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PENILAIAN PARAMETER KEKAKUAN DAN KEKUATAN DALAM 

MODEL PENGERASAN TANAH UNTUK SIMULASI INTERAKSI ANTARA 

TEROWONG BERKEMBAR DI DALAM TANAH SISA FORMASI 

GEOLOGI KENNY HILL 

ABSTRAK 

 

 

Simulasi berangka untuk masalah geoteknikal sering melibatkan proses 

pemudahan dan andaian kerana ia merupakan tugasan hampir mustahil untuk 

mensimulasikan semua ciri-ciri yang terlibat dalam persekitaran tanah. Untuk 

pembinaan berskala besar, terutamanya seperti pembinaan terowong berkembar Klang 

Valley Mass Rapit Transit (KVMRT) dibawah persekitaran bandar, simulasi 

geoteknik yang realistik adalah penting kerana pembinaan terowong akan 

mempengaruhi kestabilan struktur-struktur di atas permukaan dan bawah tanah. Dalam 

kajian ini pendekatan parameter penentuan dicadangkan untuk menentukan kekerasan 

dan kekuatan parameter untuk model Pengerasan Tanah (HS) berdasarkan tafsiran 

ujian tanah in-situ dan makmal. Penyiasatan ciri-ciri subpermukaan tanah dilakukan 

dengan membentuk model tanah, model terowong tiga dimensi dan keratan rentas 

subpermukaan tanah untuk empat zon yang dibahagikan daripada kawasan kajian 

berdasarkan keserupaan dari segi litologi dan taburan nilai SPT-N. Tiga keratan rentas 

tanah yang kritikal telah dikenalpastikan berdasarkan input daripada model terowong, 

keratan rentas tanah, konfigurasi terowong berkembar yang terlibat dan data 

pergerakan tanah yang disebabkan oleh pembinaan terowong yang sedia ada. Profil 

dan parameter lapisan tanah dalam keratan rentas subpermukaan tanah telah 

dikenalpastikan untuk membangunkan model konseptual bagi simulasi pergerakan 

tanah teraruh daripada pengorekan terowong secara unsur tidak terhingga (FEM). 
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Parameter untuk sisa tanah geologi formasi Kenny Hill telah dinilaikan dengan 

membandingkan lengkungan tegasan-terikan yang dipantau daripada simlasi berangka 

dan ujian in-situ pressuremeter (PMT). Model HS diselaraskan dengan 

meoptimumkan parameter kekakuan dan kekuatan untuk memadankan lengkukan 

tegasan-terikan yang dipantau dalam ujian PMT. Analisis kepekaan parameter HS 

terhadap reaksi tanah menunjukkan bahawa parameter kekakuan oedometer lebih 

berkesan dalam mengawal canggan plastik manakala parameter kekakuan unload-

reload menunjukkan kesan yang ketara dalam canggan anjal reaksi tanah. 

Keberkesanan penyelarasan model tanah ditentukan daripada pengesahan analisis 

pengorekan terowong berkembar. Analisis terowong dengan parameter yang 

diselaraskan meramalkan keputusan yang selari dengan pergerakan tanah yang 

dipantau dari pembinaan terowong berkembar dengan penjajaran mendatar, condong 

dan menegak. Walau bagaimanapun, simulasi dengan model Mohr Coulomb (MC) 

menramalkan pergerakan tanah yang bercanggar dengan arah pergerakan tanah yang 

dipantau. Analisis parametrik dijalankan untuk menentukan pengaruh konfigurasi 

terowong dan turutan pembinaan terowong berkembar terhadap interaksi terowong 

berkembar dalam formasi Kenny Hill. Kajian ini menunjukkan pendekatan bersepadu 

untuk penentuan parameter model juzuk dengan pengabungan pemodelan 

subpermukaan dan penyelarasan model juzuk bersama penentusahan. Parameter HS 

sisa tanah formasi Kenny Hill yang diselaraskan menyumbangkan untuk projek 

pembinaan masa depan yang mempunyai ciri-ciri geologi yang sama sebagi rujukan. 

Pendekatan penentuan parameter dengan penyelarasan model juzuk membantu 

jurutera dan penyelidik dalam pendekatan alternatif untuk penentuan parameter selain 

daripada data empirikal atau persamaan korelasi.  
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EVALUATION OF THE STIFFNESS AND STRENGTH PARAMETERS OF 

HARDENING SOIL MODEL FOR THE SIMULATION OF THE TWIN 

TUNNELS INTERACTION IN KENNY HILL FORMATION RESIDUAL 

SOIL 

ABSTRACT 

 

 

Numerical simulation for geotechnical problem often involved simplifications 

and assumptions as it is nearly impossible to simulate all features involved in the 

ground environment. For large scale construction like Klang Valley Mass Rapid 

Transit (KVMRT) twin tunnels construction under urban environment, realistic 

geotechnical simulation is essential. In this study, a parameters determination 

approach is developed to determine stiffness and strength parameters for Hardening 

Soil (HS) models based on evaluation of in-situ and laboratory soil testing data for the 

simulation of twin tunnels interaction in Kenny Hill Formation residual soil. 

Subsurface characterization conducted to develop three-dimensional (3D) ground 

models, tunnel filtered models and ground sections for four zones divided from study 

area based on similarity in lithology and Standard Penentration Test Blow Count (SPT-

N) Value distribution. Three critical ground sections were selected based on input of 

tunnel filtered models and ground sections, twin tunnels configuration associated in 

respective sections and availability of tunnelling induced ground movement data. The 

soil profiles and corresponding soil parameters were determined for selected ground 

sections to develop conceptual model for finite element method (FEM) simulation of 

tunnelling induced deformation. The soil parameters for Kenny Hill residual soil were 

evaluated by comparing numerical simulated and in-situ monitored Pressuremeter test 

(PMT) stress strain curves. The HS model is calibrated by optimization of stiffness 
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