

DESIGN, FABRICATION AND CHARACTERIZATION OF RF FRONT-END 5G WIRELESS SYSTEM

MOHAMAD FAIZ BIN MOHAMED OMAR

UNIVERSITI SAINS MALAYSIA

2017

DESIGN, FABRICATION AND CHARACTERIZATION OF

RF FRONT-END 5G WIRELESS SYSTEM

by

MOHAMAD FAIZ BIN MOHAMED OMAR

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

AUGUST 2017

ACKNOWLEDGEMENT

First of all, I would like to express my highest gratitude to my supervisor, Prof. Ir. Dr. Mohd Fadzil bin Ain. He has been an inspiration to me since I first met him. His expert guidance always keeps me motivated and his energetic style has been a model in my academic life. In addition, his indispensable support, guidance and advice have resulted in the completion of my research.

Next, I would like to take this opportunity to express my gratitude to School of Electrical & Electronic for providing me with the valuable knowledge of engineering and technology simultaneously. I would also like to thank to Mr. Elias, PCB lab technician, for helping me in layout and fabrication of PCB. Thanks to all Communication lab technicians for their kind assistance and cooperation in conducting the research.

Finally, but certainly not least, I would like to thank to my parents, Mohamad Omar bin Zainuddin and Zaiton binti Ahmad for their priceless supports and love all the way until my project successfully being accomplished. Nothing would have been possible without their persistent support. The author gracefully acknowledges financial support by the USM Fellowship scheme. This project is support by the USM grant under project no. 1001/PELECT/8014009.

TABLE OF CONTENTS

PageACKNOWLEDGEMENTiiTABLE OF CONTENTSiiiLIST OF TABLESixLIST OF FIGURESxiLIST OF ABBREVIATIONSxviiABSTRAKxxABSTRACTxxii

CHAPTER ONE - INTRODUCTION

1.1	Background	1
1.2	Problem Statement	4
1.3	Objectives	6
1.4	Thesis Outline	6

CHAPTER TWO - LITERATURE REVIEW

2.1	Introd	uction	8
2.2	Theor	etical Background	9
2.3	5G Wireless Transceiver Systems		
	2.3.1	Millimetre Wave Mobile Communication for 5G Cellular Network	10
	2.3.2	Millimetre Wave Hybrid Beamforming for 5G Cellular Network	12
	2.3.3	5 th Generation Communication System	12
	2.3.4	Evolution of Wireless Cellular Network Systems	13
	2.3.5	Millimetre Wave for 5G Wireless Communication Systems	15
2.4	Micro	strip Transmission Line	16

2.5	Microv	wave Bandpass Filter	17
	2.5.1	Review of High Frequency Bandpass Filters	19
	2.5.2	A High-Q Mm-Wave Dielectric Resonator Bandpass Filter	21
	2.5.3	Bandpass Filters with $(Zr_{0.8}, Sn_{0.2})$ TiO ₄ Dielectric Resonators	22
	2.5.4	X-Band Dielectric Resonator Bandpass Filter	24
	2.5.5	Low Insertion Loss K-band Bandpass Filter	25
	2.5.6	Parallel – Coupled Design on Dielectric Resonator Filter (DRF)	26
	2.5.7	Field Coupling between Dielectric Resonator Filter (DRF)	27
	2.5.8	Low Frequency LC Bandpass Filter	30
	2.5.9	Series and Parallel LC Circuits	31
	2.5.10	Normalization of Filter Prototypes	32
	2.5.11	Filter Transformations	33
2.6	RF Mi	xer	35
	2.6.1	Down-converter Mixer	35
	2.6.2	Up-converter Mixer	36
	2.6.3	Mixer Classification	37
	2.6.4	Balanced Mixer	38
2.7	Oscilla	ator	39
	2.7.1	Resonator	40
	2.7.2	Voltage Controlled Oscillator (VCO)	41
2.8	Freque	ency Multiplier	42
2.9	Low Noise Amplifier (LNA)		43
2.10	Power Amplifier		45
2.11	RF Tra	ansceiver	46
2.12	RF Transmitter		47

	2.12.1 Direct Conversion Transmitter	48
	2.12.2 Superheterodyne Transmitter	50
2.13	RF Receiver	51
	2.13.1 Direct Conversion Receiver	52
	2.13.2 Superheterodyne Receiver	53
2.14	Summary	54

CHAPTER THREE - METHODOLOGY

3.1	Introd	uction	55
3.2	Main	Procedure	56
3.3	Softw	are for Simulation and Fabrication	58
	3.3.1	Advanced Design System (ADS)	58
	3.3.2	Computer Simulation Technology (CST)	58
3.4	Printe	d Circuit Board (PCB)	59
3.5	RF M	ixer	60
	3.5.1	RF Mixer Component Selection	62
	3.5.2	RF Mixer Footprint Design	62
	3.5.3	Up-converter Mixer Test Module	64
	3.5.4	Down-converter Mixer Test Module	65
3.6	Voltag	ge Controlled Oscillator (VCO)	66
	3.6.1	VCO Component Selection	68
	3.6.2	VCO Footprint Design	69
	3.6.3	VCO Test Module	70
3.7	Freque	ency Multiplier	71
	3.7.1	Frequency Multiplier Component Selection	73

	3.7.2	Frequency Multiplier Footprint Design	74
	3.7.3	Frequency Multiplier Test Module	75
3.8	Low N	Noise Amplifier (LNA)	76
	3.8.1	LNA Component Selection	78
	3.8.2	LNA Footprint Design	79
	3.8.3	LNA Test Module	80
3.9	Power	Amplifier	81
	3.9.1	Millimetre Wave Power Amplifier Component Selection	83
	3.9.2	Millimetre Wave Power Amplifier Footprint Design	84
	3.9.3	1 GHz Power Amplifier Component Selection	86
	3.9.4	1 GHz Power Amplifier Footprint Design	87
	3.9.5	Millimetre Wave Power Amplifier Test Module	88
	3.9.6	1 GHz Power Amplifier Test Module	89
3.10	Bandp	bass Filter	90
	3.10.1	1 GHz Bandpass Filter Design	92
	3.10.2	28 GHz Bandpass Filter Design	94
3.11	RF T	ransmitter Design	99
3.12	RF R	eceiver Design	102
3.13	RF T	ransceiver Design	107
3.14	Sumr	nary	111

CHAPTER FOUR - RESULTS AND DISCUSSIONS

4.1	Introduction	112
4.2	Simulation Results	113
	4.2.1 RF Transmitter Simulation	113

	4.2.2	RF Receiver Simulation	115
	4.2.3	RF Transceiver Simulation	118
4.3	Exper	imental Results	122
	4.3.1	Up-converter RF Mixer	124
	4.3.2	Down-converter RF Mixer	122
	4.3.3	Voltage Controlled Oscillator (VCO)	126
	4.3.4	Frequency Multiplier	127
	4.3.5	Local Oscillator (LO)	120
	4.3.6	Low Noise Amplifier (LNA)	129
	4.3.7	Two Stages Cascaded Low Noise Amplifier (LNA)	131
	4.3.8	Millimetre Wave Power Amplifiers	132
	4.3.9	Three Stages Cascaded 28 GHz Power Amplifier	134
	4.3.10	1 GHz Power Amplifier	136
	4.3.11	Three Stages Cascaded 1 GHz Power Amplifier	138
	4.3.12	1 GHz Bandpass Filter	141
	4.3.13	28 GHz Bandpass Filter	142
	4.3.14	RF Transmitter	144
	4.3.15	RF Receiver	146
	4.3.16	RF Transceiver	148
4.4	Sum	mary	149

CHAPTER FIVE - CONCLUSION

5.1	Conclusion	151
5.2	Future Works	153

REFERENCES

APPENDIX A - EXPERIMENTAL RESULTS OF 28 GHz RF TRANSCEIVER SYSTEM

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	The overview of the developed 5G wireless transceiver systems	10
Table 2.2	Details information of 5G wireless cellular network	13
Table 2.3	Differences between 4 th and 5 th generations of wireless cellular network	14
Table 2.4	Type of filters	19
Table 2.5	The overview of X-band and K-band bandpass filters	20
Table 2.6	Element values for Equal-Ripple Filter Prototype ($g_0 = 1$, $\omega_c = 1$, N =1 to 10 and 0.5 dB ripple)	33
Table 2.7	Summary of the prototype Filter Transformation	33
Table 2.8	Lump elements values of normalized bandpass filter design	34
Table 2.9	Benefits of balanced RF mixer against unbalanced RF mixer	38
Table 2.10	Types of oscillator based on the frequency range	40
Table 3.1	The properties of substrate RO4003C	59
Table 3.2	The properties of HMC329LM3 MMIC mixer	62
Table 3.3	Details of the PCB layout design for MMIC RF mixer	63
Table 3.4	The properties of HMC587LC4B wideband MMIC VCO	68
Table 3.5	Details of the PCB layout design for wideband MMIC VCO	70
Table 3.6	The properties of AMMP-6120 MMIC frequency multiplier	73
Table 3.7	Details of the PCB layout design for MMIC frequency multiplier	75
Table 3.8	The properties of HMC519LC4 MMIC low noise amplifier	78
Table 3.9	Details of the PCB layout design for MMIC low noise amplifier	80
Table 3.10	The properties of HMC383LC4 MMIC medium power amplifier	83
Table 3.11	Details of the PCB layout design for MMIC medium power amplifier	85

Table 3.12	The properties of ALM-31122 1-watt high linearity amplifier	86
Table 3.13	Details of the PCB layout design for 1-watt high linearity amplifier	88
Table 3.14	The element values for 0.5 dB equal-ripple low pass filter design	92
Table 3.15	The lump elements values of bandpass filter using impedance and frequency scaling formula	93
Table 3.16	The values of even-mode and odd-mode characteristic impedances	97
Table 3.17	The dimension values of physical parameters	97
Table 4.1	Output power of each transmitter subsystem node	115
Table 4.2	Output power of each receiver subsystem node	117

LIST OF FIGURES

Page

Figure 2.1	Block diagram of the (a) Transmitter (b) Receiver for the mm-Wave propagation measurements at 28 GHz	11
Figure 2.2	Block diagram of a hybrid beamforming architecture	12
Figure 2.3	The high-performance characteristics of 5G technology	13
Figure 2.4	The evolution of wireless cellular network systems	16
Figure 2.5	The proposed bands above 24 GHz for mobile use	12
Figure 2.6	Microstrip transmission line	17
Figure 2.7	The effect of a bandpass filter	18
Figure 2.8	The side view of the H-field and E-field of TE modes for the coupling process between DR and two microstrip lines	21
Figure 2.9	The top view of the H-field and E-field of TE modes for the coupling process between DR and two microstrip lines	21
Figure 2.10	The trends of insertion loss and loaded Q in an X-band filter	22
Figure 2.11	Position of the dielectric resonators (DR) relative to the microstrip lines	22
Figure 2.12	The measurements of the various types of bandpass filters	23
Figure 2.13	The simulated layout of the bandpass filter	24
Figure 2.14	The effect of dielectric height on insertion loss	24
Figure 2.15	(a) The layout design of the K-band hairpin filter and (b) The SEM image of one part of the fabricated filter	25
Figure 2.16	The S-parameter measurement results of the fabricated filter	26
Figure 2.17	A basic model of parallel-coupled filter	26

Figure 2.18	Signal propagation patterns (a) electric field in even-mode (b) electric field in odd-mode (c) magnetic field in even- mode (d) magnetic field in odd-mode	27
Figure 2.19	The coupling between microstrip line and DR	28
Figure 2.20	The equivalent circuit model for microstrip coupled with DR	28
Figure 2.21	The coupling between DR and DR	29
Figure 2.22	The equivalent circuit model for DR coupled with DR	29
Figure 2.23	The direct coupling of the magnetic field between microstrip	30
	transmission line and DR	
Figure 2.24	The series LC bandpass filter circuit	31
Figure 2.25	The parallel LC bandpass filter circuit	31
Figure 2.26	Ladder circuit for a normalized low pass filter prototype design	32
Figure 2.27	Ladder circuit for a normalized bandpass filter design	34
Figure 2.28	Frequency mixer functional diagram	35
Figure 2.29	Down-conversion process of frequency mixer	36
Figure 2.30	Up-conversion process of frequency mixer	37
Figure 2.31	Unbalanced mixer block diagram	38
Figure 2.32	The structural diagram of single-balanced mixer	39
Figure 2.33	The structural diagram of a double-balanced mixer	39
Figure 2.34	Normal oscillator with positive feedback loop	40
Figure 2.35	Series resonator circuit diagram	41
Figure 2.36	Parallel resonator circuit diagram	41
Figure 2.37	The block diagram of voltage controlled oscillator	42
Figure 2.38	The graph of output frequency against control voltage	42
Figure 2.39	The block diagram of frequency multiplier	43

Figure 2.40	Position of LNA in the RF receiver	44
Figure 2.41	The symbol of power amplifier circuit	45
Figure 2.42	General block diagram of RF transceiver	47
Figure 2.43	A block diagram of RF transmitter	48
Figure 2.44	Direct conversion transmitter	49
Figure 2.45	Superheterodyne transmitter	50
Figure 2.46	A block diagram of RF receiver	52
Figure 2.47	Direct conversion receiver	52
Figure 2.48	Superheterodyne receiver	53
Figure 3.1	Flow chart of design and fabrication	57
Figure 3.2	Flow chart of RF mixer design	61
Figure 3.3	PCB footprint layout design for MMIC RF mixer	63
Figure 3.4	Design of the fabricated MMIC double balanced RF Mixer	63
Figure 3.5	Setting of instruments to test the performance of up-converter mixer	64
Figure 3.6	Instruments arrangement to test the down-converter miver	65
Figure 3.7	Flow chart of voltage controlled oscillator design	67
Figure 3.8	PCP footprint layout design for widehand MMIC VCO	60
Figure 3.0	Design of the febricated wideband MMIC VCO	70
Figure 3.10	Instruments arrangement to test the performance of VCO	70
Figure 3.10	Elow abort of fraquency multiplier design	71
Figure 3.11	PCP footprint levent design for MMIC frequency multiplier	72
Figure 5.12	PCB footprint layout design for MiNIC frequency multiplier	74
Figure 3.13	Design of the fabricated MMIC frequency multiplier	/4
Figure 3.14	Setting of instruments to test the performance of frequency multiplier	76
Figure 3.15	Flow chart of low noise amplifier design	77

Figure 3.16	PCB footprint layout design for MMIC low noise amplifier	79
Figure 3.17	Design of the fabricated MMIC low noise amplifier	79
Figure 3.18	Setting of instruments to test the performance of LNA	81
Figure 3.19	Flow chart of power amplifier design	82
Figure 3.20	PCB footprint layout design for MMIC medium power amplifier	84
Figure 3.21	Design of the fabricated MMIC medium power amplifier	85
Figure 3.22	PCB footprint layout design for 1-watt high linearity amplifier	87
Figure 3.23	Design of the fabricated 1-watt high linearity amplifier	87
Figure 3.24	Instruments arrangement to test mm-Wave power amplifier	89
Figure 3.25	Setting of instruments to test 1-watt high linearity amplifier	90
Figure 3.26	Flow chart of bandpass filter design	91
Figure 3.27	1 GHz bandpass filter circuit design	93
Figure 3.28	Instruments arrangement to test the 1 GHz bandpass filter	94
Figure 3.29	28 GHz bandpass filter simulation via CST Microwave Studio	95
Figure 3.30	The top view of the 28 GHz DR filter	95
Figure 3.31	The top view of the PCB footprint layout for 28 GHz bandpass filter	97
Figure 3.32	The 3D-view of the PCB footprint layout for 28 GHz bandpass filter	98
Figure 3.33	Instruments arrangement to test the 28 GHz bandpass filter	98
Figure 3.34	Block diagram of the RF transmitter	101
Figure 3.35	Block diagram of the RF receiver	104
Figure 3.36	Instruments arrangement to test the performance of the complete RF transmitter design	105
Figure 3.37	Instruments arrangement to test the performance of the complete RF receiver design	106

Figure 3.38	Block diagram of RF transceiver	109
Figure 3.39	Instruments arrangement to test the performance of the complete RF transceiver design	110
Figure 4.1	The 28 GHz RF transmitter circuit simulated via ADS	113
Figure 4.2	Output power of RF, LO and IF signals on the RF transmitter	114
Figure 4.3	The simulated results of 28 GHz RF signal output power	115
Figure 4.4	The 28 GHz RF receiver circuit simulated using ADS	116
Figure 4.5	Output power of RF, LO and IF signals on the RF receiver	117
Figure 4.6	The simulated results of 1 GHz IF signal output power	118
Figure 4.7	The 28 GHz RF transceiver circuit simulated through ADS	120
Figure 4.8	Output power of IF signals via different attenuator values at -20 dBm IF input power	121
Figure 4.9	The simulated results of 1 GHz IF signal output power via variable attenuators	121
Figure 4.10	The experimental results of RF signal power for up-converter mixer	122
Figure 4.11	The conversion loss results for the up-converter mixer	123
Figure 4.12	The results of IF signal output power for down-converter mixer	124
Figure 4.13	The conversion loss results for the down-converter mixer	125
Figure 4.14	The results of VCO output power levels at 6.75 GHz	126
Figure 4.15	The 13.5 GHz and 27 GHz RF signals output power of the cascaded frequency multipliers	127
Figure 4.16	The results of LO signal output power at 27 GHz	128
Figure 4.17	The results of RF signal output power for a single LNA	129
Figure 4.18	The gain results obtained for a single LNA	130
Figure 4.19	The RF signal output power for two stages cascaded LNA	131

- Figure 4.20 The gain results obtained for the two stages cascaded LNA 132
- Figure 4.21 The results of RF signal output power for the mm-Wave power 133 amplifiers
- Figure 4.22 The gain results obtained for the mm-Wave power amplifiers 134
- Figure 4.23 The RF signal output power for the three stages cascaded 28 135 GHz power amplifier
- Figure 4.24 The gain results obtained for the three stages cascaded 28 GHz 136 power amplifier
- Figure 4.25 The results of IF signal output power 1 GHz power amplifier 137
- Figure 4.26 The gain results obtained for the 1 GHz power amplifier 138
- Figure 4.27 The RF signal output power for the three stages cascaded 1 GHz 139 power amplifier
- Figure 4.28 The gain results obtained for the three stages cascaded 1 GHz 140 power amplifier
- Figure 4.29 Measured and simulated results of the insertion and return losses 141 for 1 GHz bandpass filter
- Figure 4.30 Measured and simulated results of the insertion and return losses 142 for 28 GHz bandpass filter
- Figure 4.31 The measured results of 28 GHz RF signal output power 144
- Figure 4.32 The measured results of 1 GHz IF signal output power 146
- Figure 4.33 The measured results of 1 GHz IF signal output power via 148 variable attenuators

LIST OF ABBREVIATIONS

5G	Fifth-generation
AC	Alternating current
ADS	Advanced Design System
AM	Amplitude modulation
BPF	Bandpass filter
ССТО	$CaCu_{3}Ti_{4}O_{12}$
CDMA	Code-division multiple access
CST	Computer Simulation Technology
dB	Decibel
dBm	Power ratio in decibel
DC	Direct current
DRF	Dielectric Resonator Filter
DRs	Dielectric resonators
E _r	Dielectric constant
fc	Cut-off frequency
FCC	Federal Communications Commission
fн	Higher cut-off frequency
$f_{ m L}$	Lower cut-off frequency

GSM	Global System for Mobile Communication
H/D	Ratio of the thickness over the diameter
HBT	Heterojunction bipolar transistor
HD	High Definition
I/Q	Inphase / Quadrature
IF	Intermediate frequency
IP	Internet Protocol
IPV6	Internet Protocol version 6
LAS-CDMA	Large area synchronized code-division multiple access
LMDS	Local Multipoint Distribution Service
LNA	Low noise amplifier
LO	Local Oscillator
MAC	Medium access control
MC-CDMA	Multi-carrier code-division multiple access
MMIC	Monolithic Microwave Integrated Circuit
NF	Noise figure
NPRM	Notice of Proposed Rule Making
OFDMA	Orthogonal frequency-division multiple access
PA	Power amplifier

РСВ	Printed circuit board
РНҮ	Physical layer
Q	Quality factor
RF	Radio Frequency
SMT	Surface mount technology
SNR	Signal noise ratio
TEM	Transverse electromagnetic wave
UHF	Ultra-high frequency
VCO	Voltage controlled oscillator
V _{cont}	Control voltage
WiGig	Wireless Gigabit Alliance
Z _{0e}	Even-mode
Z ₀₀	Odd-mode
ZST	(Zr _{0.8} , Sn _{0.2}) TiO ₄

REKA BENTUK, FABRIKASI DAN PENCIRIAN RF HUJUNG-DEPAN SISTEM TANPA WAYAR 5G

ABSTRAK

Pertumbuhan data selular yang tidak dijangka telah memberi cabaran terhadap penyedia perkhidmatan rangkaian mudah alih bagi menghadapi kekurangan saiz jalur lebar tanpa wayar yang telah diselaraskan di seluruh dunia. Kesukaran yang disebabkan oleh kekurangan jalur lebar bagi perkhidmatan mudah alih tanpa wayar telah menarik minat terhadap penerokaan spektrum gelombang frekuensi milimeter yang tidak digunakan untuk teknologi mudah alih jalur lebar pada masa hadapan. Sistem pemancarterima RF tanpa wayar yang beroperasi pada frekuensi gelombang milimeter (mm-Wave) 28 GHz direka dan dibangunkan untuk aplikasi rangkaian selular 5G. Satu siri sistem RF hujung-depan pemancarterima terdiri daripada pemancar RF dan penerima RF. Sistem RF hujung-depan ini menyediakan lebar jalur penghantaran yang luas iaitu 1000 MHz. Prototaip pemancarterima RF dibangunkan dengan menggunakan komponen sedia siap dari Avago Technologies dan Hittite Microwave kecuali penapis laluan jalur 1 GHz dan 28 GHz. Reka bentuk seni bina superheterodin bagi pemancar dan superheterodin bagi penerima digunakan untuk membangunkan reka bentuk sistem RF hujung-depan ini. Terdapat dua jenis penapis laluan jalur yang direka dalam projek ini; elemen tergumpal untuk frekuensi rendah pada 1 GHz dan Penapis Resonator Dielektrik (DRF) untuk frekuensi mm-Wave pada 28 GHz. Penapis laluan jalur jenis elemen tergumpal direka pada frekuensi tengah 1 GHz dengan lebar jalur penghantaran 1000 MHz. Penapis laluan jalur bagi 28 GHz direka dengan menggunakan kombinasi penapis mikrostrip gabungan selari dan penyalun dielektrik (DRs) yang diperbuat daripada CaCu3Ti4O12 (CCTO).

Penggunaan dielektrik resonator bagi reka bentuk litar gelombang mikro secara langsung dapat membantu meningkatkan prestasi litar dari segi faktor-Q dan saiz jalur lebar. Penapis laluan jalur dielektrik resonator menghasilkan lebar jalur penghantaran 1000 MHz yang beroperasi pada frekuensi pertengahan 28 GHz. Simulasi reka bentuk keseluruhan pemancarterima RF dijalankan dengan menggunakan Advanced System Design (ADS). Computer Simulation Technology (CST) digunakan untuk mereka bentuk penapis laluan jalur 28 GHz dengan menggunakan dielektrik resonator. Pengesahan reka bentuk dilaksanakan melalui pengujian perkakasan terhadap pemancar RF dan RF penerima. Sistem pemancar RF berfungsi untuk menukar-naik isyarat input IF pada 1 GHz kepada isyarat output RF pada 28 GHz, sementara penerima RF digunakan untuk menukar-turun isyarat input RF pada 28 GHz kepada isyarat output IF pada 1 GHz. Berdasarkan keputusan eksperimen untuk pemancarterima RF 28 GHz, jumlah kuasa output yang tertinggi dan terendah bagi isyarat IF dicatatkan pada -13.12 dBm melalui attenuator 10 dB dan -45.77 dBm melalui attenuator 50 dB apabila kuasa bagi input isyarat IF ditetapkan pada -20 dBm. Peratusan kelinearan bagi output isyarat IF diperoleh pada sekitar 80% apabila isyarat IF pada 1GHz ditetapkan pad -20 dBm kuasa input. Keseluruhan projek RF hujung-depan 28 GHz untuk aplikasi rangkaian selular berjaya direka bentuk dan dibangunkan.

DESIGN, FABRICATION AND CHARACTERIZE OF RF FRONT-END 5G WIRELESS SYSTEM

ABSTRACT

The unexpected increase of cellular data growth has created absolute challenges for the mobile network service providers in order to counter with a worldwide wireless bandwidth shortage. The difficulty of mobile wireless bandwidth size shortage has attracted the interest towards the exploration of the underutilized millimetre-wave frequency spectrum for the future broadband mobile technologies. A wireless RF transceiver system operating at the millimetre wave (mm-Wave) frequency of 28 GHz for the 5G cellular network application is designed and fabricated. A series of RF front-end transceiver system consists of the RF transmitter and RF receiver. This RF front-end system provides a wide transmission bandwidth of 1000 MHz. The RF transceiver prototype is built using off-the-shelf components from the Avago Technologies and Hittite Microwave except for the 1 GHz and 28 GHz bandpass filters. The superheterodyne transmitter and superheterodyne receiver architectural designs are used to develop this RF front-end system design. There are two types of bandpass filter are designed in this project; lumped elements for low frequency at 1 GHz and Dielectric Resonator Filter (DRF) for mm-Wave frequency at 28 GHz. The lumped elements bandpass filter is designed at the centre frequency of 1 GHz with the transmission bandwidth of 1000 MHz. The 28 GHz bandpass filter is designed by using a combination of microstrip parallel-coupled filter and the dielectric resonators (DRs) made of CaCu₃Ti₄O₁₂ (CCTO). The use of a dielectric resonator for the microwave circuit design directly can help to improve the performance of the circuit in terms of Q-factor and bandwidth size. The dielectric resonator bandpass filter produces a transmission bandwidth of 1000 MHz operating at the centre frequency of 28 GHz. The overall simulation design of the RF transceiver is carried out using Advanced Design System (ADS). Computer Simulation Technology (CST) is used to design the 28 GHz bandpass filter using dielectric resonators. The verification of design is accomplished through the RF transmitter and RF receiver hardware testing. The RF transmitter system works to up-convert an input IF signal at 1 GHz to an output RF signal at 28 GHz, while the RF receiver used to down-convert an input RF signal at 28 GHz to an output IF signal at 1 GHz. Based on the experimental results for the 28 GHz RF transceiver, the highest and lowest amount of IF signal output power are recorded at -13.12 dBm via 10 dB attenuator and -45.77 dBm via 50 dB attenuator when the IF signal input power is set at -20 dBm. The linearity of the IF signal output power. The overall project of the 28 GHz RF front-end for the cellular network application is successfully designed and developed.