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MENGGUNAKAN RANGKAIAN NEURAL PERCEPTRON BERBILANG 

LAPISAN DAN KAEDAH PENGELOMPOKAN  

 
 

 
ABSTRAK 

 
 
 
 
Pengesanan kulit manusia merupakan langkah pra-pemprosesan yang penting dalam 

pelbagai aplikasi yang melibatkan imej seperti pengesanan wajah, pengesanan isyarat 

dan pengesanan bogel. Warna adalah sumber maklumat yang penting untuk 

pengesanan kulit manusia, dan beberapa kajian telah membincangkan kesan ruang 

warna ke atas pengesanan kulit. walan bagaimanapun, masih tiada kata sepakat ke 

atas ruang warna yang paling sesuai untuk pengesanan warna kulit. Tambahan pula, 

prestasi yang baik oleh aplikasi-aplikasi berkenaan bergantung kepada pengelas kulit 

yang boleh dipercayai, yang sepatutnya boleh membezakan piksel kulit dan bukan 

kulit untuk pelbagai jenis orang tanpa mengira umur, jantina dan kaum. Pelbagai 

pengelas termasuk pengelas pintar telah digunakan untuk pengesanan kulit manusia 

dengan kelemahan tersendiri seperti ketepatan yang rendah. Dalam kerja ini, satu 

kajian perbandingan menyeluruh menggunakan Rangkaian Neural Buatan Perceptron 

Berbilang Lapisan (MLP ANN) telah dijalankan ke atas pelbagai ruang warna (RGB, 

RGB ternormal, YCbCr, YIQ, HSV, YUV, YDbDr, dan CIE L*a*b) bagi 

menentukan ruang warna yang paling optimum. Tambahan pula, kesan 

menggabungkan maklumat tekstur dengan maklumat warna telah dikaji bertujuan 

untuk meningkatkan prestasi pengelas kulit. Algoritma Evolusi Berbeza (DE) 

digunakan dalam kerja ini untuk memilih maklumat warna dan tekstur yang optimum 

untuk mencapai tindak balas yang optimum. Keputusan eksperimen menunjukkan 
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bahawa ruang warna YIQ memberikan pemisahan yang ketara di antara piksel kulit 

dan bukan kulit, bagi ruang-ruang warna yang berbeza yang diuji menggunakan ciri-

ciri warna. Tambahan pula, keputusan yang diperolehi juga mendedahkan bahawa 

penggabungan warna dan ciri tekstur menjurus kepada pengesanan kulit yang lebih 

tepat dan efisien. Berdasarkan keputusan pengekstrakan ciri ini, satu sistem hibrid 

berasaskan penggabungan MLP ANN dan kaedah pengelompokan K-means yang 

menggunakan ruang warna YIQ dan ciri statistik kulit manusia sebagai masukan 

telah dibangunkan untuk pengesanan kulit manusia. Prestasi sistem yang 

dibangunkan telah dibandingkan dengan sistem-sistem pengesan kulit pintar sedia 

ada. Keputusan eksperimen menunjukkan bahawa algoritma yang dibangunkan ini 

mampu mencapai ketepatan 87.82% pengukur-F1 berdasarkan imej-imej daripada 

pangkalan data ECU. Ini menunjukkan bahawa pemilihan ciri optima dan sistem 

pintar gabungan ini mampu mempertingkatkan ketepatan dan kebolehpercayaaan 

pengesanan kulit manusia secara ketara. 
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DEVELOPMENT OF HUMAN SKIN DETECTION ALGORITHM USING 

MULTILAYER PERCEPTRON NEURAL NETWORK AND CLUSTERING 

METHOD 

 
 
 
 

ABSTRACT 
 
 
 
 
Human skin detection is an important preprocessing step in many applications 

involving images such as face detection, gesture tracking, and nudity detection. Color 

is a significant source of information for human skin detection, and some studies 

have discussed the effect of color space on skin detection. However, there is no 

consensus on which color space is the most appropriate for skin color detection. In 

addition, good performance of such applications depends on reliable skin classifiers 

that must be able to discriminate between skin and non-skin pixels for a wide range 

of people, regardless of age, gender, or race. Many classifiers including intelligent 

classifiers have been utilized for human skin detection with a few limitations such as 

low accuracy. In this work, a comprehensive comparative study using the Multilayer 

Perceptron Artificial Neural Network (MLP ANN) is performed on various color 

spaces (RGB, normalized RGB, YCbCr, YIQ, HSV, YUV, YDbDr, and CIE L*a*b) 

to determine the optimum color space. Additionally, the effect of combining texture 

information with color information is investigated with the aim of boosting the 

performance of skin classifiers. The Differential Evolution Algorithm (DE) is used in 

this work to select the optimum color and texture information to achieve the optimum 

response. The experimental results show that the YIQ color space yields the highest 

separability between skin and non-skin pixels among the different color spaces tested 

using color features. In addition, the results reveal that combining color and texture 
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features leads to more accurate and efficient skin detection. Based on these feature 

extraction results, a system based on a combination of an MLP ANN and k-means 

clustering which employs the YIQ color space and the statistical features of human 

skin as inputs is developed for human skin detection. The performance of the 

developed system has been compared with the existing intelligent skin detection 

systems. The experimental results reveal that the developed algorithm is able to 

achieve an accuracy of 87.82% F1-measure based on images from the ECU database. 

This result demonstrates that optimum feature selection and combination intelligent 

system are able to enhance the accuracy and reliability of human skin detection 

significantly. 
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1 

CHAPTER ONE 

 

INTRODUCTION 

 

 

1.1 Background 

 

 

Separating an image that consists of groups of identical linked pixels into regions is 

an image processing stage called image segmentation. The homogeneity of a region 

can be defined by various properties such as color, gray levels, and texture, among 

other factors (Liu & Chung, 2011). Skin detection is a good example of image 

segmentation, which can be accomplished by classifying image pixels appropriately 

as skin or non-skin pixels (Kakumanu et al., 2007) based on skin color. The 

importance of skin color detection comes from its use as a primary operation in 

many applications, such as face detection (Zhipeng, 2010; Harvir & Shaveta, 2017; 

Rakshit et al., 2017), objectionable content filtering (Lee et al., 2007), content-based 

image retrieval (Kruppa et al., 2002), medical imaging (Silveira et al., 2009; 

Castillejos et al., 2012), image coding (Choi et al., 2009), surveillance systems 

(Zhang et al., 2009; Ashwini & Meenu, 2017), Internet pornographic image filtering 

(Lee et al., 2010) and gesture analysis (Han et al., 2009). For example, face detection 

is accomplished by removing joint facial characteristics and employing skin color 

detection as a primary step to specify the face area. As a result, accurate and fast face 

detection can be accomplished.  

 

Skin color is a robust cue in human skin detection. It has been widely used in 

various human-related image-processing applications. To use skin color information, 

many studies have focused on understanding its characteristics. Research analysis 
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has shown that human skin color has a restricted range of hues and is not deeply 

saturated because the appearance of skin is formed by a combination of blood (red) 

and melanin (brown and yellow) (Fleck et al., 1996; Talukder et al., 2013). 

Therefore, human skin color does not fall randomly in a given color space but 

instead clusters within a small area in the color space. Several studies have shown 

that the major difference in skin color among different people lies largely in their 

intensity rather than in their chrominance (Waibel, 1996; Vandana et al., 2013; 

Zakaria et al., 2009). Thus, if an image is initially converted into a color space, 

which provides a separation of luminance channel and two chrominance components 

such as the normalized (r, g, b) color space, then skin-like regions can easily be 

detected (Chen et al., 2002). 

 

 

1.2 Motivation and Problem Statement 

Skin color information has recently gained attention for use in skin detection based 

on images. Skin color detection can be a very challenging task because the skin color 

in an image is sensitive to various factors such as illumination conditions, camera 

characteristics and ethnicity (Kakumanu et al., 2007). Numerous algorithms have 

been proposed for skin detection over the past several years.   

 

The existing skin detection algorithms can be classified into four categories 

namely explicit skin cluster classifier, parametric classifiers, non-parametric 

classifiers, and adaptive/dynamic classifiers (Kakumanu et al., 2007,  Vezhnevets & 

Andreeva, 2003, Abdullah-Al-Wadud et al., 2008). The first three are static-based. 

The explicit skin cluster classifiers, which are the simplest and most often applied 

methods, define the boundaries of the skin cluster in certain color spaces using a set 
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of fixed skin thresholds (Chi et al., 2006, Gasparini & Schettini, 2006, Vezhnevets & 

Andreeva, 2003, Shi & Sun, 1999). Although such techniques are straightforward 

and can be used without any prior training phase, they lack flexibility in that other 

i.e. different imaging conditions could not be employed. This may result in the 

inaccurate detection of pixels (Al-Wadud et al., 2008).  

 

The parametric classifiers can be based on a single Gaussian model 

(Almohair et al., 2007,  Abdel-Mottaleb et al., 2002), a mixture of Gaussian (MoG) 

models (Kamata, 2010, Mohamed et al., 2008, Hossain et al., 2012), multiple 

Gaussian clusters (Phung et al., 2002), or an elliptic boundary model (Kwolek, 

2003). However, the classification speeds of these classifiers are generally very slow 

because they must process every image pixel individually. They are also very slow 

when integrated into an ANN training phase (Lee & Yoo, 2002). Another drawback 

of these techniques is their inaccuracy of detection because they depend on 

approximated parameters rather than the actual distribution of skin colors (Al-Wadud 

et al., 2008). Moreover, their performances are inconsistent, depending significantly 

on the type of color space used ( Vezhnevets & Andreeva, 2003).  

 

The non-parametric classifiers estimate the skin color distribution based on a 

histogram of training images without deriving an explicit model of the skin color 

(Khan et al., 2011;  Shahreza & Mousavi, 2008). This technique estimates a 

statistical model of the distribution of skin color by training the classifier with a set 

of training data. There are two advantages of this approach: its quickness in training 

and usage and its independence of the shape of skin distribution (Vezhnevets & 

Andreeva, 2003). However, such statistical models are insufficiently accurate due to 
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the need for an infinite amount of training data. The adaptive or dynamic non 

parametric classifiers includes ANN-based methods. ANN have been used to solve a 

wide variety of tasks, like computer vision and speech recognition, that are hard to 

solve using ordinary rule-based programming. To the best of our knowledge, only a 

few human skin detection algorithms are based on ANNs, such as from the works of 

(Chen et al. 2002; Yang et al. 2010; Zaidan et al. 2010; Bhoyar & Kakde 2010; and 

Doukim et al. 2010). The limitations of these methods are discussed in the literature 

review (Chapter 2) and highlighted in Table 2.2. 

 

Based on the brief discussion, the main problems of current skin-color detection 

techniques can be summarized as follows: 

 

1. A common research result obtained on the effect of color space on skin 

detection is that different modeling methods react very differently to a color 

space change (Kakumanu et al. 2007; Vezhnevets & Andreeva 2003). Hence, 

one important question that remains unanswered is, “what is the best color 

space for skin detection?” Moreover, there has been no comprehensive study 

performed using ANNs to investigate and answer this important question in the 

skin detection field. 

2. Some studies on human skin detection used texture information in addition to 

color information (Taqa & Jalab, 2010; Al Abbadi et al., 2013), but their 

selection for the combination of color-texture information was made based on 

their own preference. There is no solid justification for those specific 

selections. 

3. Skin detection in digital images can be considered as a classification problem 

in which each image pixel of a dataset is classified into either skin pixels or 

https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Rule-based_programming
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non-skin pixels. The ratio of skin pixels to the total number of pixels in an 

image differs from one image to another. This variation makes the associated 

image dataset imbalanced because the number of skin pixels does not equal to 

the number of non-skin pixels. Hence, measuring detection accuracy as the 

total number of predictions that were correct might not be an adequate 

performance measure because the class sizes are imbalanced. This problem was 

highlighted in the work of Santra & Christy (2012) and Chawla (2005). Hence, 

suitable performance metrics such as F1-measure should be used to measure 

the accuracy of skin detection in such cases to avoid bias.  

4. The current skin color modeling techniques have crucial disadvantages such as 

low accuracy. The work of Abdullah-Al-Wadud et al. (2008), Kakumanu et al. 

(2007), Vezhnevets & Andreeva  (2003), Chen et al. (2002), Zhang et al. 

(2004), Elgammal et al. (2001) and Marwala (2005) explained the 

disadvantages of the current techniques. More details are explained in 

Chapter2.  

 

From the above discussion, it is clear that many human skin classification techniques 

have been proposed in this area but they still lack accuracy and efficiency. The 

flexibility of ANNs makes them a good choice to overcome these issues. When 

pursuing a reliable human skin detection system that incorporates skin information as 

input together with an ANN as a classification method, several questions can be 

raised: 

1- How can one identify the best color space that can be used to represent skin 

as input to an ANN-based human skin detection system? 

2- Is skin color information by itself sufficient for a reliable ANN-based skin 
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detection system? 

3- Can skin texture improve the accuracy of detection? If yes, what is the best 

combination of color-texture that can be used as input to the ANN-based skin 

detection system? 

4- What is the best manner to convert the output of the ANN into a masking 

image that can identify skin and non-skin pixels? 

In order to answer these questions, an investigation towards the development of 

simple but more efficient skin detector deems necessary. 

 

 

1.3 Research Objectives 
 
 

Following the limitations and problems discussed in Section 1.2, this research 

focuses on developing an ANN-based skin color detection technique that improves 

the accuracy of human skin detection in color images. To achieve the stated purpose, 

the objectives of the work are as follows:   

 
1. To determine the optimal color space for human skin detection. 

2. To determine the best color-texture combination using differential evolution 

algorithm. 

3. To use an appropriate performance metric to measure the accuracy of skin 

detection. 

4. To develop a combined ANN and the k-means clustering system for human 

skin detection.  

 
 
1.4 Research Scope  
 
 
This study uses an ANN and clustering method to develop a system for human skin 

color detection.  In the quest of the development, a number of scope have been 
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