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Abstract

The human genome contains an astonishingly large fraction of noncoding DNA,
which is pervasively transcribed into thousands of long noncoding RNAs (IncRNAs)
- long transcripts with no discernible protein-coding potential. However, little is
known about IncRNAs’ biological functions, and their genome annotations show ev-
ident signs of inadequacy: existing gene models are sketchy, and many IncRNAs
remain uncatalogued. This annotation incompleteness hampers IncRNA functional
characterization, notably by failing to accurately describe gene boundaries. To ad-
dress this issue, the present work aims to advance towards a complete and accurate
annotation of IncRNA genes in the human genome. Using a high-throughput, tar-
geted long-read transcriptome sequencing methodology, this study uncovers thou-
sands of novel IncRNAs, approximately doubling the annotated transcript complex-
ity within targeted loci. The method presented vastly outperforms competing tech-
niques in accuracy, and precisely maps many previously unknown, strongly sup-
ported IncRNA transcript boundaries. This augmented catalog provides the most
definitive view of the genomic properties of IncRNAs to date, while contributing a
robust foundation for future IncRNA functional characterization.
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2 INTRODUCTION

From Mendel’s garden to whole-genome

sequencing: a brief historical perspective

A genome encodes the information necessary for its host organism’s development
and physiological operation over its entire lifetime — namely, its phenotype. Since
Mendel’s breeding experiments established the concept of discrete inheritable units'
— later coined genes by Johannsen” — in the second half of the nineteenth century,
relating genes and phenotypes has been the raison d’étre of Genetics.

Mendel and his contemporaries were unaware of the cytological — let alone molec-
ular — basis of heredity. Mendel’s laws of heredity went largely unnoticed or misun-
derstood by the scientific community during almost four decades after the Mora-
vian monk published his seminal work®. Soon after their rediscovery, Sutton*” and
Boveri® independently suggested the chromosomes to be the carriers of genetic infor-
mation, thereby introducing the chromosome theory of heredity. Studying grasshop-
pers’” germ cell division, Sutton directly made the connection between his observa-
tions and Mendel’s theoretical framework. He aptly concludes his 1902 paper with
the following statement:

”[...] the association of paternal and maternal chromosomes in pairs and their
subsequent separation during the reducing division [...] may constitute the phys-
ical basis of the Mendelian law of heredity.”*

Originally met with controversy, the chromosome theory was later validated suc-
cessively by Carothers’” and Morgan®. Naturally, assigning such a crucial genetic role
to chromosomes drove scientists towards studying them in more depth. Sticking to
a strict etymological definition of genomics (the study of genomes), one might argue
that it marked the birth of this discipline.

Early efforts to map genetic markers onto the genome came to fruition in the
1910s. Sturtevant and Morgan, by investigating patterns of gene co-segregation over
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generations of Drosophila melanogaster populations, were able to produce the first ge-
netic map (Figure 1)%’. Their so-called linkage maps relied on the assumption that the
closer physically genes are on a chromosome, the lower their chance of being sep-
arated from each other during meiotic crossover, and hence, the higher their prob-
ability of being inherited together. Morgan’s team could thus estimate the relative
distances that separate genes on Drosophila chromosomes. The mere ability to build
such consistent maps was highly significant: it meant that genes were linearly ordered
along chromosomes.

Figure 1: Sturtevant’s genetic map of six Drosophila sex-linked genes
on their chromosome. Top row (traits, modern nomenclature between
parentheses when applicable): B, "Black body" ("Yellow body"); C,
"Eye color" ("White eyes"); O, "Eosin eyes" ("White eyes"); P, "Vermil-
ion eyes"; R, "Miniature wings"; M, "Rudimentary wings". Bottom
row: distance. The unit of distance is taken as a portion of the chro-
mosome of such length that, on average, one cross-over will occur in
it out of every 100 gametes formed. That is, percent of cross-overs is
used as an index of distance. Reproduced from’.

Decades more were necessary to progress from Morgan and Sturtevant’s
painstakingly assembled linkage maps to nucleotide-resolved, annotated genome
sequences. DNA’s basic chemistry — a polymer of adenine (A), cytosine (C), guanine
(G) and thymine (T) - had been described long before'"; yet, its biological role was
still obscure. DNA finally came to prominence when it was proposed by Avery
and colleagues as the likely biomolecular basis of heredity''. The hypothesis was
confirmed in 1952 with the Hershey-Chase experiment'?, and shortly after by Watson
and Crick'®. After detailing their double helix model and its associated A-T G-C
base complementarity rules, the British-American pair note:

"It has not escaped our notice that the specific pairing we have postulated
immediately suggests a possible copying mechanism for the genetic material.””

As a direct connection between chromosomes, DNA and heredity was finally es-
tablished, resolving DNA sequences became imperative. The concept of a genetic pro-
gram governing an organism’s development, as formulated by Jacob, Monod'* and
Mayr'” in 1961, added momentum to this enterprise. Watson and Crick’s discovery
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also paved the way for first-generation DNA sequencing methods, which were devel-
oped in the late seventies by Maxam, Gilbert'® and Sanger!’'®. Those were quickly
applied to decoding the genomes of simple organisms, and subsequent gradual im-
provements and democratization of sequencing and molecular biology techniques
enabled the tackling of increasingly complex genomes (see summary timeline in Ta-
ble 1; for a more complete history of DNA sequencing methods, see Heather and
Chain'”).

Organism Domain Haploid Date finished =~ Remarks References
genome size

MS2 Virus (RNA) 3.5kb 1976 First genome “

X174 Virus (DNA) 5.4 kb 1977 First DNA genome 2

H. influenzae Prokaryote 1,8 Mb 1995 First genome of a 2
free-living organism

S. cerevisiae Eukaryote 12 Mb 1996 First genome of a z
eukaryote

C. elegans Eukaryote 97 Mb 1998 First genome of a B
multicellular organism

D. melanogaster ~ Eukaryote 120 Mb 2000 2

H. sapiens Eukaryote 3Gb 2001 26,27

M. musculus Eukaryote 2,5Gb 2002 2

Table 1: Timeline of some landmark whole-genome sequencing

projects.

Yet, a bare sequence of As, Ts, Gs and Cs is next to useless in the context of biologi-
cal research; in other words, a genome’s sequence (namely, its data) is only as valuable
as its annotation (i.e., its associated metadata). Moving to an interpretable genome se-
quence requires to locate genes and other landmarks on the genome, assigning them
biological functions and describing their regulation, to name a few. These are some
of the most important challenges at the heart of genome annotation.
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II

Gene annotation in the genomic era

If Sturtevant and Morgan can be credited with producing the first genome maps,
a fundamental distinction needs to be made between those and present-day, high-
resolution genome annotations. The two proceed from opposite approaches: because
the early Drosophila geneticists were unaware of the biochemical nature of the genetic
material, they mapped phenotypic traits to the genome. In contrast, the modus operandi
of modern genomics consists in first defining a genotype, then investigate how pheno-
typic traits emerge from it — a process called reverse genetics. To put it another way,
it is concerned with relating each nucleotide in a genome to its biological function.
This procedure is slow: today, in the so-called genomic era, there remain thousands
of identified genomic features whose function is unknown, even in extremely well-
studied organisms (see e.g. Wood et al.”).

Recent large-scale genomic studies have also prompted the expansion and redefi-
nition of the term "gene": it is no longer merely an abstract unit of heredity, as defined
by classical genetics. Rather, a gene is nowadays generally defined as a genomic re-
gion encoding a set of overlapping functional products, usually RNA transcripts — a

more practical, but still imperfect working definition for modern genomics™.

The process of genome annotation can be roughly subdivided into three consecu-
tive layers’!, as summarized in Figure 2:

1. Nucleotide-level annotation: This first step consists in precisely locating ge-
nomic landmarks — genes, transcripts, repeats, promoters, enhancers, etc. Gene
finding is one of the most critical components of nucleotide-level annotation.
Gene finding in prokaryotic genomes is relatively straightforward, due to their
extreme compactness: in the bacterium Escherichia coli, for example, the aver-
age distance between adjacent genes is only 118 base pairs®”. To summarize,
once a bacterial genome is assembled, finding protein-coding regions relies, for
the most part, on finding open reading frames (ORFs) longer than a certain
threshold, in silico. Because prokaryotic noncoding RNA (ncRNA) genes are
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usually very well conserved evolutionarily, they are also readily identifiable. In
eukaryotes, the low gene density, combined with the presence of introns and
alternative splicing, significantly hampers the task of finding both coding and
ncRNA genes (see Section 11.1).

2. Product-level annotation: When a genomic feature is expressed into a prod-
uct in the cell, such as an RNA and/or a polypeptide, the identification of this
product is carried out at this point. This is usually achieved through sequence
homology — searching the sequence in question against a database of known
protein or RNA molecules, under the assumption that sequence conservation
implies function conservation.

3. Process-level annotation: At this final stage, gene products are assigned a func-
tion; that is, they are integrated into the broader framework of the cell and or-
ganism’s physiology. Automated in silico methods aimed at predicting gene
function exist, mainly for coding sequences’™*. However, in the absence of
clues gathered by these computational tools, this step involves more laborious
molecular biology techniques. Broadly speaking, these generally consist in dis-
rupting the expression or sequence content of the gene of interest, followed by
the study of the phenotypic consequences of the perturbation. Such methods
include mutagenesis, gene knock-out (i.e., inactivation of a gene at the DNA
level), knock-in (i.e., insertion or replacement of a gene in the genome) and
knock-down (i.e., gene silencing at the RNA level).

Naturally, this basic annotation workflow needs to be adapted to non-standard
cases. A very low level of sequence conservation, for example, might make product-
level annotation of a given gene unworkable. This step may be consequently skipped
altogether, and one may need to proceed directly to process-level — that is, functional
— annotation. Similarly, functional annotation can in principle be directly inferred
from product-level annotation if the product in question shows homology to an al-
ready well-characterized biomolecule —i.e., an RNA or a protein — from another or-
ganism. In fact, it is estimated that 98% of the entries in Gene Ontology — the most
widely used gene function annotation database — are inferred using computational
means only”. On the other hand, nucleotide-level annotation and gene finding, the
focus of the present work, arguably constitute the indispensable groundwork of any
functional genomic study.
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Nucleotide-level ==
annotation =

Product-level
annotation

Process-level
annotation

Figure 2: The three layers of genome annotation. See text for details

(nomenclature and figure inspired by”')

I1.1. Gene finding in eukaryotic genomes

Gene finding is at the core of nucleotide-level genome annotation — henceforth sim-
ply referred to as annotation. Given the size and complexity of eukaryotic genomes,
gene annotation techniques always incorporate an important computational compo-
nent, and can be roughly subdivided into de novo (i.e., using solely genome sequences
as input) and evidence-based (i.e., using both genomic and external, non-genomic evi-
dence) methods.

II.1.1. De novo gene prediction

As is the case with bacterial genomes, a draft annotation of eukaryotic genomes can
be obtained with computational methods using intrinsic genomic evidence only. A
subtype of these de novo methods, labeled ab initio, consists in only using the infor-
mation contained in the genome sequence of interest. From a practical standpoint,
this is by far the most straightforward approach for the annotator. However, ab initio
gene finding is considerably more challenging — and as a result, less accurate — in
eukaryotes than in bacteria or viruses, notably because of the typically more complex
structure of eukaryotic genes (Figure 3). In vertebrates, for instance, genes are usu-
ally composed of short exons, interspersed with much longer introns. Human genes
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are an apt illustration of this tendency, where exons are on average 249 basepairs
(bp)-long, while the intron average length is 6,450 bp. Moreover, recent estimates
point to less than 5% of the ~3 billion bp that compose the human genome being
exonic. When only considering the protein-coding portion of exons, this percentage
falls even lower (1.1%) .

Prokaryotes Eukaryotes
—> —>
Gene @5 Gene [T
+ Transcription Transcription
M Introns
sltllg\e = Premature ;

RNA — Y =
Exons

¢ Splicing

Mature

RNA

Figure 3: Gene structure and RNA maturation in prokaryotes and eu-
karyotes. In prokaryotes, the RNA is considered mature straight after
transcription. In eukaryotes, both exons (blue boxes) and introns (gray
boxes) are first transcribed, then introns are excised from the prema-
ture RNA during the splicing process.

Since a gene’s biological product is encoded exclusively in its exons, gene annota-
tion implies not only mapping genes, but also precisely delineating their exon/intron
structure. It should then appear clearly that, from a computational gene finding per-
spective, the signal (exons) to search for is deeply buried in noise (intronic and in-
tergenic sequences). The situation is further complicated by alternative splicing, a
pervasive phenomenon in vertebrates by which a gene is processed into multiple,
distinct transcripts®~*® (Figure 4).

I1.1.1.1. Coding gene prediction

Even protein-coding gene finding, a trivial undertaking in prokaryotes, is strongly
impeded by the presence of introns and the resulting lack of ORF contiguity in eu-
karyotic genomes. Therefore, to obtain best results, ab initio eukaryotic gene pre-
dictors must rely on sophisticated mathematical models — such as hidden Markov
models, conditional random fields and machine learning techniques — to detect splic-

IStatistics calculated from the GENCODE Human reference annotation (https://www.

36

gencodegenes.org)’’, version 21 (release: 2014).
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Gene ¢ )

* Transcription

B |
Primary s=—m=m——rr——m—

transcripts &= o -
el R

+ Splicing

il

Mature ®00==
transcripts e

Figure 4: Alternative splicing and transcript diversity. In eukary-
otes, one gene can give rise to multiple, distinct mature RNA prod-
ucts through alternative splicing. The gene (dark gray box) is tran-
scribed into a primary RNA transcript composed of putative introns
(light gray boxes) and exons (colored boxes). Introns can be differen-
tially spliced out to produce a variety of alternative, mature transcript
isoforms.

ing signals and sequence signatures characteristic of coding regions (see Brent” for
a review). In practice, ab initio programs — examples of which include GeneID*’
or GENSCAN*! - tend to identify individual coding exons reasonably well. Nev-
ertheless, they usually fall short of accurately chaining these into full-length ORFs,
as demonstrated by the EGASP (ENCODE Genome Annotation Assessment Project)

experiment’”.

There are, in addition, at least two other important facets of gene finding where
ab initio algorithms perform particularly poorly: alternative splicing and untranslated
region (UTR) prediction. Because alternative splicing is regulated not only by cis se-
quence signals but also by trans-acting factors highly contingent on the cellular con-
text, it is still near-impossible to predict from genomic sequence alone, despite recent
efforts to decipher a so-called "splicing code"****. Therefore, prediction programs
have no other option than to simply ignore alternative isoforms, and output only
what they consider to be the most likely chain of coding exons. On the other hand,
UTRs - transcribed regions upstream and downstream of the ORF in coding genes,

see Figure 5 — which are major players in post-transcriptional gene regulation*”*°, are
less constrained and notoriously difficult to model at the sequence level, compared to

coding regions. As a result, UTR computational predictions are wildly inaccurate, to
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Figure 5: Protein-coding gene structure in eukaryotes. The pre-mRNA
contains exons (colored boxes) as well as introns. The ORF, which
specifies the protein’s aminoacid sequence through blocks of coding
sequences (CDS), is flanked by untranslated regions (UTRs) on both
sides.

the extent that ab initio software generally do not even attempt to report them™”*>*”.

UTRs can be of considerable length (Table 2), and the inability to correctly predict
them prevents the identification of potentially important post-transcriptional regu-
latory elements frequently contained in their sequences, including binding motifs,

microRNA response elements and RNA secondary structures® .

Organism 5" UTRs 3’ UTRs

N Median Mean Maximum N Median Mean Maximum
H. sapiens 86,836 92 145 5545 | 59,519 416 956 32,873
M. musculus 54,850 92 139 8,962 | 40,430 491 950 39,400

Table 2: Transcript UTR length in H. sapiens and M. musculus. The
number (N), median, mean and maximum length (in nucleotides) of
5" and 3’ UTRs are indicated for human and mouse, as observed in
the GENCODE annotation. See Supplementary Methods for further
details.

I1.1.1.2. Noncoding RNA gene prediction

It emerges from the above that ab initio approaches generally fail at providing an ac-
curate picture of protein-coding regions in a genome. To make matters worse, their
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performance appears even poorer with respect to noncoding RNA genes, with the
exception of a few well-characterized RNA species like ribosomal RNAs (rRNAs),
transfer RN As (tRNAs), small nucleolar RNAs (snoRNAs) and microRNAs. From
a computational standpoint, most ncRNAs share a lot of similarities with the UTRs
of coding transcripts, leading to comparable difficulties in predicting them (see Sec-
tion I1I.1.1.1). Besides the absence of protein-coding potential, these include lower
evolutionary conservation and lack of good mathematical models to detect them, for
example. Furthermore, the absence of an open reading frame makes it difficult to
assess the completeness of a noncoding transcript model. In other words, the "gram-
mar" of RNA is much less well understood than that of protein-coding sequences,
and this substantially impacts ncRNA prediction.

Genome-wide ab initio ncRNA prediction approaches generally attempt to detect

thermodynamically stable structures®’

. This is because although RNAs can act as
linear sequences, they also often fold into secondary and tertiary structure to per-
form their function. These methods, however, dramatically lack in accuracy, as ran-
dom RNA sequences tend to fold into stable structures just as well as functional
RNAs”™. In addition, some ncRNAs, particularly long ones”’, tend to be largely

unstructured®?.

I1.1.1.3. Using genomic homology to improve gene prediction: evolution to the
rescue

One way to enhance the performance of de novo prediction tools in both coding and
non-coding regions is to exploit comparative genomics approaches. Usually, this
involves the alignment of the target genome to one or more informant genomes
from related species. Gene finding software such as TWINSCAN™, SGP2°* and
CONTRAST™ leverage such homology information to better model coding regions,

leading to limited improvements in sensitivity and precision*’.

NcRNA predictors incorporating evolutionary models also exist. Those oper-
ate by searching genomic sequences for evolutionarily conserved secondary struc-
tures, by comparative analysis of covariation in homologous sequence alignments. A
plethora of such de novo structured RNA predictors have been developed, including
EvoFold”®, RNAz” and CMFinder™®. These algorithms, however, suffer from a wor-
ryingly high false positive rate””*’. In addition, those tend to predict small RNAs
and short-range structured regions rather than long, full-length transcripts®’, which
limits their usefulness in practice.
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I1.1.2. Evidence-based gene annotation

Gene annotation consists in finding precisely which parts of the genome are ex-
pressed as mature RNA. It follows naturally that sequencing RNA products and map-
ping them back to their original genome location should constitute the gold standard
of gene annotation. These methods are in principle capable of resolving alternative
isoforms as well as non-coding RNA features, two important aspects where purely
computational pipelines noticeably fail (see Section II.1.1). In fact, such empirical
transcriptome-based approaches have been shown to almost always greatly outper-
form de novo predictors*”.

I1.1.2.1. Methods for transcriptome sequencing

Overview. Because RNA is an inherently unstable molecule, and since most
sequencing chemistries are only suited for DNA, transcriptome sequencing studies
generally start with the conversion of RNA to double-stranded, complementary DNA
(cDNA) (Figure 6). cDNA has the additional advantage of being amplifiable in vitro
by Polymerase Chain Reaction (PCR), and/or in vivo by cloning it into bacterial vec-
tors. On the other hand, one should note that cDNA synthesis can introduce impor-
tant experimental biases, especially during first-strand synthesis. Two of those can
severely affect downstream gene annotations: Reverse Transcriptase (RT) template
switching, and spurious internal polyA priming. The first occurs when the elon-
gating RT-cDNA complex dissociates from the RNA template, and subsequently re-
anneals to a sequence similar to the original one, but at a different template location,
in cis or trans. In both cases, RT template switching produces experimental artifacts —
false introns for the former, false chimeric transcripts for the latter — that can lead to
erroneous annotations®"*?. The second RT-related pitfall stems from the hybridiza-
tion of the oligo-deoxythymidine (oligo-dT) primer to an internal stretch of As on the
RNA template, instead of the intended polyA tail. This results in the first-strand syn-
thesis starting from within the RNA template instead of its 3" end. Consequently, a
cDNA molecule truncated upstream of its true 3" end is produced®’. These two exper-
imental biases can be flagged by annotation pipelines, as their sequence substrates —
direct short repeats around intron boundaries for the former, genome-encoded polyA
runs for the latter — can be detected reasonably easily in downstream bioinformatic
analyses.
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Figure 6: cDNA synthesis in transcriptomics studies (simplified). The
method takes advantage of the polyadenylated (polyA) tail present at
the 3’ end of most eukaryotic mature RNAs. First-strand cDNA syn-
thesis is initiated at the 3" end of the transcript by the reverse transcrip-
tase, thanks to a complementary oligo-dT primer (in orange fonts,
framed) which anneals at random on the RNA’s polyA tail. The fi-
nal product is a double-stranded cDNA whose sequence is identical
(or complementary, depending on its strand) to the original RNA se-
quence. Note that non-oligo-dT RT priming methods exist, such as
those using gene-specific oligonucleotides (see Section 11.1.3.2) or ran-
dom hexamers, but those do not produce full-length cDNAs.

Sanger-based approaches. Before the advent of high-throughput sequencing
techniques, transcript sequencing required laborious and costly laboratory proce-
dures involving cDNA vector cloning and Sanger sequencing of random bacterial

clones®

. Since the Sanger method requires a known sequence to prime onto, the se-
quencing reaction usually starts on either end of the vector. For this reason, reads
tend to cover preferentially the 5" and 3’ ends of the cDNA insert. Moreover, be-
cause of the length limitations of the Sanger method, which rarely yields more than
1,000 bp per read, sequencing cDNA clones results in relatively short (ca. 500-800 bp),
single-pass reads — although with a very high (>99.999%) per-base accuracy®. Ow-
ing to the far greater length of most mammalian transcripts (Figure 7), these so-called

Expressed Sequence Tags (ESTs)*%”

cover cloned cDNA sequences only partially.
Obtaining full-length cDNA sequences hence required low-throughput approaches,
such as iterative "primer walking" along the cDNA. Despite these difficulties, initia-

tives like the Mammalian Gene Collection®®, FANTOM® and others’’ successfully
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relied on such techniques to build relatively large mammalian gene catalogs. As of
today, such early cDNA and EST databases still constitute the bulk of the evidence
underlying RefSeq and GENCODE’*"!, the two most widely used mammalian gene
annotation resources.

Organism
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2,000

Count (transcripts)

=
S

s RNGAUTI]fength ki 7.500 10,000

Figure 7: Transcript length distribution in mammalians vs typical
Sanger sequencing read length. Histogram of transcript lengths in
Human (magenta) and Mouse (blue) annotated genes. X-axis: mature
RNA length (that is, excluding introns) in nucleotides (nts). Respec-
tive median lengths (Human: 2,213 nts, Mouse: 2,298 nts) are depicted
as vertical lines for both species, using the same color scheme. The ap-
proximate range of read length output by Sanger sequencing (500-800
nts) is indicated by a gray rectangle. The X-axis is cut at 10,000 nts for
clarity. See Supplementary Methods for further details.

Second-Generation Sequencing (SGS) methods. Sometimes still unfortunately
called Next-Generation Sequencing (NGS) methods more than a decade after their
breakthrough, these techniques enabled a major step towards routine large-scale
transcriptome sequencing, starting in the mid-2000s. In addition to their much
higher yield and lower cost per sequenced base, those offer other important technical
advantages over Sanger methods, including the elimination of the cumbersome
cDNA cloning step. As a result, SGS RNA sequencing (RNA-Seq) quickly sup-
planted Sanger-based cDNA sequencing as the method of choice for transcriptome
studies (Figure 8).

The first commercialized SGS technology was the 454 pyrosequencing platform’?,
which yielded a maximum of one million reads per run, and reads of up to 1,000bp-
long. Because of its high cost and relatively low throughtput compared to other
SGS platforms, however, the 454 instrument was not commercially successful
and therefore discontinued by Roche in 2016. Nowadays, SGS is synonym with
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Figure 8: Publication trends of transcriptome sequencing methods
over time. The number of PubMed hits per 100,000 indexed papers
per year is represented for two search terms associated with transcrip-
tome sequencing techniques (ESTs: green, RNA-Seq: blue) between
1990 and 2018.

Solexa/Illumina sequencing’?, its most popular implementation.

Despite its name, SGS RNA-Seq does not operate directly on RNA, but rather on
c¢DNA molecules. SGS platforms are able to output hundreds of millions of high-
quality (~0.1% error rate for the HiSeq platform as of 2016”*) sequencing reads per
run, but those are typically in the range of 30 to 150 bases in length, i.e., shorter than
Sanger sequencing reads. Consequently, short-read RNA-Seq does not provide full-
length cDNA sequences, and transcripts need to be physically fragmented prior to
sequencing in order to achieve uniform coverage’”.

Re-assembling full-length transcript sequences from SGS short reads in silico is
possible, in principle. Examples of such algorithms abound, Scripture’®, Cufflinks””
and StringTie’® being some of the most widely used. These programs, however, face
the problem of assigning each short read to its originating transcript, which becomes
near-insoluble in case of extensive transcript overlap and alternative splicing. For this
reason, computational transcript reconstruction techniques end up lacking greatly in
accuracy: when compared to a ground-truth transcript annotation, their sensitivity
and precision generally do not exceed 25% and 50%, respectively, with particularly

poor results around the 5’ and 3’ transcript boundaries”*””.

Third Generation Sequencing (TGS), long-read technologies. These latest
methods enable significant improvements compared to SGS in terms of read length,
at the cost of lower throughput and higher error rate. For the first time, they bring
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the possibility to describe long RNA transcripts from 5’ to 3’ end in a single step and
without fragmentation, circumventing the need for computational read assembly.
Such platforms have been made available principally by two manufacturers: Pacific
Biosciences (PacBio) and, more recently, Oxford Nanopore Technologies (ONT). Both
methods are capable of generating multi-kilobase-long reads and can currently yield
up to a few million reads per run, while relying on radically different principles.

PacBio’s Single-Molecule Real-Time (SMRT) technology consists in the incorpora-
tion of labeled nucleotides by a DNA polymerase along individual DNA molecules,
which is recorded by a laser and camera system in microwells. Each nucleotide is
read with a rather high ~13% error rate, on average74. However, the ligation of hair-
pin adapters (called "SMRTbells", Figure 9) to each end of cDNA molecules allows the
DNA polymerase to circle around its substrate and thus, read the same sequence re-
peatedly on both strands. Building a consensus sequence out of multiple such passes
on the same cDNA molecule is possible, thanks to the stochastic nature of SMRT
sequencing errors. This results in a so-called Circular Consensus Sequence (CCS),
which exhibits error rates of less than 1% - still an order of magnitude higher than Il-
lumina HiSeq. PacBio’s cDNA sequencing application, IsoSeq, has been successfully
applied to transcriptome sequencing since 2013%.

Q DMA Polymerase

== cDNA
=  SMRThell adapter

Figure 9: Schematic structure of SMRTbell cDNA libraries used in
PacBio sequencing. Ligated SMRTbell adapters circularize the cDNA
molecule, which enables the DNA polymerase to perform multiple
passes along it, and hence correct sequencing errors.

In contrast, ONT devices rely on multiple electro-sensitive protein pores fixed
on a membrane, through which single-stranded cDNA molecules pass. During this
process, the pore’s electrical current is modulated as a function of the DNA sequence
currently traversing the pore. This current is measured in real time by the instrument,
and the resulting signal converted to a nucleotide sequence®’. ONT runs can produce
astonishingly long reads — the current record being more than 2 megabases, for ge-
nomic DNA®?. However, its error rate is similar to that of single-pass PacBio reads,
but contrary to the SMRT technology, ONT multi-pass sequence consensus building
has yet to become mainstream, despite recent developments in this direction®’, which
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strongly handicaps nanopore technologies for transcriptome sequencing, despite its
very low cost’*%*.

Due to physical constraints, longer DNA molecules tend to load into microwells
or nanopores with more difficulty than shorter ones. One drawback of both TGS long-
read technologies is therefore their strong bias towards shorter DNA molecules. This
phenomenon can be mitigated by separating cDNA libraries into distinct size frac-
tions and sequencing these separately —a laborious and inefficient process, though™.

Synthetic Long-Read Sequencing (SLR-Seq). At the frontier between Illumina
and long-read sequencing lies SLR-Seq, in which cDNAs are diluted and separated
into partitions, either through microtiter wells or emulsions. Each cDNA partition is
then fragmented and barcoded using Unique Molecular Identifiers (UMIs), followed
by short-read Illumina sequencing. Thanks to the presence of UMIs, short reads can
be reassembled computationally into full-length isoforms with high confidence. In
theory, SLR-Seq thus promises the depth and high sequence accuracy of Illumina se-
quencing, combined with unambiguous transcript reconstruction, which is lacking in
standard short-read RNA-Seq (see ‘Second-Generation Sequencing (SGS) methods’,
page 14)°~%. Nevertheless, while SLR-Seq isoform assembly does gain in accuracy
thanks to the presence of unique barcodes, it does not fully guarantee against artifac-
tual reconstruction - in cases where several abundant, similar isoforms end up in the
same partition, for instance.

Direct RNA (dRNA) sequencing. The ability to directly sequence RNA with-
out prior conversion to cDNA is a recent and promising innovation. During recent
years, two dRNA sequencing technologies were made available to the research com-
munity: the Helicos/HeliScope single molecule fluorescent sequencing platform®’,
and more recently, nanopore sequencing. As of today, the latter — and only surviving
- method, commercialized by ONT, is beginning to appear applicable to large-scale
transcriptome sequencing projects”’. While eliminating the biases and experimental
artifacts associated with cDNA synthesis mentioned before (see ‘Overview’, page 12),
ONT dRNA sequencing also allows the detection of modified, non-canonical bases in
RNA, clearing the way to the elucidation of the "epitranscriptome"”'”?. Another ad-
vantage of dRNA sequencing compared to cDNA-based approaches is that it reads
a transcript’s native polyA tail — rather than the product of random oligo-dT priming
on it, see Figure 6 — which brings the ability to measure its actual length. Because of
the unamplifiable nature of RNA, dRNA often require prohibitive amounts of input
material, however. Thus, important impracticalities remain with current dRNA pro-
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tocols, beyond the aforementioned high error rate plaguing nanopore sequencing in
general.

I1.1.2.2. Building empirical gene and transcript catalogs

Mapping transcript evidence to the genome. Determining where a sequenced
RNA originates on the genome can be achieved via sequence similarity search be-
tween the transcript and the genome sequences. Except in cases of genomic sequence
duplication such as paralogy and pseudogenization, this mapping is usually unam-
biguous, provided the transcript sequence is long enough. Historical local alignment
algorithms such as BLAST (Basic Local Alignment Search Tool)”*”* are not adapted
to transcript-to-genome alignments, because they do not model splice sites properly
and consider introns as mere alignment gaps, leading to gross inaccuracies around
exon/exon junctions”. The growth of EST and cDNA sequence databases in the
late 1990s and early 2000s created a demand for specialized spliced aligners, such as
EST_GENOME", BLAT (BLAST-Like Alignment Tool)”” and GMAP”. Most of these
tools would later struggle to cope with the enormous data volumes produced by
SGS methods, which prompted the development of another generation of short-read,
ultra-fast spliced aligners (e.¢. GEM””, STAR'"Y and TopHat”).

Nevertheless, automatic mapping of transcript evidence to the genome is not
sufficient to build accurate gene and transcript models. When building their high-
confidence gene catalogs, annotation groups such as RefSeq’! and GENCODE™ in-
corporate a manual curation step, during which experts review all relevant features
of an empirical model — alignment quality, splice sites, ORF contiguity efc. — be-
fore including it in their catalog. While extremely laborious and costly, this strategy
has proven useful, as manual annotations tend to display a much higher rate of ex-
perimental validation than fully automated ones, and thus are considered far more

reliable*%1!

. Due to their notorious unreliability (see ‘Second-Generation Sequenc-
ing (SGS) methods’, page 14), transcript models reconstructed in silico from SGS short
reads are not included in reference resources such as GENCODE®® — some are present

in RefSeq, though”".

When compared to first- and second-generation sequencing methods, recent TGS
approaches hold the potential for high-throughput, full-length genome annotation
at a comparatively low cost (see previous section). Their much higher yield, how-
ever, makes the systematic manual curation of TGS-based gene models exceedingly
time-consuming. On the other hand, TGS’s higher base error rate demands stricter
quality filtering — and possibly sequence correction — for resulting gene models to
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reach acceptable levels of confidence without human curation.

Gene annotation resources. RefSeq’' and GENCODE™ are the two most
widely-used gene annotation catalogs. These gene sets consist of both automatically-
generated and manually-reviewed gene models, separated into tiers. However,
GENCODE contains a much higher proportion of curated gene models compared to
RefSeq, at least within coding regions (93.4% and 45%, respectively'"?). While both
resources present their own pros and cons, it is generally admitted that GENCODE
provides a more complete representation of the human and mouse gene sets'’~!"%.
In addition, and in contrast to RefSeq, GENCODE incorporates both discovery- and
validation-oriented experimental components to its annotation pipeline, using both
transcriptomics and proteomics techniques'"1>='%7. As a result, GENCODE is con-
sidered the reference gene annotation in human and mouse, and has been adopted
by various large international consortia, including ENCODE'"*~!'! GTEx!'%!® and

the International Cancer Genome Consortium (ICGC)''*.

How many genes in a mammalian genome? The number of genes in the human

genome has been a matter of debate for more than half a century''”. During the

few years preceding the completion of the human genome, most estimates fell in

HOA7 " To the surprise of many,

the range of 50,000 to 100,000 protein-coding genes
the complete genome sequence revealed a mere 31,000 such genes’’, and the tally
has fallen steadily since then. Nowadays, both RefSeq and GENCODE agree on a
gene count of ~20,000 coding genes in the human genome, and a number of long
noncoding genes between 15,000 and 18,0008, Gene counts in the mouse genome
are fairly dissimilar to that of human (Figure 10). However, it is still unclear how
much of this difference is explained by biology rather than by the more mature status

of the human genome annotation.

There is uncertainty as to how these gene counts will evolve in the future. Since
coding signatures can nowadays be identified with relatively high sensitivity on the
genome (see Section 11.1.1.1), one could reasonably speculate that the protein-coding
gene catalog is next to complete, and recent deep sequencing surveys indeed seem
to support this notion (see Section II1.3.2.2). A recent study, however, challenged
this consensus by claiming the discovery of hundreds of novel human coding
genes through ultra-deep, short-read-based trancript assembly''?, but later proved

extremely controversial' %20,

Because of the difficulties in identifying them in genomic sequences (see Section
I1.1.1.2), the situation is less definitive for noncoding genes. Thus, there is reason to
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believe that the corresponding tally will substantially increase as methods of detec-
tion improve (see Sections 11.1.3 and 111.3).
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Figure 10: Basic GENCODE annotation statistics in the human and
mouse genomes. Shown are the gene (top) and transcript (bottom)
counts for the long noncoding RNA (IncRNA, left) and protein-coding
(right) biotypes. Other biotypes are omitted for simplicity. Biotypes
correspond to broad functional classes of genes. See Supplementary
Methods for further details.

II.1.3. Elucidating the hidden transcriptome

If expression-based methods can be considered, as a whole, far better suited for
genome annotation than de novo gene finding methods, technical factors severely
limit their sensitivity: sequencing techniques, which transcriptome studies rely upon,
are inherently limited in their read output, and there is strong evidence for the exis-
tence of a hidden layer of unannotated transcripts, a deep transcriptome lying under
the radar of current experimental techniques.

The statistical representation of a given transcript in a cDNA library directly re-
lates to its RNA copy number in the cell. Moreover, distinct transcripts can be ex-
pressed at wildly different levels within a cell — from one copy to hundreds of thou-
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sands of copies per cell'?'. The problem is further aggravated by the fact that RNA-
Seq libraries are usually constructed from entire tissues and bulk cell populations,
which has the effect of masking out possibly massive gene expression level differ-
ences across the cells under study. Rare or transient cell types such as circulating
tumour cells, early embryonic cells and adult stem cells, are difficult to isolate from

tissue extracts and may contain distinctive RNA populations, for example'?”.

Since sequencing technologies always incorporate a random sampling process,
this leads to lowly-expressed genes being vastly underrepresented or even absent
from standard cDNA sequencing libraries. In 2009, Blencowe et al. suggested that
~700 million short Illumina reads would be needed to correctly detect 95% of the
transcripts present in an RNA sample'?’. More recently, the SEQC/MAQC-III Con-
sortium reported the sustained discovery of unannotated introns at depths greater
than 2 billion Illumina HiSeq reads, using discovery - saturation curves in a variety

of human samples'**

. This indicates that even ultra-deep sequencing — which is far
above the capacity of current TGS long-read technologies — is not sufficient to de-
tect all transcripts present in a sample. For this reason, a few laboratory techniques

(detailed below) have been developed to mitigate this relative shallowness.

I1.1.3.1. Normalization and subtraction of cDNA libraries

Since over 90% of cellular RNAs are ribosomal'?!, one of the first steps of cDNA
library preparation usually consists in the subtraction of such RNA species, which
are largely irrelevant for genome annotation. rRNA depletion is relatively easily
achieved by sequence-specific hybridization techniques, and /or polyA selection'? —
as TRNAs are devoid of polyA tails. The latter has the further advantage of also sub-

tracting tRNAs, another overwhelmingly abundant and uninformative RNA species.

However, large differences in concentrations remain even within the polyadeny-
lated transcript population, which leads to the sampling issues mentioned above.
Hence, normalization methods, aimed at equalizing cDNA abundances in libraries,

126128 "Most of them are based on hybridization

have been developed over the years
kinetics of nucleic acids. Briefly, double-stranded cDNAs are denatured, and then
subjected to rehybridization; during this process, abundant molecules tend to re-
anneal more effectively than rare ones. The mixture is then subjected to digestion by
a duplex-specific nuclease, which preferentially targets abundant, double-stranded
DNA. This procedure results in sharp decreases in the representation levels of abun-

126

dant protein-coding genes, and a 3- to 4-fold enrichment for rarer ones'-°. This pro-

cedure is still used nowadays, and was recently applied successfully to TGS (PacBio
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IsoSeq) library preparation in chicken'””. However, such untargeted methods are

quite inefficient and, by definition, highly unspecific. In addition, concerns have

emerged recently as to the possible length biases such procedures may introduce'*".

I1.1.3.2. Targeted RT-PCR/RACE

RT-PCR (Reverse Transcriptase PCR) and RACE (Rapid Amplification of cDNA
ends)'®! are two standard molecular biology methods based on PCR transcript am-
plification using specific oligonucleotide primer sequences (Figure 11). RT-PCR relies
on two converging transcript-specific primers; thus, an RT-PCR product consists
exclusively in the sequence of the targeted transcript that is comprised between the
two oligonucleotides. RACE, on the other hand, is based on a single gene-specific
primer, paired with a universal — non gene-specific — primer located at the opposite
end of the transcript. As a result, RACE can be performed in both 5" and 3’ directions
of the targeted transcript, and is therefore well-suited for precisely delimiting
transcript boundaries. Since RACE relies on only one specific oligonucleotide, it is

132,133

more prone to non-targeted amplification . Using a sequential nested primer

design can reduce the presence of such unwanted products, however'?'.
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Figure 11: Schematic comparison of the RT-PCR (left) and RACE
(right) techniques. The regions amplified by each primer (or pair of
primers, depicted as small dark grey arrows) are highlighted in grey.

While both RT-PCR and RACE have been heavily used for some time in
low-throughput experiments (typically to quantify transcripts, confirm individ-
ual exon/intron structures or transcript ends), recent examples of medium- to
large-scale, often discovery-oriented applications have been developed. In 2003,
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Guigo et al., guided by de novo gene predictions, used RT-PCR coupled with Sanger
sequencing to identify more than a thousand novel human genes'**. More recently,
RT-PCR was also applied by the GENCODE consortium to the high-throughput

validation of annotated splice junctions using Illumina sequencing (RT-PCR-Seq)'%.

Examples of high-throughput applications of RACE exist, but mainly in the
context of hybridization array experiments — which are notoriously noisy and
low-resolution — rather than sequencing'’>'*>. The idea of coupling RACE with
high-throughput sequencing (RACE-Seq) was suggested by Olivarius et al. in
2009'%°. The authors applied the procedure to only a few protein-coding genes,
however, while combining it with short-read sequencing and the disadvantages it
supposes (see ‘Second-Generation Sequencing (5GS) methods’, page 14).

Despite their high sensitivity and remarkable efficiency, both techniques suffer
from one important drawback. By design, they essentially cannot provide complete
transcript sequences: RT-PCR products lack both ends of the targeted transcripts,
while 5 and 3" RACE products are deprived of transcripts’ 3’ and 5" ends, respec-
tively.

I1.1.3.3. Targeted cDNA capture

The application of hybridization methods to enrich for specific sequences has been

137

successfully used for some time ', and is routinely employed in the context of exome

138,139 " Current

sequencing — the targeted sequencing of genome exonic sequences
capture technologies involve the design of biotinylated oligonucleotide probes tiling
sequences of interest. In targeted transcriptome sequencing surveys, probed cDNAs
hybridize preferentially to the oligonucleotides, which then bind to streptavidin-
linked magnetic beads. The hybridized cDNA products are thereby isolated from
undesired cDNA fragments and subsequently eluted (Figure 12). Thus, the result-
ing cDNA capture library consists in highly enriched targeted molecules that can be

subsequently sequenced using high-throughput methods (CaptureSeq)'*’.

Nowadays, custom capture designs targeting several megabases of arbitrary
sequence can be routinely manufactured. This has enabled large-scale transcript
discovery studies focusing on cancer-related genes'*! or low-abundance long
non-coding RNAs (IncRNAs)'**!%3, for example. However, none of these surveys
employed long-read sequencing on capture libraries. Therefore, authors had to rely
on short-read-based transcript assembly methods, which inevitably casts doubts
on their resulting transcript models (see ‘Second-Generation Sequencing (SGS)

methods’, page 14).
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Figure 12: Simplified flowchart of a solution-based ¢cDNA capture
protocol (see text for details).

Although much more costly than the cDNA normalization methods mentioned
before (see Section II.1.3.1), CaptureSeq achieves considerably higher, more specific
target enrichment, while retaining relative RNA abundance information'*"'**. This
technique thus paves the way for the efficient interrogation of virtually any poten-

tially transcribed region of the genome, in the context of gene annotation as well as
gene quantification.
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II.1.4. Gene annotations in their genomic and cellular con-
text

The human and mouse genomes have been the subject of intense scrutiny, par-
ticularly since the complete assembly of their respective sequences. International
consortia like ENCODE'"*~!! NIH Roadmap Epigenomics'**'*>, GTEx''*!'% and
FANTOM'**~!*® have generated thousands of genome-wide assays, whose results
are mapped onto these two reference sequences. Those constitute an invaluable
resource for integrating gene annotations in their genomic context and facilitate both
their validation and biological characterization.

Hallmarks of transcription initiation such as CAGE (Cap Analysis of Gene Expres-

146

sion) clusters'*®, DNase I hypersensitive sites (DHS)'*’, transcription factor binding

sites!™?

and promoter-associated chromatin marks —e.g. trimethylation of histone H3
at lysine 4 (H3K4me3) —-'*>'>! can be leveraged to assign levels of confidence to an-
notated gene TSSs. Similarly, genomic overlaps between transcriptional units and
marks of monomethylation of histone H3 at lysine 4 (H3K4mel) are suggestive of

enhancer-associated RNAs (see Section I11.2.1).

Existing RNA-Seq data can be employed in at least two ways. First, short read
mappings split over exon-exon junction can be used as substantiating evidence for
dubious intron models'*”. Second, expression profiling of transcript models using
RNA-Seq in tissues — healthy or diseased — and subcellular compartments can also

provide clues as to their spatial localization and function'>*'>*.

Finally, more than 70,000 trait- and disease-associated human genetic variants,

)155

identified through genome-wide association studies (GWAS) 7, can be mapped onto

gene models and shed light on their phenotypic function, role in disease or expression

regulation' =17

In summary, there is a tight methodological interplay between genome-wide stud-
ies and basic gene annotations. While the former quite obviously need the latter as a
foundation, it is also true that gene annotations benefit from the superimposed mul-
tiple layers of "-omics" evidence.
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III

The noncoding genome

One of the distinguishing features of eukaryotic genomes is their large size and low
protein-coding content. As previously mentioned, only 1.1% of the human genome
bases are currently annotated as coding, and this fraction is not likely to increase
substantially upon deeper inspection (see Section II.1 and 'How many genes in a
mammalian genome?’, page 19). The question then arises as to the composition of the
remainder of the genome, and more importantly, what biological function it serves —
if any.

III.1. Eukaryotic genome complexity and non-

coding DNA: an evolutionary perspective

III.1.1. The C-value paradox

Genome size varies considerably across all domains of life (Figure 13, X-axis). There
is an overall correlation between organism complexity (or at least an intuitive notion
we may have of it) and genome size from bacteria to multicellular eukaryotes. This
tendency, however, drops within the eukaryotic kingdom, where there is a puzzling
discrepancy between genome size (the so-called "C-value") and organismal complex-
ity. If DNA contains the entire genetic program needed for an organism to develop,
why do complex organisms such as mammals not accordingly possess the largest
genomes? Why does Triticum aestivum — the common wheat — carry a genome an
order of magnitude larger than Homo sapiens’? Similarly, it seems utterly counter-
intuitive that the genome of Trichomonas vaginalis, a unicellular protist, is larger than
that of Drosophila melanogaster, a complex animal. Putting aside the rather subjec-
tive notion of organism complexity, even closely related species can bear genomes
of markedly different sizes. Within the Sorghum plant genus, for example, haploid
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genome sizes vary from 600 Mb to more than 5 Gb'°’. These are some of the ap-
parent inconsistencies that have collectively been grouped under the term "C-value

paradox” since the 1950s'0%/12.

Ohno was one of the first to propose an explanation for this enigma in 1972: he
argued that a substantial fraction of eukaryotic genomes bears little to no adaptive ad-
vantage, while being tolerated by the host organism. This fraction, which he dubbed
"junk DNA", is therefore free to grow over generations, as long as this genomic ex-
pansion does not hamper the organism’s fitness. As his paper’s concluding remark
suggests, he believed the bulk of this non-functional genomic DNA consisted in pseu-
dogenes:

"Triumphs as well as failures of nature’s past experiments appear to be con-
tained in our genome.” %

This "junk", however, was later found to be mostly composed of transposable el-
ements (TEs) instead — mobile, "selfish" DNA capable of self-replication'®#!*>. 1t is
now established that millions of copies of TEs — or relics thereof — account for an
astoundingly large fraction of eukaryotic genomes, including 37.5% of the mouse

166 In ac-

genome””®, 45% of the human genome”” and up to 85% of plant genomes
cordance with the "selfish DNA expansion" hypothesis, a clear correlation can be
observed in eukaryotes between genome size and proportion of repetitive elements —
of which 75% are identified as TEs'®’. In addition, an estimate of only ~3.5% of non-

28,168

coding sequences are highly conserved across mammals , while less than 1% are

169

conserved across distant vertebrates'®”, arousing further suspicion as to their overall

functionality.

III.1.2. The G-value paradox

The number of protein-coding genes encoded per genome (the "G-value") follows a
trend similar to that of genome size across the tree of life (Figure 13, Y-axis): a global
increase with organism complexity that breaks off within the eukaryotic kingdom,

particularly in land plants and animals — the G-value paradox'’'"%.

The G-value, as one would expect, positively correlates with genome size. Yet,
this trend is also lost when focusing on the larger plant and animal genomes: over-
all, the dynamic range of G-values across kingdoms is also much smaller than that
of the C-value — approximately ~2.5 vs ~4.5 orders of magnitude, respectively (Fig-
ure 13; note that some hybrid plant species such as T. aestivum contain multiple,
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partly redundant "sub-genomes", which artificially inflates their genome size and
gene number'””). This observation supports the idea, mentioned in the previous sec-
tion, of a widespread expansion of noncoding DNA during plant and animal evolu-
tion.

A few non-mutually exclusive theories have been put forward to solve the G-
value paradox (reviewed by Hahn and Wray'”*). Alternative splicing, for instance,
has been proposed to contribute to phenotypic innovation by increasing transcript
diversity without new gene acquisitions. There is indeed evidence that rates of al-

38,176,

ternative splicing are correlated with phenotypic complexity 177 Furthermore,
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analyses suggest that alternative splicing and gene duplication — a major source of

78,179

functional innovation in evolution! — might constitute interchangeable evolu-

tionary mechanisms to increase transcript diversity'*/='%.

Other authors argue that the key to biological complexity lies in the noncoding
part of the genome'®’. In support of this view, the genomes of vertebrates — arguably
the most complex organisms on earth — show the highest noncoding content of all

83

life forms'®’. While certainly attractive, this idea must however be reconciled with

the fact that the vast majority of noncoding nucleotides in eukaryotic genomes is not

evolutionarily constrained'®*.

Lastly, a very real possibility exists that the G-value enigma is erroneously deemed
paradoxical due to overly simplistic premises. While it may certainly not be incorrect
to expect a relationship between genome and organism complexity, a gene count con-
stitutes a very crude measure of the information content of a genome, and we may
not currently possess the necessary tools to accurately measure the latter.

III.2. Functional noncoding DNA: separating the

tare from the wheat

There is strong evidence that a large proportion of the human genome is non-
functional, junk DNA (see Section III.1.1). Based on evolutionary conservation
and mutational load arguments, and in line with Ohno’s work!®3, some authors
propose an upper limit on its functional fraction of 20 to 25%, under the selected effect
definition of "function" — namely, an evolutionarily selected one'®~'%/. Even under
this conservative model, this means that a substantial portion of the noncoding
genome is likely functional.

[II.2.1. Known examples of functional noncoding DNA se-

quences

Many cases of noncoding, yet functional genome elements are well-known. Some
noncoding RNA species, such as snRNAs (small nuclear RNAs), snoRNAs, rRNAs,
microRNAs, tRNAs and some IncRNAs (see Section II1.3) are extensively charac-
terized. Most of these are annotated automatically with reasonable accuracy in
mammalian genomes (see Section 11.1.1.2), and occupy a tiny fraction of the human
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genome (Table 3).

Category  #genes #genomic nts covered (kb) % of genome sequence covered

miRNA 3,837 339 0.011%
rRNA 549 63 0.002%
snoRNA 978 115 0.004%
snRNA 1,912 211 0.007%
tRNA 649 49 0.002%
Total 7,925 776 0.025%

Table 3: Annotated ncRNA genes in the human genome. Statistics
(based on the GENCODE annotation) are reported only for the major
types of ncRNAs, and omitting IncRNAs, which are covered exten-
sively in Section II1.3. See Supplementary Methods for further techni-
cal details.

Other functionally important noncoding elements include cis-regulatory se-
quences that control gene expression (e.g., promoters, enhancers, insulators and
silencers), origins of replications, telomeres and centromeres. In its most conserva-
tive assessment, the ENCODE consortium estimates that a minimum of 8.5% of the
human genome is involved in cis gene regulation, based on ChIP-Seq and DNase

footprinting assays in a limited number of cell lines'!".

Among those regulatory sequences, enhancers constitute a particularly interest-
ing case. Those cis-acting sequences activate gene transcription through long-range
interactions with the promoter of their target genes. Enhancers can be located equally
upstream or downstream of their target promoter, sometimes hundreds of thousands
of nucleotides away'**'®’. Intriguingly, some active enhancers have been shown to
be transcribed into so-called eRNAs (enhancer RNAs)!”"'“! — non-polyadenylated,
usually unspliced noncoding RNAs expressed at low levels'*®. eRNAs have long
been suspected of being mere by-products of enhancer activation. However, evi-
dence has recently emerged that they may in fact play a crucial role in this process,

by actually triggering the molecular cascade leading to enhancer activation'””.

A large fraction of cis-regulatory sequences, enhancers included, are not con-
strained evolutionarily'!’. At first glance, this may suggest that these are the product
of noisy, non-specific DNA-protein binding. However, many well-characterized or-
thologous cis-regulatory binding sites show high rates of sequence divergence — to
the point of becoming unrecognizable at the sequence level, even among closely re-

1

lated species'”*~'“°. This, incidentally, indicates that a lack of sequence conservation

does not necessarily imply a lack of functionality in noncoding genomic features.
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III.2.2. Is all the rest "junk"?

Putting aside known ncRNAs and regulatory sequences, several lines of evidence
support the idea that the remainder of the noncoding genome may contain yet-to-
be-discovered, possibly transcribed functional elements, even in apparently poorly
constrained regions.

Lineage-specific noncoding genetic variants. Genome-wide association studies
(GWAS) aim at identifying loci that associate with risk for complex diseases and phe-
notypic traits. A substantial fraction of the more than 70,000 human variants identi-
fied using this method are well-replicated, highlighting the robustness of the inferred

associations!®®

. A strong link between a locus variant and a phenotypic trait or dis-
ease obviously indicates a function for the locus in question, although GWAS does
not provide any mechanistic information as to this function. Surprisingly, the vast
majority (~93%) of trait- and disease-associated loci lie within non-coding regions,
of which thousands are located in the intergenic space, far away from any anno-
tated gene'””. Recent studies show that a large proportion of noncoding GWAS SNPs
(Single Nucleotide Polymorphisms) fall within or near DNase hypersensitive sites,

110,197,1

suggesting an important role in gene regulation 8. Furthermore, many such

intergenic, noncoding variant sites have been shown to be under human-specific pu-

199,2(

rifying selection V. Again, this suggests that cross-species evolutionary conserva-

tion provides only incomplete insights into the functionality of noncoding elements.

Ultra-conserved elements. At the other end of the evolutionary conservation
spectrum, ultra-conserved elements (UCEs) are genome segments of 200 to 700 bases
that are 100% identical in mouse, rat and human, and highly conserved all the way
to dog and chicken’’!. Of the 481 UCEs identified in the human genome, only 93
fall within protein-coding exons, and 140 lie in gene deserts, more than 10kb away
from the nearest annotated gene. Such extreme levels of evolutionary conservation
are indicative of essential biological functions. As a result, these enigmatic non-
coding UCEs have been studied extensively since their discovery. Results indicate
that many UCEs function as enhancers with important, subtle roles in vertebrate

02-205

development’ . As for any enhancer, these regions may also be transcribed into

eRNAs (see Section I11.2.1). Other studies have established an association between

6,207

a few transcribed UCEs, outside of enhancer regions, and cancer” . Still, a large

fraction of UCEs remains uncharacterized.
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Structured ncRNAs in unannotated regions. De novo computational methods
predict millions of structured ncRNAs in the intergenic space — although these ap-
proaches generate a high number of false positives (see Section I1.1.1.2). For example,
using covariation information, Smith et al. predict more than four million evolution-
arily constrained RNA structures, covering 13.6% of the human genome in total”’*.
The authors estimate their false discovery rate to be in the range of 5 to 22%, although

this might be an underestimation’””

. Even under this assumption, experimentally
probing the most confidently predicted regions from such datasets — using RNA cap-
ture, for example (see Section 11.1.3.3) — could help shed light on the biology of the

noncoding genome.

Junk DNA: a platform for evolutionary innovation? There are several
documented cases of exaptation — the process by which a trait’s function shifts
during evolution — of selfish DNA. Parasitic elements such as TEs, in particular,
have been shown to contribute to the evolution of vertebrate gene regulatory
networks”'?!!, in line with Barbara McClintock’s original idea of TEs acting as

"controlling elements"*!”.

For example, in a human-mouse comparative study,
Sundaram et al. found thousands of orthologous, TE-derived transcription factor
binding sites with strong evidence of purifying selection’’”. Other studies have
highlighted the possible role of TEs in shaping the evolution of splice sites’!*?!>,
promoters216'217, enhancers?'%2!% IncRNAs?2"221 and microRNAs??2, Finally, a 2011
survey comparing the genomes of 29 mammals found more than 280,000 conserved
noncoding elements derived from TEs in the human genome, covering a total of
~7 Mb???. Overall, this suggests that genomic domestication of selfish DNA is a
significant phenomenon that may drive functional innovation in eukaryotes.

It is important to note, however, that those examples probably constitute excep-

tions rather than the rule??*

, and that most TEs in vertebrate genomes should be
presumed functionless unless proven otherwise. One should also refrain from the
temptation of trying to fit junk DNA into a teleological framework. TEs and other
junk elements can indeed be co-opted, however they are not actively preserved in

225

genomes as "evolvable" material, as some authors insinuate (see e.g. Jain™=” and Bar-

roso in Ecker et al.’*°). In the words of Sydney Brenner,

"There is a strong and widely held belief that all organisms are perfect and
that everything within them is there for a function. Believers ascribe to the Dar-
winian natural selection process a fastidious prescience that it cannot possibly
have and some go so far as to think that patently useless features of existing or-

. . »27
ganisms are there as investments for the future.”*~
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II1.3. Long noncoding RNAs: the last frontier of

gene annotation

III1.3.1. Pervasive transcription in mammalian genomes

The evidence for widespread, "intergenic" transcription in mammalian genomes re-
mained anecdotal (see e.g. Ashe et al.’*®) until the 2000s, when technology improve-
ments enabled deep, genome-wide transcriptome surveys. Large-scale cDNA se-

quencing projects'*??’, RNA tiling array hybridization studies!'’”>*=2%2

, genome-
wide maps of active promoters''’?*> and finally, RNA-Seq'** revealed a profusion
of such unannotated, mainly noncoding transcribed elements in both human and
mouse. Noncoding transcription is not confined to the intergenic space, and as much
as 11% of the human transcriptome derives from ncRNA transcripts that are inter-

leaved with protein-coding ones”**.

In a landmark study using ultra-deep RNA-Seq in 15 human cell lines, the EN-
CODE consortium reports that overall, about half of the human genome is covered
by mature, polyadenylated transcripts. Those cover a quarter of the intergenic space,
and this fraction is mainly accounted for by long noncoding RNAs. Not surprisingly,
detected IncRNAs, including intergenic ones, are expressed at a much lower level
than protein-coding genes: about 80% of them are present in ENCODE samples in
one or fewer copies per cell, compared with 25% for protein-coding transcripts'>®.
However, low copy numbers measured in such bulk experiments do not necessarily
reflect consistently low abundance in all cells, since RNA-Seq averages expression

values across the cell population under study, as detailed in Section II.1.3.

Transcription does not imply function, however, and the biological significance
of pervasive transcription is controversial”*”. Transcription initiation by RNA poly-
merase I (Pol II) — the enzyme synthetizing the large majority of intergenic and
protein-coding transcripts — is known to be a leaky, stochastic process***>**. Con-
sistent with their overall low expression levels and evolutionary conservation™’, a
significant fraction of intergenic transcripts may be spurious products of such noisy
transcription, and destined to rapid degradation by the cell machinery.
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II1.3.2. LncRNAs: a heterogeneous gene class

LncRNAs are long (>200 nts), usually capped and polyadenylated transcripts with
no discernible protein-coding potential’”’. They constitute a broad category of
transcripts, present in a wide range of eukaryotic taxa, from fungi to plants and

animals?#0:241

I11.3.2.1. Early IncRNA discoveries

The characterization of the first mammalian IncRNAs actually predates the genomic
era and the discovery of widespread intergenic transcription. H19, the first discov-
ered eukaryotic IncRNA?*?, is a spliced, polyadenylated 2.3kb-long RNA product,
relatively conserved across mammals (Figure S3)**°. H19 directly acts as an RNA
molecule and is involved in the control of growth and cell proliferation during
early mammal embryonic development”**. Shortly after the discovery of H19 in the
early 1990s, it was found that Xist ("X-inactive specific transcript"), another IncRNA,
was the main effector of chromosome X inactivation in female mammals”*">*.
Xist, an extraordinarily long (~17 kb) spliced RNA, acts by "coating" one of the X
chromosomes, which ultimately leads to the transcriptional silencing of the entire

chromosome?*8.

Interestingly, Xist does not exhibit a particularly high level of
conservation: its average sequence similarity among mammals does not exceed that

of the UTRs of mRNAs (Figure S10)>*%>".

I11.3.2.2. LncRNA biology in the genomic era: map first, ask questions later

At a time when the main focus of attention was protein-coding genes, the examples
of H19 and Xist brought IncRNAs into the spotlight, and stimulated a global under-
taking to identify and characterize noncoding genes. Early cDNA sequencing efforts,
notably from the FANTOM initiative, uncovered thousands of such RNAs covering

70,147,251 Despite this explosion in the

both strands of the human and mouse genomes
number of annotated mammalian IncRNAs, only a handful had been clearly char-
acterized functionally by the end of the 2000s’’. Besides Xist and H19, examples
included noncoding genes involved in the regulation of nuclear import (Nron’’?),
trans-acting gene regulation (HOTAIR?>, Figure S4, MALAT1?**, Figure S6), and ge-

netic imprinting (Air”>>>°°, Figure S1) (see Section 111.3.2.4).
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Detecting lincRNAs via chromatin signatures. In 2009, Guttman et al. tack-
led the problem of IncRNA detection from a radically original angle. Instead of
deep transcriptome sequencing, they opted for chromatin signatures to identify tran-
scribed intergenic features in mouse”'. The team first observed that genes actively
transcribed by Pol II were associated with the H3K4me3 mark at their promoter
and H3K36me3 (trimethylation of histone H3 at lysine 36) along their transcribed
region””’. They then took advantage of these so-called "K4-K36 domain" signatures
to detect long intervening (i.e. intergenic) noncoding RNAs (lincRNAs, or standalone
IncRNAs, see Figure 14) genome-wide. Using this method, the authors could identify
more than a thousand novel lincRNA regions — with many bearing signs of purify-
ing selection — and were able to reveal important biological functions for a few of
them”"*®. Nonetheless, however sensitive in pinpointing transcribed genomic re-
gions this epigenomic approach is, it does not directly provide full-length transcript
models per se, in contrast to transcriptomic techniques.

SGS-based IncRNA annotation. More studies followed Guttman’s results, this
time based on non-targeted, short-read transcriptome sequencing. Each added its
own worth of novel mammalian IncRNAs to previous gene catalogs, while discov-

ering little to no novel protein-coding genes””’~2%>

, supporting the idea that the cod-
ing gene catalog is saturating. Others employed the targeted CaptureSeq methodol-
ogy (see Section I1.1.3.3) to dive even deeper into the noncoding transcriptome, un-
covering IncRNAs with estimated concentrations as low as ~0.0006 transcripts per
cell#%143,265  Importantly, all of the aforementioned large-scale IncRNA sequencing
surveys employed short-read sequencing methods, whose pitfalls have been previ-

ously discussed (see ‘Second-Generation Sequencing (SGS) methods’, page 14).

LncRNA annotation resources. LncRNA annotations are compiled into
generic, curated gene sets (e.g. GENCODE", RefSeq”") or into databases containing
software-reconstructed transcript catalogs, often specifically IncRNA-oriented (e.g.
BIGTranscriptome”**, NONCODE?*?, MiTranscriptome’®?, FANTOM CAT?°). These
resources vary greatly in size: GENCODE and RefSeq contain ~15,000 IncRNA locus
entries (Figure 10), while NONCODE, the currently most comprehensive catalog
(which integrates many of the aforementioned collections), reports close to 100,000
of them. Merits and weaknesses of different annotation approaches have been
discussed previously (see Section 11.1.2.2). Thanks to extensive manual curation,
and by excluding SGS-assembled transcripts from its sources, GENCODE arguably

provides the most conservative, highest-quality reference catalog for IncRNAs”*"2%%,
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However, this comes at the cost of low sensitivity’®”: GENCODE’s cautious choice of
data sources implies that most of its underlying empirical evidence currently derives
from low-depth, Sanger-based EST and cDNA surveys. Importantly, a systematic
comparison of IncRNA gene collections has yet to be performed.

I11.3.2.3. "Omics" of IncRNAs

Intronic, Exonic,
sense sense Standalone
S —> (lincRNA)
— .
—» —»
(— TR— E———
C
—_———— E— f—
<+ <+ <+
Bidirectional Intronic, Exonic,
antisense antisense

=== Protein-coding

N IncRNA
Figure 14: Positional classification of long noncoding RNAs. LncR-
NAs are categorized based on their genomic location with respect to
annotated protein-coding genes. Colored and light gray boxes repre-
sent exons and introns, respectively.

In the absence of a clearly defined biological function, most IncRNAs are classified
according to their genomic position with respect to protein-coding genes (Figure 14).
LncRNAs interleaved with protein-coding genes are further subdivided based on the
features they cover (intronic or exonic) on the one hand, and their genomic strand
relative to the coding gene (sense or antisense) on the other. Bidirectional IncRNAs
share a divergent promoter with a protein-coding gene. Finally, standalone IncRNAs
(lincRNAs) lie in the intergenic space, sometimes far away from any other annotated
gene. In general, belonging to one of these categories does not augur the biologi-
cal function of the IncRNA in question. Anecdotal evidence suggests, however, that
some antisense IncRNAs tend to regulate the expression of their "host" coding gene
in cis”’! (see also Section I11.3.2.4).

Detailed analyses of recent gene catalogs have revealed various genomic peculiar-

ities apparently distinguishing IncRNA transcripts from their coding counterparts.

260,268,271

Notably, mature IncRNAs typically have fewer exons and are shorter than
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268,271,272

protein-coding transcripts Other prominent IncRNA idiosyncrasies are

listed in the next paragraphs.

Expression and RNA processing landscape. In general, IncRNAs display
low expression levels, with a few notable exceptions (see examples in Section
I11.3.2.4). Together, they typically account for less than 3% of the RNA mass in tissue

273

samples~’”, with median abundances at least an order of magnitude lower than that

of protein-coding genes”0":?0%271,272

(see also Section II1.3.1). Recent data suggests
that these low steady-state levels result from reduced rates of transcription rather
than RNA instability”’*. LncRNAs are also expressed in a highly tissue-specific
fashion, predominantly in brain and testis cell types”’?®®. LncRNAs seem to partly
share biogenesis pathways with mRNAs, including Pol II transcription, 5’ capping, 3’
polyadenylation and splicing239. Interestingly, IncRNAs exhibit slightly less efficient

splicing than coding transcripts®’>

, although they use exon splicing signals of similar
strength”®. Many well-studied IncRNAs function in the cell nucleus (see Section
1II.3.2.4), and large-scale analyses seem to confirm that overall, this compartment
is indeed enriched in IncRNAs compared to coding transcripts’®®. This enrichment
may indicate localized functions in the nucleus, however it is also consistent with a

rapid turnover and degradation of spurious IncRNA transcripts after their synthesis.

Evolutionary genomics of IncRNAs. In order to avoid the confounding in-
fluence of overlapping protein-coding genes, evolutionary analyses of IncRNA
sequences usually focus on standalone lincRNAs. As a gene class, lincRNAs are
much less evolutionarily conserved than protein-coding genes at the primary
sequence level. Deep comparative surveys of IncRNA repertoires also indicate that
a large majority of lincRNA genes are lineage- or species-specific and undergo rapid

76 277

turnover”’®. At least 20% of human lincRNAs show hominid-specific expression

Further, sequence divergence among vertebrates is so extreme that only 6% of

zebrafish lincRNAs are alignable to human and mouse lincRNAs at the primary se-

12 72

quence level”’”. Between human and mouse, only 12% of lincRNAs are conserved®".

Even functional lincRNAs with identified orthologs, such as NEATI, sometimes

show no evidence of evolutionary constraint over large stretches of their exonic

sequence (Figure S7)*°7%7¢

279

. However, evidence has been found of both secondary
structure’’”” and positional conservation’’” for at least a few cases of lincRNAs that
are not conserved at the primary level. Within functional IncRNAs, some correlation
can be found between type and level of evolutionary conservation on the one hand,

and mode of action on the other. For example, IncRNAs exhibiting strong synteny
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in combination with low sequence conservation tend to act in cis on nearby genes”®’

(see Section I11.3.2.4).

LncRNAs are enriched in transposable elements: an estimated 41% of IncRNA
nucleotides are covered by TEs, and altogether, more than 80% of annotated IncR-

280 While this observation is consistent

NAs contain at least one TE, or relic thereo
with "junk", spurious transcription, a few cases of TE exaptation into functional ele-
ments have been documented (see Section III.2.2), including for IncRNAs. Examples
include the mammalian ANRIL gene, which domesticated multiple TEs into exons
in the primate lineage”', Xist”*” and AS-Uchl1?’". It has been proposed that TEs oc-
casionally play critical roles in IncRNA evolutionary innovation by providing novel

functional domains?20-221,

Genomic environment and annotation quality. If relating genes to their ge-
nomic surroundings can shed light into various aspects of their biology (see Section
I1.1.4), it can also be used to assess the quality and completeness of annotated gene
models. An in-depth analysis of the GENCODE catalog revealed that IncRNAs are
globally depleted in hallmarks of transcription initiation (e.g., CAGE clusters'*®) and

283

termination (e.g., paired-end ditags**, polydadenylation signals”**) when compared

268

to coding genes™°. Other teams have made similar observations, ascribing these

differences to globally differential transcription regulation of IncRNAs and protein-

coding genes”*?%.

A more parsimonious explanation attributes these properties
to annotation artifacts rather than real biology, however. It is indeed plausible that
the lack of experimental support for the 5" and 3" ends of IncRNAs, together with
their short length and low number of exons, is simply due to the incompleteness of
available IncRNA gene models. This latter hypothesis is consistent with the low ex-
pression levels of IncRNAs and the resulting difficulties in sampling them from RNA

extracts in a non-truncated full-length form (see Section 1I.1.3).

Are IncRNAs translated? Finally, there is evidence that at least some genes, ini-

286,287 Those typically

tially labelled as IncRNAs, are in fact translated into proteins
encode small peptides (< 100 aminoacids) that are difficult to detect for annotation
pipelines because of their short length. The introduction of high-throughput sequenc-
ing of ribosome-protected fragments (Ribo-Seq) revealed unexpected associations be-
tween IncRNAs and ribosomes, suggesting that the former undergo translation”®".
Although ribosome association does not necessarily imply translation into a func-
tional protein product, polypeptide production could be demonstrated in at least a

few cases?872%0
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I11.3.2.4. Known functional IncRNAs

Functional characterization, to this day, still struggles to keep pace with the ever-
growing catalog of IncRNAs: of the tens of thousands of currently annotated IncRNA
genes, less than 500 have robustly assigned biological functions”’!. Based on our cur-
rent understanding, functional IncRNAs can be subdivided into those that perform

regulatory functions in cis, and those that act in trans>’”.

Cis-acting IncRNAs. Xist (see Section II1.3.2.1) is the most famous and well-
characterized example of a cis-acting IncRNA. Air (also known as AIRN, Figure S1) is
an IncRNA that silences its target gene, Igf2r, through antisense transcription””>>°.
Intriguingly, Air’s regulatory activity is sequence-independent, and stems solely
from the process of its transcription’’®. More cases of such cis-regulatory IncR-
NAs that carry out their function through the act of transcription, rather than
via their RNA product, have been recently described, such as Upperhand294 (also
known as HAND2-AS1, Figure S9), Blustr (also known as Gm13261, Figure S2) in
mouse’””, and Linc-p21°”°. These examples may represent a common mechanism of
sequence-independent transcriptional regulation. As one could expect from such
a non-sequence-specific mode of action, in most cases the level of conservation of

these IncRNAs is low””?” (see Supplementary Figures).

Trans-acting IncRNAs. LncRNAs can act away from their site of transcription,
i.e., in trans. HOTAIR (Figure S4), for example, is thought to function as a scaffold

253,297 In

that recruits chromatin-modifying complexes to the distant HOXD locus
mouse, lincRNA-EPS (also known as Ttc39a0s1, Figure S5) has been shown to down-
regulate in trans various immune response genes, by interacting directly with their
promoter sequences in macrophages””®?””. Remarkably, lincRNA-EPS is expressed at
relatively low levels (~11 copies per cell’””) and harbors only very limited sequence

conservation with its presumed human ortholog””.

LncRNAs can also play structural roles in the functional organization of the nu-
cleus’s architecture, such as MALATI (Figure S6), an abundant, highly conserved
noncoding gene, or NEAT1 (Figure S7). Both these RNAs are associated with ac-
tive chromatin, but in distinct, functionally important sub-nuclear bodies — nuclear
speckles for the former, paraspeckles for the latter. Evidence suggests that they con-

tribute to the localization of their respective sub-nuclear complexes close to actively
254,300-305

transcribed genes

Other functions of trans-acting IncRNAs include the regulation of the activity of
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other proteins or RNAs in the cell. NORAD (Figure S8), owing to its high affinity
with PUMILIO proteins, acts as an inhibitor of their activity through a molecular
decoy mechanism®’**"”. CDR1as (also known as ciRS-7) also functions as a molecular

"sponge", but with microRNAs instead of proteins®®~".

IT1.3.2.5. Navigating the vast terra incognita of uncharacterized IncRNAs.

Searching for functional clues in IncRNAs. Although definitely demonstrat-
ing non-functionality is impossible, a large proportion of IncRNAs are likely to be
spurious products of transcriptional noise, as discussed in Section II1.3.1. Under-
standably, sequence conservation is often employed to infer functionality — or lack
thereof — or prioritize functional characterization of newly discovered IncRNA gene
models. Primary sequence conservation is an extremely specific predictor of function
— one would reasonably assume a conserved element to be functional. However, as
the numerous aforementioned examples of experimentally validated IncRNAs show,
predictions solely based on sequence conservation suffer from a substantial rate of
false negatives — i.e., non-conserved, albeit functional IncRNAs (Figure 15).

Similarly, low expression levels are often considered evidence of the bogus nature
of IncRNAs. While reasonable on the surface, this argument is mostly based on RNA
concentrations in "bulk" experiments, and ignores possibly localized modes of action,
as exposed in Sections 1I.1.3 and II1.3.1. Furthermore, examples of low-abundance,
yet functional IncRNAs are starting to emerge, including lincRNA-EPS (see Section
111.3.2.4) and VELUCT, a recently described regulatory IncRNA present at less than
one copy per cell’'".

Finally, some characteristics of noncoding RNAs, such as proper post-
transcriptional processing (e.g., splicing, 5 capping and polyadenylation) and
tissue-specific expression, are often insistently taken as indicators of function (see
3’]2)

e.g. Mercer et al 1 Dinger et al.”"). This is likely a misinterpretation, however, as

all these observations are perfectly compatible with the intrinsically noisy nature

of biochemical processes”*’

. It is also tempting to view IncRNA’s combination of
tissue-specific expression patterns and volatile sequence evolution as suggestive of
lineage-specific, delicately orchestrated gene regulation events during development.
This model is supported by some recent experimental data’'*’'*, but may be
considered anecdotal within the large, heterogeneous universe of IncRNAs until

further evidence is gathered.
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Functional Non-functional

LincRNA-EPS
Xist
Air
Upperhand

Blustr

Functional, not conserved Non-functional, not conserved
(false negatives) (true negatives)

Functional, conserved Non-functional, conserved
(true positives) (false positives)

Figure 15: Evolutionary conservation of primary sequence as a pre-
dictor of IncRNA function. LncRNAs can be subdivided into func-
tional (left, purple) and non-functional (right, green) categories. Evo-
lutionary conservation (EC) of RNA sequences is often used to infer
their biological significance — namely, their function. EC will pre-
dict true positives (conserved, functional elements), false negatives
(non-conserved, functional elements) as well as true negatives (non-
functional, non-conserved sequences) and false positives (conserved,
non-functional sequences). It is generally admitted that EC should
generate little to no false positives: it is highly specific. However, ex-
perimental data shows that EC sometimes fails to predict functional
IncRNAs, namely, it lacks in sensitivity. A few examples of functional
IncRNAs are reported in the corresponding plot areas (see text and
Supplementary Figures for details and bibliographic references). Note
that neither the area sizes, nor the number of examples represented are
exactly proportional to the real size of the corresponding sets.

High-quality annotations as a foundation of IncRNA experimental charac-
terization. Gene function can be studied using reverse genetics perturbation
techniques (see Section II). The CRISPR-Cas9 method (Clustered Regularly In-
terspaced Short Palindromic Repeats Cas9) coupled with individual single-guide
RNAs (sgRNAs) efficiently produces loss-of-function mutations in protein-coding

315,316

genes Because noncoding sequences are much less constrained, such point
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mutations are unlikely to reliably inactivate IncRNAs, however. An additional,
prominent difficulty with IncRNA functional studies lies in the capacity to distin-
guish between effects due to cis-acting DNA elements vs RNA-level modes of action
when attempting to explain a phenotype. As a result, IncRNA functional screens
often employ combinations of several disruption techniques, including promoter
or gene knockouts using pairs of sgRNAs’'"*!®, genomic insertion of premature
polyadenylation signals”””>, CRISPRi (CRISPR interference, i.e., CRISPR-mediated
transcription inhibition), CRISPRa (CRISPR-mediated activation of transcription)®!?,

and RNA interference?’.

These experimental methods hold the promise of genome-scale, high-throughput
IncRNA functional surveys. They also have one important feature in common, which
is that they rely on accurate, exhaustive gene annotations. As presented above, there
is ample evidence, however, that mammalian IncRNA gene sets lack in such quali-
ties. SGS-based resources, while extremely sensitive, suffer from patent inaccuracies
due to the difficulties in reassembling transcript models from short read data (see
"Second-Generation Sequencing (SGS) methods’, page 14 and Section 1I1.3.2.2). In
comparison, reference catalogs such as GENCODE, while lacking in depth, arguably
provide a more precise view of the mammalian transcriptome — although reference
transcript models still exhibit doubtful characteristics, particularly at their bound-
aries (see Section II1.3.2.3). In other words, annotation incompleteness stems from a
currently inevitable trade-off between depth and quality, which consequently ham-
pers the full deployment of IncRNA functional genomic studies.



Objectives

The main objective of the present Thesis Project is to produce a more accurate long
noncoding RNA genome annotation than is currently available in human. Providing
such a complete and reliable resource is critical to the understanding of this gene
class’s biology. Using targeted transcriptome sequencing methods, the objectives of
this Thesis Project are:

1. To develop high-throughput, high-quality IncRNA annotation methods based
on current long-read sequencing technologies, reducing manual intervention to
a minimum;

2. To improve the accuracy of the currently annotated IncRNA transcript models
in the reference GENCODE resource, and to advance towards a comprehensive
catalog of human IncRNA gene loci;

3. In light of this enhanced annotation, to re-evaluate the genomic properties of
IncRNAs reported in past studies;

4. To systematically compare the strengths and weaknesses of publicly available
IncRNA annotation resources, including the improved GENCODE catalog gen-
erated in this Thesis Project.
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Abstract:

Long non-coding RNAs (IncRNAs) constitute a large, yet mostly uncharacterized frac-
tion of the mammalian transcriptome. Such characterization requires a comprehensive, high-
quality annotation of their gene structure and boundaries, which is currently lacking. Here
we describe RACE-Seq, an experimental workflow designed to address this based on RACE
(rapid amplification of cDNA ends) and long-read RNA sequencing. We apply RACE-Seq to
398 human IncRNA genes in seven tissues, leading to the discovery of 2,556 on-target, novel
transcripts. About 60% of the targeted loci are extended in either 5" or 3’, often reaching ge-
nomic hallmarks of gene boundaries. Analysis of the novel transcripts suggests that IncRNAs
are as long, have as many exons and undergo as much alternative splicing as protein-coding
genes, contrary to current assumptions. Overall, we show that RACE-Seq is an effective
tool to annotate an organism’s deep transcriptome, and compares favourably to other targeted
sequencing technigues.
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Extension of human IncRNA transcripts by RACE
coupled with long-read high-throughput
sequencing (RACE-Seq)

Julien Lagarde?*, Barbara Uszczynska-Ratajczak!2*, Javier Santoyo-Lopez3', Jose Manuel Gonzalez?,
Electra Tapanari“, Jonathan M. Mudge4, Charles A. Steward? Laurens WiIming4, Andrea Tanzer2T,
Cédric Howald>¥, Jacqueline Chrast®, Alicia Vela-Boza®®, Antonio Rueda3, Francisco J. Lopez-Domingo3,

Joaquin Dopazo>’8, Alexandre Reymond®, Roderic Guigd"? & Jennifer Harrow*

Long non-coding RNAs (IncRNAs) constitute a large, yet mostly uncharacterized fraction of
the mammalian transcriptome. Such characterization requires a comprehensive, high-quality
annotation of their gene structure and boundaries, which is currently lacking. Here we
describe RACE-Seq, an experimental workflow designed to address this based on RACE
(rapid amplification of cDNA ends) and long-read RNA sequencing. We apply RACE-Seq to
398 human IncRNA genes in seven tissues, leading to the discovery of 2,556 on-target, novel
transcripts. About 60% of the targeted loci are extended in either 5’ or 3, often reaching
genomic hallmarks of gene boundaries. Analysis of the novel transcripts suggests that
IncRNAs are as long, have as many exons and undergo as much alternative splicing as
protein-coding genes, contrary to current assumptions. Overall, we show that RACE-Seq is an
effective tool to annotate an organism’s deep transcriptome, and compares favourably to
other targeted sequencing techniques.
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mixture of protein-coding and non-protein-coding RNA

molecules. Increasing interest has been brought to bear on
the latter, most notably on long non-coding RNAs (IncRNAs). A
small but growing number of IncRNAs has been reported to play
diverse roles in biological and pathological processesl’z; however,
the vast majority still awaits functional characterization. Such
characterization depends on accurate and comprehensive
annotation of the complete repertoire of IncRNA transcript
structures. This has been the focus of considerable efforts in
recent years>”. Arguably the most refined and widely used
IncRNA annotation is the catalogue of 15,000 human IncRNA
loci published by GENCODE, alongside the Encyclopedia of
DNA Elements (ENCODE) data release in 2012 (ref. 8). Various
consortia, including the 1,000 genomes projectg, The Cancer
Genome Atlas (TCGA)!® and The Genotype-Tissue Expression
(GTEx) Consortium!! use GENCODE as their reference
annotation.

LncRNA gene annotations remain incomplete and methods to
define them continue to evolve. In contrast to protein-coding
genes, IncRNA gene annotations tend to have poorly defined
boundaries, as judged by their lack of characteristic hallmarks of
transcription initiation and termination®. While computational
methods can provide some guidance!?, accurate gene annotation
requires the use of high-confidence transcriptomic evidence, such
as sequencing of full-length cDNA'3. Until a few years ago, only
low-depth techniques, such as Sanger sequencing of expressed
sequence tags (ESTs)!#, were used. Recent advances in hgghf
throughput cDNA sequencing technology, that is, RNA-seq'>1°,
have provided deep sampling of the human transcriptome!”.
When used in the context of gene annotation, however, these
techniques still exhibit limitations due to the necessary
compromise between read length and sequencing depth. Long-
read sequencing (for example, Roche 454, Pacific Biosciences) can
in principle provide close to full-length transcript sequences, but
at low depth. Short-read RNA-Seq experiments (for example,
Illumina Hi-Seq) routinely produce hundreds of millions of reads.
However, such reads are far shorter than a typical mRNA or
IncRNA transcript, which severely hampers accurate full-length
isoform assembly'S, In summary, current non-targeted,
conventional ¢DNA sequencing methods are ineffective for
reading the full dynamic range of transcript expression in the
cell. This means that low-expressed transcripts, that is, the
majority of IncRNAs, suffer from incomplete annotations.

Technical methods are being developed to address the problem
of low-abundance transcript annotation. Recently, a high-
throughput sequencing method called CaptureSeq was used for
IncRNA characterization, in conjunction with Illumina short-read
sequencing. It achieves targeted transcript enrichment by the
hybridization of cDNA (derived from cellular RNA) to bead-
linked oligonucleotide probes that are tiled and complementary to
exons'®?V. RNA CaptureSeq proved to be effective for the
discovery of novel lowly expressed transcripts and allows for their
quantification and assembly. However, this procedure has not
been designed to specifically address the proper definition of 5
and 3’ transcript ends, and as a result other methods are required
for the precise experimental annotation of gene boundaries.

To improve the annotation of the boundaries of low-expressed
genes, we coupled the widely used RACE technique (rapid
amplification of cDNA ends?!) to high-throughput sequencing—
‘RACE-Seq’. In RACE-Seq, we carry out RACE with primers
designed in targeted loci with the aim of producing ¢cDNA
sequences that reach the transcript termini. RACE products
are then subjected to high-throughput long-read sequencing
(for example, Roche 454). We here apply RACE-Seq to a
selection of 398 IncRNA loci from the reference GENCODE v7

The mammalian transcriptome is composed of a complex

2

catalogue’, most of them low-expressed and lacking typical gene
boundary hallmarks. We discover 2,556 novel, manually curated
rare isoforms. Two thirds of those extend their parent locus beyond
their previously annotated boundaries, often reaching marks of
transcription initiation and termination, such as CAGE tags and
poly-adenylation sites. We found that both the sensitivity and
specificity of RACE-Seq are greatly enhanced by the use of a
second, nested set of priming oligonucleotides. Overall, we show
that RACE-Seq is a highly efficient method, well-suited for both
novel isoform discovery and gene boundary characterization.

Results

RACE-Seq general strategy and proof-of-concept. The outline
of the RACE-Seq procedure is depicted in Fig. 1. For each locus in
a given set of annotated genes, 5 and/or 3 RACE primers are
designed in silico along the transcript sequences so that the
resulting RACE product has a suitable size for the long-read
sequencing platform in use (see Methods). To limit off-target
RACE amplification, it is beneficial to ignore primers exhibiting
substantial sequence identity with any transcribed region in the
genome other than their intended target (>80% identity in our
test case). To increase further RACE specificity, a second ‘nested’
primer, placed as close as possible, downstream of the first one,
can be designed using the same selection criteria as before. RACE
reactions are then carried out in RNA extracted from the cellular
samples of interest. Finally, RACE products are subsequently
sequenced using a high-throughput long-read sequencing plat-
form, and resulting reads are aligned and assembled into spliced
transcripts on the genome.

As a proof-of-concept, we targeted 398 distinct IncRNA loci
from the GENCODE v7 annotation”?$, and performed RACE-Seq
on a set of cDNA libraries from 7 human tissues (brain, heart,
kidney, liver, lung, spleen and testis) known to cover a large
fraction of the annotated human transcriptome?2. We subdivided
our set of target IncRNAs in two subsets, depending on whether
their annotated 5" end was supported by CAGE tags (as identified
by the FANTOM projecl:3 (N=180), or not (N=218) (see
Methods)). The RACE ¢DNA mixtures were then sequenced
using the Roche 454 FLX + platform. Reads obtained have an
average length of ~600bp. Sequenced reads were map ed to the
genome using a combination of BLAT?®> and GMAP?, and the
resulting alignments were manually curated and incorporated
into the GENCODE human gene set.

We obtained a first batch of RACE-Seq (referred to as
‘standard RACE’ below) using standard, non-nested RACE
primers in each of the 398 targets. We then performed nested
RACE on aliquots of the standard RACE reactions so as to
improve the assay’s sensitivity and specificity. In total, adding an
extra pilot set of standard RACE libraries, we sequenced ~22
million reads in 40 RACE libraries (Supplementary Figs 1 and 2).
We obtained at least one alignable RACE product for 94% of the
398 targeted loci, and discovered at least 1 novel, manually
curated isoform for 343 of them,

Novel gene boundaries. With RACE-Seq, out of the 398 targeted
IncRNAs, we extended 176 and 193 loci further in 5’ and 3/,
respectively, and 131 in both directions (Fig. 2a, left panel). In
total, the boundaries of 238 loci (60%) were expanded in either
direction. These genomic extensions were accounted for by 752
and 848 distinct 5" and 3’ RACE products, respectively (Fig. 2a,
right panel). Eighty two novel transcripts extended their parent
locus in both 5" and 3'.

RACE-Seq was particularly successful in extending CAGE-
unsupported loci: the median/mean genomic length of 5
extensions were +21/—8,479 and — 376/ — 14,440 (negative
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Figure 1 | Schematic overview of RACE-seq. Standard 5’ and 3’ RACE primers are designed to target exons of a gene and produce primary RACE products,
which undergo a second round of RACE reactions using nested 5" or 3’ RACE primers. Both standard and nested 5" and 3' RACE products are subjected to

long-read sequencing, followed by mapping to the reference genome.
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values represent novel transcription start sites (TSSs) upstream of
the annotated locus), respectively, for CAGE-supported and
unsupported loci (Fig. 2b, and example in Fig. 5b). Surprisingly,
we observed a similar phenomenon at the 3’ end of targeted loci:
the mean/median genomic length of 3" extensions amounted to
—15/—526 and + 225/ + 8,518 (positive values correspond to
novel transcription termination sites (TTSs) downstream of the

annotated locus’), respectively, for CAGE-supported and unsup-
ported loci. We speculate that this observation is due to the
pre-RACE-Seq GENCODE set being mostly based on oligo-dT-
primed ESTs, which tend to cover preferentially the 3’ end of
transcripts. As a consequence of this bias, a transcript model that
is complete at its 5" end (that is, CAGE-supported) is also likely to
be complete at its 3! end, which is consistent with our results.
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Table 1| Comparison of various TTS data sets with Merck PolyA-Seq peaks.

Data set Total #TTS #TTS close to a polyA-Seq tag (+100 nts) % TTS close to a polyA-Seq tag (100 nts)
Targets (pre-RACE) 535 16%
Targets updated (post-RACE) 1,027 10%
Protein coding 17,940 7,019 39%
IncRNAs 12,556 2,223 18%

IncRNA, long non-coding RNA; RACE, rapid amplification of cDNA ends; TTS, transcription termination site.
Statistics are also reported for the full sets of GENCODE-annotated protein-coding genes and IncRNAs for reference.

Table 2 | Comparison of pre- and post-RACE TTSs data sets with polyA peaks called using our RACE-Seq data.

Data set Total #TTS  #TTS close to a RACE-Seq inferred polyA-Seq  %TTS close to a RACE-Seq inferred polyA-Seq
tag (+ 100 nts) tag (1100 nts)

Targets (pre-RACE) 535 206 39%

Targets updated (post-RACE) 1,027 321 31%

RACE, rapid amplification of cDNA ends; TTS, transcription termination site.

In addition, we observed that when novel TSSs were discovered
in CAGE-supported loci, they were much more likely to be
supported by another CAGE peak than CAGE-unsupported loci
(74% versus 56% CAGE support, see Supplementary Fig. 3).
Overall, the experiment uncovered 873 non-redundant TSSs, of
which 615 were previously unknown—including 252 (41%) that
were CAGE-supported (Supplementary Table 1).

We also assessed the accuracy of the newly annotated TTSs by
comparing them with experimentally established poly-adenyla-
tion (polyA) sites (Merck PolyA-Seq data sets?®). The overall
proportion of TTS within 100 nucleotides of a PolyA-Seq tag
slightly decreased from 16% pre-RACE to 10% post-RACE
(Table 1). Yet, the raw count of TTSs supported by PolyA-Seq
was improved after RACE-Seq, albeit very marginally (from 83 to
99 PolyA-Seq-supported TTSs). In addition, we identified polyA
sites ourselves by searching for non-templated polyA/T tails in
partially mapped 3’ RACE-Seq reads. Using this method, we were
able to precisely map 1,212 distinct polyA sites near our targets,
and compared those with the 3’ ends of our transcript set. We
observed a much higher number of TTSs in the near vicinity
(£100 nucleotides) of these sites (206 and 321 pre-RACE and
post-RACE TTSs, respectively) (Table 2). This indicates that the
low Merck PolyA-Seq coverage of our TTSs is probably due to the
limited depth and tissue coverage of PolyA-Seq compared with
our RACE-Seq data.

On-target enrichment and sensitivity of RACE-Seq. Since (1)
RACE operates with only one internal oligonucleotide primer,
and (2) our targeted genes are very lowly expressed ones, we
expected this experiment to yield a high number of off-target
products. We found that, on average across all samples, 94% of
uniquely mapped sequencing reads overlapped GENCODE v7
genic regions (Supplementary Fig. 4), indicating insignificant
genomic contamination of our cDNA libraries. The vast majority
of reads arose from annotated genic regions, and 3.9% of them,
on average, fell within the targeted locus boundaries when using
standard RACE (Fig. 3a and Supplementary Table 2). This cor-
responds to a 3.1-fold enrichment of reads originating from
transcripts compared with untargeted sequencing (as estimated
using GTEx RNA-Seq data in matched tissues, see Methods). In
contrast, nested RACE yielded an average of 36.4% on-target
reads across all tissues (that is, a 9.5-fold increase in specificity
compared with standard RACE, and 29.2-fold over expected in

4

untargeted sequencing), allowing much deeper sequencing of the
target loci. Similarly, the number of non-targeted loci producing
reads decreased 2.2-fold when using nested RACE (on average,
5,025 amplified non-targeted loci in standard RACE, versus 2,332
in nested RACE, see Supplementary Fig. 5).

The total number of loci successfully amplified by RACE-Seq
was 374 (94%, regardless of RACE direction), 326 (82%) and 341
(86%) for 3’ RACE and 5 RACE, respectively (Supplementary
Table 3). When further assessing the sensitivity of RACE-Seq, we
noticed the benefits of nested RACE over standard RACE again.
Overall, 12.5% (351 versus 312) more targets could be amplified
in nested RACE-Seq than in standard RACE-Seq. The majority of
positive loci (289, that is, 73% of the total) were detected in both
nested and standard RACE, and only 23 of them were positive in
standard RACE only (Supplementary Fig. 6).

In each individual tissue, nested RACE-Seq always out-
performed standard RACE-Seq (Fig. 3b). The median number
of positive targets was 49 (12%) across all standard RACE-Seq
experiments, and 130 (33%) across the nested ones. The
difference in sensitivity between nested and standard RACE
samples was particularly remarkable in the kidney 3’ RACE
samples (36% versus 8% success rate, respectively), and less
noticeable in more transcriptionally complex tissues, such as testis
(3’ RACE; 58 versus 50% success rate, respectively). We attribute
the nested sets” sensitivity improvements to its better specificity,
which, by limiting the number of off-target reads, leads to a
deeper sampling of the targeted transcripts. Taken globally, these
results indicate that, as one could expect, nested RACE-Seq is far
more informative that standard RACE-Seq, that is, surpasses it in
both sensitivity and specificity terms.

Novel isoforms in targeted regions and tissue origin. We
extended 176 IncRNA loci at the 5’ end and 193 loci at the 3’ end
out of the total of 398 loci targeted for extension from
GENCODE v7 (Fig. 2a). After extension, re-annotation and
loci merging where necessary, the total number of IncRNA loci
was reduced to 343. One putative IncRNA locus
(OTTHUMG00000009351), when extended, was found to bear
coding potential as it was extended to overlap the LRRC7
(Leucine-rich repeat containing) coding locus, thus its biotype
was changed to protein-coding. About 57 transcripts were merged
into existing protein-coding loci (see example in Supplementary
Fig. 7, where a putative IncRNA is re-annotated to be part of the
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Table 3 | Table izing basic tati ics before and after RACE-Seq.

Data set #loci #transcripts  #transcripts per locus  #exons (all) #exons (unique) #exons per transcript
Targets (pre-RACE) 398 597 15 1,889 1,695 32

Targets updated (post-RACE) 343 2,556 7.5 10,139 5,326 (4,626) 4.0

RACE, rapid amplification of cDNA ends.

Unique exons are those having distinct coordinates on the genome. The number of previously unannotated unique exons is indicated between parentheses in the penultimate column.

PIGL (phosphatidylinositol glycan anchor biosynthesis, class L)
locus using RACE-Seq read data). The number of alternatively
spliced variants generated by the 5" and 3’ RACE increased by
>4 fold from 597 to 2,556 (Table 3), and the median length of
the transcripts slightly increased from 623 to 704, although not
significantly (P=0.7, Wilcoxon rank sum test with continuity
correction) (Fig. 4a). It should be mentioned that RACE, by
design, does not produce full-length, TSS-to-TTS transcripts. This
is because RACE products, by definition, start at their originating
primer’s position along the targeted transcript. Therefore, we
speculate that the length of post-RACE transcripts is heavily
underestimated.
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The average number of transcripts per locus increased from 1.5
(597/398) pre-RACE to 7.5 (2,556/343) post-RACE (Table 3 and
Fig. 4b). The total number of splice junctions increased from
1,093 pre-RACE to 3,085 post-RACE (Table 4). One IncRNA,
PCBI1-AS1 (OTTHUMGO00000153728), antisense to PCBP1, had
the highest number of alternatively spliced transcripts, increasing
from 40 transcripts pre-RACE to 170. The function of this
IncRNA is currently unknown, however, the PCBPI protein is
known to act as a translational coactivator’® and mediate the
degradation of mitochondrial antiviral signals. Interestingly,
PCBI-ASI was already highlighted by Derrien et al® as the
most alternatively spliced IncRNA gene in the GENCODE v7
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RNA-Seq data.

Table 4 | Proportion of annotated splice junctions in pre- and post-RACE-Seq targets supported by short-read ENCODE or GTEx

Data set Total #unique splice junctions #supported by ENCODE or GTEx %supported by ENCODE or GTEx
RNA-Seq RNA-Seq

Targets (pre-RACE) 1,093 77 71%

Targets updated (post-RACE) 3,085* 975 31%

Protein coding 82,627 74,090 90%

IncRNAs 24133 16,937 67%

IncRNA, long non-coding RNA; RACE, rapid amplification of cDNA ends.
Both data sets are derived from ional, unbiased i

(* represents novel introns only).

catalogue. Figure 5a shows a common occurrence in the
annotation where two separate IncRNA loci have been extended
to produce one larger new locus (LINC01246) with over 50 new
spliced transcripts.

The majority, 63% (N =1,618), of the 2,556 RACE-Seq derived
transcripts were from testis and 20% (N=516) from brain
(Supplementary Fig. 8). The rest of the tissues (heart, kidney,
liver, lung and spleen) contributed ~13% of novel transcripts.
Many genes that appeared to be extensively alternatively spliced
(> 25 transcripts) such as TEXI, LINC0069 and LAMTORS5-AS,
are detected in all 7 tissues examined.

6 NATURE C
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In total, 4,626 novel exons were discovered, bringing the
average number of exons per transcript from 3.2 pre-RACE-Seq
to 4.0 post-RACE-Seq. Derrien et al® made the striking
observation that IncRNAs have a very strong bias towards
two-exon structures and exhibit less alternatively spliced
isoforms per locus compared with protein-coding genes.
Our results suggest that these are artifacts arising from
inaccurate annotation of IncRNA transcript structures,
since the biases towards both two-exon transcripts and isoform-
poor genes disappear in the post-RACE-Seq transcripts
(Fig. 4b,c).
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Figure 5 | Locus examples. (a) Two separate loci were merged into one larger locus (LINCO1246). This example illustrates the large number of alternative
splicing events found using the RACE-Seq approach. The red filled transcripts (far left) indicate the manual annotation models built from the 454 reads
(far right in pink), as visualized in the ZMap browser (http://www.sanger.ac.uk/science/tools/zmap). (b) RACE-Seq reads (far right, in pink) establishes
the Transcriptional start site (TSS) of an existing incomplete lincRNA, by extending the 5’ end of the gene to a CpG island (yellow box) and is also

supported by FANTOMS CAGE data (small pink boxes).

Comparison with other transcriptome sequencing methods. To
further evaluate RACE-Seq, we compared its performance with
other transcriptome sequencing methods. First, we used non-
targeted, conventional RNA sequencing data generated by the
GTEx'! and ENCODE® consortia. We analysed the GTEx pilot
data freeze, which consists of RNA-seq data collected from 1,641
samples from 175 human individuals, representing up to 43
tissues per individual (29 solid organ tissues, 11 brain regions,
whole blood and 2 cell lines). GTEx RNA-Seq samples were
sequenced to an average 80 million of pair-end Illumina reads
(2x76bp) per sample. The ENCODE data set is smaller

(55 human cell lines and 104 samples), but on the other hand
much more deeply sequenced (200-250 million pair-end reads
(2x100 or 2x76 per sample)). We found that 71% of
pre-RACE-Seq splice junctions from the targeted loci were
supported by short-read Illumina ENCODE or GTEx RNA-Seq
data. This proportion dropped to 31% when looking only into
novel splice junctions found in transcripts discovered through
RACE-Seq (Table 4). This result strongly suggests that the
coverage of weakly expressed novel transcripts in non-targeted,
conventional RNA-Seq experiments is shallow. It is also reflected
by the proportion of overall support of splice junctions for

; MUN 1712339 DOI: 10.1038/ncomms12339 | www.nature.com/naturecommunications 7
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454 RACE-Seq
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Figure 6 | RACE-Seq performance compared with CaptureSeq. Venn
diagram indicating the number of annotated and unannotated on-target
(% 5kb) splice junctions discovered by RNA CaptureSeq and RACE-seq.
Only the top 25% splice junctions with canonical splice sites ranked by read
coverage were included in this analysis (see Methods).

protein-coding and IncRNA genes from GENCODE v7 by
ENCODE or GTEx RNA-Seq data. Almost all splice junctions
from annotated protein-coding loci show short-read support,
while it is the case for <70% of IncRNAs.

To fully assess the performance of RACE-Seq, we compared
our results with another targeted RNA sequencing method,
capture sequencing (RNA CaptureSeq). RNA CaptureSeq
enhances coverage of weakly expressed transcripts by focusing
sequencing on genes of interest, thus enabling deeper sampling
of low-abundance isoforms!>?°. We analysed a subset of seven
matching tissues from RNA CaptureSeq data set generated
for IncRNAs profiling across 20 different human tissues by
Clark et al.?. The support rate for both pre- and post-RACE
transcripts is much higher compared with conventional
RNA-Seq experiments, with 83% and 60% of splice junctions
supported by RNA CaptureSeq data, respectively (Supplemen-
tary Table 4). To investigate whether RACE-Seq provides deeper
interrogation of transcriptional events, we compared the set of
splice junctions produced by each method within boundaries
(% 5kb) of 366 loci targeted by both studies. To compensate for
differences in sequencing depth, we considered only the top
quartile of canonical splice junctions, as ranked by read
coverage, in each data set. RNA CaptureSeq enabled detection
of 2,125 splice junctions, while RACE-Seq of 3,881 (83% more).
Moreover, 1,229 splice junctions were supported by both
methods, which constituted 60% of the total number of splice
junctions seen in RNA CaptureSeq and roughly 30% from
RACE-Seq (Fig. 6). Both techniques produce splice junctions
uniformly distributed across targeted loci, including 5" and 3’
ends (Supplementary Fig. 9). It is important to stress that the
isoform discovery rate of both methods is expected to be
negatively correlated with the number of targeted genes (16,453
in the study by Clark et al.20, 398 in the present one), owing to
the limited sequencing depth they rely on. These differences are
not fully accounted for in our analysis, and may therefore favour
our method over CaptureSeq in this comparison.

In addition, we used the read data by Clark et al?® from
equivalent tissues to build CaptureSeq Cufflinks?’ transcript
models overlapping our target genes, and mapped their
corresponding 5 ends. We derived a total of 343 non-
redundant TSSs from this set, of which only 70 (20%, including
37 supported by FANTOMS5 CAGE data) were previously
unknown according to GENCODE (Supplementary Table 1).
When compared with the output of RACE-Seq (873 TSSs,
including 615 novel ones, see section above), this highlights the
superiority of this latter technique at uncovering novel TSSs in
comparison with CaptureSeq.

Discussion

Increased resolution in available technologies to monitor cellular
transcriptomes have recently unveiled a plethora of RNA species
beyond mRNAs. Among them, some IncRNAs have been shown
to play important roles in cell function??’. LncRNAs have
characteristic tissue specificity and low-expression levels, which
makes them challenging to annotate. While mRNAs, as well as
some small RNA families, exhibit sequence and/or structural
constraints that can be employed by computational methods to
facilitate their identification and annotation, such constraints are
mostly absent among IncRNAs*°. There is indeed strong evidence
that the exonic structure and the transcript termini of IncRNAs
are not as well-annotated as those of protein-coding genes. For
instance, only 15% of them have ENCODE CAGE data support at
their 5’ end comspared with 55% of protein-coding loci, according
to a 2012 study®.

Here we introduced the RACE-Seq methodology and used it to
enhance IncRNA annotation. The idea of combining RACE with
high-throughput sequencing was previously described by Olivar-
ius et al.>!. However, this study presented only 5 RACE analysis
of 17 protein-coding genes and compared single short-read
Ilumina sequencing with Sanger sequencing, and thus did not
fully explore the high-throughput potential of this approach. In
contrast, we tested the approach on a set of almost 400 human
IncRNAs in 7 tissues, with both 5’ and 3’ RACE, and uncovered
many previously unannotated transcripts. We increased the
number of transcripts per IncRNA locus from 1.5 to 7.5 (see
Table 3), and extended the 5’ and/or 3’ boundaries of the loci in
60% of the cases. The CAGE coverage of TSSs within the targeted
genes increased by 28% at the end of the experiment—from 180
to (180+50=) 230 CAGE-supported loci (Supplementary
Fig. 3). Particularly useful was the usage of nested RACE-Seq,
which lead to a 2.2-fold reduction in the number of detected off-
target loci (Supplementary Fig. 5) compared with standard
RACE-Seq.

While RACE-Seq leads to the identification of many novel
transcripts, still only about 50% of the transcripts are on average
full-length in a given locus. This could be improved by replacing
the 454 technology, which has an average read length of 600 bp,
with a lonzger—read sequencing technology, such as PacBio or
Nanopore”, The sensitivity of RACE-Seq coupled with longer
reads will facilitate automatic assembly of individual transcripts,
which has proved problematic and inaccurate when using shorter
reads!8, and it will lead to improved annotations. Indeed, we used
the very large collection of short-read RNA-Seq samples from
multiple tissues compiled by the GTEx project!!, and found that
only 31% of the targeted IncRNA splice junctions could be
detected in this data set. This highlights that conventional,
unbiased short-read RNA-Seq suffers from a limited sampling
capacity given the large dynamic range of transcript abundances
within the cell.

To alleviate, in part, the poor sensitivity of unbiased methods,
strategies that target specific genomic regions have already been
developed. Notably CaptureSeq'*?" uses oligonucleotide capture
to perform short RNA-Seq in RNA populations enriched for
selected loci. Still, we found that 40% of the RACE-Seq splice
junctions are not observed in the output of CaptureSeq, and that
although only 7 tissues were used in RACE-Seq this resulted in
the discovery of a larger number of transcripts (6.6 on average per
locus) than CaptureSeq (3.6 transcripts per locus on average)
even when 20 tissues were employed. This highlights the
importance of using longer reads and shows that RACE-Seq is
very efficient to target specific gene classes, such as IncRNAs to
uncover deep transcriptional complexity. Moreover, RACE-Seq
has the advantage over CaptureSeq that it solves much more
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accurately, and with more sensitivity the 5 and 3’ end of
transcripts.

The vast transcriptional complexity uncovered through RACE-
Seq could reflect functional non-coding RNAs*3, or alternatively
may be a result of experimental artifacts, and transcriptional
noise®*. The fact that many of the extensively alternatively spliced
(> 25 transcripts) loci such as TEX1, LINC0069 and LAMTORS-
AS show expression in all 7 tissues examined indicates that this
complexity is not due to experimental artifacts, and could instead
be an indication of the vast functional potential of non-coding
RNAs?*3. However, the amount of biological ‘noise’ that exists
within the transcriptome remains a source of much debate3*3%,
and other methods will be required to rigorously establish the
functionality of these transcripts.

Recently, Tilgner et al3® used a new sequencing method,
Synthetic long-read RNA sequencing (SLR-RNA-Seq) in which
small pools of full-length cDNAs are fragmented and sequenced
using small-read-sequencing, and then re-assembled. Since
Tilgner et al3 also examined the transcriptome of human
brain tissue, we examined the data to investigate if any of the
targeted IncRNA loci were detected by SLR-RNA-Seq. Around
37% (N=149) of our targeted IncRNA genes were covered by
reads, however, only 9% or RACE-Seq splice junctions were
detected by SLR-RNA-Seq reads (see Supplementary Fig. 10 and
Supplementary Table 5). This alternative method of deep short-
read sequencing, combined with targeted, nested RACE-Seq,
could potentially provide a cheaper alternative to more expensive
longer-read sequencing.

Methods
Target selection and primer design. The experiment was designed using a fully
automatized pipeline, which contents are available on request. Illumina HBM
(Human Body Map 2.0) RNA-Seq data was used and RPKMs (reads per kilobase of
exon per million mapped reads) for all GENCODE v7 IncRNAs were calculated.
We selected IncRNAs that were expressed in at least one HBM experiment with an
RPKM >5 and that were lacking CAGE/PET support in ENCODE cell line
experiments®!”. The spliced RNA sequences for the top 398 IncRNAs, ranked by
mean RPKM across cell lines, were extracted and used as input for primer design.
At the time of the experimental design, CAGE data on matched tissues were not
available, therefore we had to rely on ENCODE CAGE experiments, performed on
various cell lines, all quite distinct from our set of tissues. On the public release of
matched tissue CAGE data from the FANTOMS consortium?, we re-calculated
CAGE support of the 398 RACE-Seq-targeted loci. We found that, in fact, 180 of
them had at least 1 CAGE tag in their vicinity
(+50 nucleotides, on the same strand) in at least 1 of the matched FANTOMS tissues.

Non-specific regions within the candidate sequences were masked to avoid off-
target RACE products. These regions were established by aligning candidate
sequences against all GENCODE v7 transcript sequences using the BLAST
program’w. Regions having >80% sequence similarity to any GENCODE v7
transcript from a distinct locus were hard-masked. Only stranded overlap was
considered. We then generated for each candidate transcript, all possible 5’ and 3’
RACE primers using primer3 with the following parameters:
PRIMER_INTERNAL_OPT_SIZE = 25, PRIMER_INTERNAL_MIN_SIZE =23,
PRIMER_INTERNAL_MAX_SIZE =27, PRIMER_INTERNAL_OPT_TM = 70.0,
PRIMER_INTERNAL_MIN_TM = 68.0, PRIMER_INTERNAL_MAX_TM = 72.0,
PRIMER_INTERNAL_MIN_GC = 50, PRIMER_INTERNAL_MAX_GC =70,
PRIMER_INTERNAL_OPT_GC_PERCENT = 60.

In total, we could design 3’ and 5" RACE for all 398 targets in standard RACE.
361 and 367 nested primers could be designed for 3'/5" RACE, respectively.

The full list of RACE primer sequences, together with their corresponding
transcript targets and mean RPKM, is provided as a tab-separated file in the
Supplementary Data section.

RACE reactions. Nested and non-nested 5" and 3’ RACE products were obtained
using the Clontech SMART RACE cDNA Amplification kit and the Advantage 2
Proofreading Polymerase PCR kit (Clontech Laboratories, Mountain View, CA,
USA, catalogue no. 634914) according to the manufacturer’s instructions.

PolyA + RNA from a panel of seven human tissues was used (brain, heart, kidney,
liver, lung, spleen and testis), all from Clontech Laboratories. RACE- and nested
RACE-specific primers were synthesized by Life Technologies Europe BV and were
diluted to a final concentration of 200 nM. Each RACE reaction was performed in
an independent well on a 384 well plate, and PCRs were done using liquid-
handling robots.

Double-stranded cDNA synthesis, adaptor ligations to the synthesized cONA
and RACE reactions were performed according to the manufacturers’ instructions.
Nested RACEs were performed with 0.5 pl of the initial RACEs in a final volume of
12.5 pul. The cycling parameters were: RACE 5 x (94°C 30", 70°C 30" , 72°C 3),
5x (94°C 30", 68°C 30", 72°C 3'), 20 x (94 °C 30", 66 °C 30", 72°C 3'); nested
RACE 25 x (94°C 30", 68°C 30", 72°C 3'). We then pooled by tissue, 2 pl of all
nested RACE reactions, and pools were purified using Qiaquick PCR purification
kit (Qiagen, CA, USA) before proceeding with 454 4 library preparation.

GS-FLX 454 + library preparation and sequencing. cDNA RACE samples were
analysed on a DNA 7,500 Chip (2,100 Bioanalyzer, Agilent Technologies Inc, Santa
Clara, CA, USA) to assess fragment size and sample integrity. For samples with a
mean fragment size of >2Kbp, 1 g of material is subjected to nebulization and
then used to prepare a rapid ligation (RL) genomic shotgun library using the Rapid
Library Preparation Method Manual (GS FLX + Series-XL +, May 2011, Roche
454 Life Sciences). For RACE samples with a mean fragment size smaller than 2
Kbp the nebulization step is avoided, starting library preparation directly with
800 ng of material. A modification was introduced in the small fragment removal of
this library preparation, to allow only for the removal of fragments under 400 bp
instead of fragments under 650 bp. Then, the quality of the RL libraries was
assessed by running an aliquot of the library in a High Sensitivity Chip (2,100
Bioanalyzer). Library quantification was performed generating a RL standard curve
and using a 96-well Plate fluorometer, according with the manufacturers instruc-
tions, and using the Rapid Library Quantitation Calculator (www.454.com/my454).

Samples were titrated using the emPCR amplification Method Manual Lib-L SV
(GS FLX + Series-XL +, May 2011) to know the optimal point of copies per bead
(cpb) needed to obtain a 10% enriched beads. Then, a large volume emulsion PCR
was performed using the emPCR amplification Method Manual Lib-L LV (GS
FLX + Series-XL +, May 2011).

Sequencing was performed at the Genomic and Bioinformatics Platform of
Andalusia (GBPA) using half 454-pyrosequencing plate per sample using a Roche
454 GS FLX + instrument, and GS FLX + reagents (Roche 454 Life Sciences).
After the ing was finished, ing images were analysed using the
Shotgun-pipeline to generate SFF files.

Read pre-processing and mapping. FASTQ files were extracted from SFF files by
the program sffextract (http://bioinf.comav.upv.es/sff_extract/index.html). Cuta-
dapt was used to remove adaptors, and reads shorter than 100 nts were filtered out
(5" RACE Adapter: 5'-CTAATACGACTCACTATAGGGCAAGCAGTGGTATCA
ACGCAGAGTACT-3', 3' RACE Adapter: 5'-CTAATACGACTCACTATAGGGC
AAGCAGTGGTATCAACGCAGAGTACGCGGG)-3'.

Low quality nucleotides in 3’ end were hard-trimmed by calculating the mean
quality of the last three nucleotides and removing bases progressively until reaching
a mean quality >20 (Sanger scale).

Two different approaches where used to map the reads to the reference genome:

a) The Inchworm wrapper program’® was used to run BLAT?* (v35) and generate
SAM files, by setting minimum per cent identity at 95% and considering just the best
single hit per read reported by BLAT. Intron prediction by Inchworm is based on the
presence of splice consensus sites in the ends of the gaps (gap size>20).

b) Using the GMAP program? (version 31 March 2013 with all parameters set to
default except --min-identity=0.95 --force-xs-dir -B5 -t 5 -
samse $file --min-intronlength=30 --split-output). Only unique
mappings were considered in subsequent analyses.

Both BLAT and GMAP mappings were performed against the hgl9 (GRCh37)
assembly of the human genome.

Coverage and on-target enrichment calculation. Mapped reads were compared
with annotated regions using the BEDtools suite®® v2.17.0. Reads were considered
on-target when they overlapped exonic regions of the targeted transcripts. We
estimated the expected read coveraFe of transcripts in a typical non-targeted
RNA-Seq experiment using GTEx!! data in matched tissues (SRA accessions:
SRR1403958, SRR1340617, SRR1314940, SRR1080294, SRR809807, SRR1069539
and SRR1458955). We then calculated the on-target enrichment achieved by
RACE-Seq using the following formula:

Enrichment = R/E

Where

R=proportion (across tissues) of mapped RACE-Seq reads on-target

E = proportion (across tissues) of mapped GTEx RNA-Seq reads on-target. The
results of the comparison between GTEx read coverage and both standard and
nested RACE-Seq on the 398 targets are summarized in Supplementary Table 2.

manual Manual was performed according to
GENCODE standards. Briefly, imported BAM files (merged outputs of GMAP
and BLAT) representing the aligned RNA-seq reads were displayed in our in-house
annotation tool, ZMAP (http://www.sanger.ac.uk/science/tools/zmap). Splice sites
and alignments for all non-redundant novel intron combinations and exon
extensions were evaluated manually and, when confirmed, used to create new or
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extend existing transcript models. While the target loci were IncRNAs, where
warranted by the RNA-seq data, biotypes were modified (for example, from non-
coding to coding if RNA-seq read joins IncRNA target to a coding gene).

Ch ion of novel In this part of the analysis, we
split all post-RACE-Seq transcript models into 5’ and 3 RACE products. We
reasoned that 5 RACE product models may be anchored at their originating
primer location at the 3’ end, hence obfuscating the global analysis of genuine
transcript 3’ ends (and likewise for 3' RACE products versus 5’ ends). We did so by
assigning the most probable originating RACE direction (5" or 3') to each post-
RACE GENCODE transcript model: a transcript extending an annotated locus
further in 5', and/or whose 3’ end started within 50 bps of a 5 RACE primer (and
on the opposite strand) was labelled a 5" RACE product. Similarly, one extending
an annotated locus further in 3’, and/or whose 5" end started within 50 bps of a 3’
RACE primer (and on the same strand) was labelled a 3’ RACE product.

This resulted in 1,427 and 1,420 transcript objects likely produced by 5 RACE
and 3’ RACE that were used for TSS and TTS analysis, respectively. About 291
transcripts were shared between those 2 sets (that is, likely complete structures
from 5’ to 3'). Overall, we could assign a probable RACE direction to 2,556
transcripts out of 2,641, that is, 97%.

Transcription start sites. All annotated 5" RACE-Seq TSSs were clustered (that is,
all TSSs on the same strand and <51 bps away were merged into one). About 615
out of these 873 clustered TSSs were considered novel, that is, they lied farther than
100 bps from any of the targeted GENCODE 7 transcript’s TSSs. We compared
TSSs against merged, tissue-matched CAGE data from the FANTOMS consortium,
and considered them CAGE-supported if a CAGE tag could be found on the same
strand, within 50 bps on either side. Of the 615 novel TSSs, 252 (41%) were found
to be CAGE supported.

TSSs uncovered with RACE-Seq were compared with the TSSs of their
originating locus. Any RACE-Seq TSS upstream of the 5'-most TSS of its original,
GENCODE 7-annotated locus, was labelled as ‘extending’, and the corresponding
locus as ‘5'-extended’.

sites. All d 3’ RACE-Seq TTSs were clustered
(that is, all TTSs on the same strand and < 151bps away were merged into one).
The clustering distance was chosen longer than for TSSs because of the ‘leakier’
nature of transcription termination compared with transcription initiation. We
compared TTSs against merged data from available matched tissues (brain, kidney,
liver, muscle, testis) from the Merck PolyA-Seq set®®, as downloaded from the
UCSC genome browser. We considered a TTS polyA-Seq-supported if a PolyA-Seq
tag could be found on the same strand, within 100bps on either side.

We also inferred polyA sites from RACE-Seq data. To do so, we selected
mapped 3" RACE reads and searched for characteristic non-templated stretches of
>20 Ts or As (allowing for 10% mismatches) at their ends. About 1,212 non-
redundant polyA sites were mapped, and compared with RACE-Seq TTSs in the
same manner as for Merck PolyA-Seq sites.

TTSs uncovered with RACE-Seq were compared with the TTSs of their
originating locus. Any RACE-Seq TTS downstream of the 3’'-most TTS of its
original, GENCODE 7-annotated locus, was labelled as ‘extending’, and the
corresponding locus as ‘3'-extended’.

Conventional unbiased short-read RNA-seq. Integrative Pipeline for Splicing
Analyses (IPSA, unpublished, https://github.com/pervouchine/ipsa) was employed
to locate splice junctions from 1,641 GTEx, 104 ENCODE and 38 454-RACE-Seq
bam files, respectively. Alignments for GTEx and ENCODE data sets were pro-
duced by each consortium using their respective official processing pipelines. TPSA
was run with the default parameters except —entropy 3. The analysis of splice
junction support was done by comparing the two lists of splice junctions: one
consisting of GTEx or ENCODE splice junctions produced by TPSA, and a second
containing splice junctions derived from GTF files of pre- or post-RACE
transcripts.

RNA CaptureSeq. RNA CaptureSeq FASTQ files for seven tissues matched with
RACE-seq experiment were downloaded from BioProject (PRINA261251). The
sequences were aligned to the reference human genome (GRCh37/hgl9) using
STAR* v 2.4.0, according to the instructions specified by Clark et a2, Both
standard and nested 454- RACE-seq sequences were also re-mapped using STAR v
2.4.0. The following non-default STAR parameters were applied: ——
outSAMunmapped Within --alignSJDBoverhangMin 1 --
outFilterType BySJout. Again, IPSA (with the same parameters as those
mentioned above) was run to produce the lists of annotated and unannotated splice
junctions for both data sets. Support rate of splice junctions annotated by
GENCODE for pre- and post-RACE loci (only those targeted by both studies) by
RNA CaptureSeq and 454-RACE-Seq was investigated by intersecting those with
the set of splice junctions detected by IPSA for each data set. Next, annotation-free
splice junction analysis was performed to further compare RNA CaptureSeq and
454-RACE-Seq. This analysis was done by selecting annotated and unannotated
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splice junctions with canonical splice sites, located within targeted loci boundaries
(+5Kkb) from the IPSA output. Next, splice junctions were ranked by read coverage
and only those supported by top quartile read count were further analysed.

We assessed the TSSs discovered by CaptureSeq by re-building Cufflinks*”
transcript models from Clark ef al.’s?" provided BAM files on brain, heart, kidney,
liver, lung, spleen and testis (GEO accession GSE61474). Reads falling on and in
the vicinity (+500bps) of our GENCODE 7 targeted genes were selected and fed
to Cufflinks v.2.2.1 with all options set to default except ‘~--1ibrary-type fr-
firststrand’, ‘-u’ and using GENCODE 7 as a guide (‘-g’). We derived TSSs
from Cufflinks’ output after selecting those 1,156 transcript models that overlapped
RACE-Seq-targeted exons, had the ‘full_read_support’ GFF attribute set to ‘yes’
and an FPKM value >0 in any of the 7 tissues. The resulting 343 non-redundant
TSSs were then processed the same way as RACE-Seqs (see section above and
results in Supplementary Table 1).

Y ic long-read The for 11 human brain samples
produced using SLR-seq were downloaded from Sequence Read Archive
(SRP049776) and aligned to the reference genome (GRCh37) using GMAP and
parameters specified by Tilgner ef al.>. An in-house developed pipeline was
applied to produce the list of splice junctions from genomic alignments.

quency

Data availability. All computer code is available from the authors upon request.

data have been deposited in the European Nucleotide Archive (ENA)
under accession number ERP012249. All curated novel isoforms were incorporated
into the human GENCODE set (version 22 onwards). In addition, a data portal,
including a UCSC track hub, is available at http:/public-docs.crg.es/rguigo/Papers/
2016 lagarde-uszczynska RACE-Seq/.
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Supplementary Figure 2: Genome mapping statistics. Bar plot showing the number of 454 reads that were unmapped
(blue) mapped uniquely (green) and multiple times (coral) to the reference human genome (GRCh37).
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Supplementary Figure 3: Flowchart explaining the CAGE enrichment analysis and summarized results.
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tissues assayed.
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Supplementary Figure 6: Venn diagram comparing the sets of targeted loci that could be amplified in standard,
primary RACE (blue) and nested RACE (orange)
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(post-RACE, novel)
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transcript
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transcript

models (novel)

Supplementary Table 1: Table summarizing TSS discovery and CAGE coverage statistics in both RACE-Seq and
Clark et al.’s CaptureSeq.
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Supplementary Table 3:  Number and proportion of successfully RACE-amplified targets.
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Supplementary Table 4: Detection of pre- and post-RACE-Seq targets by RNA CaptureSeq. Proportion of annotated
splice junctions in pre- and post-RACE-Seq targets supported by RNA CaptureSeq.

1,093 74.8% 20.68%

3,664 3,277 89.4% 281 9.11%

Supplementary Table 5: Comparison of splice junction support by 454 RACE-seq and SLR-seq.
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Abstract:

Accurate annotation of genes and their transcripts is a foundation of genomics, but cur-
rently no annotation technique combines throughput and accuracy. As a result, reference gene
collections remain incomplete—many gene models are fragmentary, and thousands more re-
main uncataloged, particularly for long noncoding RNAs (IncRNAs). To accelerate IncRNA
annotation, the GENCODE consortium has developed RNA Capture Long Seq (CLS), which
combines targeted RNA capture with third-generation long-read sequencing. Here we present
an experimental reannotation of the GENCODE intergenic IncRNA populations in matched
human and mouse tissues that resulted in novel transcript models for 3,574 and 561 gene
loci, respectively. CLS approximately doubled the annotated complexity of targeted loci, out-
performing existing short-read techniques. Full-length transcript models produced by CLS
enabled us to definitively characterize the genomic features of IncRNAs, including promoter
and gene structure, and protein-coding potential. Thus, CLS removes a long-standing bottle-
neck in transcriptome annotation and generates manual-quality full-length transcript models
at high-throughput scales.
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Accurate annotation of genes and their transcripts is a foundation of genomics, but currently no annotation technique combines

throughput and accuracy. As a result, reference gene collections remain

ot del £

y, and

many gene are

thousands more remain uncataloged, particularly for long noncoding RNAs (IncRNAs) To accelerate IncRNA annotatmn, the
GENCODE consortium has developed RNA Capture Long Seq (CLS), which combines targeted RNA capture with third-generation
long-read sequencing. Here we present an experimental reannotation of the GENCODE intergenic IncRNA populations in
matched human and mouse tissues that resulted in novel transcript models for 3,574 and 561 gene loci, respectively. CLS

approximately doubled the tated ¢ 1

P

ity of targeted loci, outperforming existing short-read techniques. Full-length

transcript models produced by CLS enabled us to definitively characterize the genomic features of IncRNAs, including promoter
and gene structure, and protein-coding potential. Thus, CLS removes a long-standing bottleneck in transcriptome annotation and
generates manual-quality full-length transcript models at high-throughput scales.

LncRNAs represent a vast and relatively unexplored component of the
mammalian genome. The assignment of IncRNA functions depends
on the availability of high-quality transcriptome annotations. At
present such annotations are still rudimentary: we have little idea of
the total number of IncRNAs, and for those that have been identified,
transcript structures remain largely incomplete.

Projects using diverse approaches have helped to increase both the
number and size of available IncRNA annotations. Early gene sets,
derived from a mixture of FANTOM cDNA sequencing efforts and pub-

lic databases'-2

, were joined by long intergenic noncoding RNA (linc
RNA) sets discovered through chromatin signatures®. More recently,
researchers have applied transcript-reconstruction software such as
Cufflinks* to identify novel genes in short-read RNA-sequencing
(RNA-seq) data sets>°. However, the standard references for IncRNAs
are currently the regularly updated manual annotations from
GENCODE, which are based on the curation of cDNAs and expressed
sequence tags by human annotators!®!! and have been adopted by
international genomics consortia'2~15,

At present, annotation efforts face a necessary compromise
between throughput and quality. Short-read-based transcriptome-
reconstruction methods deliver large annotations with low financial
and time investment, whereas manual annotation is slow and requires
long-term funding. However, the quality of software-reconstructed
annotations is often doubtful because of the inherent difficulty of
reconstructing transcript structures from shorter sequence reads.

Such structures tend to be incomplete and often lack terminal exons
or splice junctions between adjacent exons'. This particularly affects
IncRNAs, whose low expression results in low read coverage!!. The
outcome is a growing divergence between large automated annota-
tions of uncertain quality (e.g., 101,700 genes for NONCODE?) and
the highly curated, ‘conservative’ GENCODE collection!! (15,767
genes for version 25).

Annotation incompleteness takes two forms. First, genes may
be entirely missing from an annotation; many genomic regions are
suspected to transcribe RNA but contain no annotation, including
‘orphan’ small RNAs with presumed long precursors!’, enhancers'®
and ultraconserved elements!%2. Second, annotated IncRNAs may
represent partial gene structures. Start and end sites frequently lack
independent supporting evidence!l, and IncRNAs are shorter and
have fewer exons than mRNAs7-!1.21, Recently, a method of rapid
amplification of cDNA ends followed by sequencing (RACE-seq)
was developed to complete IncRNA annotations, albeit at relatively
low throughput?!.

One of the principal impediments to the annotation of IncRNAs
is their low steady-state levels®!1. To overcome this, RNA capture
sequencing (CaptureSeq)?? is used to boost the concentration of low-
abundance transcripts in ¢cDNA libraries. Such studies depend on
short-read sequencing and in silico transcript reconstruction®? 24,
Thus, although CaptureSeq achieves high throughput, its transcript
structures lack the confidence required for inclusion in GENCODE.
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In this paper, we describe a new method, CLS, which couples tar-
geted RNA capture with third-generation long-read cDNA sequenc-
ing. We used CLS to interrogate the GENCODE catalog of intergenic
IncRNAs, together with thousands of suspected novel loci, in six
human tissues and six mouse tissues. We demonstrate that CLS com-
bines the throughput of CaptureSeq with high-confidence, complete
transcript models from long-read sequencing, resulting in an advance
in transcriptome annotation.

RESULTS

Application of CLS to complete IncRNA annotations

Our aim was to develop an experimental approach that could improve
and extend reference transcript annotations while minimizing human
intervention and avoiding in silico transcript assembly. We designed
CLS, which couples targeted RNA capture to Pacific Biosciences
(PacBio) third-generation long-read sequencing (Fig. 1a).

CLS can be used for two distinct objectives: to improve existing
gene models, and to identify novel loci (Fig. 1a). Although in the
present study we focused mainly on the former aim, we demonstrate
that novel loci can be captured and sequenced. We created a com-
prehensive capture library targeting the set of intergenic GENCODE
IncRNAs in human and mouse tissues. Annotations for humans are
currently more complete than those for mice, and thus the annotations
are different sizes (14,470 and 5,385 IncRNA genes in GENCODE
releases 20 and M3, respectively). The GENCODE annotations probed
in this study were principally multi-exonic transcripts based on polya-
denylated (polyA+) cDNA/expressed sequence tag libraries, and thus
were not likely to include ‘enhancer RNAs™'%25. To these we added
tiled probes targeting loci that may produce IncRNAs: small RNA
genes?®, enhancers?’” and ultraconserved elements?®. For mouse tis-
sues we also added orthologous IncRNA predictions from PipeR%. We
added numerous control probes, including a series that targeted half
of the External RNA Controls Consortium (ERCC) synthetic spike-
ins®". These sequences were targeted by capture libraries of tempera-
ture-matched and nonrepetitive oligonucleotide probes (Fig. 1b).

To access the maximal IncRNA diversity, we chose transcriptionally
complex and biomedically relevant organs from mice and humans:
whole brain, heart, liver and testis (Fig. 1c). We added two heavily
studied human cell lines, HeLa and K562 (ref. 31), and two mouse
embryonic time points (embryonic day 7 (E7) and E15).

We designed a protocol to capture full-length, oligo-dT-primed
cDNAs (Online Methods). Barcoded, unfragmented cDNAs were
pooled and captured. Preliminary qPCR analysis indicated enrich-
ment for targeted regions (Supplementary Fig. 1a). PacBio sequenc-
ing tends to favor shorter templates in a mixture2. Therefore, we
grouped pooled, captured ¢cDNA into three size ranges (1-1.5 kb,
1.5-2.5 kb and >2.5 kb) (Supplementary Fig. 1b,c) and used it to
construct sequencing libraries for PacBio single-molecule real-time
(SMRT) sequencing technology®*.

CLS yields an enriched long-read transcriptome

We sequenced samples on 130 SMRT cells and obtained ~2 million
reads in total for each species (Fig. 2a). We demultiplexed PacBio
reads, or ‘reads of insert’ (ROIs), to retrieve their tissue of origin and
mapped them to the genome. We observed high mapping rates (>99%
in both cases), of which 86% and 88% were unique in human and
mouse samples, respectively (Supplementary Fig. 2a). (Throughout
the rest of the paper, all data are presented in the format “human/
mouse.”) The use of short barcodes meant that for ~30% of reads,
the tissue of origin could not be retrieved (Supplementary Fig. 2b).
This could be remedied by the use of longer barcodes. Representation
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Figure 1 Using the CLS approach to extend GENCODE IncRNA
annotation. (a) The strategy for automated, high-quality transcriptome
annotation. CLS can be used to complete existing annotations (blue)

or to map novel transcript structures in suspected loci (gold). Capture
oligonucleotides (black bars) are designed to tile across targeted

regions. PacBio libraries are prepared for from the captured molecules.
Illumina HiSeq short-read sequencing can be carried out for independent
validation of predicted splice junctions (SJ). Predicted transcription

start sites can be confirmed by CAGE clusters (green), and transcription
termination sites by non-genomically encoded polyA+ sequences in
PacBio reads (red). Rectangles with lighter shading and dashed outlines
denote novel exons. (b) A summary of the human and mouse capture
library designs. The numbers of individual gene loci probed are shown.
PipeR pred., ortholog predictions in mouse genome of human IncRNAs
made by PipeR2%; snRNA, small nuclear RNA; snoRNA, small nucleolar
RNA; UCE, ultraconserved elements; Prot. coding, expression-matched,
randomly selected protein-coding genes; ERCC, spike-in sequences; Ecoli,
randomly selected Escherichia coli genomic regions (enhancers and UCEs
were probed on both strands, and these were counted separately). (c)
Types of RNA samples used in the study.

was even across tissues, with the exception of testis (Supplementary
Fig. 2d). ROTs had a median length of 1-1.5 kb (Fig. 2b), in agreement
with previous reports®? and exceeding the average IncRNA annotation
of ~0.5 kb (ref. 11).

Capture performance is assessed on the basis of two factors: the
‘on-target’ rate—that is, the proportion of reads originating from
probed regions—and enrichment, or the increase in the on-tar-
get rate after capture®’. To estimate these, we sequenced pre- and
post-capture libraries with MiSeq. CLS achieved on-target rates of
29.7%/16.5%, representing 19-fold/11-fold enrichment (Fig. 2¢,d
and Supplementary Fig. 2e). These rates are competitive with val-
ues for intergenic IncRNA capture from previous, short-read studies
(Supplementary Fig. 2f,g). The majority of off-target signal arose
from nontargeted, annotated protein-coding genes (Fig. 2c).

CLS on-target rates were similar to those from previous studies
of fragmented cDNA3 (Supplementary Fig. 2f,g), but lower than
those observed with genomic DNA capture. Side-by-side comparisons
showed that the capture of long cDNA fragments implies some loss in
capture efficiency (Supplementary Fig. 2h,i), as has been observed
by others?%.

We used synthetic spike-in sequences at known concentrations to
assess the sensitivity and quantitativeness of our method. We compared
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Figure 2 CLS yields an enriched, long-read transcriptome. (a) Sequencing statistics. (b) Length distributions of ROIs. Sequencing libraries were
prepared from three size-selected cDNA fractions: 1-1.5 kb, 1.5-2.5 kb and >2.5 kb (Supplementary Fig. 1b,c). (c) A breakdown of sequenced reads
by gene biotype, pre- and post-capture, for human samples (equivalent mouse data are presented in Supplementary Fig. 2j). The shading denotes

the on/off-target status of the reads: green, reads from targeted features, including IncRNAs; gray, reads originating from annotated but not targeted
features; yellow, reads from unannotated, nontargeted regions. The ERCC class comprised only those ERCC spike-ins that were probed. When a given
read overlapped more than one targeted class of regions, it was counted in each of those classes separately. snoRNA, small nucleolar RNA; snRNA,
small nuclear RNA; miRNA, microRNA; UCE, ultraconserved elements. (d) A summary of capture performance. The y-axis shows the percentage of all
mapped ROls originating from a targeted region (‘on-target’). Enrichment was defined as the ratio of this value in post- versus pre-capture samples.
Sequencing was done with MiSeq technology. (e) The response of read counts in captured cDNA to the input RNA concentration. Colored circles
represent individual data points for 92 spiked-in synthetic ERCC RNA sequences; 42 were probed in the capture design (green), and the remaining 50
were not (violet). Green and purple lines represent linear fits to the corresponding data sets; the parameters are shown at the top of each plot. Given the
log-log representation, a linear response of read counts to template concentrate should yield an equation of type y = ¢ + mx, where mis 1.

the relationship between sequence reads and starting concentration
for the 42 probed and 50 nonprobed synthetic ERCC sequences in
pre- and post-capture samples (Fig. 2e). We found that CLS was
notably sensitive, extending detection sensitivity by two orders of
magnitude, and was capable of detecting molecules at approximately
5 x 1073 copies per cell (Online Methods). It was less quantitative
than CaptureSeq®*, particularly at higher concentrations where the
slope fell below unity. This suggests saturation of probes by cDNA
molecules during hybridization. A degree of noise, as inferred by the
coefficient of determination (R?) between read counts and template
concentration, was introduced by the capture process.

CLS expands the complexity of known and novel IncRNAs

CLS uncovered a wealth of novel transcript structures in annotated
IncRNA loci. In the SAMMSON oncogene3¢ (LINC01212), we dis-
covered previously unannotated exons, splice sites and transcription
termination sites (Fig. 3a, Supplementary Figs. 3-5; examples vali-
dated by RT-PCR).

‘We quantified the amount of newly discovered complexity in targeted
IncRNA loci. CLS detected 58%/45% of targeted IncRNA nucleotides
and extended these annotations by 6.3/1.6 Mb (86%/64% increase
compared with existing annotations) (Supplementary Fig. 6a).
CLS discovered 45,673/11,038 distinct splice junctions, of which
36,839/8,847 were previously unidentified (Fig. 3b, Supplementary
Fig. 6b). We noted 20,327 novel, high-confidence splice junctions in
comparison with a deeper human splice junction reference catalog

composed of both GENCODE v20 and miTranscriptome’ annotations
(Supplementary Fig. 6¢). For independent validation, and given the
relatively high sequence insertion-deletion rate detected in PacBio
reads (Supplementary Fig. 2m) (an analysis of sequencing error rates
is presented in the Online Methods), we deep-sequenced captured
cDNA with Illumina HiSeq at an average depth of 35 million/26 mil-
lion paired-end reads per sample. Split reads from these data exactly
matched 78%/75% of splice junctions from CLS. These ‘high-confi-
dence’ splice junctions alone represent a 160%/111% increase over
the existing, probed annotations (Fig. 3b, Supplementary Fig. 6b).
The novel high-confidence IncRNA splice junctions were rather tissue
specific, with the greatest numbers observed in testis (Supplementary
Fig. 6d), and were also discovered across other classes of targeted and
nontargeted loci (Supplementary Fig. 6e). We observed a greater
frequency of intron-retention events in IncRNAs compared with that
in protein-coding transcripts (Supplementary Fig. 6f).

To evaluate the biological significance of the novel IncRNA splice
junctions, we computed their strength with standard position weight
matrix models®” (Fig. 3¢, Supplementary Fig. 7a). High-confidence
novel splice junctions from IncRNAs far exceeded the predicted
strength of background splice-junction-like dinucleotides and were
essentially indistinguishable from annotated splice junctions (Fig. 3c).
Even unsupported novel splice junctions (Fig. 3¢) tended to have high
scores, although with low-scoring tails. Although they showed little evi-
dence of sequence conservation according to standard measures (sim-
ilar to IncRNA splice junctions in general; Supplementary Fig. 7b),
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Figure 3 Extending known IncRNA gene structures. (a) Novel transcript structures from the SAMMSON locus. Green, GENCODE; black/red, known/novel
CLS transcript models, respectively. An RT-PCR-amplified sequence is shown. (b) Splice junction discovery. The y-axis represents unique splice
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are presented in Supplementary Fig. 7a). Splice site strength was computed with GenelD37. Data are shown for nonredundant CLS splice junctions
from targeted IncRNAs (top), protein-coding genes (middle), and randomly selected splice-site-like dinucleotides (bottom). (d) Splice junction

discovery/saturation analysis in human samples. The plots show novel splice junctions discovered in simulations with increasing numbers of randomly
sampled CLS ROls. Splice junctions retrieved in each sample were stratified according to the level of support. Each individual box symbol in the box
plots summarizes 50 samples. Equivalent mouse data are presented in Supplementary Figure 8a, and data for novel transcript model discovery are

in Supplementary Figure 8b. (e) The identification of putative precursor transcripts of small RNA genes. Shown is the count of unique genes for each
gene biotype. “Orphans” indicates genes with no annotated overlapping transcript in GENCODE that were targeted in the capture library. “Potential
precursors” are orphan RNAs residing in the intron of a novel CLS transcript model. “Precursors” reside in the exon of a novel transcript. snoRNA, small

nucleolar RNA; snRNA, small nuclear RNA; miRNA, microRNA.

novel splice junctions showed weak but nonrandom evidence of
selected function (Supplementary Fig. 7c).

We estimated how close these sequencing data were to satura-
tion (i.e., to reaching a definitive annotation). We tested the rate of
novel splice junction and transcript model discovery as a function of

within their introns (Fig. 3e). One interesting example was the car-
diac-enriched hsa-miR-143, for which CLS identified a new RT-PCR-
supported primary transcript belonging to the CARMENI IncRNA
gene (CARMN)?® (Supplementary Fig. 9).

A hi;

increasing depth of randomly sampled ROIs (Fig. 3d, Suppl y
Fig. 8a,b). We observed a consistent increase in novelty with increas-
ing depth for both low- and high-confidence splice junctions, up to
that presented here. Similarly, no splice-junction-discovery satura-
tion plateau was reached at increasing simulated HiSeq read depths
(Supplementary Fig. 8¢). Thus, considerable additional sequencing
is required to complete existing IncRNA gene structures.

Beyond IncRNAs, CLS can be used to characterize other types of
transcriptional units. As an illustration, we searched for precursors
of small RNAs, whose annotation remains poor!'”. We probed 1-kb
windows around all ‘orphan’ small RNAs (i.e., those with no annotated
overlapping transcript). Note that although mature small nucleolar
RNAs are nonpolyadenylated, they are processed from polyA+ pre-
cursors38, We identified more than 100 likely primary transcripts,
and hundreds more potential precursors that harbored small RNAs

g a full-length IncRNA annotation

A unique benefit of the CLS approach is the ability to identify full-
length transcript models with confident 5" and 3" termini. ROTs of
oligo-dT-primed cDNAs carry a fragment of the poly(A) tail, which
can identify the polyadenylation site with base-pair precision?2.
Using conservative filters, we found that 73%/64% of ROIs had
identifiable polyadenylation sites (Supplementary Table 1) repre-
senting 16,961/12,894 novel sites compared with end positions of
GENCODE annotations. Known and novel polyadenylation sites
were preceded by canonical polyadenylation motifs (Supplementary
Fig. 10a-d). Similarly, the 5" completeness of ROTs was confirmed
by proximity to methyl-guanosine caps identified by cap analysis
of gene expression (CAGE)!” (Supplementary Fig. 10e). We used
CAGE and polyadenylation sites to define the 5" and 3" completeness
of all ROIs (Fig. 4a).
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We developed a pipeline to merge ROIs into a nonredundant col-
lection of transcript models. In contrast to previous approaches?, our
‘anchored merging’ method preserved confirmed internal transcrip-
tion start sites (TSSs) and polyadenylation sites (Fig. 4b). Application
of this method to captured ROIs resulted in a greater number of
unique transcript models than would have been identified otherwise
(Fig. 4c, Supplementary Fig. 11a). We identified 179,993/129,556
transcript models across all biotypes (Supplementary Table 2),
86%/87% of which displayed support of their entire intron chain by
captured HiSeq split reads (Supplementary Table 3). In the well-stud-
ied CCAT1 locus?, we identified novel full-length transcripts with
5" and 3" support (Fig. 4d). CLS here suggested that adjacent CCAT1
and CASC19 annotations are fragments of a single gene, a conclusion
supported by RT-PCR (Fig. 4d).

Merged transcript models can be defined by their end support: full
length (5 and 3" supported), 5" only, 3" only, or unsupported (Fig. 4b.e).
We identified a total of 65,736/44,673 full-length transcript mod-
els (Fig. 4e, Supplementary Fig. 11b): 47,672 (73%)/37,244 (83%)
arose from protein-coding genes, and 13,071 (20%)/5,329 (12%) from
IncRNAs (Supplementary Table 2). An additional 3,742 (6%)/1,258
(3%) represented full-length models that spanned loci of different
biotypes (Fig. 1b), usually including one protein-coding gene (‘multi-
biotype’). Of the remaining noncoding full-length transcript mod-
els, 295/434 were novel, arising from unannotated gene loci. In total,
11,429/4,350 full-length structures arose from probed IncRNA loci, of
which 8,494/3,168 (74%/73%) were novel (Supplementary Table 2).
We identified at least one full-length transcript model for 19%/12% of
the originally probed IncRNA annotations (Fig. 4f, Supplementary
Fig. 11¢). Independent evidence for gene promoters from DNase
T hypersensitivity sites supported our 5 identification strategy
(Fig. 4g). Human IncRNAs with mouse orthologs had considerably
more full-length transcript models, although the reverse was not
observed (Supplementary Fig. 11d-g). This imbalance might be due
to evolutionary factors (for example, the appearance of novel IncRNA
isoform complexity during primate evolution) or technical biases; it
is noteworthy that we had access to deeper CAGE data for humans
than for mice (217,516 versus 129,465 TSSs), and that human IncRNA
annotations were more complete than those for mice.

In addition to probed IncRNA loci, CLS also discovered several
thousand novel transcript models that originated from unanno-
tated regions and mapped to probed (Fig. 1b) or unprobed regions
(Supplementary Fig. 11h,i). These transcript models tended to have
lower detection rates (Supplementary Fig. 11j) consistent with low
overall expression (Supplementary Fig, 11k) and lower rates of 5
and 3" support than probed IncRNAs, although a small number were
full length (Fig. 4e, Supplementary Fig. 11b).

We next compared the performance of CLS to that of conventional,
short-read CaptureSeq. We took advantage of our HiSeq analysis (212
million/156 million reads) of the same captured cDNAs to make a
fair comparison between methods. Short-read methods depend on
in silico transcriptome assembly; using PacBio reads as a reference,
we found that the StringTie tool outperformed Cufflinks, which
was used in previous CaptureSeq projects?**! (Supplementary
Fig. 12a). Using intron chains to compare annotations, we found
that CLS identified 69%/114% more novel transcript models than
StringTie assembly (Fig. 4h, Supplementary Fig. 12b). CLS tran-
script models were more complete at 5" and 3" ends than StringTie
assemblies were, and they were also more complete at the 3" end com-
pared with probed GENCODE annotations (Fig. 4i, Supplementary
Fig. 12d-h). Thus, although StringTie transcript models are slightly
longer (Fig. 4j, Supplementary Fig. 12c), they are far less likely to be
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full length than CLS models are. This greater length might be attrib-
utable to the production of overly long 5” extensions by StringTie, as
suggested by the relatively high CAGE signal density downstream of
StringTie TSSs (Supplementary Fig. 12g-h). CLS was more sensitive
in the detection of repetitive regions and identified ~20% more repeti-
tive nucleotides in human tissues (Supplementary Fig. 12i).

Redefining IncRNA pr ter and gene characteristics

With a full-length IncRNA catalog, we revisited the basic charac-
teristics of IncRNA and protein-coding genes. LncRNA transcripts,
as annotated, are substantially shorter and have fewer exons than
mRNAs>!!. However, it has remained unresolved whether this is a
genuine biological trend or simply the result of annotation incomplete-
ness?!. When we considered full-length transcript models from CLS,
we found that the median IncRNA transcript length was 1,108/1,067
nucleotides, similar to that of mRNAs mapped according to the same
criteria (1,240/1,320 nucleotides) (Fig. 5a, Supplementary Fig. 13a).
This length difference of 11%/19% was statistically significant (P <
2 x 10716 for both human and mouse samples; two-sided Wilcoxon
test). These measured lengths are still shorter than those of most
annotated protein-coding transcripts (median of 1,543 nucleotides
in GENCODE v20), but they are much longer than those of anno-
tated IncRNAs (median of 668 nucleotides). There are two factors
that preclude our making firm statements regarding the relative
lengths of IncRNAs and mRNAs: the upper length limitation of PacBio
reads (Fig. 2b), and the fact that our size-selection protocol selected
against shorter transcripts. Nevertheless, we did not find evidence that
IncRNAs are substantially shorter!!. We expect that this issue will be
definitively answered with future nanopore sequencing approaches.

In a previous study, we observed enrichment for two-exon genes
in IncRNAs!!. However, the results of the current study show that
this was clearly an artifact arising from annotation incompleteness:
the mean number of exons for IncRNAs in the full-length models
was 4.27, compared with 6.69 for mRNAs (Fig. 5b, Supplementary
Fig. 13b). This difference can be explained by IncRNAs’ longer exons,
although they peak at approximately 150 bp, or one nucleosomal turn
(Supplementary Fig. 13¢).

Tmprovements in TSS annotation are further demonstrated by the fact
that full-length transcripts’ TSSs are, on average, closer to expected pro-
moter features, including promoters and enhancers predicted by genome
segmentations*2 and CpG islands, although not evolutionarily conserved
elements or phenotypic genome-wide association study variants*?
(Fig. 5¢). Accurate mapping of IncRNA promoters may provide new
hypotheses for the mechanism by which such variants result in observed
phenotypes. For example, improved 5" annotation brings genome-
wide association study SNP rs246185 closer to the TSS of RP11-65]2
(ENSG00000262454). Evidence for a functional link between the two
is supported by the fact that rs246185 is an expression quantitative
trait locus for RP11-65]2, which is expressed in heart and muscle**
(Supplementary Fig. 13d,e).

The improved 5’ definition provided by CLS transcript models also
allowed us to compare IncRNA and mRNA promoters. Recent studies
based on the start positions of gene annotations have claimed that
strong differences exist between IncRNA and mRNA promoters?46,
To make fair comparisons, we created an expression-matched set of
mRNAs in HeLa and K562 cells, and removed bidirectional promot-
ers. We compared these across a variety of data sets from ENCODE!2
(Supplementary Figs. 14 and 15).

‘We observed a series of similar and divergent features of IncRNA
and mRNA promoters. For example, activating promoter histone
modifications such as H3K4me3 (Fig. 5d) and H3K9ac (Fig. 5e)
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were essentially indistinguishable between full-length IncRNAs and
protein-coding genes, which suggests that, when expression differ-
ences are accounted for, the active promoter architecture of IncRNAs

is not unique. The contrast between these findings and previous
reports suggests that reliance on annotations alone in prior studies
led to inaccurate promoter identification4>4,
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However, as observed previously, IncRNA promoters were dis-
tinguished by elevated levels of repressive chromatin marks such
as H3K9me3 (Fig. 5f) and H3K27me3 (ref. 45) (Supplementary
Figs. 14and 15). This may have been a consequence of elevated recruit-
ment to IncRNAs of the Polycomb repressive complex, as evidenced
by its subunit Ezh2 (Fig. 5g). Promoters of IncRNAs were also distin-
guished by a localized peak of the insulator protein CTCF (Fig. 5h).
Finally, there was a clear signal of evolutionary conservation at
IncRNA promoters, although it was lower than that for protein-
coding genes (Fig. 5i).

Two conclusions can be drawn. First, CLS-inferred TSSs have a
greater density of expected promoter features compared with probed

annotations, thus demonstrating that CLS improves TSS annotation.
Second, after adjustment for expression, IncRNAs have similar acti-
vating histone modifications, but distinct repressive modifications,
compared with protein-coding genes.

Discovery of new potential open reading frames

A number of studies have suggested that IncRNA loci encode peptide
sequences through unannotated open reading frames (ORFs)*48, We
searched for signals of protein-coding potential in full-length models
by using two complementary methods based on evolutionary conser-
vation and intrinsic sequence features**° (Fig. 6a, Online Methods,
Supplementary Data Set 1). This analysis revealed evidence for
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Figure 6 Protein-coding potential of full-length IncRNAs. (a) The predicted protein-coding potential of all full-length transcript models mapped to
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protein-coding potential in a small fraction of IncRNA full-length
transcript models (109 of 1,271, or 8.6%), although a similar number
of protein-coding full-length transcripts showed no evidence of pro-
tein coding (2,900 of 42,758, or 6.8%) (Fig. 6b).

CLS full-length models supported reclassification of protein-cod-
ing potential for five distinct gene loci (Fig. 6¢, Supplementary Fig.
16a, Supplementary Data Set 2). A good example is the KANTR
locus, where extension by CLS (supported by independent RT-
PCR) identified a placental-mammal-conserved 76-amino-acid
ORF with no detectable protein ortholog>. It is composed of two
sequential transmembrane domains (Fig. 6d, Supplementary Fig.
16e) and derives from a LINEI transposable element. Another case is
LINC01138, linked to prostate cancer, for which a potential 42-amino-
acid ORF was found in the extended transcript>2. We could not find
peptide evidence for translation of either ORF (Online Methods).
Whole-cell expression, as well as cytoplasmic-to-nuclear distribu-
tions, also showed that the behavior of potentially protein-coding

IncRNAs was consistently more similar to that of annotated IncRNAs
than to that of mRNAs (Supplementary Fig. 16b-d). Hence, CLS will
be useful in improving biotype annotation of the small minority of
IncRNAs that may encode proteins.

DISCUSSION
We have introduced an annotation methodology that addresses
the competing needs of quality and throughput. Capture long-read
sequencing produces transcript models with quality approaching that
of human annotators, yet with throughput similar to that of in silico
transcriptome reconstruction. CLS improves upon existing assembly-
based methods through not only confident exon connectivity but also
(1) far higher rates of 5 and 3’ completeness and (2) the carrying of
encoded poly(A) tails.

CLS is also competitive in economic terms. Using conservative
estimates with 2016 prices ($2,460 for one lane of PE125bp HiSeq,
and $500 for one SMRT), and including the cost of sequencing alone,
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we estimate that CLS yielded one novel, full-length IncRNA structure
for every $8 spent, compared with $27 with conventional CaptureSeq.
This difference is due to the greater rate of full-length transcript dis-
covery by CLS.

Despite its advantages, CLS could still be optimized in sev-
eral respects. First, the capture efficiency for long cDNAs can be
improved by several-fold. Second, various technical factors limit
the completeness of CLS transcript models, including sequencing
reads that remain shorter than many transcripts, incomplete reverse
transcription of the RNA template, and degradation of RNA mol-
ecules before reverse transcription. Resolution of these issues will
be an important objective of future protocol improvements, and
only after it has been achieved can we make definitive judgments
about IncRNA transcript properties. In recent work separate from
the current study, we further optimized the capture protocol, push-
ing on-target rates to around 35% (Online Methods and data not
shown). However, the most dramatic gains in the cost-effectiveness
and completeness of CLS will come from advances in sequencing
technology. The latest nanopore cDNA sequencing promises to be
~150-fold less expensive per read than PacBio technology (0.01
versus 15 cents per read, respectively).

Full-length annotations have provided the most confident view so
far of IncRNA gene properties. LncRNAs are more similar to mRNAs
than previously thought in terms of splice length and exon count!!.
We noted a similar trend for promoters: when IncRNA promoters
were accurately mapped by CLS and compared with expression-
matched protein-coding genes, we found them to be surprisingly
similar in terms of activating modifications. This suggests that pre-
vious studies that placed confidence in annotations of TSSs should
be reassessed?>4¢. On the other hand, IncRNA promoters do have
unique properties, including elevated levels of repressive histone
modification, recruitment of Polycomb group proteins, and interac-
tion with the insulator protein CTCF. To our knowledge, this is the
first report to suggest a relationship between IncRNAs and insulator
elements. Overall, these results suggest that IncRNA gene features
per se are generally similar to those of mRNAs, after normalization
for differences in expression. Finally, extended transcript models did
not yield evidence for widespread protein-coding capacity encoded
in IncRNAs.

Despite our success in mapping novel structures in annotated
IncRNAs, we observed surprisingly low numbers of transcript mod-
els originating in the relatively fewer numbers of unannotated loci
that we probed, including ultraconserved elements and develop-
mental enhancers. This suggests that, at least in the tissue samples
probed here, such elements do not give rise to substantial numbers
of IncRNA-like, polyA+ transcripts.

In summary, by resolving a longstanding roadblock in IncRNA
transcript annotation, the CLS approach promises to accelerate
progress toward an eventual ‘complete’ mammalian transcriptome
annotation. These updated IncRNA catalogs represent a valuable
resource for the genomic and biomedical communities, and address
fundamental issues of IncRNA biology.

URLs. CLS data portal, https://public_docs.crg.es/rguigo/CLS/; pre-
loaded CLS UCSC Genome Browser track hub, http://genome-euro.ucsc.
edu/cgi-bin/hgTrackszhubUrl=http://public_docs.crg.es/rguigo/ CLS/
data/trackHub//hub.txt; CodAlignView, https://data.broadinstitute.
org/compbiol/cav.php; ENCODE mycoplasma contamination
guidelines, https://www.encodeproject.org/documents/60b6b535-
870f-436b-8943-a7e5787358eb/@@download/attachment/Cell _
Culture_Guidelines.pdf.
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METHODS

Methods, including statements of data availability and any associated
accession codes and references, are available in the online version of
the paper.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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ONLINE METHODS

Library design. Design of human capture probes. All designs were based on the
GENCODE!? version 20 annotation in human genome build hg38. For probe
design, a target annotation was prepared in FASTA format and composed of
sets of features. In each case, the entire set of features of each class was taken
as a starting point, unless otherwise stated, and where necessary was lifted
over to the hg38 assembly. Features that overlapped protein-coding gene loci
were removed. Intergenic IncRNAs were extracted from the GENCODE v20
annotation and were taken as all those genes with no single transcript that
overlapped or lay within 5 kb of any protein-coding gene. For small RNA loci,
a 1-kb window centered on the small RNA was targeted.

At this stage, we quantified the expression of candidate regions with HBM/
ENCODE RNA-seq data from appropriate human tissues and cell lines. We
noticed that the top 20 most expressed features (mean expression across samples)
produced approximately 71% of sequencing reads (Supplementary Fig. 17),
and we removed these in order to favor rarer transcripts. A number of
controls were added to the design. We included 100 protein-coding genes,
with steady-state levels matched to the distribution of IncRNAs, and 100
random 1-kb genomic regions from the Escherichia coli genome. As addi-
tional negative controls, we included 100 intergenic regions of 1 kb each
with no evidence from ENCODE ChromHMM for any transcriptional or
regulatory activity?*. Finally, out of the 92 ERCC sequences, we removed
the top 8 most concentrated, and we selected half of the remainder (n =
42) such that they evenly covered the concentration distribution. In total
the design targeted 14,667 regions, which corresponded to ~15.5 Mb
of human genome (hg38) and exons of 9,560 lincRNAs from 5,953 loci.
The summary information for selected transcript targets in human is
provided in Supplementary Table 4. Statistics on probed gene loci are pre-
sented in Figure 1b.

All targets were combined into a single FASTA file and submitted to Roche
NimbleGen (Madison, WI) for probe design. The oligonucleotide probes
were designed and synthesized as a SeqCap EZ Choice XL library according
to the manufacturer’s protocol. The oligonucleotide probes covered 86.6%
of target regions directly, with an estimated 96.1% of target regions success-
fully targeted. Roche Nimblegen's policy prohibits the release of SeqCap’s
probe coordinates, but the design is available from the corresponding authors
on request.

Design of mouse capture probes. Mouse library design was carried out
essentially as for the human library, with some differences. All designs were
based on the GENCODE version M3 annotation in genome build mm10.
Candidate IncRNAs were filtered to remove those that overlapped any protein-
coding gene within 5 kb. Homology-based predictions of mouse orthologs of
human IncRNA were obtained via the PipeR pipeline?’. As before, the top 20
most expressed IncRNASs, as estimated from ENCODE?! RNA-seq data, were
removed. The final design covered 8,708 regions, including 2,817 GENCODE
vM3 lincRNA transcripts from 1,920 loci. The covered regions corresponded
to 8.3 Mb. The summary information for selected transcript targets in mouse
is provided in Supplementary Table 5. Statistics on probed gene loci are pre-
sented in Figure 1b.

Designed oligonucleotide probes covered 76.3% of target regions directly
and 85.0% of target regions successfully targeted. Oligonucleotide probes
were synthesized as a Roche NimbleGen SeqCap EZ Choice XL library. Roche
Nimblegen’s policy prohibits the release of SeqCap’s probe coordinates, but the
design is available from the corresponding authors on request.

Sample preparation. RNA samples. Commercial total RNA samples were
obtained for four different adult human (Ambion AM6000) and mouse
(Clontech 636644) tissues: heart, testes, liver and brain. We also obtained
mouse E7 and E15 samples from the same panel. Human K562 and HeLa RNA
was obtained directly from members of the ENCODE consortium?!. Neither
cell line used in this study is listed in the database of commonly misidenti-
fied cell lines maintained by ICLAC. Cell lines were not authenticated. Cell
lines were tested for mycoplasma contamination as per ENCODE guidelines
(“URLS”). The integrity of samples was tested by Bioanalyzer (Agilent), and all
samples had values of 8.5 or higher. To 4 j1g of each RNA sample, we added 4 pl
of 1:100-diluted ERCC mix (Ambion 4456740) according to the manufacturer’s
protocol (Supplementary Table 6). Mixes 1 and 2 were assigned to samples as

described below. The samples containing ERCC controls were ribodepleted
with Ribo-Zero (Epicentre; MRZE724), and successful rRNA removal was
validated by Bioanalyzer.

cDNA synthesis. Full-length cDNA was synthetized via reverse-transcription
of ribosome-depleted RNA samples with the SMARTer PCR ¢cDNA synthesis
kit (Clontech; 634926) and the Advantage 2 PCR kit (Clontech; 639206). Each
cDNA was synthetized from 3.5 1l of ribosome-depleted RNA according to the
manufacturer’s protocol, and two independent cDNA synthesis reactions were
carried out for each sample. cDNA was primed with oligo(dT). The adaptors
used in the cDNA library construction sequences (SMART IV oligonucleotide
and CDS I11/3’ PCR primer) are listed in Supplementary Data Set 3.

All first-strand RNA obtained from the reaction was used for second-strand
synthesis. We modified the synthesis cycling protocol from that specified by
the manufacturer by increasing the extension time from 3 to 6 min to favor the
synthesis of long strands. After protocol optimization, a total of 18 cycles was
used to obtain the full-length cDNA libraries. The resulting cDNA was quanti-
fied with a NanoDrop ND-1000 full-spectrum spectrophotometer (Thermo
Scientific). The library length and quality were also verified by Bioanalyzer.

Capture. Library preparation. cDNA samples were used to create barcoded,
full-length libraries. The two aliquots of cDNA obtained in the preceding
step were pooled, and 1 ug was used for library preparation. One adenine
was added to blunt cDNA 3’ extremities, and Illumina Truseq adaptors
were ligated. Different barcoded adaptor hexamer indexes were used to dis-
criminate each sample (Suppl y Table 7 and Suppl y Data
Set 3). The overall structure of cDNA libraries is represented schematically in
Supplementary Figure 2c.

The library was amplified for ten PCR cycles under standard Kapa
Biosystems PCR conditions (low-throughput library prep; Kapa Biosystems,
KK8232), except that the PCR extension step was increased to 3 min to allow
long fragments to be fully amplified. The quality and length of libraries were
checked with an Agilent 2100 Bioanalyzer. Library quantification was done
with Qubit dsDNA BR assays (Thermo Fisher). For each cDNA sample, an
additional Covaris-fragmented Illumina sequencing library was prepared for
MiSeq and HiSeq sequencing according to standard protocols.

Standard Illumina 6-mer indexes were used for compatibility with blocking
oligonucleotides in the SeqCap capture protocol (see below). We note that the
use of these relatively short indexes led to the loss of information during later
demultiplexing steps. Improving this issue through the use of standard 16-nt
PacBio indexes should be a priority in future versions of CLS.

Sample pooling. Samples were pooled separately by species, such that all
six human libraries were mixed at equimolar ratios, and similarly for mouse
libraries. The final amount of each pool was 1 jig.

¢DNA capture. Human and mouse pools were dried and prepared for
hybridization to NimbleGen SeqCap EZ Choice XL library capture probes
according to the manufacturer’s protocol (SeqCap EZ Library SR User’s
Guide Version 5.0). Hybridization was carried out for 72 h. A total of five
separate parallel captures were performed for each species; four were used
for subsequent PacBio sequencing, and the one remaining sample was used
for Illumina sequencing.

Subsequent to the presented work, we managed to further optimize the
efficiency of this capture process by implementing four changes to the
described protocol:

. Dry cDNA for resuspension before capture at 60 °C instead of 55 °C

. Hybridization incubation time: 20 h instead of 72 h

. For washing steps after capture, use a water bath instead of a dry bath

. Blockers: additional blockers targeting the SMARTer adaptors used during
library construction (sequences in Supplementary Data Set 3, “SMARTer_
blocker” and “SMARTer_5p_PCR_blocker”)

W e

Amplification and quality control of captured cDNA. After hybridization,
human and mouse pools were washed with m-280 streptavidin Dynabeads
(Invitrogen 11205D) to eliminate nonspecific hybridization according to the
recommendations in the Roche protocol. Human and mouse washed pools
were PCR-amplified with Kapa HotStart ReadyMix 2X (Kapa Biosystems;
KK1006). Two independent PCR reactions containing half of the washed
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pool each were prepared to avoid PCR duplicates. Eighteen PCR cycles were
performed, with an increased extension step of 3 min to allow long fragments
to be fully amplified. The length of post-capture PacBio and Illumina libraries
was verified by Bioanalyzer, and quantity was verified by Qubit.

PacBio sequencing of captured cDNA. Pooling. After quantification and qual-
ity control, the four post-capture libraries were pooled together by species to
produce one unique human and one unique mouse pool. The 110 ul of each
sample were again quantified by Qubit dsDNA BR assay (Thermo Fisher), with
12.3 ug for human and 9.57 pg for mouse.

Size selection. Samples were subsequently size-selected with E-gel
(Invitrogen) into three different ranges: 1,000-1,500 bp, 1,500-2,500 bp and
>2,500 bp. We collected two shorter fractions of 200-500 bp and 500-1,000 bp,
but after reviewing the preliminary sequencing data we decided not to scale
them up because of the large number of reads in this size range obtained in the
larger fractions. After size selection, each size fraction was dried and resus-
pended with 20 ul of water and quantified by Qubit dsSDNA BR assay (Thermo
Fisher). These samples were then amplified again by PCR (four cycles) with
Kapa HiFi HotStart (Kapa Biosystems) to reach the required amount for PacBio
library preparation. The quality and length of obtained libraries were verified
with Bioanalyzer and Qubit.

‘We checked the efficiency of size selection via analysis of spike-in sequences
(Supplementary Fig. 1d). For each size-selected captured library, and for
pre-capture libraries, we calculated the sequencing efficiency as a function of
spike-in sequence length. Sequencing efficiency was defined for each spike-
in sequence as follows: (number of reads)/(molar concentration x sequence
length x total read count). This showed that, as expected, size selection boosted
the sequencing of longer templates.

PacBio library preparation. Approximately 2 g of each of the size-fraction-
ated and amplified DNAs was used for each of the human and mouse pools,
for a total of 6 (3 x 2) distinct samples. Sizes and concentrations were verified
by Bioanalyzer. PacBio libraries were constructed for each sample with kit
#100-250-100 (Pacific Biosciences) as per the manufacturer’s protocol. Briefly,
this involved polishing the PCR amplicon ends to ‘blunt’ them, ligating the
SMRTbell adaptors, removing linear (nonligated) fragments of DNA, and car-
rying out AMPure bead purification followed by Bioanalyzer analysis to assess
the size distribution and Qubit quantifications.

PacBio sequencing and collection of post-capture data. We ran each of the
PacBio libraries on an initial SMRT cell to assess their respective performance
and optimal sequencing concentration. Those that performed well were then
scaled up to an additional 20 SMRT cells for deep data collection. The PacBio
reagents and metrics used for each sample are listed in Supplementary Table 8.
The sequencing was performed on a PacBio RSII instrument. Upon completion
of the sequencing, SMRT cells from a given library were aggregated on SMRT
Portal, and the PacBio post-processing method “RS_ReadsOfInsert.1” was run
on each aggregated sample to generate ROIs for downstream processing. This
yielded a single FASTQ file per library.

HiSeq sequencing of captured cDNA. Post-capture Illumina cDNA libraries
were sequenced on a HiSeq 2500 machine (2 x 125 nt, v4, high-output mode).
One sequencing lane was generated per species at a depth of ~212 million
(human) or ~156 million (mouse) pairs of reads. Read pairs were demulti-
plexed with Tllumina software. Note that these libraries were unstranded and
Covaris-fragmented before capture.

Demultiplexing of ROIs according to sample barcodes. As previously men-
tioned, PacBio reads contained Illumina Truseq adaptors, universal (59 nt)
and indexed (65 nt), that flanked targeted cDNAs (Supplementary Fig. 2c¢).
To demultiplex samples (i.e., to determine the tissue of origin of each ROI),
for each adaptor we selected its middle 26 nt. Each of the 26-mers derived
from the indexed adaptors contained the hexamer barcode in the center. We
used the GEM mapper>” to demultiplex samples. PacBio reads were compiled
into a FASTA file (one file per species) and indexed by GEM. Mapping the
middle 26-mer of indexed adaptors to the PacBio read allowed us to assign it
to its tissue of origin. The additional presence of the universal adaptor within
ROIs was used to confirm the completeness of the insert. The GEM-based
demultiplexing procedure allowed up to three mismatches (-m 0.1) and

three indels (-e 0. 1) for accurate identification of the barcodes. The follow-
ing non-default GEM parameters were used during the mapping step: =T 3
--max-big-indel-length 0 -s 3 -D 4. Wefiltered out ‘chimeric’
ROIs (that is, reads arising from the concatenation of inserts during adaptor
ligation) by removing those reads that contained more than one indexed or
more than one universal TruSeq Illumina adaptor sequence.

Overall, we were able to demultiplex 1,627,322 and 1,509,374 ROIs in
human and mouse samples, respectively (Fig. 2a, Supplementary Fig. 2b).
As shown in Supplementary Figure 2d, only a minute fraction of human ROIs
were assigned a mouse barcode (and vice versa), which highlights the high
specificity of the demultiplexing procedure.

Read-mapping. All read-to-genome alignments were performed on genome
assemblies GRCh38/hg38 (human) and GRCm38/mm10 (mouse). Mapping
of ROIs from post-capture PacBio libraries to human and mouse genomes (in
addition to sequences of 96 ERCC spike-in controls) was done with STAR®
(v.2.4.0.1) compiled for long reads. For improved accuracy in splice junction
mapping, a reference annotation was provided as a guide to the aligner. The
reference annotation for human genes was built with the GENCODE v20 set
and sequences of all other targeted regions. For mouse genes, exonic sequences
of PipeR predictions along with sequences of all other additional targets were
added to the reference annotation of GENCODE vM3. The following non-
default parameters were used during the mapping step: --outFilter-

MultimapScoreRange 20 --outFilterScoreMinOverLread

0 --outFilterMatchNminOverLread 0.5 --outFilter-
MismatchNmax 1000 --winAnchorMultimapNmax 200 --
seedSearchStartLmax 50 --seedPerReadNmax 100000

--seedPerWindowNmax 100 --alignTranscriptsPerReadN-
max 100000 --alignTranscriptsPerWindowNmax --genome-
SAsparseD 4 --outSAMunmapped Within --runThreadN 6.
For analysis of MiSeq (pre-capture cDNA) and HiSeq (post-capture)
data, FASTQ files were aligned to the human and mouse genomes (plus the
sequences of 96 ERCC spike-in controls) with STAR (v.2.4.0.1) compiled for
short reads. The reference annotations described above were used to guide the
mapper. To maximize the mapping rate, we aligned the mates of each pair of
reads separately. The following non-default STAR parameters were specified:
--outFilterMismatchNoverLmax 0.04 --alignIntron-
Min 20 --alignIntronMax 1000000 --alignMatesGapMax
1000000 --outSAMunmapped Within --runThreadN 6.

Analysis of CLS performance and on-target enrichment. RNA-capture
on-target enrichment. We evaluated the overall RNA-capture performance
by calculating an on-target rate in both MiSeq pre-capture and PacBio post-
capture libraries. The on-target rate was defined as the ratio of the number
of distinct ROIs mapping to targeted genomic regions (excluding ERCC
RNA spike-in controls) to the total number of mapped ROIs. The number of
reads overlapping targeted regions was calculated directly from the STAR BAM
file with bedtools intersect’”. Overlap was defined as =1 bp of intersection
between the sequencing read and the exonic span of a feature on the same strand.
The overall on-target fold enrichment was computed as the on-target rate in the
post-capture library divided by the on-target rate in the pre-capture library.

‘We calculated enrichment separately by referencing two distinct sequencing
data sets of post-capture cDNA: (a) the main PacBio reads, and (b) Illumina
MiSeq of the same material. Figure 2d shows data for enrichments calcu-
lated with the latter data set: MiSeq post-capture versus MiSeq pre-capture.
Equivalent enrichments for the former comparison (PacBio post-capture ver-
sus MiSeq pre-capture) were 16.6-fold/11.1-fold for human/mouse.

‘We compared CLS enrichments to values from a previous capture short-
read sequencing (CSS) study?!. We focused our analysis on the CSS tissues that
were also assayed in CLS (human brain, heart, liver and testis), and computed
on-target rates on lincRNAs more than 5 kb away from any protein-coding
gene in both studies, based on GENCODE v20 and v19 for CLS and CSS,
respectively. CSS pre-capture rates were estimated from pre-capture MiSeq
libraries generated in the present work, and remapped to hg19/GENCODE
19. Across the four tissues studied, CLS outperformed CSS in terms of both
on-target enrichment (in all samples) and post-capture on-target rate (in brain
and testis only) (Supplementary Fig. 2f,g).
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Breakdown of sequencing reads by gene biotype. Both human and mouse
genomes, as well as ERCC spike-in sequences, were segmented into distinct
classes of locus regions according to their gene biotype annotation and capture
status (i.e., on-target versus off-target). The on- and off-target categories cor-
responded to standard, GENCODE-annotated gene biotypes (in simplified cat-
egories, as described in Supplementary Note 1, in addition to “Other,” which
comprised mitochondrial genes), whereas the “Intergenic” class included all
nontargeted and unannotated genome segments. Next, we calculated the pro-
portion of pre- and post-capture MiSeq reads originating from each genome
partition, using the read BAM files and the bedtools coverage utility>”. Note
that when a given read overlapped multiple regions of distinct biotype classes,
it was counted in each of those classes separately. Secondary targets (i.e.,
genes that were not targeted per se but that overlapped targeted regions) were
included in on-target biotype subclasses. The following additional hierarchical
rules were applied in the assignment: the highest priority in the read classifica-
tion was given to capture-targeted (“On-target”), then “Off-target”, and finally
the “Intergenic” class; these three categories were mutually exclusive.

Comparison of capture protocols and long cDNA capture efficiency. We wished
to compare the performance of the CLS protocol to that of other methods. We
judged performance on the basis of (1) the percentage of reads in post-capture
¢DNA that originated from a targeted region (on-target rate), and (2) the
enrichment, defined as the ratio of on-target rates in post/pre-capture cDNA.
In all experiments, the off-the-shelf SeqCap RNA IncRNA enrichment kit
(Roche) was used. Four distinct experiments were performed. For each one,
the same aliquot of human kidney total RNA was used, and sequencing was
done with Illumina MiSeq. The experiments were as follows:

. Original CLS protocol (as used and described here), polyA-selected, unfrag-
mented

. Improved CLS protocol, polyA-selected, unfragmented

. Improved CLS protocol, total RNA, unfragmented

. Roche SeqCap RNA protocol, total RNA, fragmented

=W

‘Improved’ CLS incorporated several adjustments designed to boost enrich-
ment: the use of LoBind tubes, a drying step at 60 °C, a shorter incubation
time, the use of Smarter blockers, and the use of a water bath at 47 °C for
post-capture washes.

Findings are presented in Supplementary Figure 2h,i and together sug-
gest that capture of long cDNAs yields lower on-target efficiency. Additional
methods are included in Supplementary Note 1. Summary statistics on UMD-
ROIs and double-bounded reads are presented in Supplementary Table 9. A
comparison/integration of polyadenylation and splice junction strand infer-
ence approaches is presented in Suppl y Table 10. Suppl: y
Table 11 shows the CAGE support of novel versus known PacBio TSSs. Details
about TSS versus ChIP-seq and TSS conservation analyses are included in
Supplementary Tables 12 and 13.

Code availability. All computer code used in this study is available from the
corresponding authors upon request. Most programs have been deposited in
GitHub as specified in “URLs.”

Data availability. Raw and processed data have been deposited in the Gene
Expression Omnibus under accession GSE93848. RT-PCR validation sequences
are available in Supplementary Data Set 4. Genome-aligned data were assembled
into a public Track Hub, which can be loaded into the UCSC Genome Browser
(see “URLs”). A Life Sciences Reporting Summary for this paper is available.
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From Lagarde et al., High-throughput annotation of full-length long ding RNAs with Capture
Long-Read Sequencing (DOI: https://doi.org/10.1101/105064)
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Supplementary Figure 13: Full-length IncRNA transcripts: properties
and genomic environment

(a-b) Comparison of IncRNA and mRNA transcript structure in mouse

(a) The mature, spliced transecript length of: CLS full-length transcript models from targeted IncRNA loci
[dark blue); transcript models from the targeted and detected GENCODE IncRNA loci (light blue); CLS full-length
transcript models from protein-coding loci (red). (b) The numbers of exons per full length transcript model, from
the same groups as in (a). Dotted lines represent medians.

(c) Exon length distributions

The distribution of exon lengths of: CLS full-length transcript models from targeted IncRNA loci (blue):
transeript models from the targeted and detected GENCODE IncRNA loci (grey): CLS full-length transcript models
from protein-coding loci (red). Left: human; right: mouse.

(d-e) Example of an expression QTL at IncRNA RP11-65J2

(d) The RP11-65J21.3 (ENSGO0000262454) locus, showing phenotype-associated SNP rs246185. Existing
GENCODE v20 annotation is shown in green, novel full-length transeript models in red. (e) Expression of
ENSGO00000262454 in muscle of GTEx individuals, broken down by genotype of rs246185. eQTL analysis was
obtained from the GTEx Portal (http://wuw.gtexportal.org/home/).

(f-g) Creating an expression-matched set of protein-coding genes

Panels (f) and (g) show the distribution of whole-cell RNA levels for indicated transeript sets in HeLa and
K562 cells, respectively. Note the log scale of the x-axis. Data are shown for CLS full-length IncRNA transcript
models (dark blue). as well as the original GENCODE annotations to which they map (light blue). Also shown
are data for all protein-coding genes (light red). From the latter, a subset was sampled with a similar expression
distribution as the CLS IncRNAs (dark red).
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Supplementary Figure 16: Analysis of protein-coding potential and sub-
cellular localization

(a) Changes in protein-coding status due to long read extension

Changes in CPAT-predicted protein-coding potential in IncRNAs due to extension by CLS, Each point rep-
resents a probed and detected IncRNA gene. For each gene, the highest-scoring associated transcript model is
used. The x-axis denotes the CPAT score of original GENCODE annotation, and the y-axis the score of associated
full-length read models from CLS. Red lines indicate the prediction threshold dividing coding and non-coding.
In yellow are shown gene loci that may be protein-coding, prior to CLS. In red are shown gene loci whose status
changes following CLS.

(b-d) Expression and localisation properties of full-length transcript models in K562
cells, broken down by annotated and predicted coding potential

(b) Schematic of subcellular localisation of annotated IncRNAs (blue) and mRNAs (red). Indicated are identi-
fied ORFs in these transcripts in beige colour. (¢) Subcellular localisation of transcripts in K562 cells. Localisa-
tion (y-axis) is estimated from RNAseq data by the log2 ratio of cytoplasmic RPKM / nucleus RPEM. Inside each
box are displayed the median value (above) and the number of transcript models considered (below). Samples
are numbered as in (b). (d) Similar to (). but showing whole-cell expression values. Note that here, ORFs are
defined to be present if predicted by either PhyloCSF or CPAT.

(e) Detailed view of KANTR short ORF

This corresponds to region chrX:53124273-53124488 in the hg38_100 alignment set, using CodAlignView
(https://data.broadinstitute.org/compbiol/cav.php).
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Supplementary Tables 43
Feature Source of tran- | C
scripts
| incRNAs genic) GENCODE v20 6,560
microRNA mirBase v20 785 Tiled Tkb
snoRNA GENCODE v20 401 Tiled 1k
snRNA GENCODE v20 B38 Tiled 1kb
| VISTA enh 5 http://enhancer.lbl.gov/ 1,908
| Ultraconserved elements UCNEbase 316 Any UCE less than 500 bp long
were removed.
Protein-coding GENCODE v20 100 Expression matched to IneR-
NAs
E. coli [random genomic) 100 Identical in human and mouse
libraries
ERCC sequences (selected) https://wwv.thermofisher. 42 Identical in human and mouse
com/order/catalog/product/ libraries
4456740
Supplementary Table 4

Supplementary Table 4: Target regions for capture library design (human)

Mature Genetics: doi:10.1038/ng.3988
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Supplementary Tables 44
Feature Source of £ tran- | C
scripts
IncRNASs | genic) GENCODE vM3 2,817
Ortheologues of human IncR- | PipeR 2,489
NAs
microRNA mirBase v20 494 Tiled 1kb
snoRNA GENCODE vM3 850 Tiled 1kb
snRNA GENCODE vM3 721 Tiled 1kb
VISTA enh http://enh .1bl.gov/ 406
Uit ved el UCNEbBase 312
Protein-coding (expression | GENCODE vM3 100
E. coli (random genomic) 100 Identical in human and mouse
libraries
ERCC sequences (selected) https://www.thermofisher. 42 Identical in human and mouse
com/order/catalog/product/ libraries
4456740
Supplementary Table 5

Supplementary Table 5: Target regions for capture library design (mouse)

MNature Genetics: doi:10.1038/ng.3988
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Supplementary Tables 51
Cell line ChIP-Seq antit target ENCODE portal file i
Helas3 CTCF ENCFFOODBAN
Helas3 EZH2 ENCFFOUDBAV
Hclas3 HZATZ ENCFFOO0BAZ
Helas3 H3K27ac ENCFFOOOBER
Helas3 H3K27me3 ENCFFOODBBX
Helas3 H3K36me3 ENCFFOODBCD
Helas3 H3Kamel ENCFFOODEBF
Helas3 H3Kame2 ENCFFOODBC
THelass HARAmed ENCFFODOBCE
Helas3 H3K79me2 ENCFFODOBCV
Helas3 H3K9ac ENCFFOU0DBDB
Helas3 H3K9me3 ENCFFOOOEBL
Helas3 HAK20me 1 ENCFFODOBDI
K562 COX2 ENCFFOO0BVA
K562 CBX3 ENCFFOODBVE
K562 CEX8 ENCFFOOOBVI
K562 CHDI ENCFFOODEVO
K562 CHDA ENCFFOOOBVT
K562 CHD7 ENCFFOODBVW
K562 CREBBP ENCFFO00BUW
K562 CTCF ENCFFOOOBWF
K562 EP300 ENCFFODOCAL
K562 EZH2 ENCFFODDBWL
K562 HZAFZ ENCFFOODBWT
| K562 HiKZ7ac ENCFFOODBWY
K562 H3K27me3 ENCFFOODBXD
K562 H3K36me3 ENCFFOCOBXJ
K562 H3Kdmel ENCFFOODBXQ
K562 H3KAme2 ENCFFOOUBXV
K562 H3KAmed ENCFFOOOBYD
K562 H3K79me2 ENCFFOODBYH
K562 H3KJac ENCFFOOUBYN
K562 HOKIme L ENCFFOODDYR
K562 H3K9med ENCFFOODBYX
K562 HAKZ0me 1 ENCFFODOBYZ
K562 HDACT ENCFFOO0BZF
K562 HDACZ ENCFFODDBZL
K562 HDACH ENCFFOO0BZR
K562 KAT2B ENCFFOO0CAO
K562 KDMIA ENCFFOODBZV
K562 KDOM5B ENCFFOOOCBA
K662 NCORI ENCFFOO0BZZ
K562 PHFS ENCFFODOCAT
K562 RBBPS ENCFFOOUCBL
K562 REST ENCFFOOOCEP
K562 RNFZ ENCFFODOCBQ
K562 SAP30 ENCFFO00CBY
K562 SETDBI ENCFFO00CEY
Kb62 SIRT6G ENCFFOOOCCC
K562 SUZ12Z ENCFFOO0CCH
K562 WHSC1 ENCFFOOOCAD

Supplementary Table 12: Datasets used in the TSS vs ChIP-Seq analysis

Supplementary Table 12

All files are of "signal” type, in bigWig format, and were obtained from the official ENCODE portal (https:

//www . encodeproject.org).

All corresponding experiments were performed in Bradley Bernstein's lab at the Broad Institute.

Mature Genetics: doi:10.1038/ng.3988
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Supplementary Methods

Abbreviations

* FL: tull length

* HCGM: High-Confidence Genome Mapping

* ROL read of insert, i.e. PacBio read

* 8J: splice junction

* S88: splice site

* TM: transcript model

* TSS: Transcription Start Site

+ UMD-ROI: Uniquely Mapped and Demultiplexed ROI

Post-processing of ROI alignments

Selection of uniquely mapped ROIs

Demultiplexed ROls mapped uniquely on the genome were selected from the
BAM files using the bamflag utility (attps://github.com/pervouchine/banflag)
with the "-m2 -u" options. This procedure resulted in a set of 1,481,930 (human)
and 1,378,896 (mouse) reads, referred to as UMD-ROIs (Uniquely Mapped and
Demultiplexed ROIs) hereafter.

Identification of "double-bounded" ROIs

We defined a set of double-bounded reads, namely, UMD-ROIs bounded by a
Universal Adapter at one end, and an Indexed Adapter at the other (See schema
in Supplementary Figure 2¢). We reasoned that such reads should contain the
entire cDNA sequence inserted between the two library adapters, and therefore
be enriched in fully sequenced inserts.

Globally, about three quarters of uniquely mapped reads were found to be
double-bounded both in human (1,130,215 reads, i.e. 76%, of which 1.000.213

on-genome) and mouse (1,039,785 reads, i.e. 75%, of which 941,757 on-genome).

More detailed statistics on double-bounded UMD-ROIs are provided in Table 9.

Identification of poly-adenylated ROIs, on-genome polyA sites
and signals

PolyA site calling

We identified poly-adenylated UMD-ROIs and on-genome polyA sites using
the samToPolyA utility (https://github.com/julienlag/samToPolyA), developed
in-house, with the following options: minClipped=20, minAcontent=0.9, minUp-
MisPrimeAlength=10. That is, we searched for read alignments where a genome
match was immediately followed by a final stretch of more than 20 unaligned
As or Ts (ignoring adapter sequences, and allowing up to 10% of non-A/non-T
nucleotides over the total length of the tail), resulting in a set of potential poly-
adenylated reads and on-genome polyA sites. Hits immediately preceded by an
upstream A-rich genomic sequence (> 10bp, with < 1 non-A bp) were discarded,
in order to avoid erroneously calling polyA sites from internally RT-primed cD-
NAs.

Using this conservative procedure, 731,455 (73%) and 601,114 (64%) reads
were found to be poly-adenylated in human and mouse, respectively. Resulting
on-genome polyA sites were subsequently merged into clusters using the bed-
tools merge utility [1], using a maximum clustering distance of 5 bases ("-d
5"), and forcing strandedness ("-s"). Only on-genome polyA site clusters sup-
ported by a minimum of 2 reads were kept for further analysis. In total, 35,092
(human) / 27,152 (mouse) non-redundant polyA sites were identified with this
procedure. Table 1 summarizes the results of the polyA calling pipeline.
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Proximity of polyA signals

We scanned the immediate 5" proximity of our polyA sites for the presence
of poly-adenylation signals mentioned in Lopez et al., 2006 [2] (Supplementary
Figure 10a). Specifically, we extracted the [-50, -10] sequence window upstream
of each non-redundant polyA site, and checked if at least one of those motifs
was present in it. We performed the same operation with a collection of negative
sites, This latter set was obtained by extracting the middle coordinate of each of
our non-terminal PacBio captured exons, distal (+/- 100 bases) to any identified
3" end in our data, and subsequently merging them ("bedtools merge -d 5 -s").

Using this method, we established that globally, 86% of observed polyA
sites were preceded by a polyA signal in both human and mouse, compared to
12/15% for negative sites, respectively (Supplementary Figure 10c). The same
analysis was performed separately on "known" (i.e., sites falling within +/- 50
bases of a GENCODE-annotated 3" end on the same strand) and "novel” (ie..
sites falling more than 50 bases away from of a GENCODE-annotated 3" end on
the same strand) polyA sites. We found that although novel sites were slightly
more depleted in polyA signals when compared to known ones, they were overall
far above the 12/15% random expectation (Supplementary Figure 10d).

ROI genomic strand inference

As PacBio SMRT cDNA sequencing is not directional, we inferred the genome
strand ol all (including non-demultiplexed) 2,053,424 (human) / 1,870,681 (mouse)
uniquely mapped ROIs using the following two methods, in parallel.

"PolyA" approach

We used the samToPolyA utility (https://github.com/julienlag/samToPolyA,
see PolyA sile calling) to assign a genomic strand to poly-adenylated ROIs. Reads
where a polyA tail was detected at their 3" end were assigned a '+ genomic
strand, whereas reads with a polyT tail at their 5" end were deduced to originate
from the "= strand.

"Splice Junction" (SJ) approach

We extracted part of the SJ sequences (i.e. the first and last two nucleotides
of each intron) of all ROI unique spliced mappings. We identified, when possible,
canonical SJ motifs (GT and AG at the donor and acceptor site, respectively) in
each intron of this dataset, and assigned it a genomic strand accordingly: '+
(plus) for GT/AG introns, and - (minus) for CT/AC (i.e., the reverse-complement
of GT/AG) introns. Each spliced ROl was then assigned a genomic strand based
on the inferred strand of the majority of its constituting introns.

Integration of the polyA and SJ approaches

When an ROI could be assigned a genomic strand with both approaches,
we found that the agreement between the two methods was 99.7%. Overall,
1,446,986 (70.5%, human) / 1,255,423 (67.1%, mouse) ROIs could be stranded
(i.e.. assigned a genomic strand) based on at least one method (See Table 10).
In rare cases of conflict, priority was given to the strand information obtained
via the polyA method over the SJ one.

ROI-to-locus/biotype assignment

We assigned each mapped and stranded ROI an originating annotated locus
by comparing PacBio mappings to the reference Gencode annotations, Gencode
v.20 (human) and v.M3 (mouse), using the bedtools intersect program [1] with
the following options: -split (ignore introns, Le. only exonic overlaps were con-
sidered) -s (force strandedness) -wao (output overlapping entries from both files),
only on exon records in both datasets.

e Genetics: doi:10.1038/ng.3988
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ation. Thus, the error rates reported here may be slightly over-estimated for
both HiSeq and PacBio reads.

Read merging and creation of a full-length IncRNA
catalog

Read redundancy was reduced by merging transcript structures with com-
patible intron chains using the compmerge program (https://github. com/sdjebali/
Compmerge). We used an original strategy, named "anchored merging”, which
consists in preventing reads with high-confidence boundaries - in our case,
supported by a FANTOM true TSS at their 5 end (see Identilication of high
confidence Transcription Start Sites using CAGE data below) and/or a cap-
tured, PacBio-encoded polyA site at their 3" end - from being merged into another
longer read, regardless of their intron chain structure (see Figure 4b). The goal
of this extra anchoring step is to preserve all transcript structures with high-
confidence TSSs/3' ends, including those falling within exonic regions, which
would be lost otherwise.

We anchored polyA- and CAGE-supported HCGMs before merging them us-
ing the anchorTranscriptsEnds software utility (https://github.con/julienlag/
anchorTranscriptsEnds). First, we adjusted all high-confidence 5'/3' ends into
clusters. That is, we merged close and overlapping sites using the bedtools
merge utility, with a maximum clustering distance of 5 bases ("-d 5"), and forc-
ing strandedness ("-s"). Each individual 5'/3' end belonging to a cluster was
assigned its start/end coordinate, respectively - meaning that terminal exons
were sometimes extended by a few nucleotides when necessary. In doing so,
we ensured that within a cluster, all sites aligned at the exact same position.
We subsequently added an "anchor” to all high-confidence, adjusted sites. This
step consisted in attaching an artificial, biologically implausible chain of exons
[i.e.. four 1 nucleotide-long exons, separated by 3 nucleotide-long introns) to
each transcript model, upstream or downstream of its high-confidence 5 or 3
end, respectively. These false exons served as anchors to supported start and
termination sites during the merging step, and were discarded immediately af-
terwards.

For comparison, we also performed a standard, "non-anchored” merging of
HCGMs in parallel. The results of both strategies, across and within our in-
terrogated tissues, are summarized in Supplementary Figure 1la. Following
this merging step, we assigned a parent gene as well as a biotype to all merged
transcript models (TMs). using the procedure described in ROI-{o-locus /biotvpe

The end support - i.e., by CAGE true TSS at the 5 end, and poly-adenylation
at the 3" end - of each anchor-merged TMs was then deduced from the properties
of its constituting ROIs, obtained from the procedures detailed in PolyvA site call
ing and Identification of high-confidence Transcription Start Sites u CAGE
data, Accordingly, the full-length set of TMs (referred to as "CLS_FL") consists
only of models bounded by such high-confidence 5 and 3’ ends. In addition, all
their splice junctions are canonical, as they constitute a subset of HCGMs. The
results of the read merging and selection of full-length transcript structures are
detailed in Table 2, columns a-e.

The end support of transcript models merged using the standard (i.e. non-
anchored) procedure was deduced not from their constituting ROIs’, but rather,
from the on-genome comparison of their end coordinates to CAGE TSSs and
captured polyA sites (obtained with the methods described in Poly A site calling).
5'/3" ends were considered supported if they laid less than 20/5 bases away
from a CAGE TSS / polyA site, respectively, and on the same genomic strand.
The results of this comparison are summarized in Supplementary Figures 12¢-d
(second bar from the left).
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Identification of high-confidence Transcription Start
Sites using CAGE data

We used CAGE (Cap Analysis of Gene Expression) data produced by the
FANTOM consortium [5] to single out high-confidence Transcription Start Sites
(TSSs) in our mapped data. To do so, we compared the 5 ends of our HCGMs
to the CAGE TSSs identified as "true" TSSs by FANTOM's TSS classifier (http://

fantom.gsc.riken. jp/5/datafiles/phasel.3/extra/TS5_classifier/TSSpredictionREADME.

pdf) across FANTOM-interrogated tissues, The CAGE TSS files were downloaded
fromhttp://fantom.gsc.riken. jp/5/datafiles/phasel.3/extra/TSS_classifier/
and lifted to hg38 and mm10 using the liftOver command-line tool (http://
hgdownload.soe.ucsc. edu/admin/exe/linux.x86_64/).

Captured TSSs were considered high-confidence (i.e., CAGE-supported) if a
FANTOM "true” TSS was found within a window of +/- 20 bases around it, on
the same genomic strand (using bediools closest with oplions "-s -D b - first -a
<HCGM TSSs> -b <FANTOM true TSSs>").

In addition, we analyzed the CAGE coverage of "known" (i.e., sites falling
within +/- 50 bases of a GENCODE-annotated TSS on the same strand) and
"novel” (i.e., sites falling more than 50 bases away from of a GENCODE-annotated
TSS on the same strand) PacBio TSSs separately. To do so, for each non-
redundant TSS (obtained using bedtools merge -n -s -d 5) of the two populations,
we computed the distance to the closest FANTOM "true” TSS (using bedtools
closest with options "-s -D b -t first -a < HCGM TSSs> -b < FANTOM true TSSs>").

We observed that novel PacBio TSSs far outnumber known ones in both
species (200,425 vs 44,736 in human, 155,083 vs 32,230 in mouse, respectively,
see Supplementary Figure 10e). While the CAGE coverage of known sites was
higher., thousands of novel TSSs found a CAGE cluster in their close vicinity
(+/- 50 bases on the same genomic strand, see Table 11).

Splice Junction analysis

Extraction of Splice Junctions and Splice Sites, HiSeq support
and novelty assessment

PacBio Splice Junctions (SJs) were gaihf:n:d from HCGMS (see Construction
of & HCGM set (High-Confidence ROI Genome Mappings)), and as such, they
were all mnonu,al [GTIGC / AG). They were assigned a bmlypc based on that of
their originating reads (see ROI-to-locus/biotype assigniment), The IPSA suite
[6] (Integrative Pipeline for Splicing Analyses. https //github. com/pervouchine/
ipsa-full) was employed to extract SJs and their read counts from STAR [4]
alignments of Illumina HiSeq data. IPSA was run with the default parameters.
GENCODE versions 20 and M3 were used as a reference for human and mouse,
respectively. All operations were performed on a non-redundant set of distinet
SJs. which were uniquely identified by their chromosome, start/end coordi-
nates, and genomic strand. A PacBio SJ was defined as HiSeq-supported if the
exact same intron was also observed in the post-capture HiSeq data. HiSeq SJ
support was also computed at the level of entire merged CLS transcript models
[TMs). Overall, 86.5 % (