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PENILAIAN LENGKUNG KERAPUHAN SESUATU BANGUNAN 

DISEBABKAN OLEH PENGUJAAN GEMPA BUMI 

 

ABSTRAK 

 

Tujuan utama kajian ini ialah membentuk lengkung kerapuhan untuk rangka tetap 

dan tidak tetap berdasarkan perbezaan jenis bahan struktur, ketinggian dan rekod 

pergerakan tanah. 6 set rangka konkrit dan keluli telah digunakan dalam kajian ini 

dengan ketinggian yang berbeza iaitu 3-, 6-, dan 9-tingkat untuk rangka tetap dan 

tidak tetap. Setiap struktur rangka direka berdasarkan Eurocode 2 dan 3 dengan 

bantuan Eurocode 8 untuk beban gempa bumi. Perisian SAP2000 telah digunakan 

sebagai  perisian utama untuk analisa. Analisa pushover (POA) telah dijalankan 

untuk mendapatkan prestasi struktur berdasarkan beban statik. Daya corak segi tiga 

telah digunakan untuk menghasilkan hubungan dasar ricih-hanyut. Manakala, 

analisis dinamik tambahan (IDA) dijalankan dengan menggunakan tiga rekod 

pergerakan tanah bagi setiap medan dekat dan medan jauh. Di samping itu, gempa 

bumi Ranau telah dipertimbang dalam kajian ini untuk dua jenis keadaan; gempa 

bumi tunggal dan gempa bumi berulang. Keputusan daripada analisa IDA akan 

digunakan sebagai parameter utama untuk membentuk rangka kerapuhan. Lengkung 

IDA dibandingkan dengan 5 tahap prestasi seperti dinyatakan dalam kajian Xue et al. 

(2008) iaitu fasa operasi (OP), penghunian serta merta(IO), kawalan kerosakan (DC), 

keselamatan hayat (LS) dan runtuh pencegahan (CP). Berdasarkan keputusan 

daripada kajian ini, keputusan POA menunjukkan rangka tetap menghasilkan 

permintaan yang lebih tinggi berbanding rangka tidak tetap untuk struktur konkrit 

dan keluli. Daripada keputusan IDA, rangka tetap menunjukkan prestasi yang lebih 



xix 

baik untuk kedua-dua bahan di bawah rekod medan dekat dan medan jauh. 

Berdasarkan lengkung kerapuhan dihasilkan untuk medan dekat dan medan jauh, 

rangka tidak tetap menunjukkan kebarangkalian yang lebih tinggi untuk mencapai 

tingkat prestasi untuk rangka konkrit. Sementara itu, rangka tetap keluli 

menunjukkan kebarangkalian yang lebih tinggi untuk mencapai tahap prestasi. 
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ASSESSMENT OF BUILDING FRAGILITY CURVE DUE TO 

EARTHQUAKE EXCITATION 

 

ABSTRACT 

 

In this study, the main objective is to develop fragility curve of regular and irregular 

moment-resisting frame based on different types of structural material, height, and 

ground motion records. 6 sets of concrete and steel frames were used in this study 

and varied in terms of heights which are 3-, 6- and 9-storey for regular and irregular 

frame. Each structure frames was designed based on Eurocode 2 and 3 with the aid 

Eurocode 8 for earthquake loading. The SAP2000 was used as the main tool to carry 

out the analysis. A pushover analysis (POA) was performed to get the performance 

of the structure due to static load. Triangular load was used to produce base shear-

drift relationship. Then, an incremental dynamic analysis (IDA) was carried out with 

3 ground motion records for each set near and far field. In addition, the Ranau 

earthquake also considered in this study for two types of case; single and repeated 

earthquake. While to develop the fragility curve, the result from IDA will be used as 

the main parameters. The IDA curves were compared with five level of performance 

level from Xue et al. (2008) study which are operation phase (OP), immediate 

occupancy (IO), damage control (DC), life safety (LS), and collapse prevention (CP). 

On the basis of the result of this thesis, it can be concluded that from POA result 

showed regular frames demonstrate a higher demand compared to irregular frames 

for concrete and steel frames. From the IDA results, it was proven that regular 

frames perform better for both materials under near and far field records. Based on 

the fragility curves developed for the near and far field records, irregular frames 
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showed a higher probability of reaching or exceeding the performance level for 

concrete frame. On the other hand, regular steel frames showed a higher probability 

of reaching and exceeding the performance level. 
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CHAPTER ONE  

INTRODUCTION 

 

1.1 Background 

 Nowadays, the issue of Malaysia’s safety from earthquakes has been raised 

after an earthquake hit East Malaysia. As recorded on 5
th

 of June 2015 at 7.15 am, a 

moderate earthquake of 6.0 Richter scale struck Ranau, Sabah. The shaking was felt 

throughout the west coast of Sabah. It was the strongest earthquake affecting 

Malaysia since 1976. This happened when there is a friction between the tectonic 

plates of Borneo, Philippines and Australia (Doksil, 2015). What happened in Sabah 

proved that Malaysia has to consider the earthquake load in the design of buildings 

and provide earthquake awareness to public. Figure 1.1 shows the damages that 

occurred during the Ranau earthquake in Sabah. 

 

Figure 1.1 Damage during the Ranau Earthquake 

   

 Generally, building damage is the main source of seismic loss when an 

earthquake hits, and buildings designed before the introduction of seismic resistance 

might have a relatively higher chance of being damaged. These damages will have a 

major impact to both, the country and citizens. A sudden shaking of the ground could 
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destroy everything in the blink of an eye. Thus, an evaluation of the seismic 

performances of these buildings will provide some practical references for reducing 

loss during earthquakes. 

 In addition, some of buildings in Malaysia are designed in irregular shapes. 

Figure 1.2 shows some examples of irregular building in Malaysia.  

 

  

(a) TM Tower (b) Mitraland Building 

  

(c) Tune Hotel, Cyberjaya (d) Maxis Tower 

Figure 1.2 Example of irregular building in Malaysia 
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