ASSESSMENT OF BUILDING FRAGILITY CURVE DUE TO EARTHQUAKE EXCITATION

SITI NUR AQILAH BINTI SARUDDIN

UNIVERSITI SAINS MALAYSIA

2017

ASSESSMENT OF BUILDING FRAGILITY CURVE DUE TO EARTHQUAKE EXCITATION

by

SITI NUR AQILAH BINTI SARUDDIN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

February 2017

ACKNOWLEDGEMENTS

I am thankful to Allah as His grant and bless to complete my master study. I owe my gratitude to my supervisor, Dr. Fadzli Mohamed Nazri. From the beginning until the completion of this dissertation, he always available when I need his guidance and advise. He also gives moral support throughout my whole process of master study.

I would like to acknowledge the significant financial support provided to me by the Universiti Sains Malaysia (USM) and Ministry of Higher Education (MOHE) under Research University (Individual) (814223) and Fundamental Research Grant Scheme (FRGS) (6071321). Special thanks go to all staff of the School of Civil Engineering for their support and encouragement. Without all the support, this thesis and the variety of opportunities I have experienced would not be possible.

Special thanks to Ms. Nik Zainab Nik Azizan for sharing knowledge and precious advice throughout this research. I would like to extend my appreciation to my postgraduate colleagues such as Farhah, Hasliza, Nisha Omar, Hazwani and Aiin Aziz for sharing information, problems and always be my entertainers.

To my lovely parents, Mrs. Jamilah and Mr. Saruddin , my only sister, Ms. Siti Nur Aqidah, best firend, Ms. Afifah Rahim and last but not least the special one Mr. Ahmad Syahir Abdul Sukor, thanks for the prayers and always being there for me. Without their love and support, this journey would not be easy. Thank you for your support, love.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF SYMBOLS	xii
LIST OF ABBREVATIONS	xvi
ABSTRAK	xviii
ABSTRACT	XX

CHAPTER ONE : INTRODUCTION

1.1	Background	1
1.2	Problem Statement	4
1.3	Objectives	5
1.4	Scope of Work	6
1.5	Outline of Thesis	6

CHAPTER TWO : LITERATURE REVIEW

2.1	Introduction	7
2.2	Regular and Irregular Frame	7

2.3	Earthquake Records	10
2.4	Simulation Methods	18
	2.4.1 Nonlinear Static Analysis	19
	2.4.2 Nonlinear Dynamic Analysis	20
2.5	Performance Based Seismic Design (PBSD)	22
2.6	Fragility Curves	24
	2.6.1 Methods to Develop Fragility Curve	25
2.7	Summary	35

CHAPTER THREE : METHODOLOGY

3.1	Introd	uction	37
3.2	Struct	ural Model	38
	3.2.1	Moment-Resisting Concrete Frame (MRCF)	39
	3.2.2	Moment-Resisting Steel Frame (MRSF)	40
3.3	Desig	n Load	40
3.4	Nonli	near Pushover Analysis	42
	3.4.1	Horizontal Seismic Action	42
	3.4.2	Base Shear Force	44
	3.4.3	Horizontal Storey Seismic Actions	45
3.5	Nonli	near Incremental Dynamic Analysis	45
	3.5.1	Ground Motions	46

	3.5.2 Development of Elastic Response Spectrum	49
	3.5.3 Scaling for Ground Motion	51
3.6	Fragility Curve	51
3.7	Summary	53

CHAPTER FOUR : RESULTS AND DISCUSSION

4.1	Introd	uction	55
4.2	Perfor	mance of Regular and Irregular MRF due to Pushover Analysis	55
	4.2.1	Plastic Hinges	60
	4.2.2	Interstorey Drift	64
4.3	Perfor	mance of Regular and Irregular MRF due to Incremental	
	Dynar	nic Analysis (IDA)	67
	4.3.1	Near Field (NF) Ground Motions	68
	4.3.2	Far Field (FF) Ground Motions	75
	4.3.3	Ranau Earthquake	82
4.4	Fragil	ity Curve	88
	4.4.1	Fragility Curve for Near Field (NF) Ground Motion	91
	4.4.2	Fragility Curve for Far Field (FF) Ground Motion	94
	4.4.3	Fragility Curve for Ranau Earthquake	98

CHAPTER FIVE : CONCLUSIONS AND RECOMMENDATION

5.1	Conclusions	103
5.2	Recommendations for Further Work	105

REFERENCES

106

APPENDICES

Appendix A :	Detailed Design of Regular and Irregular Moment-Resisting
	Concrete Frames (MRCF) for 3-storey

Appendix B : Detailed Design of Regular and Irregular Moment-Resisting Steel Frames (MRSF) for 3-storey

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 2.1	Code of requirement for earthquake ground motion (Defallah, 2010)	12
Table 2.2	Ground motion recorded which correspond to soil types A	16
Table 2.3	Available software used by researchers	19
Table 2.4	Summarize of limit state	24
Table 2.5	Equations used to develop the fragility curve	27
Table 2.6	Advantages and disadvantages of each method (Billah and Alam, 2014)	30
Table 3.1	Size of beam and column for regular MRCF	39
Table 3.2	Size of beam and column for irregular MRCF	39
Table 3.3	Size of I-beam and H-column for regular MRSF	40
Table 3.4	Size of I-beam and H-column for irregular MRSF	40
Table 3.5	Dead loads (G_k)	41
Table 3.6	Live loads (Q_k)	41
Table 3.7	Parameters recommended for Type 1 elastic response spectra according to EC8	43
Table 3.8	Summary parameters of selected ground motion records for NF and FF	46
Table 3.9	Selective ground motion records for NF	47
Table 3.10	Selective ground motion records for FF	47
Table 3.11	Combination ground motion	49
Table 3.12	Maximum drift limit (%) (Xue et al., 2008)	52
Table 4.1	Type of colour coding with the plastic hinges	60
Table 4.2	Parameters of log-normal distribution for concrete frame based on near field records	88

Table 4.3	Parameters of log-normal distribution for concrete based on far field records	89
Table 4.4	Parameters of log-normal distribution for steel frame based on near field records	89
Table 4.5	Parameters of log-normal distribution for steel frame based on far field records	89

LIST OF FIGURES

Page

Figure 1.1	Damage during Ranau Earthquake	1
Figure 1.2	Example of irregular building in Malaysia	2
Figure 1.3	Criteria for regularity of building with setback setback from BSI (2004b)	3
Figure 2.1	Type of vertical irregularity (Soni and Mistry, 2006)	9
Figure 2.2	Repeated earthquake ground motions in Hatzigeorgiou and Liolios (2010)	15
Figure 2.3	Mean spectrum of selected earthquake events scaled to the spectrum of Eurocode 8 (Barbat et al., 2012)	18
Figure 2.4	Limit state and ranges (FEMA-356, 2000)	23
Figure 2.5	Methods and steps to develop the fragility curve	31
Figure 3.1	General flowchart of the methodology	37
Figure 3.2	Regular MRF	38
Figure 3.3	Irregular MRF	38
Figure 3.4	Ranau ground motion for Case 1 and Case 2	48
Figure 3.5	Example type 1 elastic response spectra for ground type A (5% damping) (BSI, 2004b)	50
Figure 3.6	Example scaling of ground motion for NF records	51
Figure 3.7	General flow to develop fragility curve	53
Figure 4.1	Capacity curve for the MRCF of (a) 3-storey (b) 6-storey (c) 9-storey	58
Figure 4.2	Capacity curve for MRSF (a) 3-storey (b) 6-storey (c) 9- storey	59
Figure 4.3	Plastic hinges for MRCF 3-storey (a) Regular (b) Irregular	61
Figure 4.4	Plastic hinges for MRCF 6-storey (a) Regular (b) Irregular	61

Figure 4.5	Plastic hinges for MRCF 9-storey (a) Regular (b) Irregular	62
Figure 4.6	Plastic hinges for MRSF 3-storey (a) Regular (b) Irregular	63
Figure 4.7	Plastic hinges for MRSF 6-storey (a) Regular (b) Irregular	63
Figure 4.8	Plastic hinges for MRSF 9-storey (a) Regular (b) Irregular	64
Figure 4.9	Interstorey drift for MRCF (a) 3-storey (b) 6-storey (c) 9- storey	64
Figure 4.10	Interstorey drift for MRSF (a) 3-storey (b) 6-storey (c) 9- storey	65
Figure 4.11	IDA curves for MRCF based on NF	70
Figure 4.12	Mean IDA based on NF for MRCF	71
Figure 4.13	IDA curves for MRSF based on NF	73
Figure 4.14	Mean IDA based on NF for MRSF	74
Figure 4.15	IDA curves for MRCF based on FF	75
Figure 4.16	Mean IDA based on FF for MRCF	78
Figure 4.17	IDA curves for MRSF based on FF	79
Figure 4.18	Mean IDA based on FF for MRCF	81
Figure 4.19	Mean IDA based on Ranau earthquake single event	82
Figure 4.20	IDA curves based on Ranau earthquake repeated event	84
Figure 4.21	Comparison of interstorey drift between single earthquake event and repeated earthquake event	86
Figure 4.22	Fragility Curve for low-rise regular MRCF based on near field ground motions	90
Figure 4.23	Fragility Curve for concrete 3-storey regular and irregular frame under NF	91
Figure 4.24	Fragility curve for concrete 6-storey regular and irregular frame under NF [*]	91

Figure 4.25	Fragility curve for concrete 9-storey regular and irregular frame under NF	92
Figure 4.26	Fragility curve for steel 3-storey regular and irregular frame under NF	93
Figure 4.27	Fragility curve for steel 6-storey regular and irregular frame under NF	93
Figure 4.28	Fragility curve for steel 9-storey regular and irregular frame under NF	93
Figure 4.29	Fragility curve for concrete 3-storey regular and irregular frame under FF	95
Figure 4.30	Fragility curve for concrete 6-storey regular and irregular frame under FF	95
Figure 4.31	Fragility curve for concrete 9-storey regular and irregular frame under FF	95
Figure 4.32	Fragility curve for steel 3-storey regular and irregular frame under FF	96
Figure 4.33	Fragility curve for steel 6-storey regular and irregular frame under FF	97
Figure 4.34	Fragility curve for steel 9-storey regular and irregular frame under FF	97
Figure 4.35	Fragility curve for 3-storey regular and irregular under single earthquake	99
Figure 4.36	Fragility curve for 6-storey regular and irregular under single earthquake	99
Figure 4.37	Fragility curve for 9-storey regular and irregular under single earthquake	99
Figure 4.38	Fragility curve for 3-storey regular and irregular under repeated earthquake	100
Figure 4.39	Fragility curve for 6-storey regular and irregular under repeated earthquake	101
Figure 4.40	Fragility curve for 9-storey regular and irregular under repeated earthquake	101

LIST OF SYMBOLS

S_a	Specific spectral acceleration
Т	Period
у	Realized condition of ground motion
P_f	Probability
Φ[.]	Standardize normal distribution
$\overline{\mu}_{\scriptscriptstyle R}$	Median capacity based on engineering judgment
$\beta_{\scriptscriptstyle R}$	Standard deviation based on engineering judgment
$\overline{\mu}_{\scriptscriptstyle E}$	Median from sample
$\beta_{\scriptscriptstyle E}$	Standard deviation from sample
R	Structural capacity
S	Structural response
$F_{S}\left(. ight)$	Cumulative probability distribution of <i>S</i>
f_{R}	Probability density function of R
$P_{_{D \mathrm{MMI}}}[_{d \mathrm{MMI}}]$	Probability reaching or exceed at specified MMI
$P_{D S_a}\left[{}_{d S_a}\right]$	Probability reaching or exceed at specified spectral acceleration
$f_{S_a \mathrm{MMI}}\left[S_a \mathrm{MMI} ight]$	Conditional probability density function of spectral acceleration at specified MMI
λ	Mean of ln <i>x</i>
ς	Standard deviation of lnx
m_R	Median capacity
x	Demand
ξ_{R}	Logarithmic standard deviation

X	Lognormal distributed ground motion index (e.g PGA)
μ	Mean of natural logarithm
σ	Standard deviation of natural logarithm
D_{as}	Seismic demand (aftershock)
С	Structural capacity
S _d	Median of demand
$eta_{_{d\mid IM}}$	Dispersion of demand
S _c	Median of capacity
eta_{c}	Dispersion of capacity
$eta_{\scriptscriptstyle m}$	Modeling uncertainty ($\beta_m = 0.2$)
$\mu_{i,k}$	Median of fragility curve from $DS = i$ to $DS \ge k$
sd	Spectral displacement
sd_{ds_i}	Mean value of lognormal distribution which corresponding damage state threshold
β_{ds_i}	Standard deviation of natural logarithm of spectral
	displacement of ds
\hat{C}	Median structural capacity
\hat{D}	Median structural demand
$eta_{\scriptscriptstyle D SI}$	Uncertainty in D
eta_c	Uncertainty in C
$eta_{\scriptscriptstyle m}$	Modeling uncertainty
t _d	Duration of the ground motion
i	Storey level

п	Number of storey
<i>u</i> _i	Storey drift
h _i	Storey height
eta	Log-standard deviation of IM
μ	Mean of IM
λ_k	Lognormal mean
ζ_k	Lognormal standard deviation for realization k
G_k	Dead load
Q_k	Live load
a_{g}	Design ground acceleration on type A ground ($a_g = a_{gR} \cdot \gamma_I$)
S	Soil factor
T_B	Period of the constant spectral acceleration branch (lower limit)
T_C	Period of the constant spectral acceleration branch (upper limit)
T_D	The value defining (beginning of the continuous displacement response range of the spectrum)
$S_d\left(T ight)$	Design spectrum
q	Behavior factor
a_{gR}	Peak ground acceleration on type ground A (assume 0.5 g)
γ_I	Important factor
Н	Height of building (from top of basement or foundation)
m	Total mass of the building
F_i	Horizontal force acting on storey <i>i</i>
F_b	Seismic base shear
m_i, m_j	Storey masses

- z_i, z_j Heights of the masses
- R_{jb} Joyner-Boore distance
- M_w Magnitude
- D Damage
- Δ Displacement of maximum storey

LIST OF ABBREVIATIONS

2D	2 Dimension
3D	3 Dimension
СР	Collapse Prevention
DC	Damage Control
DCM	Displacement Coefficient Method
DCM	Medium Ductility Class
DS	Damage State
EC2	Eurocode 2
EC3	Eurocode 3
EC8	Eurocode 8
FF	Far Field
FF IDA	Far Field Incremental Dynamic Analysis
IDA	Incremental Dynamic Analysis
IDA IM	Incremental Dynamic Analysis Intensity Measure
IDA IM IO	Incremental Dynamic Analysis Intensity Measure Immediate Occupancy
IDA IM IO LS	Incremental Dynamic Analysis Intensity Measure Immediate Occupancy Life Safety
IDA IM IO LS MRCF	Incremental Dynamic Analysis Intensity Measure Immediate Occupancy Life Safety Moment-Resisting Concrete Frame
IDA IM IO LS MRCF MRSF	Incremental Dynamic Analysis Intensity Measure Immediate Occupancy Life Safety Moment-Resisting Concrete Frame Moment-Resisting Steel Frame

NTHA	Nonlinear Time History Analysis
OP	Operational Phase
PBSD	Performance Based Seismic Design
PEER	Pacific Earthquake Engineering Research
PGA	Peak Ground Acceleration
POA	Pushover Analysis

PENILAIAN LENGKUNG KERAPUHAN SESUATU BANGUNAN DISEBABKAN OLEH PENGUJAAN GEMPA BUMI

ABSTRAK

Tujuan utama kajian ini ialah membentuk lengkung kerapuhan untuk rangka tetap dan tidak tetap berdasarkan perbezaan jenis bahan struktur, ketinggian dan rekod pergerakan tanah. 6 set rangka konkrit dan keluli telah digunakan dalam kajian ini dengan ketinggian yang berbeza iaitu 3-, 6-, dan 9-tingkat untuk rangka tetap dan tidak tetap. Setiap struktur rangka direka berdasarkan Eurocode 2 dan 3 dengan bantuan Eurocode 8 untuk beban gempa bumi. Perisian SAP2000 telah digunakan sebagai perisian utama untuk analisa. Analisa pushover (POA) telah dijalankan untuk mendapatkan prestasi struktur berdasarkan beban statik. Daya corak segi tiga telah digunakan untuk menghasilkan hubungan dasar ricih-hanyut. Manakala, analisis dinamik tambahan (IDA) dijalankan dengan menggunakan tiga rekod pergerakan tanah bagi setiap medan dekat dan medan jauh. Di samping itu, gempa bumi Ranau telah dipertimbang dalam kajian ini untuk dua jenis keadaan; gempa bumi tunggal dan gempa bumi berulang. Keputusan daripada analisa IDA akan digunakan sebagai parameter utama untuk membentuk rangka kerapuhan. Lengkung IDA dibandingkan dengan 5 tahap prestasi seperti dinyatakan dalam kajian Xue et al. (2008) iaitu fasa operasi (OP), penghunian serta merta(IO), kawalan kerosakan (DC), keselamatan hayat (LS) dan runtuh pencegahan (CP). Berdasarkan keputusan daripada kajian ini, keputusan POA menunjukkan rangka tetap menghasilkan permintaan yang lebih tinggi berbanding rangka tidak tetap untuk struktur konkrit dan keluli. Daripada keputusan IDA, rangka tetap menunjukkan prestasi yang lebih

baik untuk kedua-dua bahan di bawah rekod medan dekat dan medan jauh. Berdasarkan lengkung kerapuhan dihasilkan untuk medan dekat dan medan jauh, rangka tidak tetap menunjukkan kebarangkalian yang lebih tinggi untuk mencapai tingkat prestasi untuk rangka konkrit. Sementara itu, rangka tetap keluli menunjukkan kebarangkalian yang lebih tinggi untuk mencapai tahap prestasi.

ASSESSMENT OF BUILDING FRAGILITY CURVE DUE TO EARTHQUAKE EXCITATION

ABSTRACT

In this study, the main objective is to develop fragility curve of regular and irregular moment-resisting frame based on different types of structural material, height, and ground motion records. 6 sets of concrete and steel frames were used in this study and varied in terms of heights which are 3-, 6- and 9-storey for regular and irregular frame. Each structure frames was designed based on Eurocode 2 and 3 with the aid Eurocode 8 for earthquake loading. The SAP2000 was used as the main tool to carry out the analysis. A pushover analysis (POA) was performed to get the performance of the structure due to static load. Triangular load was used to produce base sheardrift relationship. Then, an incremental dynamic analysis (IDA) was carried out with 3 ground motion records for each set near and far field. In addition, the Ranau earthquake also considered in this study for two types of case; single and repeated earthquake. While to develop the fragility curve, the result from IDA will be used as the main parameters. The IDA curves were compared with five level of performance level from Xue et al. (2008) study which are operation phase (OP), immediate occupancy (IO), damage control (DC), life safety (LS), and collapse prevention (CP). On the basis of the result of this thesis, it can be concluded that from POA result showed regular frames demonstrate a higher demand compared to irregular frames for concrete and steel frames. From the IDA results, it was proven that regular frames perform better for both materials under near and far field records. Based on the fragility curves developed for the near and far field records, irregular frames showed a higher probability of reaching or exceeding the performance level for concrete frame. On the other hand, regular steel frames showed a higher probability of reaching and exceeding the performance level.

CHAPTER ONE

INTRODUCTION

1.1 Background

Nowadays, the issue of Malaysia's safety from earthquakes has been raised after an earthquake hit East Malaysia. As recorded on 5th of June 2015 at 7.15 am, a moderate earthquake of 6.0 Richter scale struck Ranau, Sabah. The shaking was felt throughout the west coast of Sabah. It was the strongest earthquake affecting Malaysia since 1976. This happened when there is a friction between the tectonic plates of Borneo, Philippines and Australia (Doksil, 2015). What happened in Sabah proved that Malaysia has to consider the earthquake load in the design of buildings and provide earthquake awareness to public. Figure 1.1 shows the damages that occurred during the Ranau earthquake in Sabah.

Figure 1.1 Damage during the Ranau Earthquake

Generally, building damage is the main source of seismic loss when an earthquake hits, and buildings designed before the introduction of seismic resistance might have a relatively higher chance of being damaged. These damages will have a major impact to both, the country and citizens. A sudden shaking of the ground could destroy everything in the blink of an eye. Thus, an evaluation of the seismic performances of these buildings will provide some practical references for reducing loss during earthquakes.

In addition, some of buildings in Malaysia are designed in irregular shapes. Figure 1.2 shows some examples of irregular building in Malaysia.

(a) TM Tower

(c) Tune Hotel, Cyberjaya

(b) Mitraland Building

(d) Maxis Tower

Figure 1.2 Example of irregular building in Malaysia