

EVALUATION OF THE STIFFNESS AND STRENGTH PARAMETERS OF HARDENING SOIL MODEL FOR THE SIMULATION OF THE TWIN TUNNELS INTERACTION IN KENNY HILL FORMATION RESIDUAL SOIL

LIM SIAO PHIN

UNIVERSITI SAINS MALAYSIA

2017

EVALUATION OF THE STIFFNESS AND STRENGTH PARAMETERS OF HARDENING SOIL MODEL FOR THE SIMULATION OF THE TWIN TUNNELS INTERACTION IN KENNY HILL FORMATION RESIDUAL SOIL

by

LIM SIAO PHIN

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

August 2017

ACKNOWLEDGMENT

First and foremost, I want to express my deepest gratitude to my supervisor, Dr. Mohd Ashraf Mohamad Ismail, for his encouragement and continual support. His guidance and patience in supervising this thesis are much appreciated. Throughout the Master study, he has dedicated his great effort on guiding me especially when I was facing difficulties concerning my research works. His constructive ideas and feedback have helped to bring this research to a satisfactory completion. Furthermore, I would like to thank him for not giving up on me in every moment of my study.

Secondly, I would like to thank the cooperation from MRT Corp. and KVMRT (T) Sdn. Bhd. for providing opportunity to participate in the Offset Program and generosity in providing the borehole data of KVMRT construction for my research. Besides that, I would like to thank, MyMaster funding in MyBrain15, which sponsored my education fees in Universiti Sains Malaysia. I also like to thank, Fundamental Research Grant Scheme (FRGS), Ministry of Higher Education, Malaysia entitled "The Study of Tunnel Seepage Water (TSW) as a Potential Source of Groundwater Characterization across the Titiwangsa Main Range, Malaysia".

I would like to express my appreciation to my friends who helped my study and me. My warmest feeling is addressed to my beloved parents, significant other, brothers and sisters. They gave their unconditional moral and financial support to me. I want to dedicate this thesis to them.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xviii
LIST OF SYMBOLS	xix
ABSTRAK	xxi
ABSTRACT	xxiii

CHAPTER ONE : INTRODUCTION

1.1	Background of the Study	1
1.2	Introduction of Study Area	4
1.3	Problem Statement	8
1.4	Objectives	10
1.5	Significance of the Study	10
1.6	Scope of Study	11
1.7	Organization of the Thesis	13
СНАР	TER TWO : LITERATURE REVIEW	
2.1	Introduction	15
2.2	Tunnelling under Urban Environment	15
	2.2.1 Characteristic of Urban Tunnelling	15

2.2.2	Differences	between	Urban	Tunnels	and	Open-space	16
	Tunnel Cons	struction					

	2.2.3	Main Concern in Urban Tunnelling	18
2.3	Influence	es of Geological Condition towards Tunnels Construction	19
	2.3.1	Tunnelling in Soft Ground	20
2.4	Geology	of Kuala Lumpur	23
2.5	Spatial Characte	Interpolation Methods for Subsurface Modelling and prization	26
	2.5.1	Inverse Distance Weighting Method	28
	2.5.2	Ordinary Kriging Method	30
	2.5.3	Comparison between IDW and OK Method	31
2.6	Twin Tu	nnels Interaction	31
	2.6.1	Methods to characterize Twin Tunnels Interaction	34
	2.6.2	Factors influencing Twin Tunnels Interaction	39
	2.6.3	Two-dimensional Tunnel Excavation Simulation	48
2.7	Constitu	tive Soil Models	52
	2.7.1	Mohr Coulomb (MC) Model	52
	2.7.2	Hardening Soil (HS) Model	53
	2.7.3	Comparison between Hardening Soil (HS) Model and Mohr Coulomb (MC) Model	55
2.8	Calibrati	on of Constitutive Soil Models Parameters	56
	2.8.1	Overview of Pressuremeter Test	59
2.9	Gap of R	Research	62
СНАР	TER THI	REE : METHODOLOGY	
3.1	Introduc	tion	66
3.2	Geologic	cal Condition of Study Area	69
	3.2.1	SBK Line Twin Tunnels Configuration	71
3.3	Develop Model	ment of Spatial Interpolated Three-dimensional Ground	74

	3.3.1	Ground Investigation Data Collection	75
	3.3.2	Ground Investigation Data Preparation	77
	3.3.3	Ground Investigation Data Interpretation	79
	3.3.4	Spatial Interpolation of Borehole Data	84
3.4	Verificat	ion of Subsurface Ground Models	87
3.5	Data Ext	raction on 3D Ground Models	89
	3.5.1	Tunnel Filtered Model Analysis	90
	3.5.2	Critical Tunnel Section Selection for Tunnelling Numerical Analysis	92
3.6	Constitut	tive Soil Model Parameters Calibration	94
	3.6.1	Constitutive Soil Model Selection	96
	3.6.2	Data Preparation for Numerical Simulation of Pressuremeter Test	98
	3.6.3	Numerical Simulation of Pressuremeter Test	99
	3.6.4	Stiffness and Strength Parameters Optimization	107
3.7	Simulatio	on of Tunnel Excavation Effect	108
3.8	Back-An Settleme	alysis on Twin Tunnels Excavation Induced Surface	109
	3.8.1	Stages on Tunnelling Simulation	110
3.9	Verificat	ion of Simulation with Construction monitored Data	111
3.10	Parametr Factors	ic Analysis on Twin Tunnels Interaction Influencing	115
	3.10.1	Twin Tunnels Alignment	115
	3.10.2	Distance between Tunnels	116
	3.10.3	Tunnels Construction Sequence	116
3.11	Evaluatio	on of Twin Tunnels Interaction	117
3.12	Summar	y	118

CHAPTER FOUR : RESULTS AND DISCUSSION

4.1	Introduct	ion	120
4.2	Subsurfa	ce Geotechnical Environment of Study Area	121
	4.2.1	Qualitative Observation on Spatial Distribution of Lithology and SPT-N values	121
	4.2.2	Quantitative Observation on Spatial Distribution of Lithology and SPT-N values	125
	4.2.3	Soil Properties in Twin Tunnels Alignment	130
	4.2.4	Soil Profiles and Ground Cross-Section determined from 3D Ground Model	136
4.3	Soil Pro Residual	perties Distribution for Kenny Hill formation (KHF) Soil	143
	4.3.1	Strength Parameters interpreted from Laboratory Testing	144
	4.3.2	Stiffness Parameters interpreted from Laboratory Testing	148
	4.3.3	Stiffness and Strength behaviour of Residual Soil interpreted from Pressuremeter Test (PMT)	153
4.4	Constitut Determin	ive Soil Model Calibration and Model Parameters nation	161
	4.4.1	Soil Constitutive Model Parameters for Z4h Region	162
	4.4.2	Stress-Strain Characteristic of Input Parameters obtained from Simulation of PMT Test	165
	4.4.3	Influence of constitutive soil model parameters towards simulation soil behaviour	169
	4.4.4	Calibrated Hardening Soil model parameters	177
4.5	Selected Simulation	Conceptual Models for Twin Tunnels Excavation	182
4.6	Ground S	Settlement induced by KVMRT Twin Tunnels Excavation	187
	4.6.1	Ground Movement induced in Z4h Cross-section	187
	4.6.2	Ground Movement induced in Z4i Cross-section	188

	4.6.3	Ground Movement induced in Z4v Cross-section	191
	4.6.4	Ground Movement induced in Z4v Section with MC model	193
4.7	Twin Tur and Cons	nnels Interaction under Influence of Tunnels Configuration struction Sequence	195
	4.7.1	Influence of Distance between Tunnels towards Tunnelling Induced Deformation	195
	4.7.2	Influence of Tunnel Construction Sequence towards Twin Tunnelling Induced Deformation	201
	4.7.3	Optimized Tunnels Configuration and Construction Sequence for Minimum Twin Tunnels Interaction	207
4.8	Summary	y .	208
СНАР	TER FIV	E : CONCLUSION AND FUTURE SCOPE	
5.1	Achiever	nent of Objectives	211
5.2	Limitatic	ons and Recommendations	213
REFE	RENCES		215

APPENDICES

LIST OF PUBLICATIONS

LIST OF TABLES

Table 2.1	Proposed estimation of variable i from literatures (Loganathan, 2011)	37
Table 2.2	Advantages and drawbacks of pressuremeter test in geotechnical investigation (Cambridge Insitu Ltd, 2015)	62
Table 2.3	Gap of studies identified from past literatures	64
Table 3.1	Borehole drilling length	71
Table 3.2	SBK Line twin tunnels alignment	73
Table 3.3	SBK line twin tunnels route, station and respective chainage	74
Table 3.4	In-situ testing conducted and corresponding measured parameters	78
Table 3.5	laboratory testing conducted and corresponding measured parameters	79
Table 3.6	Lithology characteristic in striplog Section 1 to Section 5 (refer to Figure 3.9)	81
Table 3.7	SPT-N correlation to soil consistency for cohesive soil (Karol, 1960)	82
Table 3.8	SPT-N correlation to relative density for cohesionless soil (Karol, 1960)	82
Table 3.9	SPT-N classification used in subsurface characterization of study area	82
Table 3.10	Models dimension of smaller multiple sections and large single model	84
Table 3.11	Amount of boreholes used in ground model development (active boreholes) and reserved boreholes used in verification process	88
Table 3.12	Soil model parameters for Mohr Coulomb model	97
Table 3.13	List of constitutive soil parameters for HS model	98
Table 3.14	Simulation stages involved in pressuremeter test	103
Table 3.15	Soil parameters used in the calibration of constitutive soil model	108
Table 3.16	Face loss monitored in KVMRT construction	109
Table 3.17	Tunnel section back-analysed for verification purpose	110
Table 3.18	Tunnel lining properties adopted in simulation	110

Table 3.19	Summary of Simulation Procedure	111
Table 3.20	Example of ground point level monitored ground settlement with respective date and location	112
Table 3.21	The relative distance between tunnels studied in corresponding twin tunnels alignment	116
Table 3.22	Tunnel construction sequence studied.	117
Table 4.1	Distribution of soil types sampled from borehole drilling	121
Table 4.2	Soil type proportion in Zone 1 to Zone 4	125
Table 4.3	Subsurface characteristic of study area (refer to Figure 4.1 and Figure 4.2)	129
Table 4.4	Proportion of lithology in tunnel filtered models	131
Table 4.5	Twin tunnels alignment in Zone 4 and associated tunnel chainage	137
Table 4.6	Soil layer thickness for ground sections associated with twin tunnels with horizontal alignment	140
Table 4.7	Soil layer thickness for ground sections associated with twin tunnels with inclined alignment	140
Table 4.8	Soil layer thickness for ground sections associated with twin tunnels with vertical alignment	140
Table 4.9	Distribution of effective friction angle in Zone 4 subsoil	148
Table 4.10	Distribution of effective cohesion in Zone 4 subsoil	148
Table 4.11	Distribution of undrained E50 in Zone 4 subsoil	151
Table 4.12	Distribution of oedometer loading stiffness, $E_{\text{oed}}^{\text{ref}}$ in Zone 4 subsoil	152
Table 4.13	Distribution of unload-reload stiffness, E_{ur}^{ref} in Zone 4 subsoil	152
Table 4.14	Pressuremeter grade categorization criteria	156
Table 4.15	Soil properties of Z4h region subsoil	164
Table 4.16	Pressuremeter test corresponding to respective pressuremeter grade (refer Figure 4.29)	166
Table 4.17	Input parameters for case models for effective cohesion and friction angle sensitivity analysis	171
Table 4.18	Calibrated soil model parameters associated with Z4h soil profile	184
Table 4.19	Calibrated soil model parameters associated with Z4i soil profile	185

Table 4.20Calibrated soil model parameters associated with Z4v soil187profile

LIST OF FIGURES

Page

Figure 1.1	Map of Selangor, Kuala Lumpur and Klang Valley Region (modified after Abdul Ghaffar et al. 2012)	5
Figure 1.2	The Aerial View of KVMRT Twin Tunnels Alignment and Stations Location (modified after KVMRT (T) SDN BHD, 2015)	6
Figure 1.3	The Geological Map of Kenny Hill Formation and Kuala Lumpur Limestone Formation with KVMRT Twin Tunnels Alignment and Stations Location (from geological map of Selangor, Sheet 94)	7
Figure 1.4	Linearly Elastic Perfectly Plastic nature of Mohr Coulomb Model	9
Figure 1.5	Schematic diagram of twin tunnels alignment	13
Figure 2.1:	Relationship between tunnel support pressure and settlement in soft ground (Anagnostou, 2007)	21
Figure 2.2	The Geological Map of Kenny Hill Formation and Kuala Lumpur Limestone Formation with KVMRT Twin Tunnels Alignment and Station Location	24
Figure 2.3	A radius is generated each grid node from which data points are selected to be used in the calculation	29
Figure 2.4	Green-field tunnelling induced surface settlement trough above tunnels integrated from Gaussian function	36
Figure 2.5	Surface settlement trough estimated from several empirical equations (Loganathan, 2011)	38
Figure 2.6	Twin tunnels alignments analysed in (Chehade et al., 2008)	41
Figure 2.7	Numerical models of twin tunnels in (Yoo & Jeon, 2013) and the relative positions of twin tunnels analysed	42
Figure 2.8	Influence of tunnel overburden in terms of cover to diameter ratio (C/D) towards excavation induced ground movement (Ahmed & Iskander 2012)	45
Figure 2.9	The comparison between surface settlement trough obtained from Peck's empirical equation and finite element analysis with consideration of various tunnel construction sequence (Chen et al., 2012)	47
Figure 2.10	Two-phase approach of contraction ratio method (modified after Möller, 2006)	50
Figure 2.11	The three-phase system involved in stress-reduction method	50
Figure 2.12	Stress-strain behaviour of Mohr Coulomb model	53

Figure 2.13	Hyperbolic stress strain relationship in primary loading under standard drained triaxial test (from Plaxis Material Models Manual)	54
Figure 2.14	Work flow of constitutive soil model parameters calibration (Zhang et al., 2013)	58
Figure 2.15	Types of pressuremeter probe that commonly used (modified after BRE & Bracknell, 2003)	60
Figure 3.1	Flow of the research methodology	68
Figure 3.2	Boreholes cored along twin tunnels alignment	70
Figure 3.3	A: Three-dimensional view of SBK line twin tunnels and B: Plan view of SBK line twin tunnels alignment	72
Figure 3.4	Example of distribution of boreholes along twin tunnels alignment and respective vertical profile.	76
Figure 3.5	Example of core sample of soil and rock	77
Figure 3.6	A: Large striplog model with all boreholes and B: multiple smaller striplog sections	81
Figure 3.7	Plan view of A: large single striplog model and B: smaller multiple striplog section	83
Figure 3.8	Spatial interpolation of unsampled point based on sampled data points within specified search radius	85
Figure 3.9	Example of ground model development based on lithology striplogs	86
Figure 3.10	Example of filtered borehole and reserved borehole	89
Figure 3.11	Schematic illustration of input ground model and tunnel spatial coordinate required in ground model filtering process	90
Figure 3.12	Development of tunnel filtered model based on three- dimensional ground model	91
Figure 3.13	Analysis on distribution of N-values in tunnel filtered model	92
Figure 3.14	Procedures in determining the cross-section for conceptual model	93
Figure 3.15	Idealization of relationship between soil parameters and constitutive soil models (refer to Figure 3.22 for detailed calibration process)	96
Figure 3.16	Instrument of pressuremeter test	100
Figure 3.17	Commencement of pressuremeter test at site	100
Figure 3.18	The operational procedure for pre-bored pressuremeter testing (ASTM4719)	101

Figure 3.19	Simulation in axisymmetric approach	103
Figure 3.20	Example of PMT simulation using FEM framework	104
Figure 3.21	Example of field monitored and simulated pressuremeter stress-stain curves	106
Figure 3.22	Workflow in the constitutive soil model parameters calibration process	107
Figure 3.23	(a)Ground point level installed at construction site and (b) the schematic view of the monitoring instrument arrangement	112
Figure 3.24	Example of ground movement monitored after NB tunnel excavation	112
Figure 3.25	Data management system that manage real-time monitored construction information	114
Figure 3.26	The distribution of ground point level along SBK line twin tunnels alignment	114
Figure 3.27	Twin Tunnels Alignment used in the Analysis	115
Figure 4.1	Qualitative observation on the soil type distribution along tunnel alignment	122
Figure 4.2	Qualitative observation on the SPT-N values distribution along tunnel alignment	122
Figure 4.3	Qualitative observation on the Kenny Hill formation bedrock weathering condition along tunnel alignment	122
Figure 4.4	Detailed soil type distribution in Zone 1 to Zone 4	126
Figure 4.5	SPT-N values vertical distribution in Zone 1 to Zone 4	128
Figure 4.6	Lithology proportion in twin tunnels alignment throughout the study area	131
Figure 4.7	Tunnels filtered models for Zone 1 to Zone 4 in study area	134
Figure 4.8	SPT-N values distribution in Zone 1 twin tunnels	134
Figure 4.9	SPT-N values distribution in Zone 2 twin tunnels	135
Figure 4.10	SPT-N values distribution in Zone 3 twin tunnels	135
Figure 4.11	SPT-N values distribution in Zone 4 twin tunnels	136
Figure 4.12	Ground cross sections determined from SPT-N ground model of Zone 4	138
Figure 4.13	Ground cross sections with horizontally aligned twin tunnels	139
Figure 4.14	Ground cross sections with inclined aligned twin tunnels	139

Figure 4.15	Ground cross sections with vertically aligned twin tunnels	140
Figure 4.16	Soil profile for twin tunnels with horizontal alignment	142
Figure 4.17	Soil profile for twin tunnels with inclined alignment	142
Figure 4.18	Soil profile for twin tunnels with vertical alignment	143
Figure 4.19	Distribution of friction angle observed in Z4h soil profile	145
Figure 4.20	Distribution of friction angle observed in Z4i soil profile	145
Figure 4.21	Distribution of friction angle observed in Z4v soil profile	146
Figure 4.22	Distribution of strength parameters cohesion observed in Z4v soil profile	146
Figure 4.23	Distribution of undrained secant triaxial stiffness in (a) Z4h, (b) Z4i and (c) Z4v regions	150
Figure 4.24	Maximum pressuremeter load monitored at respective depth in (a) Z4h region, (b) Z4i region and (c) Z4v region	155
Figure 4.25	Pressuremeter curves categorized into 10 grades as: (a) PMT-G1, (b) PMT-G2, (c) PMT-G3, (d) PMT-G4, (e) PMT-G5, (f) PMT-G6, (g) PMT-G7, (h) PMT-G8, (i) PMT-G9 and (j) PMT-G10	158
Figure 4.26	Boreholes location in Zone 4	160
Figure 4.27	Distribution of maximum pressuremeter load monitored within each pressuremeter grade	160
Figure 4.28	Distribution of maximum horizontal strain monitored within each pressuremeter grade	161
Figure 4.29	Pressuremeter grade in Z4h region	162
Figure 4.30	Pressuremeter stress-strain curves of PMT-G10 and simulated curve based on input parameters in soil layer with SPT-N values less than 10 (top layer)	166
Figure 4.31	Pressuremeter stress-strain curves of PMT-G8 and simulated curve based on input parameters in soil layer with SPT-N values between 10 to 30	166
Figure 4.32	Pressuremeter stress-strain curves of PMT-G6 and simulated curve based on input parameters in soil layer with SPT-N values between 30 to 50	167
Figure 4.33	Pressuremeter stress-strain curves of PMT-G5 and simulated curve based on input parameters in soil layer with SPT-N values between 50 and above (top part)	167
Figure 4.34	Pressuremeter stress-strain curves of PMT-G5 and simulated curve based on input parameters in soil layer with SPT-N values between 50 and above (bottom part)	168

Figure 4.35	(a) and (b): Influence of effective cohesion towards soil behaviour in simulation	172
Figure 4.36	Influence of effective friction angle towards soil behaviour in simulation	172
Figure 4.37	Influence of stiffness parameters towards soil behaviour in simulation	175
Figure 4.38	Influence of secant triaxial stiffness, E50ref towards soil behaviour is simulation	175
Figure 4.39	Influence of oedometer loading stiffness, Eoedref towards soil behaviour in simulation	176
Figure 4.40	Influence of unload-reloading stiffness, Eurref towards soil behaviour in simulation	177
Figure 4.41	Comparison of simulated soil behaviour between optimised parameters and initial input properties in soil layer SPT-N $<$ 10, Z4h region	179
Figure 4.42	Comparison of simulated soil behaviour between optimised parameters and initial input properties in soil layer $10 < $ SPT-N < 30 , Z4h region	180
Figure 4.43	Comparison of simulated soil behaviour between optimised parameters and initial input properties in soil layer $30 < $ SPT-N < 50 , Z4h region	180
Figure 4.44	Comparison of simulated soil behaviour between optimised parameters and initial input properties in soil layer SPT-N $>$ 50 (top part), Z4h region	181
Figure 4.45	Comparison of simulated soil behaviour between optimised parameters and initial input properties in soil layer SPT-N $>$ 50 (bottom part), Z4h region	181
Figure 4.46	Position of cross-section AA' in Z4h region subsoil	183
Figure 4.47	Conceptual model for twin tunnels with horizontal alignment developed based on cross-section AA'	183
Figure 4.48	Position of cross-section BB' in Z4i region subsoil	184
Figure 4.49	Conceptual model for twin tunnels with inclined alignment developed based on cross-section BB'	185
Figure 4.50	Position of cross-section CC' in Z4v region subsoil	186
Figure 4.51	Conceptual model for twin tunnels with vertical alignment developed based on cross-section CC'	186
Figure 4.52	Comparison between monitored and simulated ground movement in Z4h region	188

- Figure 4.53 Comparison between monitored and simulated ground 189 movement in Z4i region (only top tunnel excavated)
- Figure 4.54 Existence of building with foundation adjacent to ground 190 point level
- Figure 4.55 Comparison between monitored and simulated ground 191 movement in Z4i region (both tunnel excavated)
- Figure 4.56 Comparison between monitored and simulated ground 192 movement in Z4h region (only bottom tunnel excavated)
- Figure 4.57 Comparison between monitored and simulated ground 192 movement in Z4v region (both tunnel excavated)
- Figure 4.58 Comparison between monitored and simulated ground 194 movement in Z4v region (only bottom tunnel excavated) with MC model
- Figure 4.59 Comparison between monitored and simulated ground 194 movement in Z4v region (both tunnel excavated) with MC model
- Figure 4.60 Influence of relative distance between tunnels towards 195 surface settlement, for twin tunnel with horizontal alignment
- Figure 4.61 Relationship between tunnels relative distance in horizontal 198 alignment with maximum surface settlement
- Figure 4.62 Influence of relative distance between tunnels towards 199 surface settlement, for twin tunnel with vertical alignment
- Figure 4.63 Relationship between tunnels relative distance in vertical 199 alignment with maximum surface settlement
- Figure 4.64 Influence of relative distance between tunnels towards 200 surface settlement, for twin tunnel with inclined alignment
- Figure 4.65 Relationship between tunnels relative distance in inclined 200 alignment with maximum surface settlement
- Figure 4.66 Influence of construction sequence towards settlement 202 trough induced by twin tunnels with vertical distance of 1.5d
- Figure 4.67 Influence of construction sequence towards settlement 202 trough induced by twin tunnels with vertical distance of 2d
- Figure 4.68 Influence of construction sequence towards settlement 203 trough induced by twin tunnels with vertical distance of 3d
- Figure 4.69 Comparison between maximum settlements induced in twin 203 tunnels with vertical alignment under different construction sequence
- Figure 4.70 Influence of construction sequence towards settlement 205 trough induced by twin tunnels with inclined distance of 2.5d

- Figure 4.71 Influence of construction sequence towards settlement 205 trough induced by twin tunnels with inclined distance of 2.83d
- Figure 4.72 Influence of construction sequence towards settlement 206 trough induced by twin tunnels with inclined distance of 3.61d
- Figure 4.73 Influence of construction sequence towards settlement 206 trough induced by twin tunnels with inclined distance of 4.47d
- Figure 4.74 Comparison between maximum settlements induced in twin 207 tunnels with inclined alignment under different construction sequence

LIST OF ABBREVIATIONS

ANN	Artificial Neural Network
C/D	Cover to Tunnel Diameter Ratio
CIU test	Consolidated Isotropic Undrained triaxial test
СРТ	Cone Penetration Test
DEM	Discrete Element Method
FE	Finite Element
FEM	Finite Element Method
HS	Hardening Soil
IDW	Inverse Distance Weighting
OK	Ordinary Kriging
KVMRT	Klang Valley Mass Rapid Transit
MC	Mohr Coulomb
MZ	Morphological Zone
NB	North Bound tunnel
PMT	Pressuremeter Test
SB	South Bound tunnel
SBK	Sungai Buloh Kajang
SPT	Standard Penetration Test
SPT-N	Standard Penetration Test Blow Count Value
TBM	Tunnel Boring Machines
Z4h	Region in Zone 4 with twin tunnels in horizontal alignment
Z4i	Region in Zone 4 with twin tunnels in inclined alignment
Z4v	Region in Zone 4 with twin tunnels in vertical alignment

LIST OF SYMBOLS

$Z(X_o)$	Interpolation value of Inverse Distance Weighting (IDW) function
$Z(X_i)$	Value at measured data points
n	Number of data points (borehole)
W_i	Weighted value assigned to data point
hi	Distance between data points
μ	Stationary mean
λ_i	Kriging weight
$\mu(x_0)$	Mean of sample within search boundary
γ	Semivarience of true value Z
S(x)	Surface settlement at point x
S _{max}	Maximum point of tunnelling induced surface settlement trough
i	Horizontal distance between tunnel centreline and point of inflection
\mathbf{V}_{s}	Volume of settlement trough
Zo	Tunnel overburden
R	Tunnel radius
V_L	Volume loss
\mathbf{V}_{t}	Over excavation volume
β	Stress release factor
Po	Original soil pressure at tunnel boundary
P_{β}	Soil pressure at tunnel boundary
τ'	Effective stress shear strength
c'	Effective stress cohesion
σ'	Effective overburden pressure

- ϕ ' Effective stress friction angle
- E_i Initial stiffness modulus
- R_f Failure ratio
- qf Ultimate deviatoric stress
- E₅₀ Secant stiffness in standard drained triaxial test
- E_{oed} One-dimensional compression stiffness
- Eur Unload-reloading stiffness
- σ_h ' In-situ horizontal pressure
- σ_v ' In-situ vertical pressure
- P₁ Limit pressure of soil
- G Shear modulus of soil
- E_m Elastic modulus of soil
- S_u Undrained shear strength
- ψ Dilation angle
- ϕ_{peak} Peak angle of friction
- Lu Lugeon value
- K Coefficient of permeability
- e Void ratio
- P_c Pre-compression pressure
- C_c Compression index
- Vur Poisson's ratio for unload-reloading

PENILAIAN PARAMETER KEKAKUAN DAN KEKUATAN DALAM MODEL PENGERASAN TANAH UNTUK SIMULASI INTERAKSI ANTARA TEROWONG BERKEMBAR DI DALAM TANAH SISA FORMASI GEOLOGI KENNY HILL

ABSTRAK

Simulasi berangka untuk masalah geoteknikal sering melibatkan proses pemudahan dan andaian kerana ia merupakan tugasan hampir mustahil untuk mensimulasikan semua ciri-ciri yang terlibat dalam persekitaran tanah. Untuk pembinaan berskala besar, terutamanya seperti pembinaan terowong berkembar Klang Valley Mass Rapit Transit (KVMRT) dibawah persekitaran bandar, simulasi geoteknik yang realistik adalah penting kerana pembinaan terowong akan mempengaruhi kestabilan struktur-struktur di atas permukaan dan bawah tanah. Dalam kajian ini pendekatan parameter penentuan dicadangkan untuk menentukan kekerasan dan kekuatan parameter untuk model Pengerasan Tanah (HS) berdasarkan tafsiran ujian tanah in-situ dan makmal. Penyiasatan ciri-ciri subpermukaan tanah dilakukan dengan membentuk model tanah, model terowong tiga dimensi dan keratan rentas subpermukaan tanah untuk empat zon yang dibahagikan daripada kawasan kajian berdasarkan keserupaan dari segi litologi dan taburan nilai SPT-N. Tiga keratan rentas tanah yang kritikal telah dikenalpastikan berdasarkan input daripada model terowong, keratan rentas tanah, konfigurasi terowong berkembar yang terlibat dan data pergerakan tanah yang disebabkan oleh pembinaan terowong yang sedia ada. Profil dan parameter lapisan tanah dalam keratan rentas subpermukaan tanah telah dikenalpastikan untuk membangunkan model konseptual bagi simulasi pergerakan tanah teraruh daripada pengorekan terowong secara unsur tidak terhingga (FEM).

Parameter untuk sisa tanah geologi formasi Kenny Hill telah dinilaikan dengan membandingkan lengkungan tegasan-terikan yang dipantau daripada simlasi berangka dan ujian in-situ pressuremeter (PMT). Model HS diselaraskan dengan meoptimumkan parameter kekakuan dan kekuatan untuk memadankan lengkukan tegasan-terikan yang dipantau dalam ujian PMT. Analisis kepekaan parameter HS terhadap reaksi tanah menunjukkan bahawa parameter kekakuan oedometer lebih berkesan dalam mengawal canggan plastik manakala parameter kekakuan unloadreload menunjukkan kesan yang ketara dalam canggan anjal reaksi tanah. Keberkesanan penyelarasan model tanah ditentukan daripada pengesahan analisis pengorekan terowong berkembar. Analisis terowong dengan parameter yang diselaraskan meramalkan keputusan yang selari dengan pergerakan tanah yang dipantau dari pembinaan terowong berkembar dengan penjajaran mendatar, condong dan menegak. Walau bagaimanapun, simulasi dengan model Mohr Coulomb (MC) menramalkan pergerakan tanah yang bercanggar dengan arah pergerakan tanah yang dipantau. Analisis parametrik dijalankan untuk menentukan pengaruh konfigurasi terowong dan turutan pembinaan terowong berkembar terhadap interaksi terowong berkembar dalam formasi Kenny Hill. Kajian ini menunjukkan pendekatan bersepadu untuk penentuan parameter model juzuk dengan pengabungan pemodelan subpermukaan dan penyelarasan model juzuk bersama penentusahan. Parameter HS sisa tanah formasi Kenny Hill yang diselaraskan menyumbangkan untuk projek pembinaan masa depan yang mempunyai ciri-ciri geologi yang sama sebagi rujukan. Pendekatan penentuan parameter dengan penyelarasan model juzuk membantu jurutera dan penyelidik dalam pendekatan alternatif untuk penentuan parameter selain daripada data empirikal atau persamaan korelasi.

EVALUATION OF THE STIFFNESS AND STRENGTH PARAMETERS OF HARDENING SOIL MODEL FOR THE SIMULATION OF THE TWIN TUNNELS INTERACTION IN KENNY HILL FORMATION RESIDUAL SOIL

ABSTRACT

Numerical simulation for geotechnical problem often involved simplifications and assumptions as it is nearly impossible to simulate all features involved in the ground environment. For large scale construction like Klang Valley Mass Rapid Transit (KVMRT) twin tunnels construction under urban environment, realistic geotechnical simulation is essential. In this study, a parameters determination approach is developed to determine stiffness and strength parameters for Hardening Soil (HS) models based on evaluation of in-situ and laboratory soil testing data for the simulation of twin tunnels interaction in Kenny Hill Formation residual soil. Subsurface characterization conducted to develop three-dimensional (3D) ground models, tunnel filtered models and ground sections for four zones divided from study area based on similarity in lithology and Standard Penentration Test Blow Count (SPT-N) Value distribution. Three critical ground sections were selected based on input of tunnel filtered models and ground sections, twin tunnels configuration associated in respective sections and availability of tunnelling induced ground movement data. The soil profiles and corresponding soil parameters were determined for selected ground sections to develop conceptual model for finite element method (FEM) simulation of tunnelling induced deformation. The soil parameters for Kenny Hill residual soil were evaluated by comparing numerical simulated and in-situ monitored Pressuremeter test (PMT) stress strain curves. The HS model is calibrated by optimization of stiffness