
5 72388 2.33% 19 72329 2.24% 19

gil262_1 1 1567 2.49% 23 1577 3.14% 24

Continues on the next page

248

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

Table C.21
ILS algorithm Hybrid algorithm

Instance Seed νB gap ts νB gap ts

2 1610 5.30% 24 1577 3.14% 24
3 1592 4.12% 23 1577 3.14% 24
4 1590 3.99% 23 1577 3.14% 24
5 1589 3.92% 23 1577 3.14% 25

gil262_3 1 2069 2.83% 16 2000 -0.60% 8886
2 2073 3.03% 16 2006 -0.30% 7833
3 2071 2.93% 16 1987 -1.24% 7851
4 2072 2.98% 16 2000 -0.60% 7846
5 2083 3.53% 16 2000 -0.60% 8562

gil262_4 1 1753 -1.13% 20 1712 -3.44% 89
2 1738 -1.97% 20 1723 -2.82% 63
3 1746 -1.52% 20 1722 -2.88% 62
4 1737 -2.03% 20 1750 -1.30% 68
5 1754 -1.07% 20 1724 -2.76% 38

pr264_2 1 29032 0.99% 25 28865 0.41% 37
2 29036 1.00% 25 29049 1.05% 26
3 28918 0.59% 25 28863 0.40% 25
4 28892 0.50% 25 29097 1.21% 26
5 29019 0.94% 25 29019 0.94% 26

rbg443_2 1 418 -29.87% 130 415 -30.37% 130
2 400 -32.89% 131 399 -33.05% 133
3 432 -27.52% 131 399 -33.05% 131
4 421 -29.36% 131 424 -28.86% 133
5 421 -29.36% 130 412 -30.87% 131

249

APPENDIX C. HEURISTIC ALGORITHMS DETAILED RESULTS

250

Appendix D

RFTSP detailed results

D.1 Linear programming relaxation results obtained with the
adapted formulations for the RFTSP

Tables D.1 and D.2 show the LP relaxation value obtained with the adapted formulations, namely
the FCF model, the CC model, the RFV model and the CC+RFV model, for the instances from
the instance set 1 and 3, respectively. Each table is divided into four parts, each part devoted to
a different formulation. Each part shows the LP relaxation value (VLP), the percentage of gap
between the LP relaxation value and the optimal value (gap = 100× (optimal value - LP relaxation
value)/optimal value) and the computational time, in seconds, to obtain the LP relaxation value (ts).
The tables also contain, in the last row, the average of the results obtained.

251

APPENDIX D. RFTSP DETAILED RESULTS

Table D.1: Linear programming relaxation results obtained with adapted formulations for instance set 1.

FCF CC RFV CC+RFV

Instance VLP gap ts VLP gap ts VLP gap ts VLP gap ts

burma_1 12.37 15.89% 0 12.35 16.02% 0 14.70 0.00% 1 14.70 0.00% 0
burma_2 26.78 0.00% 0 26.78 0.00% 0 26.78 0.00% 0 26.78 0.00% 0
burma_3 10.22 13.98% 0 9.93 16.47% 0 11.89 0.00% 0 11.89 0.00% 0

bayg_1 7028.89 3.84% 0 7300.47 0.12% 0 7262.22 0.64% 0 7309.21 0.00% 0
bayg_2 5773.85 24.41% 0 7483.84 2.02% 1 7638.47 0.00% 0 7638.47 0.00% 1
bayg_3 7066.07 13.51% 0 8101.96 0.83% 0 8157.82 0.15% 0 8157.82 0.15% 0

att_1 40021.10 17.03% 2 45623.80 5.42% 0 45561.10 5.55% 5 46876.00 2.91% 0
att_2 25198.00 12.51% 2 28554.70 0.85% 1 28800.10 0.00% 53 28800.10 0.00% 0
att_3 11122.70 7.26% 1 11988.40 0.04% 0 11990.50 0.02% 39 11992.80 0.00% 1

average 12.05% 1 4.64% 0 0.71% 11 0.34% 0

Table D.2: Linear programming relaxation results obtained with adapted formulations for instance set 3.

FCF CC RFV CC+RFV

Instance VLP gap ts VLP gap ts VLP gap ts VLP gap ts

br17_1 36 0.00% 1 36 0.00% 1 36 0.00% 0 36 0.00% 0
br17_2 28 0.00% 0 28 0.00% 0 28 0.00% 0 28 0.00% 0
br17_3 58.83 24.57% 0 76.33 2.14% 0 78 0.00% 0 78 0.00% 0
br17_4 58.00 17.14% 0 70 0.00% 1 70 0.00% 0 70 0.00% 0

ftv33_1 910.14 5.49% 0 953.25 1.01% 0 953.50 0.99% 0 953.50 1.00% 0
ftv33_2 416.50 6.19% 1 411.50 7.32% 0 442.00 0.45% 1 442 0.45% 0
ftv33_3 1654.88 8.27% 0 1778.25 1.43% 0 1778.25 1.43% 0 1778.25 1.45% 0
ftv33_4 916.50 4.13% 0 956 0.00% 0 956 0.00% 0 956 0.00% 1

ftv35_1 1027.33 7.53% 1 1084.30 2.40% 0 1111 0.00% 0 1111 0.00% 0
ftv35_2 507.63 9.35% 0 537.50 4.02% 1 560 0.00% 0 560 0.00% 0
ftv35_3 1332.50 6.43% 0 1423.33 0.05% 0 1424 0.00% 0 1424 0.00% 0
ftv35_4 1012.25 4.32% 1 1058 0.00% 1 1058 0.00% 0 1058 0.00% 0

average 7.79% 0 1.53% 0 0.45% 5 0.24% 0

252

APPENDIX D. RFTSP DETAILED RESULTS

D.2 Linear programming relaxation results obtained with the
y-separation for the RFTSP

Tables D.3 and D.4 show the LP relaxation results obtained with the P-CC+RV model for the in-
stances from the instance sets 1 and 3, respectively. Each table contains the LP relaxation value
(VLP), the percentage of gap between the LP relaxation value and the optimal value (gap) and the
computational time, in seconds, to obtain the LP relaxation value (ts). The tables also contain, in
the last row, the average of the results obtained.

Table D.3: Linear programming relaxation results obtained with the P-CC+RV model for the instance set 1.

Instance VLP gap ts

burma_1 14.70 0.00% 0
burma_2 26.78 0.00% 0
burma_3 11.89 0.00% 0
bayg_1 7309.21 0.00% 0
bayg_2 7638.47 0.00% 1
bayg_3 8157.82 0.15% 0
att_1 46937.70 2.70% 4
att_2 28800.10 0.00% 1
att_3 11992.80 0.00% 1

average 0.32% 1

253

APPENDIX D. RFTSP DETAILED RESULTS

Table D.4: Linear programming relaxation results obtained with the P-CC+RV model for the instance set 3.

Instance VLP gap ts

br17_1 36 0.00% 0
br17_2 28 0.00% 1
br17_3 78 0.00% 1
br17_4 70 0.00% 0
ftv33_1 956.50 0.67% 0
ftv33_2 442.00 0.45% 0
ftv33_3 1801.00 0.17% 1
ftv33_4 956 0.00% 0
ftv35_1 1111 0.00% 0
ftv35_2 560 0.00% 0
ftv35_3 1424 0.00% 1
ftv35_4 1058 0.00% 0

average 0.11% 0

D.3 Linear programming relaxation results obtained with y-
separation for the RFTSP

Tables D.5 and D.6 show the LP relaxation results obtained with CC+RFV model using the y-
separation for the instances from the instance sets 1 and 3, respectively. Each table contains the LP
relaxation value (VLP), the percentage of gap between the LP relaxation value and the optimal value
(gap) and the computational time, in seconds, to obtain the LP relaxation value (ts). The tables also
contain, in the last row, the average of the results obtained.

254

APPENDIX D. RFTSP DETAILED RESULTS

Table D.5: Linear programming relaxation results obtained with the y-separation for the instance set 1.

Instance VLP gap ts

burma_1 14.70 0.00% 0
burma_2 26.78 0.00% 0
burma_3 11.89 0.00% 0
bayg_1 7309.21 0.00% 0
bayg_2 7638.47 0.00% 1
bayg_3 8157.82 0.15% 0
att_1 46756.10 3.07% 0
att_2 28800.10 0.00% 0
att_3 11992.80 0.00% 1

average 0.36% 1

Table D.6: Linear programming relaxation results obtained with the y-separation for the instance set 3.

Instance VLP gap ts

br17_1 36 0.00% 0
br17_2 28 0.00% 1
br17_3 78 0.00% 1
br17_4 70 0.00% 0
ftv33_1 953.50 0.99% 0
ftv33_2 415.50 6.42% 0
ftv33_3 1778.25 1.43% 0
ftv33_4 956 0.00% 1
ftv35_1 1087.20 2.14% 0
ftv35_2 560 0.00% 0
ftv35_3 1423.33 0.05% 0
ftv35_4 1058 0.00% 0

average 0.92% 0

255

APPENDIX D. RFTSP DETAILED RESULTS

D.4 Final heuristic results with different seeds for the RFTSP

Table D.7 contains the results obtained with the ILS algorithm and the hybrid algorithm using the
best parameter setting and doing five runs for each instance with unknown optimal value. The re-
ferred table contains the instance’s name, the seed used, the value of the solution obtained (νB), the
gap between the solution obtained and the reference solution (gap = 100 × (heuristic solution −
reference solution)/reference solution) and the computational time, in seconds, to obtain the solu-
tion presented (ts).

These results were obtained performing 5000 iterations of each method. In the ILS algorithm
the choosing criterion is the criterion Least_chosen and the removal criterion is a combination of
the removal criterion Greedy and Random_removal, that is, we apply the criterion Greedy but
once in every ρ = 10 iterations the criterion Random_removal is applied. The results with the
hybrid algorithm were obtained with the following parameter setting: r∗ = 0.80, ∆ = 180 and
Λ = 30.

Table D.7: Results obtained in five runs for the instances with unknown optimal value for the RFTSP.

ILS algorithm Hybrid algorithm
Instance Seed νB gap ts νB gap ts

a_1 1 1693.35 2.32% 33 1676.60 1.31% 33
2 1692.82 2.29% 33 1664.49 0.58% 32
3 1662.03 0.43% 33 1673.99 1.15% 35
4 1698.48 2.63% 32 1680.20 1.53% 31
5 1662.30 0.44% 32 1662.48 0.45% 31

a_2 1 1652.80 10.36% 29 1521.15 1.57% 30
2 1650.57 10.21% 29 1520.93 1.55% 28
3 1644.12 9.78% 29 1518.09 1.36% 32
4 1649.93 10.16% 28 1520.03 1.49% 29
5 1647.74 10.02% 29 1519.42 1.45% 28

gr_1 1 1902.11 3.25% 456 1851.65 0.51% 470
2 1893.18 2.76% 431 1861.05 1.02% 452
3 1892.55 2.73% 428 1842.76 0.03% 489
4 1897.39 2.99% 429 1864.82 1.23% 442
5 1913.58 3.87% 430 1842.25 0.00% 423

Continues on the next page

256

APPENDIX D. RFTSP DETAILED RESULTS

Table D.7
ILS algorithm Hybrid algorithm

Instance Seed νB gap ts νB gap ts

gr_2 1 1352.94 0.80% 450 1347.04 0.36% 457
2 1358.60 1.22% 438 1347.49 0.40% 458
3 1346.30 0.31% 437 1342.17 0.00% 460
4 1344.53 0.18% 437 1348.56 0.48% 468
5 1349.10 0.52% 437 1357.40 1.13% 438

gr_3 1 1349.55 1.68% 481 1327.26 0.00% 522
2 1347.74 1.54% 454 1340.02 0.96% 506
3 1338.52 0.85% 454 1346.17 1.42% 514
4 1381.97 4.12% 454 1339.85 0.95% 498
5 1345.75 1.39% 453 1350.65 1.76% 491

pr_1 1 159542 0.74% 1550 158805.14 0.28% 1424
2 158433 0.04% 1403 159190.03 0.52% 1409
3 159233 0.55% 1407 158467.60 0.07% 1399
4 159963 1.01% 1407 158362.92 0.00% 1399
5 160933 1.62% 1428 159216.97 0.54% 1397

pr_2 1 183236 4.06% 1514 179713.68 2.06% 1369
2 178497 1.37% 1398 176086.63 0.00% 1373
3 179516 1.95% 1400 179130.72 1.73% 1367
4 176788 0.40% 1405 183864.31 4.42% 1363
5 181719 3.20% 1400 181448.97 3.05% 1367

pr_3 1 134683 4.05% 1861 131090.75 1.28% 1526
2 135549 4.72% 1572 130486.67 0.81% 1526
3 135549 4.94% 1572 133357.48 3.03% 1518
4 132036 2.01% 1573 134614.10 4.00% 1521
5 131433 1.54% 1570 129436.70 0.00% 1516

pr136_1 1 94055 1.91% 5 93717 1.54% 4
2 93808 1.64% 4 93485 1.29% 4
3 94805 2.72% 4 93485 1.29% 4
4 95484 3.46% 4 94289 2.16% 4
5 92581 0.31% 4 93478 1.28% 4

Continues on the next page

257

APPENDIX D. RFTSP DETAILED RESULTS

Table D.7
ILS algorithm Hybrid algorithm

Instance Seed νB gap ts νB gap ts

pr144_1 1 58125 8.16% 4 53769 0.06% 5
2 58125 8.16% 4 53739 0.00% 4
3 58191 8.28% 4 53769 0.06% 4
4 58125 8.16% 4 53769 0.06% 4
5 58191 8.28% 4 54067 0.61% 4

rat195_1 1 1544 -0.26% 12 1522 -1.68% 13
2 1551 0.19% 12 1530 -1.16% 12
3 1546 -0.13% 12 1546 -0.13% 12
4 1552 0.26% 12 1550 0.13% 12
5 1544 -0.26% 12 1563 0.97% 12

d198_1 1 11688 0.70% 14 11716 0.94% 13
2 11632 0.22% 12 11663 0.48% 13
3 11776 1.46% 12 11640 0.28% 12
4 11728 1.04% 12 11649 0.36% 12
5 11657 0.43% 12 11690 0.72% 13

kroA200_2 1 32417 0.42% 13 32864 1.80% 13
2 32541 0.80% 12 32720 1.36% 12
3 32129 -0.47% 12 32640 1.11% 12
4 31824 -1.42% 12 32892 1.89% 12
5 32331 0.15% 12 32999 2.22% 12

kroB200_2 1 31711 3.35% 14 32155 4.79% 13
2 31503 2.67% 12 32031 4.39% 12
3 31425 2.41% 12 32529 6.01% 12
4 31483 2.60% 12 32299 5.26% 12
5 31656 3.17% 12 32117 4.67% 12

gr202_4 1 32610 4.51% 11 31303 0.32% 11
2 32741 4.93% 11 31303 0.32% 10
3 32610 4.51% 11 31303 0.32% 11
4 32591 4.45% 11 31355 0.49% 11
5 32142 3.01% 11 31303 0.32% 11

Continues on the next page

258

APPENDIX D. RFTSP DETAILED RESULTS

Table D.7
ILS algorithm Hybrid algorithm

Instance Seed νB gap ts νB gap ts

pr226_1 1 63178 -3.09% 20 63254 -2.98% 19
2 63315 -2.88% 19 63178 -3.09% 18
3 63337 -2.85% 19 63269 -2.95% 18
4 63337 -2.85% 18 63382 -2.78% 18
5 63296 -2.91% 18 63280 -2.94% 18

pr226_3 1 92766 3.44% 11 90671 1.10% 20
2 92766 3.44% 10 89524 -0.18% 18
3 92766 3.44% 10 89524 -0.18% 19
4 92715 3.38% 10 90671 1.10% 19
5 92715 3.38% 10 89524 -0.18% 19

gil262_2 1 3067 3.44% 29 3078 3.81% 27
2 3023 1.96% 26 3077 3.78% 27
3 3014 1.65% 26 3095 4.38% 26
4 3028 2.12% 26 3096 4.42% 26
5 3043 2.63% 26 3053 2.97% 26

gil262_4 1 7003 4.58% 20 6975 4.17% 25
2 6959 3.93% 20 7012 4.72% 24
3 6979 4.23% 20 6941 3.66% 24
4 6968 4.06% 20 6921 3.36% 24
5 6918 3.32% 20 6963 3.99% 24

pr264_2 1 31896 -5.14% 28 30927 -8.03% 25
2 31982 -4.89% 26 30614 -8.96% 24
3 32598 -3.06% 26 30836 -8.30% 24
4 30670 -8.79% 25 31108 -7.49% 24
5 32312 -3.91% 26 30925 -8.03% 24

pr264_3 1 56348 0.36% 18 55533 -1.09% 22972
2 55914 -0.41% 17 55556 -1.05% 23208
3 56219 0.13% 17 55540 -1.08% 23166
4 56139 -0.01% 17 55493 -1.16% 23148
5 56137 -0.01% 17 55516 -1.12% 23196

Continues on the next page

259

APPENDIX D. RFTSP DETAILED RESULTS

Table D.7
ILS algorithm Hybrid algorithm

Instance Seed νB gap ts νB gap ts

pr264_4 1 45342 -0.86% 24 44828 -1.99% 73
2 45497 -0.52% 23 44790 -2.07% 62
3 45526 -0.46% 23 44820 -2.00% 70
4 45505 -0.51% 23 44820 -2.00% 69
5 45349 -0.85% 23 44758 -2.14% 69

ftv170_2 1 1727 7.13% 7 1764 9.43% 7
2 1883 16.81% 7 1774 10.05% 7
3 1824 13.15% 7 1906 18.24% 7
4 1767 9.62% 7 1715 6.39% 7
5 1956 21.34% 7 1875 16.32% 7

ftv170_4 1 2798 10.94% 7 2796 10.86% 9
2 2702 7.14% 8 2838 12.53% 8
3 2650 5.08% 8 2726 8.09% 8
4 2778 10.15% 8 2741 8.68% 8
5 2716 7.69% 8 2825 12.01% 8

rbg323_1 1 1663 -0.30% 45 1668 0.00% 48
2 1653 -0.90% 46 1659 -0.54% 46
3 1677 0.54% 46 1673 0.30% 46
4 1644 -1.44% 46 1659 -0.54% 46
5 1663 -0.30% 46 1654 -0.84% 46

rbg323_2 1 787 -5.86% 50 778 -6.94% 51
2 774 -7.42% 50 792 -5.26% 48
3 767 -8.25% 50 788 -5.74% 49
4 768 -8.13% 50 784 -6.22% 49
5 763 -8.73% 49 790 -5.50% 48

rbg323_3 1 2832 -1.91% 29 2748 -4.81% 39
2 2839 -1.66% 29 2736 -5.23% 36
3 2804 -2.87% 29 2748 -4.81% 36
4 2870 -0.59% 30 2726 -5.58% 36
5 2858 -1.00% 29 2733 -5.33% 36

Continues on the next page

260

APPENDIX D. RFTSP DETAILED RESULTS

Table D.7
ILS algorithm Hybrid algorithm

Instance Seed νB gap ts νB gap ts

rbg323_4 1 1571 -0.06% 41 1583 0.70% 42
2 1590 1.15% 41 1566 -0.38% 40
3 1590 1.15% 41 1561 -0.70% 40
4 1593 1.34% 41 1568 -0.25% 40
5 1577 0.32% 41 1547 -1.59% 40

rbg358_1 1 1814 -8.11% 69 1831 -7.24% 70
2 1833 -7.14% 68 1829 -7.35% 66
3 1821 -7.75% 68 1827 -7.45% 67
4 1840 -6.79% 68 1819 -7.85% 67
5 1833 -7.14% 69 1845 -6.53% 68

rbg358_2 1 811 -10.68% 68 847 -6.72% 70
2 764 -15.86% 68 809 -10.90% 66
3 819 -9.80% 67 838 -7.71% 66
4 857 -5.62% 67 834 -8.15% 66
5 787 -13.33% 68 825 -9.14% 70

rbg403_1 1 1698 -13.63% 99 1695 -13.78% 101
2 1705 -13.28% 99 1694 -13.84% 95
3 1696 -13.73% 98 1682 -14.45% 96
4 1682 -14.45% 99 1682 -14.45% 96
5 1714 -12.82% 98 1696 -13.73% 103

rbg403_2 1 782 -24.74% 99 796 -23.39% 102
2 819 -21.17% 99 821 -20.98% 96
3 790 -23.97% 99 789 -24.06% 98
4 793 -23.68% 99 792 -23.77% 97
5 785 -24.45% 100 778 -25.12% 102

rbg403_3 1 3373 -6.80% 56 3287 -9.17% 117
2 3377 -6.69% 56 3262 -9.86% 102
3 3455 -4.53% 57 3214 -11.19% 103
4 3380 -6.60% 56 3270 -9.64% 103
5 3420 -5.50% 56 3259 -9.95% 112

Continues on the next page

261

APPENDIX D. RFTSP DETAILED RESULTS

Table D.7
ILS algorithm Hybrid algorithm

Instance Seed νB gap ts νB gap ts

rbg403_4 1 2016 -4.59% 77 1921 -9.09% 86
2 1965 -7.00% 77 1908 -9.70% 87
3 1933 -8.52% 79 1927 -8.80% 81
4 1972 -6.67% 77 1936 -8.38% 81
5 1946 -7.90% 77 1923 -8.99% 86

rbg443_1 1 2270 -9.60% 103 2282 -9.12% 111
2 2253 -10.27% 102 2271 -9.56% 119
3 2289 -8.84% 103 2243 -10.67% 104
4 2298 -8.48% 103 2262 -9.92% 104
5 2222 -11.51% 102 2260 -10.00% 110

rbg443_2 1 1282 -7.90% 120 1272 -8.62% 124
2 1290 -7.33% 119 1260 -9.48% 135
3 1262 -9.34% 120 1269 -8.84% 118
4 1293 -7.11% 120 1262 -9.34% 117
5 1314 -5.60% 119 1263 -9.27% 124

rbg443_4 1 2446 -0.12% 83 2411 -1.55% 92
2 2457 0.33% 85 2379 -2.86% 101
3 2437 -0.49% 83 2389 -2.45% 87
4 2469 0.82% 84 2380 -2.82% 87
5 2470 0.86% 84 2389 -2.45% 92

AsimSingh150_1 1 1297 0.93% 6 1293 0.62% 6
2 1298 1.01% 6 1292 0.54% 6
3 1302 1.32% 6 1294 0.70% 5
4 1299 1.09% 6 1296 0.86% 5
5 1296 0.86% 6 1294 0.70% 6

AsimSingh150_4 1 977 2.73% 5 965 1.47% 5
2 974 2.42% 5 970 2.00% 5
3 983 3.36% 5 968 1.79% 5
4 980 3.05% 5 967 1.68% 5
5 973 2.31% 5 968 1.79% 5

Continues on the next page

262

APPENDIX D. RFTSP DETAILED RESULTS

Table D.7
ILS algorithm Hybrid algorithm

Instance Seed νB gap ts νB gap ts

AsimSingh300_1 1 2803 2.60% 41 2781 1.79% 52
2 2804 2.64% 40 2786 1.98% 56
3 2804 2.64% 40 2794 2.27% 50
4 2807 2.75% 40 2776 1.61% 50
5 2798 2.42% 40 2788 2.05% 53

AsimSingh300_3 1 4244 2.39% 24 4172 0.65% 105
2 4245 2.41% 24 4164 0.46% 124
3 4240 2.29% 24 4172 0.65% 105
4 4243 2.36% 24 4157 0.29% 104
5 4236 2.20% 24 4172 0.65% 112

AsimSingh300_4 1 2904 2.07% 31 2888 1.51% 33
2 2904 2.07% 32 2883 1.34% 37
3 2882 1.30% 31 2883 1.34% 33
4 2905 2.11% 32 2883 1.34% 33
5 2897 1.83% 31 2883 1.34% 35

263

APPENDIX D. RFTSP DETAILED RESULTS

264

Appendix E

The Branch-and-Cut Algorithm for the
Inter- and Intrafamily Formulations

In the inter- and intrafamily formulations there are some constraints that are in exponential number,
namely the subtour elimination constraints in the interfamily subproblem (7.30), the P-CC inequal-
ities (7.25) and the P-RV inequalities (7.26). The subtour elimination constraints for the interfamily
subproblem are present in all the proposed inter- and intrafamily formulations whereas the P-CC
inequalities and the P-RV inequalities are only part of the P-CC model and of the P-RV model, re-
spectively. Therefore, in order to use the inter- and intrafamily formulations to solve the RFTSP we
must resort to a B&C algorithm. We designed a B&C algorithm to solve the several proposed inter-
and intrafamily formulations, which are the P-SCF model, the P-MCF model, the P-CC model and
the P-RVmodel. The outline of the B&C algorithm for these formulations is similar to the outline of
the B&C algorithm for the FTSP presented in Section 5.1 since the constraints that are in exponential
number are added by using the cutting plane algorithm presented in Algorithm 2.1 of Section 2.3.
As we mentioned previously, subtour elimination constraints in the interfamily subproblem (7.30)
must always be separated while the P-CC inequalities (7.25) and the P-RV inequalities (7.26) are
only separated if we want to use the P-CC or the P-RV models, respectively, to solve the RFTSP.

In Section E.1 we present both the user cut callback and the lazy constraint callback used in the
B&C algorithm for the inter- and intrafamily formulations.

E.1 The separation algorithms

Throughout this section we only present the separation algorithms for sets of constraints that are
in exponential number in the inter- and intrafamily formulations, namely the subtour elimination

265

APPENDIX E. THE BRANCH-AND-CUT ALGORITHM FOR THE INTER- AND
INTRAFAMILY FORMULATIONS

constraints in the interfamily subproblem (7.30), the P-CC inequalities (7.25) and the P-RV inequal-
ities (7.26) since, even though the separation algorithms are similar to the separation algorithm for
the CC and the RFV inequalities, the adaptation is not straightforward. In Sections E.1.1, E.1.2
and E.1.3 we present the separation algorithms for the subtour elimination constraints in the inter-
family subproblem (7.30), for the P-CC inequalities (7.25) and for the P-RV inequalities (7.26),
respectively.

E.1.1 Separating the subtour elimination constraints in the interfamily sub-
problem

The subtour elimination constraints for the interfamily subproblem x(S ′, S) ≥ 1,∀S ⊆ N : ∃l ∈
L : Fl ⊆ S (7.30) were introduced as being similar to the connectivity cuts for a TSP in which
the nodes are the families, that is, the nodes are the sets Fl, with l ∈ L. Therefore, we may use a
separation algorithm based onmax-flow/min-cut computations as long as we ensure that there exists
at least one family l ∈ L in the set S. Recall that in order to separate the RFV inequalities (4.35)
presented in Section 4.2.2.3 we also had to ensure that certain nodes were in the set S, therefore, we
will use an algorithm similar to the Separation Algorithm 5.4 for the RFV inequalities presented in
Section 5.2.2 to separate the subtour elimination constraints in the interfamily subproblem.

Let (x∗, w∗, p∗, q∗, u∗) be a fractional solution that satisfies the constraints in the inter- and in-
trafamily formulation that are not in exponential number, that is, constraints (7.4)-(7.11), (4.2),
(7.27)-(7.34). Additionally, consider a capacitated graph G∗ = ((0 ∪ N) ∪ t, A ∪ At) where t is
a fictitious node and At is the set of arcs from N to t, that is, At = {(i, t) : i ∈ N}, similarly to
what we defined in Section 5.2.2. The capacities of the arc (i, j) ∈ N are lij = 0 and uij = x∗

ij

and, for now, the capacities of the arc (i, t) ∈ At are both zero (lit = uit = 0). In order to separate
the subtour elimination constraints in the interfamily subproblem (7.30) we just need to fix each
family l ∈ L to t by setting the upper capacity of the arcs (i, t) with i ∈ Fl to infinity and compute
the maximum flow from the depot to t. Algorithm E.1 shows the pseudocode for the separation
algorithm for the subtour elimination constraints in the interfamily subproblem (7.30).

Similarly to what we did in the separation algorithms presented in Section 5.2, we decided
to limit the number of violated inequalities found before re-solving the B&C subproblem and to
compute the maximum flow from the depot to the families by using a permutation of the families
instead of its lexicographic order.

Since to separate all the subtour elimination constraints in the interfamily subproblem we only
need to compute L maximum-flows, one for each family, we decided not to develop a heuristic
separation for these constraints.

266

APPENDIX E. THE BRANCH-AND-CUT ALGORITHM FOR THE INTER- AND
INTRAFAMILY FORMULATIONS

Algorithm E.1 Separation algorithm for the subtour elimination constraints in the interfamily sub-
problem.
Require: A fractional solution (x∗, w∗, p∗, q∗, u∗) that satisfies the equation system (7.4)-(7.11),

(4.2), (7.27)-(7.34).
1: Create a new complete graph G∗ = (0 ∪N ∪ t, A ∪ At).
2: for all (i, j) ∈ A do
3: Set its capacities to lij = 0 and uij = x∗

ij .
4: end for
5: for all (i, t) ∈ At do
6: Set its capacities to lij = uij = 0.
7: end for
8: for all l ∈ L do
9: for all (i, t) ∈ At with i ∈ Fl do
10: Set capacities to lij = 0 and uij = +∞.
11: end for
12: Determine the max-flow between 0 and t in G∗. Let ν be the value of the max-flow.
13: if ν < 1 then
14: Determine the sets S and S ′ = (N ∪ 0) \ S such that S ′ is the set of nodes reachable from

node 0 in the residual network associated with the max-flow.
15: Add the violated inequality x(S ′, S) ≥ 1.
16: end if
17: for all (i, t) ∈ At with i ∈ Fl do
18: Set its capacities to lij = uij = 0.
19: end for
20: end for

267

APPENDIX E. THE BRANCH-AND-CUT ALGORITHM FOR THE INTER- AND
INTRAFAMILY FORMULATIONS

Separation algorithm for integer solutions

When the solution (x∗, w∗, p∗, q∗, u∗) is integer we use the same separation algorithm, that is, Algo-
rithm E.1 but we only add a maximum of one violated inequality. Therefore, Algorithm E.1 stops
either when it computes the maximum flow from the depot to every family l ∈ L or when it finds
one violated subtour elimination constraint in the interfamily subproblem.

E.1.2 Separating the P-CC inequalities

The P-CC constraints wk(R′, R) ≥ qkm, ∀l ∈ M, ∀R ⊆ Fl, ∀k ∈ R′, ∀m ∈ R (7.25) are
similar to the CC inequalities (4.28) for the FTSP presented in Section 4.2.2.1 with the following
differences: (i) the initial and the final nodes from the arcs in the cut-set [R′, R] belong to the same
family; and (ii) the initial node of the path is not predetermined. Consequently, to address (i) the
separation algorithm for the P-CC inequalities for a family l ∈ M uses a network which only
contains the nodes in Fl and the set of arcs Al and, to address (ii), we must consider that any node
in Fl can be the initial node of the path.

Let (x∗, w∗, p∗, q∗, u∗) be a fractional solution that satisfies the constraints in the inter- and in-
trafamily formulation that are not in exponential number, that is, constraints (7.4)-(7.11), (4.2),
(7.27)-(7.34). Since the initial node of the path is not predetermined, the capacitated graph in
which we will compute the maximum flow depends on the initial node of the path, thus, let l ∈ M
be a multi-visit family and k ∈ Fl be the initial node of the path. Consider a capacitated graph
Gk∗ = (Fl, Al) in which the capacities of the arc (i, j) ∈ Al are lij = 0 and uij = wk∗

ij . In order
to check whether or not there are violated P-CC inequalities in the case in which k ∈ Fl is the
initial node of the path we must compute the value of the maximum flow from k to every node
m ∈ Fl : m ̸= k in the capacitated network presented previously and compare its value to qk∗m .
Note that the P-CC inequalities are redundant when either pk∗ or qk∗m are zero. The pseudocode for
the separation algorithm for the P-CC inequalities is available in Algorithm E.2.

Similarly to what we did in the separation algorithm for the CC inequalities presented in Algo-
rithm 5.2, we decided to set a limit to the maximum number of added violated P-CC inequalities per
iteration. However, the maximum flow is sent from k to m according to a lexicographic ordering
of the nodes.

Heuristic separation of the P-CC inequalities

In order to separate the P-CC inequalities for a family l ∈ Mwe may have to compute nl× (nl−1)

maximum flows, therefore we developed a heuristic separation for the P-CC inequalities similar to

268

APPENDIX E. THE BRANCH-AND-CUT ALGORITHM FOR THE INTER- AND
INTRAFAMILY FORMULATIONS

Algorithm E.2 Separation algorithm for the P-CC inequalities.
Require: A fractional solution (x∗, w∗, p∗, q∗, u∗) that satisfies the equation system (7.4)-(7.11),

(4.2), (7.27)-(7.34).
1: for all l ∈ M do
2: for all k ∈ Fl such that pk∗ > 0 do
3: Create a new complete graph Gk∗ = (Fl, Al).
4: for all (i, j) ∈ Al do
5: Set its capacities to lij = 0 and uij = wk∗

ij .
6: end for
7: for allm ∈ Fl such thatm ̸= k and qk∗m > 0 do
8: Determine the max-flow between k andm in Gk∗. Let ν be the value of the max-flow.
9: if ν < qk∗m then
10: Determine the sets R and R′ = Fl \R such that R′ is the set of nodes reachable from

node k in the residual network associated with the max-flow.
11: Add the violated inequality wk(R′, R) ≥ qkm.
12: end if
13: end for
14: end for
15: end for

269

APPENDIX E. THE BRANCH-AND-CUT ALGORITHM FOR THE INTER- AND
INTRAFAMILY FORMULATIONS

the heuristic separation for the CC inequalities presented in Section 5.2.1 and which is based on
the connected components induced by the fractional solution (x∗, w∗, p∗, q∗, u∗). However, in the
case of the P-CC inequalities, the connected components depend on the initial node of the path.
Consequently, for a multi-visit family l ∈ M and the same fractional solution we may have nl

different connected components. Consider that k ∈ Fl is the initial node of the path of family l.
We assume that nodes i ∈ Fl and j ∈ Fl belong to the same connected component if wk∗

ij > 0.
Let {Ck

0 , C
k
1 , . . . , C

k
p} be the set of connected components associated with the fractional solution

(x∗, w∗, p∗, q∗, u∗) and R = {m ∈ Fl : q
k∗
m = 0} be the set of non-visited nodes in the path that

has k as its initial node. The component Ck
0 contains the node k. Like in the heuristic separation

of the CC inequalities, we construct a maximum of p + 1 violated P-CC inequalities by using the
p + 1 connected components. The construction process of the sets R′ and R is also similar to the
one presented for the case of the CC inequalities in Section 5.2.1 which is: in the first inequality
we define R′ = Ck

0 and R = Ck
1 ∪ . . . ∪ Ck

p ∪ R and for ith-inequality, with i = 1, . . . , p, of the
remaining p inequalities we define R = Ck

i and R′ = Fl \ Ck
i . Notice that for every R′ and R

defined previously: (i) k ∈ R′, (ii) set R contains visited nodes, that is, nodes m ∈ Fl such that
qk∗m > 0, and (iii) wk∗(R′, R) = 0, therefore all these sets originate violated P-CC inequalities. As
wk∗(R′, R) = 0, choosing for the right-hand side any node m ∈ R such that qk∗m > 0 originates a
violated P-CC inequality. However, similarly to what we did for the CC inequalities, we decided
to choose the node with the highest qk∗m value, that is, the nodem ∈ R such that qk∗m ≥ qk∗i , ∀i ∈ R.
The pseudocode for the heuristic separation of the P-CC inequalities is presented in Algorithm E.3.
Once again, we decided to put a limit to the number of added violated inequalities. Therefore, the
heuristic separation algorithm stops either when it has separated all the P-CC inequalities induced
by the connected components or when the maximum number of added violated inequalities was
reached.

In the user cut callback for the P-CC inequalities, we start by applying the heuristic separation
algorithm presented in Algorithm E.3 and in the end, when the heuristic procedure is not able to
provide new violated inequalities, we use the exact separation algorithm, presented in Algorithm
E.2, either to find more violated inequalities or to conclude that there are no more violated inequal-
ities. By using this procedure we ensure that the solution obtained is the optimal solution for LP
relaxation of the P-CC model.

Separation algorithm for the integer solutions

When the solution (x∗, w∗, p∗, q∗, u∗) is integer we use the exact separation algorithm for the P-
CC inequalities, that is, Algorithm E.2 but we only add a maximum of one violated inequality per

270

APPENDIX E. THE BRANCH-AND-CUT ALGORITHM FOR THE INTER- AND
INTRAFAMILY FORMULATIONS

Algorithm E.3 Heuristic separation of the P-CC inequalities.
Require: A fractional solution (x∗, w∗, p∗, q∗, u∗) that satisfies the equation system (7.4)-(7.11),

(4.2), (7.27)-(7.34).
1: for all l ∈ M do
2: for all k ∈ Fl such that pk∗ > 0 do
3: Determine the connected components {Ck

0 , . . . , C
k
p} and the set of non-visited nodes R

induced by the fractional solution.
4: iter = 0.
5: while iter < p+ 1 do
6: if iter = 0 then
7: Set R′ = Ck

0 and R = Ck
1 ∪ Ck

2 ∪ . . . ∪ Ck
p ∪R.

8: else
9: Set R = Ck

iter and R′ = Fl \R.
10: end if
11: Determinem ∈ R such that qk∗m ≥ qk∗i ,∀i ∈ R.
12: Add the violated inequality wk(R′, R) ≥ qkm.
13: iter = iter + 1.
14: end while
15: end for
16: end for

271

APPENDIX E. THE BRANCH-AND-CUT ALGORITHM FOR THE INTER- AND
INTRAFAMILY FORMULATIONS

iteration.

E.1.3 Separating the P-RV inequalities

The P-RV inequalities wk(R′, R) ≥ 1, ∀l ∈ M, ∀R ⊆ Fl : |R| ≥ nl − vl + 1, ∀k ∈ R′ (7.26)
are only defined for sets R with a certain cardinality, more precisely, the set R must have at least
nl − vl + 1 nodes. Therefore, the separation algorithm for the P-RV inequalities is similar to the
separation algorithm for the RFV inequalities (4.35) presented in Section 5.2.2. In addition, the
cut-set [R′, R] only contains arcs which have their initial and final nodes from the same family and
that depend on the initial node of the path, consequently, the P-RV inequalities are separated in a
network similar to the one introduced in Section E.1.2 to separate the P-CC inequalities.

Before presenting the separation algorithm for the P-RV inequalities, recall the set S=
l = {S ⊆

Fl : |S| = nl−vl+1}which is the set of subsets of Fl, with l ∈ M, for which the P-RV inequalities
are defined. Let (x∗, w∗, p∗, q∗, u∗) be a fractional solution that satisfies the constraints in the inter-
and intrafamily formulation that are not in exponential number, that is, constraints (7.4)-(7.11),
(4.2), (7.27)-(7.34). Consider that for a family l ∈ M the initial node of the path is k ∈ Fl. In
addition, consider the capacitated network Gk∗ = (Fl ∪ t, Al ∪ At) where t is a fictitious node and
At is the set of arcs from Fl to t, that is, At = {(i, t) : i ∈ Fl}. The capacities of the arcs (i, j) ∈ Al

are lij = 0 and uij = wk∗
ij while the capacities of the arcs (i, t) ∈ At are both zero (lit = uit = 0), for

now. In order to separate all the P-RV inequalities (7.26) we must fix every setRl ∈ S=
l toR, which

is done by setting the capacity of the arcs (i, t) ∈ At such that i ∈ Rl to infinity and computing the
maximum flow from k to t. The pseudocode for the separation algorithm for the P-RV inequalities
is available in Algorithm E.4.

Similarly to what we did with the other separation algorithms, we limited the number of added
violated inequalities per iteration. Therefore, Algorithm E.4 stops either when it cannot find any
violated P-RV inequality or when the maximum number of added violated inequalities was reached.

Heuristic separation for the P-RV inequalities

Weverified in Section 5.2.2 that the exact separation of the RFV inequalities is very time consuming.
As the separation algorithm of the P-RV inequalities is similar to the separation algorithm of the RFV
inequalities it is very time consuming. Therefore, we developed a heuristic separation algorithm for
the P-RV inequalities, which is similar to the heuristic separation algorithm for the P-CC inequalities
presented in Algorithm E.3 with the difference that after determining the sets R′ and R we need to
verify if R ∈ S=

l . If it is, then we add the violated P-RV inequality found. Algorithm E.5 shows the
pseudocode for the heuristic separation of the P-RV inequalities.

272

APPENDIX E. THE BRANCH-AND-CUT ALGORITHM FOR THE INTER- AND
INTRAFAMILY FORMULATIONS

Algorithm E.4 Separation algorithm for the P-RV inequalities.
Require: A fractional solution (x∗, w∗, p∗, q∗, u∗) that satisfies the equation system (7.4)-(7.11),

(4.2), (7.27)-(7.34).
1: for all l ∈ M do
2: for all k ∈ Fl such that pk∗ > 0 do
3: Create a new complete graph Gk∗ = (Fl, Al ∪ At).
4: for all (i, j) ∈ Al do
5: Set its capacities to lij = 0 and uij = wk∗

ij .
6: end for
7: Compute all the sets in S=

l (composed of subsets of Fl).
8: while There are sets Rl ∈ S=

l to consider do
9: for all (i, t) ∈ At do
10: Set its capacities to lij = uij = 0.
11: end for
12: Consider Rl ∈ S=

l and set the capacities of arcs (i, t) ∈ At, with i ∈ Rl, to uit = +∞
13: Determine the max-flow between k and t in Gk∗. Let ν be the value of the max-flow.
14: if ν < 1 then
15: Determine the sets R and R′ = Fl \R such that R′ is the set of nodes reachable from

node k in the residual network associated with the max-flow.
16: Add the violated inequality wk(R′, R) ≥ pk.
17: end if
18: end while
19: end for
20: end for

273

APPENDIX E. THE BRANCH-AND-CUT ALGORITHM FOR THE INTER- AND
INTRAFAMILY FORMULATIONS

Algorithm E.5 Heuristic separation of the P-RV inequalities.
Require: A fractional solution (x∗, w∗, p∗, q∗, u∗) that satisfies the equation system (7.4)-(7.11),

(4.2), (7.27)-(7.34).
1: for all l ∈ M do
2: for all k ∈ Fl such that pk∗ > 0 do
3: Determine the connected components {Ck

0 , . . . , C
k
p} and the set of non-visited nodes R

induced by the fractional solution.
4: iter = 0.
5: while iter < p+ 1 do
6: if iter = 0 then
7: Set R′ = Ck

0 and R = Ck
1 ∪ Ck

2 ∪ . . . ∪ Ck
p ∪R.

8: else
9: Set R = Ck

iter and R′ = Fl \R.
10: end if
11: if R ∈ SFV then
12: Add the violated inequality wk(R′, R) ≥ pk.
13: end if
14: iter = iter + 1.
15: end while
16: end for
17: end for

274

APPENDIX E. THE BRANCH-AND-CUT ALGORITHM FOR THE INTER- AND
INTRAFAMILY FORMULATIONS

We start by separating the P-RV inequalities by using the heuristic separation algorithm pre-
sented in Algorithm E.5 and then, when the heuristic separation algorithm is not able to provide
more violated P-RV inequalities, we apply the exact separation presented in Algorithm E.3. With
this approach we ensure that the solution obtained does not violate any P-RV inequality.

Separation algorithm for integer solutions

When the solution (x∗, w∗, p∗, q∗, u∗) is integer we use a different separation algorithm, which is
based on the idea that if an integer solution is unfeasible then it contains subtours. Recall that, in
this case, the subtours depend on the initial node of the path. Consider a multi-family l ∈ M and
a node k ∈ Fl which is the initial node of the path associated with family l. Let Tk∗

l be the set
of subtours associated with the solution (x∗, w∗, p∗, q∗, u∗) and with the family l that has k as the
initial node of the path. Consider that the subtour T0 ∈ Tk∗

l is the one that contains node k ∈ Fl.
Additionally, let R = {i ∈ Fl : q

k∗
i = 0} be the set of non-visited nodes in the path that has k as

the initial node. We define R as a subset of Fl that has at least one subtour, except for subtour T0,
and the set R. Since: (i) k ∈ R′; and (ii) |R| ≥ nl − vl + 1 as there are visited nodes in R and,
consequently, there are not enough nodes in R′ to fulfill the family visits, then the set R is in the
conditions of the P-RV inequalities. Algorithm E.6 shows the pseudocode for the lazy constraint
callback used for the P-RV inequalities.

Algorithm E.6 Separation algorithm for the P-RV inequalities for integer solutions.
Require: An integer solution (x∗, w∗, p∗, q∗, u∗) that satisfies the equation system (7.4)-(7.11),

(4.2), (4.4) for i = 0, (7.28)-(7.34).
1: for all l ∈ M do
2: for all k ∈ Fl such that pk∗ > 0 do
3: Determine Tk∗

l and R. Let Ti be the i-th subtour in Tk∗
l .

4: Set j = 1.
5: while j ≤ |Tk∗

l | do
6: Set R = ∪|Tk∗

l |
i=j Ti ∪R and R′ = Fl \R.

7: Add the violated inequality wk(R′, R) ≥ pk.
8: Set j = j + 1.
9: end while
10: end for
11: end for

space

275

APPENDIX E. THE BRANCH-AND-CUT ALGORITHM FOR THE INTER- AND
INTRAFAMILY FORMULATIONS

In the B&C algorithm for the inter- and intrafamily formulations we used the heuristic callback
described in Section 7.4.1

276

Appendix F

Dimension proof

In this appendix we show how we obtained the dimension (8.1). Recall that

dim(PFTSP) = |N |2 − 1− L−
∑
l∈U

nl × (nl − 1)−
∑
l∈W

(nl − 1),

where PFTSP is the convex hull of the integer points that are feasible solutions for the FTSP. We
start by formally defining the polytope PFTSP and then we show how we determined its dimension
(8.1).

When we presented the generic model in Section 4.1 we mentioned that the y variables are
auxiliary. Thus, polytope PFTSP can be defined in the space of the x variables. Therefore, for
simplification, we present the generic model for the FTSP only defined with the x variables:

Minimize
∑

(i,j)∈A

cijxij (4.1)

Subject to: ∑
j∈N

x0j = 1 (4.2)

∑
j∈0∪N

xji −
∑

j∈0∪N

xij = 0 ∀i ∈ 0 ∪N (4.4)

∑
i∈Fl

∑
j∈0∪N

xij = vl ∀l ∈ L (F.1)

{(i, j) ∈ A : xij = 1} is a single connected circuit (4.6)

xij ∈ {0, 1} ∀(i, j) ∈ A, (4.7)

The only difference between this model and the one presented in Section 4.1 is that in constraints
(4.5) we replaced the y variables with the x variables using the equalities (4.3), which originated
constraints (F.1).

277

APPENDIX F. DIMENSION PROOF

The polytope PFTSP is formally defined as follows:

PFTSP = conv({x ∈ R|A| : x satisfies (4.2), (4.4), (F.1), (4.6)− (4.7)}).

Note that the polytope PFTSP is defined with the generic subtour elimination constraints (4.6)
because wewill not need to explicitly define them in order to obtain the dimension (8.1). In addition,
recall that we assume that G is a complete graph, thus, |A| = (|N |+ 1)× |N |.

We start by determining the rank(A=, b=), where (A=, b=) is the equality matrix associated
with the polytope PFTSP . The number of linearly independent equalities presented in the generic
formulation showed previously is |N |+1+L, which correspond to one equality (4.2), |N | equalities
(4.4) and L equalities (F.1). Note that, even though there are |N | + 1 equalities (4.4), one of them
is not linearly independent from the others.

Consider a single-family l ∈ U . As we mentioned in Section 4.1, there is a set of valid inequal-
ities for family l that results from the observation that if i, j ∈ Fl, then the arc (i, j) will never
be used in a feasible solution for the FTSP, since using these arcs would imply visiting two nodes
from a single-visit family. Therefore, xij = 0, ∀(i, j) ∈ A : i, j ∈ Fl and there are an additional
nl × (nl − 1) equalities for the single-visit families.

Consider now a family l ∈ W . Since we are required to visit every node from family l, the
visit constraints (F.1) associated with family l may be replaced with

∑
j∈0∪N xij = 1,∀i ∈ Fl and,

thus, there are an additional nl equalities. However, in the presence of constraints (F.1) one of the
previous equalities is not linearly independent from the others. Therefore, for l ∈ W , we have an
additional nl − 1 linearly independent equalities.

The number of equalities presented is a lower bound for the number of linearly independent
rows in (A=, b=), consequently and according to the definition of rank (Definition 7) we have:

rank(A=, b=) ≥ |N |+ 1 + L+
∑
l∈U

nl × (nl − 1) +
∑
l∈W

(nl − 1)

From Proposition 1 presented in Section 2.2 and due to the polytope PFTSP being contained in
R|A| it follows that:

dim(PFTSP) = |A| − rank(A=, b=)

=⇒ dim(PFTSP) ≤ |A| − [|N |+ 1 + L+
∑
l∈U

nl × (nl − 1) +
∑
l∈A

(nl − 1)]

=⇒ dim(PFTSP) ≤ |N |2 − 1− L−
∑
l∈U

nl × (nl − 1)−
∑
l∈W

(nl − 1). (F.2)

From Definition 9 of Section 2.2 we know that the dimension of a polytope is the maximum
number of affinely independent points that belong to the polytope minus 1. Hence, in order for

278

APPENDIX F. DIMENSION PROOF

the inequality (F.2) to be satisfied with equality we must find |N |2 − L −
∑

l∈U nl × (nl − 1) −∑
l∈W(nl − 1) affinely independent points that belong to the polytope PFTSP .
The underlying idea for the construction of the |N |2−L−

∑
l∈U nl× (nl− 1)−

∑
l∈W(nl− 1)

affinely independent points is to consider a TSP instance that contains the depot and vl nodes from
each family l ∈ L and use the affinely independent points of the TSP polytope. Then, the other
affinely independent points are obtained by replacing visited nodes with non-visited nodes in the
TSP instance.

Consider the set T which contains the depot and the first vl nodes, according to a lexicographic
ordering of the nodes, of each family l, with l ∈ L, that is, T = {0, 1, . . . , v1, n1 + 1, . . . , n1 +

v2, . . .}. Note that |T | =
∑

l∈L vl + 1 = V + 1, thus, solving the FTSP considering the nodes in T
is equivalent to solving a TSP with V + 1 nodes. Since the dimension of the polytope associated
with the TSP with V + 1 nodes is (V + 1) × V − 2(V + 1) + 1 (see, e.g., Lawler et al., 1985),
we know that, from the definition of dimension, the polytope associated with the TSP contains
(V +1)× V − 2(V +1)+ 1+ 1 affinely independent points. Due to the set T containing vl nodes
from each family l ∈ L, these (V + 1) × V − 2(V + 1) + 1 + 1 affinely independent points are
feasible FTSP solutions and, thus, belong to the polytope PFTSP . Therefore, we have

(V + 1)× V − 2(V + 1) + 1 + 1 = V × (V − 1) (F.3)

affinely independent points in PFTSP .
The remaining affinely independent points are obtained by replacing nodes in T with nodes in

N \T . There are three distinct cases: (i) the nodes inN \T belong to a family l ∈ L\ (U ∪W); (ii)
the nodes inN \ T belong to a family l ∈ U ; and (iii) the arcs used link nodes inN \ T that belong
to different families. Note that we do not consider the case in which the nodes inN \ T belong to a
family l ∈ W since in these families we must visit every family node and, consequently, there are
no nodes inN \ T that belong to family l. We start by considering nodes in the case (i), then nodes
in the case (ii) and, finally, arcs in the case (iii).

For all the affinely independent points, or feasible FTSP solutions, presented henceforth, we
only explicitly show some of its arcs, which correspond to the ones that ensure their affinely inde-
pendence. The rest of the solution is completed with any nodes from the set T .

Let α be a node in the case (i), that is, consider family l ∈ L \ (U ∪W) and α ∈ Fl : α /∈ T .
Note that α exists since we are not required to visit every node from family l. Consider the new
solutions constructed by using the following sequence of arcs:

{(0, α), (α, i), . . .} ∀i ∈ T \ 0 (F.4)

{(0, i), (i, α), . . .} ∀i ∈ T \ 0. (F.5)

279

APPENDIX F. DIMENSION PROOF

This construction originates 2×|T \0| = 2V new solutions, which are affinely independent between
them and from the solutions presented previously since these are the only solutions that use the arcs
(i, α) and (α, i), with i ∈ T \ 0. We can use this construction for all nodes α ∈ Fl \ T . Therefore,
for each family l ∈ L \ (U ∪W) we can construct (nl − vl) × 2V affinely independent points by
using constructions (F.4) and (F.5).

Consider now that β is the nl-th node from family l. By noting that β /∈ T due to the lexico-
graphic ordering chosen, we can construct more affinely independent points by using the following
sequence of arcs:

{(0, i), . . . , (β, 0)} ∀i ∈ Fl ∩ T (F.6)

These points are the only ones defined in the hyperplane characterized by x0i = 1 and xβ0 = 1,
with i ∈ Fl ∩ T . Therefore, we obtain an additional vl points for each family l ∈ L \ (U ∪W) by
using construction (F.6).

Finally, considering the nodes γ ∈ Fl \ {T ∪ β} we can construct more points by using the
following construction:

{. . . , (γ, 0)} γ ∈ Fl \ {T ∪ β}, (F.7)

which are affinely independent from the ones previously presented since they are the only that use
the arc (γ, 0) with γ ∈ Fl \ {T ∪ β}.

Summarizing, with the constructions (F.4), (F.5), (F.6) and (F.7) we can obtain:∑
l∈L\(U∪W)

[2V × (nl − vl) + vl + nl − vl − 1] =
∑

l∈L\(U∪W)

[2V × (nl − vl) + nl − 1] (F.8)

affinely independent points.
Consider now a non-visited node in case (ii), that is, consider a single-visit family l ∈ U and α

a non-visited node from family l. Additionally, we define β as the visited node from family l, that
is, β ∈ Fl∩T . By using a construction similar to constructions (F.4) and (F.5) presented previously
and noting that these constructions may only be applied to i ∈ T \ {0, β} since we cannot use the
arcs (α, β) and (β, α), we can construct 2(V −1) new affinely independent solutions with α, which
are affinely independent for the same reason as before, that is, they use arcs which have never been
used in any solution. We can also use construction (F.7) for the single-visit families, therefore there
is an additional affinely independent point that we can obtain by using the arc (α, 0). Consequently,
and since the constructions presented are valid for every α ∈ Fl \ T , the total number of affinely
independent solutions constructed considering single-visit families is:∑

l∈U

[2(V − 1) + 1]× (nl − vl) =
∑
l∈U

(2V − 1)× (nl − vl) (F.9)

280

APPENDIX F. DIMENSION PROOF

Finally, we consider solutions that use arcs (i, j) between nodes in the case (iii), that is, such
that i, j ∈ N \ T . Therefore, let α, β /∈ T : α ≠ β. We can construct solutions that are affinely
independent from the ones presented previously since they are the only ones that use the following
arcs:

{(0, α), (α, β), . . .} ∀α, β ∈ N \ T : α ̸= β (F.10)

{(0, β), (β, α), . . .} ∀α, β ∈ N \ T : α ̸= β (F.11)

By using constructions (F.10) and (F.11) we obtain a maximum of (|N | − V)× (|N | − V − 1)

additional affinely independent solutions. Observe that when the nodes α and β belong to a single-
visit family l ∈ U , the arcs (α, β) and (β, α) cannot be used to construct points ofPFTSP . Therefore,
for each family l ∈ U wemust subtract (nl−vl)×(nl−vl−1) arcs. Summarizing, the total number
of affinely independent points constructed that use arcs between nodes α, β ∈ N \ T : α ̸= β is:

(|N | − V)(|N | − V − 1)−
∑
l∈U

(nl − vl)(nl − vl − 1) (F.12)

By adding all the affinely independent points constructed so far, that is, (F.3), (F.8), (F.9) and
(F.12) we obtain the expression:

V × (V − 1) + (|N | − V)× (|N | − V − 1) +
∑
l∈L

[2V × (nl − vl) + nl − 1]

−
∑
l∈U

[2V × (nl − vl) + nl − 1]−
∑
l∈W

[2V × (nl − vl) + nl − 1]

+
∑
l∈U

(2V − 1)× (nl − vl)−
∑
l∈U

(nl − vl)(nl − vl − 1) (F.13)

By noting that when l ∈ W we have nl = vl and that when l ∈ U we have vl = 1, expression
(F.13) is equal to:

V × (V − 1) + (|N | − V)× (|N | − V − 1) +
∑
l∈L

2V × (nl − vl) +
∑
l∈L

nl − |L|

−
∑
l∈U

2V × (nl − 1)−
∑
l∈U

(nl − 1)−
∑
l∈W

(nl − 1)

+
∑
l∈U

2V × (nl − 1)−
∑
l∈U

(nl − 1)−
∑
l∈U

(nl − 1)(nl − 2) (F.14)

By using the notation presented in Chapter 3, we have
∑

l∈L nl = |N | and
∑

l∈L vl = V . In
addition, note that the term

∑
l∈U 2V × (nl − 1) appears in the previous expression with a positive

281

APPENDIX F. DIMENSION PROOF

and negative sign, therefore expression (F.14) is equal to:

V × (V − 1) + (|N | − V)× (|N | − V − 1) + 2V |N | − 2V 2 + |N | − |L|

−
∑
l∈W

(nl − 1)−
∑
l∈U

(nl − 1)(nl − 2 + 1 + 1) (F.15)

= |N |2 − L−
∑
l∈W

(nl − 1)−
∑
l∈U

nl × (nl − 1) (F.16)

As it was already mentioned, the dimension of a polytope is equal to maximum number of
affinely independent points minus one. Therefore,

dim(PFTSP) ≥ |N |2 − 1− L−
∑
l∈W

(nl − 1)−
∑
l∈U

nl × (nl − 1) (F.17)

From (F.2) and (F.17) we obtain the dimension (8.1).

Example 34. The dimension of the polytope associated to the FTSP instance presented in Figure
3.1 is 52−1−2−0−2×1 = 20, therefore, there are 21 affinely independent points in the polytope
associated to this instance. Table F.1 shows the affinely independent points obtained using the
constructions presented previously.

282

APPENDIX F. DIMENSION PROOF

Table F.1: Affinely independent points considering the FTSP instance presented in Figure 3.1.

TSP points considering T = {0, 1, 3, 4} (F.3)
{(0, 4), (4, 1), (1, 3), (3, 0)} {(0, 3), (3, 1), (1, 4), (4, 0)}
{(0, 1), (1, 4), (4, 3), (3, 0)} {(0, 3), (3, 4), (4, 1), (1, 0)}
{(0, 1), (1, 3), (3, 4), (4, 0)} {(0, 4), (4, 3), (3, 1), (1, 0)}

Points using construction (F.4) Points using construction (F.5)
{(0, 5), (5, 1), (1, 3), (3, 0)} {(0, 1), (1, 5), (5, 3), (3, 0)}
{(0, 5), (5, 3), (3, 1), (1, 0)} {(0, 3), (3, 5), (5, 1), (1, 0)}
{(0, 5), (5, 4), (4, 1), (1, 0)} {(0, 4), (4, 5), (5, 1), (1, 0)}

Points using construction (F.6)
{(0, 3), (3, 1), (1, 5), (5, 0)}
{(0, 4), (4, 1), (1, 5), (5, 0)}

Points using construction (F.4)
for single-visit families

Points using construction (F.5)
for single-visit families

{(0, 2), (2, 3), (3, 4), (4, 0)} {(0, 3), (3, 2), (2, 4), (4, 0)}
{(0, 2), (2, 4), (4, 3), (3, 0)} {(0, 4), (4, 2), (2, 3), (3, 0)}

Points using construction (F.7) for single-visit families
{(0, 3), (3, 4), (4, 2), (2, 0)}

Points using construction (F.10) Points using construction (F.11)
{(0, 2), (2, 5), (5, 3), (3, 0)} {(0, 5), (5, 2), (2, 3), (3, 0)}

Note that dimension (8.1) may not be valid for instances with a smaller size than the instance
presented in Figure 3.1 due to the reduced number of nodes.

283

