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RAMALAN RALAT ANJAL NYAHCAS ELEKTROSTATIK

RADIO DUA HALA MENGGUNAKAN SIMULASI DAN

TEKNIK PENGIMBASAN IMUNITI

ABSTRAK

Nyahcas elektrostatik (ESD) merupakan faktor utama kepada kegagalan dan kerosakan

radio komunikasi dua hala. Kegagalan ralat anjal seperti kegagalan logik, selak-atas atau

tersalah set boleh berlaku disebabkan ESD secara berlebihan. Secara umumnya diketahui

bahawa peranti-peranti Semikonduktor Pelengkap Oksida-Logam (CMOS) amat terdedah

kepada ESD. Kegagalan CMOS yang disebabkan oleh ESD boleh juga menyebabkan radio

dua hala ditetapkan semula atau berhenti berfungsi sepenuhnya. Lazimnya, kegagalan ini

hanya boleh diketahui selepas radio dipasang and diuji. Melalui kajian ini, satu kaedah baru

telah dicipta untuk menguji risiko ESD pada peringkat litar radio. Vektor Poynting

digunapakai untuk mengira kuasa yang diterima oleh litar bersepadu semasa berlakunya ESD.

Melalui kaedah ini, radio dua hala telah dimodel secara 3-dimensi menggunakan piawaian

IEC 61000-4-2. Model ini dapat memberikan satu gambaran mengenai penyebaran arus ESD

di dalam Papan Litar Tercetak (PCB) dan satah bumi. Kuasa purata berpemberat masa (Stwa)

yang dikira melalui produk silang di antara medan-E dan medan-H diguna secara meluas

dalam permodelan, hasilnya nilai had maksimum sebanyak 3.7 W/m2 telah ditetapkan untuk

meramal kegagalan ESD. Keputusan simulasi komputer menunjukkan persetujuan yang baik

dengan nilai yang telah diukur di dalam had toleransi. Kajian ini mendapati bahawa radio

yang diperbaharui menggunakan batang logam mempunyai Stwa kurang dari had maksimum

berbanding radio asal. Kajian ini juga meramal kegagalan ESD akan berlaku pada 8 kV and

11 kV bagi radio asal dan diperbaharui masing-masingnya. Hasil kajian ini juga menghasilkan

xix



satu skim baru bagi jurutera untuk menilai risiko ESD pada radio dua hala di peringkat PCB.

Mengenalpasti komponen yang paling berisiko kepada ESD di peringkat awal juga bermakna

kegagalan ESD dapat ditangani secukupnya sebelum pengeluaran secara besar-besaran.
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PREDICTION OF ELECTROSTATIC DISCHARGE SOFT

ERROR ON TWO-WAY RADIO USING SIMULATION AND

IMMUNITY SCANNING TECHNIQUE

ABSTRACT

Electrostatic discharge (ESD) is a major cause of failures and malfunctions in two-way

communication radio. Soft error failures like logic error, latch-up and wrong reset can occur

as a result of the excessive ESD. It is a well-known fact that the Complementary Metal-Oxide-

Semiconductor (CMOS) devices are more susceptible to ESD. The failure of CMOS ICs due to

ESD can also cause radio to reset or shutdown completely. Presently the failures are detected

after the radio is built and tested only. In this research, new methodology is developed to assess

the ESD risk of two-way radio at circuit level. Poynting vector is used to calculate the incident

power received by susceptible integrated circuit during ESD. In doing so the two-way radio

is modeled in 3-D using the IEC 61000-4-2 standard. The result provides a graphical means

to visualize the propagation of ESD current in Printed Circuit Board (PCB) and ground plane.

Time-weighted average power density (Stwa) calculated as a cross product between E-field and

H-field was used extensively in the modeling, from which a maximum limit of 3.7 W/m2,

Stwa was established for predicting ESD failures. It was observed that results obtained through

computer simulation agree well with measured values within some tolerance limit. It was also

discovered that the improved radio with metal bar is well above this limit compared to the

original radio. It is also predicted that the soft error due to ESD would occur at 11 kV and 8

kV for improved and original radio respectively. Results from this study provide a new scheme

for engineers to assess ESD risk of two-way radio at PCB level. Identifying most susceptible

component to ESD allows radio failures to be addressed adequately before mass production.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction

Electrostatic discharge (ESD) is a discharge of electricity where a charge moves at different

electrical potentials. ESD is a high voltage event which is generated from the released

electrical energy through tribocharging or electrostatic induction. ESD can cause device

failure during production, assembly, testing and at the user site. Among Integrated Circuit

(IC) devices, Metal-Oxide-Semiconductor (MOS) is most susceptible to ESD damage (Unger

(1981)). Complementary Metal-Oxide-Semiconductor (CMOS) IC can be very susceptible to

system-level ESD stress although it has passed the component-level ESD specification (Yen

and Ker (2007)). As ESD current is a source of system level failures, when the current flows

through components or IC, it can cause a system failure (upset). The current induces electric

fields (E) and magnetic fields (H) when travelling on the printed circuit boards (PCB), or any

packaging components. This can lead to component malfunction and system failure (Voldman

(2012)).

There are two types of ESD failure at system level − (i) ESD hard error failure (ii) ESD

soft error failure. The hard error failure is commonly caused by physical destruction in

interconnection inside a device or physical damage due to the high level of ESD current. The

soft error failure is mainly caused by a logic error of IC such as glitches, abnormal interrupt

request signal or signal inversions of the IC. The root cause of hard error failure is easily

analyzed compared to soft error failure and it is traceable by finding the location of device

breakdown. However it is difficult to find a root cause of ESD soft error failure because it is a

temporary event and system is recovered after rebooting.
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The history of electrostatic was not discovered until 600BC. Thales of Miletus began

conducting experiments that involved charging amber by rubbing it with a piece of fur to

observe an attraction to lightweight object such as fur and feather. In 1600, serious work in

the field of electrostatic began with De Magnete, a book published by William Gilbert in the

year 1600. Over the next several centuries, experiments by Gauss, Coulomb, Faraday and

Franklin are established to understand the basis of electrostatics (Weitz (2015)).

From past history summarized in Table 1.1, the electrostatic discharge testing has evolved

from a company based reliability test in the 1960s and 1970s to a performance test on

electronic product. This requirement is that electronic products should operate normally when

subjected to ESD phenomena by representing it in the real-world environment. The emphasis

has switched from susceptibility of equipment to quote how immune a product to

air-discharge and contact discharge from a portable ESD tester whose output is compliant

with the latest international standard criteria (Hoolihan (2014)).

Table 1.1: Recent history of ESD testing of electronic product (Hoolihan (2014))

Decade Event

1950s − The electronic companies are concerned with the damage in
electronic component and functional interruption of electronic products.

1960-1970 −Most companies started to use 5 kV then 7.5 kV discharge voltage as
the passing level of ESD system level.

1980s − The First International Electrotechnical Commission (IEC)
Publication 801-2 was released in 1984 for air-discharge test method.

1990s − Second edition of IEC 801-2 was released in 1991. Major change was
to define the contact discharge mode as a preferred test method.
− The first IEC 100-4-2 was released in 1995 for International Standard
on Electrostatic Discharge Immunity test. It introduced Horizontal and
vertical coupling planes on references.
− Second edition of IEC 6100-4-2 was released in 2008 to replace
the first edition in 1995. Key parameters of ED generator remain
unchanged.
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