

PREDICTION OF ELECTROSTATIC DISCHARGE SOFT ERROR ON TWO-WAY RADIO USING SIMULATION AND IMMUNITY SCANNING TECHNIQUE

ROSNAH ANTONG

UNIVERSITI SAINS MALAYSIA

2017

PREDICTION OF ELECTROSTATIC DISCHARGE SOFT ERROR ON TWO-WAY RADIO USING SIMULATION AND IMMUNITY SCANNING TECHNIQUE

by

ROSNAH ANTONG

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

Februari 2017

ACKNOWLEDGEMENTS

"In the name of Allah, most Gracious, most Compassionate"

Foremost praise to Allah the Almighty, the Beneficent and Merciful whom ultimately provided me with sustenance and guidance. Second, I would like to express my sincere appreciation to my supervisor, Professor Mohd Zaid Abdullah for his continuous support, guidance, careful reading and constructive comment on my study and research. His supervision and timely contribution despite his busy schedule and responsibility have helped to shape this final thesis. I am also forever grateful to him for giving me the opportunity to complete this research on my own term and time. Beside my supervisor, I would like to take this opportunity to convey my gratefulness to my technical advisor, Mr. Danny Low for his patience and vast knowledge for making the thesis possible. He has been encouraging and enlightening throughout the challenges that brought this work towards its completion. My special and heartily thanks to another advisor, Professor David Pommerenke who motivated, encouraged, and gave an invaluably constructive critique for the success of this project. It is my honor to be one of his students. Working directly with him and his PhD students become one of the best moments I ever had in my life. My big thank goes to Mr. CK Ng and Mr. PB Teo for giving me an opportunity, provide a strong support and solid direction to finish the project in 21 months. They have been a tremendous help no matter the task and circumstances. It is my respect to thanks Dr. NorAzmi Alias and Shukor Yahaya who are responsible to inspire me in obtaining the CREST grant for project funding. I can never thank enough all my friends and colleagues who fought alongside me during the completion of the thesis. Special thanks to Mr. Chiang Chun Tong for his encouragement, motivation and continuous technical support in simulation and matters related to Electromagnetic (EM) measurement technique. My charming colleagues, Siti Adanan, Halina, Mohd Fadli, Nurlia, Munirah, Hasniza, Nazirah, Hasanah, Masliza, Rijana, Hasrol, Syawal and CK Chan were my support group who I relied on numerous time to catch me when I fumbled and fell. They gave me the courage and the occasional push that I needed to get things moving. Last but not least, I would like to thank my family who becomes my biggest pillar of strength. This final thank you goes to my lovely husband, whom always there supporting me financially and morally as well as helping out with the children despite his own tight work schedule. Without his understanding and sacrifices, I would not have managed to finish this thesis. Thanks to all of you and I praise again to Allah who made this come true. Amen.

TABLE OF CONTENTS

Page

ACK	NOWLEDGEMENTS	ii
TABI	LE OF CONTENTS	iv
LIST	OF TABLES	vii
LIST	OF FIGURES	ix
LIST	OF ABBREVIATIONS	xvi
ABST	ГКАК	xix
ABST	ГКАСТ	xxi
СПА	DTED ONE INTRODUCTION	
	THER ONE - INTRODUCTION	
1.1	Introduction	1
1.2	Problem statement	3
1.3	Thesis Objectives	6
1.4	Research Scopes	6
1.5	Outline of the Thesis	7
CHA	PTER TWO – LITERATURE REVIEWS	
2.1	Introduction	9
2.2	ESD Event	9
2.3	ESD Failure Modes	11
2.4	ESD Models and ESD System	15
2.5	ESD Level Test Specifications	18

2.6	ESD System Level Test	23
2.7	Electromagnetic field exposure	27
	2.7.1 Propagation of Electromagnetic Energy	28
	2.7.2 Electromagnetic Interference	30
2.8	Previous Research	32

CHAPTER THREE – INTRODUCING OF ESD ON TWO-WAY RADIO

3.1	Introduction	62
3.2	ESD Failure of Radio	66
3.3	ESD Susceptibility Test	68
3.4	3D Simulator CST	72
3.5	Radio 3-D Modeling	73
3.6	Poynting Vector, Dosimetry and S_{twa}	78
3.7	Summary	86

CHAPTER FOUR – METHODS AND MATERIALS

4.1	Introduction	87
4.2	Methodology of ESD Soft Error failure Prediction	
4.3	ESD Pulse Validation	91
	4.3.1 ESD Gun	91
	4.3.2 AC Current Probe	93
	4.3.3 Measurement Setup	94
	4.3.4 Simulation Setup	95
4.4	ESD Susceptibility Level Test	96
4.5	ESD Susceptibility Scanning 1	
4.6	ESD Simulation Setup 1	
4.7	Setup of 3D modeling Accuracy	108
	4.7.1 Voltage Measurement setup of passive attenuator	108
	4.7.2 Voltage Measurement setup on MAKO IC	110
4.8	Summary	112

CHAPTER FIVE – RESULTS AND DISCUSSION

59

5.1	Introduction	113
5.2	ESD Pulse Validation	113
5.3	ESD Susceptibility Level of Radio	115
5.4	ESD Susceptible Scanning	119
5.5	ESD Modeling Correlation	120
	5.5.1 Voltage measurement of Attenuator	120
	5.5.2 Voltage measurement of complete radio	120
5.6	EM Field Strength distribution and S_{twa}	123
5.7	S _{twa} Limit and ESD failure Prediction	135
5.8	Overall Findings and Summary	139
CHA	APTER SIX – CONCLUSION	
6.1	Summary of the work	141
6.2	Recommendation for Future Work	142
REF	FERENCES	143
APP	PENDICES	
APP	PENDIXA – FULL 3D MODELING FOR TWO-WAY RADIO	
APP	PENDIXB – POYNTING VECTOR DERIVATION	

APPENDIXC – IEC 61000-4-2 SPECIFICATION

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 1.1:	Recent history of ESD testing of electronic product (Hoolihan	2
	(2014))	
Table 1.2:	Comparison of different approach of ESD failure prediction	5
Table 2.1:	IEC 61000-4-2 severity level and test voltages (AG (2002))	22
Table 2.2:	IEC 61000-4-2 waveform parameters (AG (2002))	23
Table 2.3:	HBM robustness obtained by simulation and by measurement	41
	with and without external capacitor on vehicle with IC1 (Caignet	
	<i>et al.</i> (2015))	
Table 2.4:	HBM robustness obtained by simulation and by measurement	41
	with and without external capacitor on vehicle with IC2 (Caignet	
	<i>et al.</i> (2015))	
Table 2.5:	Comparison results of (a) Measured voltage level of IC pins (b)	42
	Simulated voltage level of IC pins before and after improvement	
	(Kim et al. (2010))	
Table 2.6:	Comparison results of (a) Measured voltage level of IC pins (b)	43
	Simulated voltage level of IC pins before and after improvement	
	(Kim et al. (2010))	
Table 2.7:	Summary of related work comparison	60
Table 2.7:	Summary of related work comparison	61
Table 3.1:	Type of radio design	66
Table 3.2:	Criticality versus consequences of part in radio modeling	75
Table 3.3:	Comparison of quantity part in actual radio versus modeling	76
Table 4.1:	Comparison between original and improved radio	97
Table 4.2:	ESD susceptible level test setup with different conditions	97
Table 4.3:	GCAI contact pins arrangement	99
Table 4.4:	ESD discharge voltage applied in ESD simulation	107
Table 5.1:	Comparison of rise time and magnitude of ESD current pulses	115

Table 5.2:	Summary of ESD failure observation in different radio condition	116
Table 5.3:	Results of ESD test on original radio at "Close housing" with	116
	shield	
Table 5.4:	Results of ESD test on improved radio at 'close housing' with	116
	shield	
Table 5.5:	Results of ESD test on original radio at 'open housing' with	117
	shield	
Table 5.6:	Results of ESD test on improved radio at 'open housing' with	117
	shield	
Table 5.7:	Results of ESD test on original radio at 'open housing' without	118
	shield	
Table 5.8:	Results of ESD test on improved radio at 'open housing' without	118
	shield	

LIST OF FIGURES

		Page
Figure 1.1:	Four approaches use in ESD failure prediction	4
Figure 2.1:	Separated material with imbalance charges via triboelectric (NXP (2010))	10
Figure 2.2:	(a) Human Metal Model (b) ESD circuitry (c) ESD pulse waveform (Voldman (2012))	11
Figure 2.3:	Basic type of ESD failure modes - (a) Direct discharge into circuit (b) Direct discharge into the ground system (c) Indirect discharge (Ott (2011))	14
Figure 2.4:	Simplified lumped element for HBM (Lou (2008))	15
Figure 2.5:	Simplified lumped circuit for MM (Lou (2008))	16
Figure 2.6:	Simplified CDM lumped circuit (Lou (2008))	17
Figure 2.7:	Requirement of ESD robustness (IndustrialCouncil (2010))	18
Figure 2.8:	Table top of ESD test setup per IEC 61000-4-2 (Instruments	19
	(2012))	
Figure 2.9:	Simplified circuit of ESD gun generator (Compatibility (2008))	21
Figure 2.10:	Type of discharge tips used in ESD test (a) Air discharge (b) Contact discharge (Compatibility (2008))	21
Figure 2.11:	IEC 61000-4-2 current waveform at 2 kV discharge voltage (AG (2012))	23
Figure 2.12:	Device level test method (a) Basic circuit diagram for HBM and MM (b) Comparison of 2 kV HBM, 200 V MM and 500 V CDM current waveforms at long times (Ashton (2006))	24
Figure 2.13:	Comparison of IEM, HBM and CDM current waveforms (Ashton (2006))	25
Figure 2.14:	ESD path from interconnect to IC (Colby (2000))	26
Figure 2.15:	(a) The keyboard is connected to PC (b) The ESD gun hits the	26
	backside of the PC case to test the ESD system level susceptibility	
	of a keyboard in the PC system (Ker and Sung (2001))	

Figure 2 16.	The measured V_{-1} and V_{-2} voltage waveform on the IC in a	27
Figure 2.10.	The measured v_{DD} and v_{SS} votage waveform on the fermion	21
	keyboard when the ESD gun with a negative 2 kV ESD voltage	
	hits the backside of the PC case (Ker and Sung (2001))	
Figure 2.17:	EM wave (Caignet et al. (2015))	28
Figure 2.18:	EM wave in near field and far field regions (OSHA (2013))	30
Figure 2.19:	ESD immunity scanning result lead to soft error failure due to	33
	induced voltage on the sensitive nets (a) Sensitive nets at lower	
	TLP kV (b) Measured induced noise voltage (Muchaidze et al.	
	(2008))	
Figure 2.20:	Arduino Leonardo board (Yang (2016))	34
Figure 2.21:	I - V curve measurement and simulation result (Yang (2016))	35
Figure 2.22:	IC soft error block diagram before adding 10 Ω resistor (Yang	36
	(2016))	
Figure 2.23:	Measurement and simulation results (Yang (2016))	36
Figure 2.24:	Result of soft error threshold after adding 10 Ω resistor (Yang	37
	(2016))	
Figure 2.25:	(a) Simplified schematic of the system (b) Simplified integrated	38
	circuit model with ESD protection from measurement and input	
	and output buffer from IBIS model (Monnereau et al. (2012))	
Figure 2.26:	Transient simulations of the output voltage when the ESD stress	39
	occurs on a low level of the output (Monnereau et al. (2012))	
Figure 2.27:	Evaluation of the failure probability as a function of the external	39
	decoupling capacitor, clock frequency and ESD pulse amplitude	
	(Monnereau et al. (2012))	
Figure 2.28:	Wunsch and Bell curve of the IC (Caignet et al. (2015))	40
Figure 2.29:	ESD current distribution on mobile phone at 1.8 ns (Kim et al.	42
	(2010))	
Figure 2.30:	Proposed method to predict induced noise voltage at IC pin (a)	43
	Experimental setup (b) Induced noise voltage (Lee et al. (2011))	
Figure 2.31:	Comparison of (a) Measured waveform (b) simulated waveform	44
	of Address line (Lee et al. (2011))	

Figure 2.32:	A bridge where two conductive filaments cross each other. A port	44
	1 that contains of the break-through parameters is shown as a red	
	cone (Hekkala et al. (2012))	
Figure 2.33:	(a) Illustration of the mobile device under test (b) Switch model	45
	(Hekkala et al. (2012))	
Figure 2.34:	(a) Voltage at various bridge locations. (b) Current through the	46
	switches (Hekkala et al. (2012))	
Figure 2.35:	Display images before and after ESD stress (a) Before and after	47
	ESD zapping (b) SEM picture for permanent damage in the	
	source driver after ESD stress of Air discharge of 6 kV (Ko et al.	
	(2012))	
Figure 2.36:	(a) The ESD path from panel surface to ground through the	48
	damaged thin gate oxide transistors in source driver IC (b) Sketch	
	of parasitic NPN bipolar consists of NWELL (AVDD), PWELL	
	(VGL) and NWELL (VDD) (Ko et al. (2012))	
Figure 2.37:	(a) The layout image of VCOM ESD cell and its adjoining	49
	memory block (b) Well formation sketch creates parasitic NPN	
	bipolar between the I/O and memory core (Ko et al. (2012))	
Figure 2.38:	(a) Suggested scheme to mitigate VDD node potential (b)	50
	Simulation result of current density at t time of maximum VDD	
	(Ko <i>et al.</i> (2012))	
Figure 2.39:	Measurement setups of the effect EM to ESD failure (a) ESD	51
	current measurement setup (b) Setup of EM immunity test (Lim	
	<i>et al.</i> (2013))	
Figure 2.40:	Result of current spreading vs. Immunity test (a) Current	51
	spreading (b) Immunity test (Lim et al. (2013))	
Figure 2.41:	Numerical model of ESD test setup (Caniggia and Maradei	52
	(2007))	
Figure 2.42:	(a) Test setup for ESD current calibration and (b) ESD generator	52
	configuration model in MWS (Caniggia and Maradei (2007))	

Figure 2.43:	Comparison of measured transient tip current versus simulation	53
	and IEC standard (Caniggia and Maradei (2007))	
Figure 2.44:	(a) E-field sensor model (b) Meshing of E-field (c) H-field sensor	54
	model (d) Meshing of H- field (Caniggia and Maradei (2007))	
Figure 2.45:	Transfer function of (a) E-field probe (b) E-field probe (Caniggia	54
	and Maradei (2007))	
Figure 2.46:	Radiated E-field at distance of (a) 15 cm and (b) 45 cm (Caniggia	55
	and Maradei (2007))	
Figure 2.47:	Radiated H-field at distance of (a) 15 cm and (b) 45 cm (Caniggia	55
	and Maradei (2007))	
Figure 2.48:	Tri-axial near magnetic field probe (a) shielded loop and (b)	56
	triaxial probe (Fukui et al. (2013))	
Figure 2.49:	Measurement setup and measured area (a) vehicle interior and (b)	56
	vehicle side (Fukui et al. (2013))	
Figure 2.50:	TMeasurement result of vehicle interior field distribution (a)	57
	Electric field (b) Magnetic field (c) Real part of Poynting vector	
	(d) Imaginary part of Poynting vector (Fukui et al. (2013))	
Figure 2.51:	Simulation result (a) Electric field (b) Magnetic field (c) Real part	58
	of Poynting vector (d) Imaginary part of Poynting vector (vehicle	
	interior field distribution) (Fukui et al. (2013))	
Figure 2.52:	Simulation at f=400 MHz (a) Real part of Poynting vector (b)	58
	Imaginary part of Poynting vector (Fukui et al. (2013))	
Figure 3.1:	Basic two-way radio communication (Hamuniverse.com (2000))	63
Figure 3.2:	Simplified two-way radio block diagram	64
Figure 3.3:	Connection between external radio and internal board define as	65
	ESD critical paths	
Figure 3.4:	Two-way radio assembly	66
Figure 3.5:	ESD test with contact discharge mode	67
Figure 3.6:	Different states of radio display (a) Radio turns ON with no	68
	failure (b) Radio display hang and (c) Radio reset	
Figure 3.7:	ESD Immunity Scanning system	70

Figure 3.8:	The induced current causing a failure (b) ESD induction	71
	schematic (Instruments (2008))	
Figure 3.9:	Digitizing approach used in CST MWS (Technology (2011))	73
Figure 3.10:	Meshing of sphere with different approaches (a) Staircase	73
	approximation (b) PBA (Technology (2011))	
Figure 3.11:	(a) Port location for IBIS on PCB/flex layout (b) Schematic	77
	diagram with IBIS model	
Figure 3.12:	Illustration of time-weighted-average power density (S_{av})	80
Figure 3.13:	Time sample of t_1 and t_2 (a) Total Poynting vector, S_T (b) Time-	85
	weighted average power density, S_{twa}	
Figure 3.14:	Illustration of EM field coupling to sensitive IC through air	86
	(Instruments, 2008)	
Figure 4.1:	Illustration of ESD failure prediction in radio development cycle	88
Figure 4.2:	Flowchart of ESD failure prediction methodology	90
Figure 4.3:	ESD gun (a) Simulator (Hire (2008)) (b) ESD gun circuitry (Eng	92
	(Eng))	
Figure 4.4:	(a) ESD gun circuit diagram (b) Setting of ESD model	93
Figure 4.5:	Circuit of current probe (Tektronix (2000))	94
Figure 4.6:	Measurement setup of actual ESD pulse validation	95
Figure 4.7:	Simulation setup of ESD pulse validation with exciting	96
	rectangular waveform at port 2	
Figure 4.8:	Radio with open housing	97
Figure 4.9:	Radio with 'close housing' condition	98
Figure 4.10:	Radio with 'close housing' condition	99
Figure 4.11:	'open housing' condition without digital shield	100
Figure 4.12:	ESD susceptibility scanning on radio ('open housing' condition)	101
Figure 4.13:	ESD discharge voltage setting	101
Figure 4.14:	Block diagram of complete ESD modeling	102
Figure 4.15:	MAKO IC on the PCB	103
Figure 4.16:	Cross section view (a) PCB with BGA IC (b) PCB without IC	103
	model	

Figure 4.17:	Field probes assignment on MAKO IC	104
Figure 4.18:	Illustration of (a) Field probes (b) Poynting vector, S_N	104
Figure 4.19:	Radio modeling	105
Figure 4.20:	(a) Discretization of GCAI flex with 14 μ mesh step (b)	106
	Discretization of main flex and PCB using 14 μ mesh step	
Figure 4.21:	ESD test modeling with ESD pulse injection at GCAI contact pin	107
Figure 4.22:	ESD Simulation using different models (a) Original radio (b)	107
	Improved radio	
Figure 4.23:	Passive attenuator test board in (a) Actual (b) CST Simulation	109
	(Compatibility (2008))	
Figure 4.24:	Loss factor calculation of attenuator (Compatibility (2008))	109
Figure 4.25:	Voltage measurement setup on passive attenuator	110
Figure 4.26:	Block diagram of voltage measurement on MAKO IC	111
Figure 4.27:	Voltage measurement setup during ESD system level	111
Figure 4.28:	Voltage measurement with the attenuator and ESD pulse injection	112
	at GCAI contact	
Figure 4.29:	Attenuator and 10 mm coax cable solder to the PCB	112
Figure 5.1:	Comparison of ESD current pulse at 1 kV against IEC 61000-4-2	114
Figure 5.2:	ESD Failure symptoms on radio display (a) Radio display (b) Fail	115
	001 (c) Blank display	
Figure 5.3:	ESD susceptibility area on digital circuitry from top view	120
Figure 5.4:	Output voltage of attenuator (a) Block diagram of test setup (b)	121
	Comparison result	
Figure 5.5:	(a) Block diagram of voltage measurement on complete radio (b)	122
	Simulation model	
Figure 5.6:	(a) Measured voltage at port 2 (b) Comparison result between	123
	simulation and measurement	
Figure 5.7:	Illustration of field probes on the PCB for EM field strength	124
	distribution	
Figure 5.8:	Original radio at 5 kV, probe 1 (a) Magnitude of H-field (b)	125
	Magnitude of H-field (c) Poynting vector, S_N	

Figure 5.9:	Original radio at 5 kV, probe 2 (a) Magnitude of H-field (b)	126
	Magnitude of H-field (c) Poynting vector, S_N	
Figure 5.10:	Original radio at 5 kV, probe N=2 (a) Total Poynting vector, S_N	127
	(b) Total time-weighted average power density, S_{twa}	
Figure 5.11:	Comparison simulation result of original radio at different kV,	128
	N=15 probes (a) ESD current (b) Poynting vector	
Figure 5.12:	Comparison simulation result of S_{twa} of original radio at different	128
	kV, N=15 probes	
Figure 5.13:	ESD simulation on (a) Original radio (b) Improved radio	129
Figure 5.14:	Comparison of ESD current between original and improved radio	129
	at 5 kV, N=15 probes	
Figure 5.15:	Comparison between original and improved radio at 5 kV, N=15	130
	probes (a) Poynting vector (b) S_{twa}	
Figure 5.16:	Comparison result between original and improved radio at t_1 =0.6	131
	ns, 5 kV discharge voltage (a) Flow of simulated current (b) ESD	
	current distribution on the MAKO IC	
Figure 5.17:	Comparison result between original and improved radio at t_2 =4.0	132
	ns, 5 kV discharge voltage (a) Flow of simulated current (b) ESD	
	current distribution on the MAKO IC	
Figure 5.18:	Comparison result between original and improved radio at t_3 =8.0	133
	ns, 5 kV discharge voltage (a) Flow of simulated current (b) ESD	
	current distribution on MAKO IC	
Figure 5.19:	EM propagation (a) Single path on the original radio (b) Two	134
	paths on the improved radio	
Figure 5.20:	Simulated S_{twa} graph on improved radio (a) 8 kV (b) 11 kV	136
Figure 5.21:	S_{twa} limit as ESD baseline in ESD simulation	138

LIST OF ABBREVIATIONS

A/m	Ampere per meter
A/m	Ampere per meter
API	Amber Precision Instruments
BGA	Ball Grid Array
CDM	Charged Device Method
CLK	Clock
CMOS	Complementary Metal – Oxide Semiconductor
CST MWS	Computing Simulation Technology Microwave Studio
DUT	Device under Test
DFM	Design for Manufacturing
ECAD	Electronic Computer-Aided Design
EEPROM	Electrically Erasable Programmable
E-field	Electric Field
EM	Electromagnetic
EMC	Electromagnetic Compatibility (Ability of device to function in its electro
	magnetic environment without introducing disturbance to that environment
	or to other device)
EMI	Electromagnetic Interference
EMF	Electromagnetic Force
ESD	Electrostatic Discharge
ESDA	Electrostatic Discharge Association
ESDS	Electrostatic Discharge Sensitive
FCB	Flexible Circuit Board
FDTD	Finite–Differences Time-Domain

FIT	Finite Integration Technique
Flex	Flexible Printed Circuit
FR4	Flame Resistant 4 (a glass fiber epoxy laminate)
GCAI	Global Communication Accessory Interface
GND	Ground
GPU	Graphics Processing Unit
GRP	Ground Reference Plan
GTL	Gunning Transistor Logic
HBM	Human Body Method
НСР	Horizontal Coupling Plane
H-field	Magnetic Field
IBIS	Input/Output Buffer Information Specification
IC	Integrated Circuit
IEC $61000 - 4 - 2$	International Electrotechnical Commission (Part 4–2 Testing and
IEC 61000-4-2	International Electrotechnical Commission (Part 4–2 Testing and Measurement techniques – Electrostatic discharge immunity test)
JEDEC	International Electrotechnical Commission (Part 4–2 Testing and Measurement techniques – Electrostatic discharge immunity test) Joint Electron Device Engineering Council
IEC 61000-4-2 JEDEC kV	International Electrotechnical Commission (Part 4–2 Testing and Measurement techniques – Electrostatic discharge immunity test) Joint Electron Device Engineering Council Kilovolt
JEDEC kV LED	International Electrotechnical Commission (Part 4–2 Testing and Measurement techniques – Electrostatic discharge immunity test) Joint Electron Device Engineering Council Kilovolt Light–emitting diode
JEDEC kV LED MIC	International Electrotechnical Commission (Part 4–2 Testing and Measurement techniques – Electrostatic discharge immunity test) Joint Electron Device Engineering Council Kilovolt Light–emitting diode Microphone
IEC 61000-4-2 JEDEC kV LED MIC μ	International Electrotechnical Commission (Part 4–2 Testing and Measurement techniques – Electrostatic discharge immunity test) Joint Electron Device Engineering Council Kilovolt Light–emitting diode Microphone Micron
JEDEC kV LED MIC μ MM	International Electrotechnical Commission (Part 4–2 Testing and Measurement techniques – Electrostatic discharge immunity test) Joint Electron Device Engineering Council Kilovolt Light–emitting diode Microphone Micron Machine method
JEDEC kV LED MIC μ MM mm	International Electrotechnical Commission (Part 4–2 Testing and Measurement techniques – Electrostatic discharge immunity test) Joint Electron Device Engineering Council Kilovolt Light–emitting diode Microphone Micron Machine method Millimeter
JEDEC kV LED MIC μ MM mm ns	International Electrotechnical Commission (Part 4–2 Testing and Measurement techniques – Electrostatic discharge immunity test) Joint Electron Device Engineering Council Kilovolt Light–emitting diode Microphone Micron Machine method Millimeter Nanosecond
IEC 61000-4-2 JEDEC kV LED MIC μ MM mm ns ODB++	International Electrotechnical Commission (Part 4–2 Testing and Measurement techniques – Electrostatic discharge immunity test) Joint Electron Device Engineering Council Kilovolt Light–emitting diode Microphone Micron Machine method Millimeter Nanosecond Open Database (CAD–to–CAM data exchange format used for
IEC 61000-4-2 JEDEC kV LED MIC μ MM mm ns ODB++	International Electrotechnical Commission (Part 4–2 Testing and Measurement techniques – Electrostatic discharge immunity test) Joint Electron Device Engineering Council Kilovolt Light–emitting diode Microphone Micron Machine method Millimeter Nanosecond Open Database (CAD–to–CAM data exchange format used for electronic database of printed circuit board manufacturing)

PCB	Printed Circuit Board
pF	Pico farads
PN	P–N type junction
ProE	Pro Engineer
ps	Picoseconds
RLC	Resistor, Inductor and Capacitor
SDRAM	Synchronous dynamic random-access memory
SPKR	Speaker
Т	Tesla
TTL	Transistor-Transistor Logic
TLP	Transmission Line Pulse
ULC	Ultra Low Cost
V	Volt
V/m	Voltage per meter
VCP	Vertical Coupling Plan

RAMALAN RALAT ANJAL NYAHCAS ELEKTROSTATIK RADIO DUA HALA MENGGUNAKAN SIMULASI DAN TEKNIK PENGIMBASAN IMUNITI

ABSTRAK

Nyahcas elektrostatik (ESD) merupakan faktor utama kepada kegagalan dan kerosakan radio komunikasi dua hala. Kegagalan ralat anjal seperti kegagalan logik, selak-atas atau tersalah set boleh berlaku disebabkan ESD secara berlebihan. Secara umumnya diketahui bahawa peranti-peranti Semikonduktor Pelengkap Oksida-Logam (CMOS) amat terdedah kepada ESD. Kegagalan CMOS yang disebabkan oleh ESD boleh juga menyebabkan radio dua hala ditetapkan semula atau berhenti berfungsi sepenuhnya. Lazimnya, kegagalan ini hanya boleh diketahui selepas radio dipasang and diuji. Melalui kajian ini, satu kaedah baru telah dicipta untuk menguji risiko ESD pada peringkat litar radio. Vektor Poynting digunapakai untuk mengira kuasa yang diterima oleh litar bersepadu semasa berlakunya ESD. Melalui kaedah ini, radio dua hala telah dimodel secara 3-dimensi menggunakan piawaian IEC 61000-4-2. Model ini dapat memberikan satu gambaran mengenai penyebaran arus ESD di dalam Papan Litar Tercetak (PCB) dan satah bumi. Kuasa purata berpemberat masa (S_{twa}) yang dikira melalui produk silang di antara medan-E dan medan-H diguna secara meluas dalam permodelan, hasilnya nilai had maksimum sebanyak 3.7 W/m^2 telah ditetapkan untuk meramal kegagalan ESD. Keputusan simulasi komputer menunjukkan persetujuan yang baik dengan nilai yang telah diukur di dalam had toleransi. Kajian ini mendapati bahawa radio yang diperbaharui menggunakan batang logam mempunyai S_{twa} kurang dari had maksimum berbanding radio asal. Kajian ini juga meramal kegagalan ESD akan berlaku pada 8 kV and 11 kV bagi radio asal dan diperbaharui masing-masingnya. Hasil kajian ini juga menghasilkan satu skim baru bagi jurutera untuk menilai risiko ESD pada radio dua hala di peringkat PCB. Mengenalpasti komponen yang paling berisiko kepada ESD di peringkat awal juga bermakna kegagalan ESD dapat ditangani secukupnya sebelum pengeluaran secara besar-besaran.

PREDICTION OF ELECTROSTATIC DISCHARGE SOFT ERROR ON TWO-WAY RADIO USING SIMULATION AND IMMUNITY SCANNING TECHNIQUE

ABSTRACT

Electrostatic discharge (ESD) is a major cause of failures and malfunctions in two-way communication radio. Soft error failures like logic error, latch-up and wrong reset can occur as a result of the excessive ESD. It is a well-known fact that the Complementary Metal-Oxide-Semiconductor (CMOS) devices are more susceptible to ESD. The failure of CMOS ICs due to ESD can also cause radio to reset or shutdown completely. Presently the failures are detected after the radio is built and tested only. In this research, new methodology is developed to assess the ESD risk of two-way radio at circuit level. Poynting vector is used to calculate the incident power received by susceptible integrated circuit during ESD. In doing so the two-way radio is modeled in 3-D using the IEC 61000-4-2 standard. The result provides a graphical means to visualize the propagation of ESD current in Printed Circuit Board (PCB) and ground plane. Time-weighted average power density (S_{twa}) calculated as a cross product between E-field and H-field was used extensively in the modeling, from which a maximum limit of 3.7 W/m^2 , S_{twa} was established for predicting ESD failures. It was observed that results obtained through computer simulation agree well with measured values within some tolerance limit. It was also discovered that the improved radio with metal bar is well above this limit compared to the original radio. It is also predicted that the soft error due to ESD would occur at 11 kV and 8 kV for improved and original radio respectively. Results from this study provide a new scheme for engineers to assess ESD risk of two-way radio at PCB level. Identifying most susceptible component to ESD allows radio failures to be addressed adequately before mass production.

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Electrostatic discharge (ESD) is a discharge of electricity where a charge moves at different electrical potentials. ESD is a high voltage event which is generated from the released electrical energy through tribocharging or electrostatic induction. ESD can cause device failure during production, assembly, testing and at the user site. Among Integrated Circuit (IC) devices, Metal-Oxide-Semiconductor (MOS) is most susceptible to ESD damage (Unger (1981)). Complementary Metal-Oxide-Semiconductor (CMOS) IC can be very susceptible to system-level ESD stress although it has passed the component-level ESD specification (Yen and Ker (2007)). As ESD current is a source of system level failures, when the current flows through components or IC, it can cause a system failure (upset). The current induces electric fields (E) and magnetic fields (H) when travelling on the printed circuit boards (PCB), or any packaging components. This can lead to component malfunction and system failure (Voldman (2012)).

There are two types of ESD failure at system level - (i) ESD hard error failure (ii) ESD soft error failure. The hard error failure is commonly caused by physical destruction in interconnection inside a device or physical damage due to the high level of ESD current. The soft error failure is mainly caused by a logic error of IC such as glitches, abnormal interrupt request signal or signal inversions of the IC. The root cause of hard error failure is easily analyzed compared to soft error failure and it is traceable by finding the location of device breakdown. However it is difficult to find a root cause of ESD soft error failure because it is a temporary event and system is recovered after rebooting.

The history of electrostatic was not discovered until 600BC. Thales of Miletus began conducting experiments that involved charging amber by rubbing it with a piece of fur to observe an attraction to lightweight object such as fur and feather. In 1600, serious work in the field of electrostatic began with De Magnete, a book published by William Gilbert in the year 1600. Over the next several centuries, experiments by Gauss, Coulomb, Faraday and Franklin are established to understand the basis of electrostatics (Weitz (2015)).

From past history summarized in Table 1.1, the electrostatic discharge testing has evolved from a company based reliability test in the 1960s and 1970s to a performance test on electronic product. This requirement is that electronic products should operate normally when subjected to ESD phenomena by representing it in the real-world environment. The emphasis has switched from susceptibility of equipment to quote how immune a product to air-discharge and contact discharge from a portable ESD tester whose output is compliant with the latest international standard criteria (Hoolihan (2014)).

Table 1.1: Recent history of ESD testing of electronic product (Hoolihan (2014))

Decade	Event
1950s	- The electronic companies are concerned with the damage in electronic component and functional interruption of electronic products.
1960-1970	 Most companies started to use 5 kV then 7.5 kV discharge voltage as the passing level of ESD system level.
1980s	 The First International Electrotechnical Commission (IEC) Publication 801-2 was released in 1984 for air-discharge test method.
1990s	 Second edition of IEC 801-2 was released in 1991. Major change was to define the contact discharge mode as a preferred test method.
	- The first IEC 100-4-2 was released in 1995 for International Standard
	on Electrostatic Discharge Immunity test. It introduced Horizontal and
	vertical coupling planes on references.
	- Second edition of IEC 6100-4-2 was released in 2008 to replace
	the first edition in 1995. Key parameters of ED generator remain unchanged.