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Abstrak 

 

Kebelakangan ini, penyelidik telah mula untuk meneroka penggunaan algorithma 

kecerdasan buatan (AI) sebagai strategi t-hala (di mana t menunjukkan kekuatan 

interaksi) dan pemboleh ubah.  Pelbagai strategi berasaskan kecerdasan buatan telah 

dibangunkan, seperti Koloni Semut, Simulasi Penyepuhlindapan, Algoritma Genetik, dan 

Pencarian Tabu.Walaupun berguna, strategi berasaskan kecerdasan buatan sedia ada 

mengguna pakai proses carian yang rumit dan memerlukan pengiraan pengkomputeran 

yang berat.Oleh yang demikian, strategi berasaskan kecerdasan buatan sedia ada terbatas 

kepada kekuatan interaksi kecil (iaitu, t ≤ 3) dan konfigurasi ujian kecil.Kajian terkini 

menunjukkan keperluankekuatan t = 6 bagi  mengesan kebanyakan kesilapan. Tesis ini 

membentangkan reka bentuk dan pelaksanaan strategi penjana ujian interaksi baru, yang 

dikenali sebagai Penjana Ujian Partikel Kawanan (PSTG), untuk menghasilkan ujian t-

hala dan kekuatan pemboleh ubah.Tidak seperti strategi berasaskan kecerdasan buatan 

sedia ada, proses carian pengkomputeran yang lebih ringan membolehkan PSTG 

menyokong kekuatan interaksi yang tinggi sehingga t = 6. Prestasi PSTG dinilai dengan 

menggunakan beberapa set eksperimen penanda aras. Secara perbandingan, PSTG 

berjaya mengatasi strategi berasaskan kecerdasan buatan dan strategi-strategi lain sedia 

ada secara konsisten dari segi saiz ujian.Tambahan pula, kajian 

kesmenunjukkankeberkesananPSTGuntuk mengesankomponen interaksi kemasukan 

bermasalah. 

MENGGUNA PAKAI STRATEGI PENJANA UJIAN 

BERDASARKAN PARTIKEL KAWANAN UNTUK KEKUATAN 

PEMBOLEH UBAH DAN T-HALA 
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Abstract 

 

Recently, researchers have started to explore the use of Artificial Intelligence (AI)-based 

algorithms as t-way (where t indicates the interaction strength) and variable-strength 

testing strategies. Many AI-based strategies have been developed, such as Ant Colony, 

Simulated Annealing, Genetic Algorithm, and Tabu Search. Although useful, most 

existing AI-based strategies adopt complex search processes and require heavy 

computations. For this reason, existing AI-based strategies have been confined to small 

interaction strengths (i.e., t≤3) and small test configurations. Recent studies demonstrate 

the need to go up to t=6 in order to capture most faults. This thesis presents the design 

and implementation of a new interaction test generation strategy, known as the Particle 

Swarm-based Test Generator (PSTG), for generating t-way and variable-strength test 

suites. Unlike other existing AI-based strategies, the lightweight computation of the 

particle swarm search process enables PSTG to support high interaction strengths of up to 

t=6. The performance of PSTG is evaluated using several sets of benchmark experiments. 

Comparatively, PSTG consistently outperforms its AI counterparts and other existing 

strategies as far as the size of the test suite is concerned. Furthermore, the case study 

demonstrates the usefulness of PSTG for detecting faulty interactions of the input 

components. 

ADOPTING A PARTICLE SWARM-BASED TEST GENERATOR 

STRATEGY FOR VARIABLE-STRENGTH AND T-WAY TESTING 
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CHAPTER 1   

 

 

INTRODUCTION 

 

 

1.1 Overview 

 

Nowadays, our dependencies on software are gradually increasing, as many kinds of 

software have become a part of our daily lives. We use software in life-saving or safety 

applications, for example. With this increase of its applications in the last 20 years, 

software has grown tremendously in terms of size (i.e. line of codes (LOCs)), and 

functionality. In the old days, there was hardly any commercial software with more than 

15K LOCs (Jones, 1998, DeMarco, 1995). Nowadays, such a phenomenon has changed 

completely. It is now common to have commercial software that has more than a 

million LOC (Tan et al., 2006). Moreover, the current trend in the software industries is 

to produce large integrated software systems for applications in our life, which consist 

of a set of interconnected parts with individually related programs, rather than 

individual parts with individual programs (Williams and Probert, 2002, Cohen et al., 

2008).  

 

Unlike the old days, the development lifecycle of these software systems passes through 

several stages and comprehends different activities that need to be harmonized carefully 
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in order to meet the required user’s specifications. Generally, those activities can be 

classified into two important activities, which are activities to construct the software 

product and activities to check the quality of the produced software (Baresi and Pezzè, 

2006). Although the construction of the product is important, however, checking the 

quality, which is called the “quality process”, represents the most important part of the 

software development lifecycle as it spans through the whole cycle (Baresi and Pezzè, 

2006).  

 

In general, not only in the software systems, the concept of quality started from old days 

when people tried to find a satisfactory quality in every man-made object. With the 

explosion of the Internet in the past couple of decades, the quality revolution has started 

to disseminate throughout the world rapidly. Soon after that, companies realized that the 

success in the new global economy requires quality products to be developed. To 

improve the quality, at the first time, all efforts are concentrated on improving the 

quality of the product at the end of production. However, the recent approach to 

improve the quality is to extend the efforts to the whole stages of production from the 

analysis of the requirements until the delivery of the product to the customer to 

emphasize the detection and correction of defects. In other words, every single stage in 

the development cycle must be completed to the highest possible standard (Naik and 

Tripathy, 2008). 

 

As a complex logic product, software may suffer from different source of faults and 

defects from the requirement analysis and specification preparation until the delivery to 
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the customer. To this end, Software Quality Assurance (SQA) activities have been 

defined to develop high quality software products by assuring that the produced 

software and the procedures, tools, and techniques used during the software 

development and modification are adequate (Iacob and Constantinescu, 2008). 

 

The quality process gained importance because each development stage may suffer 

from different errors and faults, which must be detected as early as possible in order to 

prevent its propagation to the whole software and reduce the cost of verification (Baresi 

and Pezzè, 2006). In other words, quality engineers must involve from the beginning of 

the software development process to assure the required quality from the users and the 

industrial perspective (Schulmeyer, 2008). 

 

Among those broader activities involved in SQA, testing plays an important role to 

attain and assess the quality of  software and to standardize and demonstrate knowledge 

of the quality process (Iacob and Constantinescu, 2008, Patton, 2005). This testing 

process helps to deduce its correct operation as a logical consequence of the design 

decisions and provides a realistic and practical way to analyze and understand the 

behaviour of the produced software-under-test (Burnstein, 2003). Moreover, it assesses 

how good the produced software is, before shipping to the costumer, by repeating the 

cycle “test-find defects–fix” during the development (Naik and Tripathy, 2008).  

 

Therefore, the role of the tester always is to manage or mitigate the faults, risk, and 

failure of the system and the undesirable effects they may have on the user (Hass, 
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2008). The effect can be tedious when a computer game doesn't work properly for 

example, or it can be fatal and lead to loss of life (Patton, 2005, Xinxing and Yixiang, 

2010). This in turn explains why testing consume more than 40-50% of the 

development costs (Carroll, 2003b, Bertolino, 2007, Carroll, 2003a, Pendharkar, 2010). 

 

The main responsibility of the software tester is to design tests that can reveal faults and 

defects in the software-under-test (Burnstein, 2003, Hass, 2008). To this end, a finite 

number of test cases must be selected by the tester from a large input domain. Due to 

the time and resource constraints, the tester must select the test cases properly and 

smartly to ensure an effective utilization of the resources and time allocated for the job. 

Using all possible inputs and exercise all possible software configurations (known as 

exhaustive testing) may enable the tester to detect all faults and defects. However, 

realistically and economically this is not a feasible technique for testing. Hence, there is 

a need to develop effective test cases that have good possibilities to reveal the faults and 

defects (Burnstein, 2003). 

 

The use of effective test cases has many positive consequences like increasing the 

probability of detecting faults and using the organizational resources more efficiently 

(Burnstein, 2003). To help achieve these positive consequences, different test case 

design techniques have emerged. To detect deferent types of faults, normally, more than 

one technique is used because when a fault is detected by a technique, some other faults 

may not be detected by the same technique.  
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1.2 Problem Statements 

 

With the tremendously growing of software systems, more often unwanted interactions 

among the components are to be expected, rendering increased possibility of faults. 

While traditional test case design techniques are useful for fault detection and 

prevention, they may not be sufficient to tackle faults due to interaction, especially for 

multiple input software systems (Cohen et al., 2007, Williams and Probert, 2001, 

Schroeder and Korel, 2000). Addressing this issue, many t-way strategies (whereby t 

indicates the interaction strength) have been developed in the literature in the last 15 

years. Indeed, t-way strategies help to search and generate a set of tests, which forms a 

complete suite that covers the required interaction strength at least once from a typically 

large space of possible test values. This mechanism uniformly covers t-interactions of 

the system components to generate the test cases. 

 

Although useful, most t-way strategies assume uniform or fixed interaction, which 

means that the same interaction among all components of the system is being tested. 

However, the assumption that all interactions are uniform is not always true in many 

real applications (Afzal et al., 2009, Yilmaz et al., 2004a). For instance, the typical 

system may have a 100% two-way (pairwise) interactions among the components, but a 

subset of the components may also have a 100% three-way (or higher) interactions. 

Therefore, the strength of interaction might vary and be non-uniform during the testing 

process of the system component values. Thus, variable-strength interactions need to be 
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considered because sometimes they represent a more practical and flexible approach 

than t-way testing (Nie and Leung, 2011). 

 

Viewing both cases (i.e., t-way and variable-strength test suite construction) as a hard 

computational optimization problem (Seroussi and Bshouty, 1988, Yu and Tai, 1998, 

Yilmaz et al., 2004a, Kuliamin and Petukhov, 2011, Afzal et al., 2009), searching for 

the optimal set of test cases is NP hard (Lei et al., 2008, Yu and Tai, 1998), i.e., 

searching for an optimum set of test cases can be a painstakingly difficult task, and it is 

challenging to find a unified strategy that generates optimum results all the times. In 

addition, an increase in the parameter size causes an exponential increase in the 

computational time as well as in the degree of problem complexity (Yu and Tai, 1998, 

Danziger et al., 2009). In order to solve this problem, many artificial intelligence (AI)-

based strategies have been developed to find near optimal solutions (Shiba et al., 2004, 

Nurmela, 2004, Yuan et al., 2011, Danziger et al., 2009).  

 

Although useful, most existing AI-based strategies require complex computations, e.g., 

in terms of the need to deal with mutations, crossovers, and the local minima problem 

(Jarboui et al., 2007, Panda and Padhy, 2008, Afzal et al., 2009, Anagnostopoulos and 

Kotsikas, 2010). For example, due to the need to interact with both the peers and the 

environment in order to update and exchange information, adopting Genetic Algorithm 

(GA) or Ant Colony Algorithm (ACA) as a general strategy for interaction test suite 

generation appears computationally expensive (Jarboui et al., 2007, Panda and Padhy, 

2008, Afzal et al., 2009), especially for high interaction strengths (t). In the case of high 
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interaction strength, there can potentially be large combinatorial values to be 

manipulated and search for (Afzal et al., 2009, Pargas et al., 1999). Strategies based on 

Simulated Annealing (SA) and Tabu Search (TS) on the other hand, appear particularly 

effective. These strategies often give optimal results for small test configurations; but 

they suffer from the local minima problem (Anagnostopoulos and Kotsikas, 2010, 

Osman, 1993). For these reasons, existing AI-based strategies have been confined to 

small interaction strengths (i.e., t≤3) or small test configurations (Cohen et al., 2003, 

Chen et al., 2009, Wang et al., 2008, Shiba et al., 2004). However, in order to be 

effective, recent studies and empirical evidence demonstrate the need to go up to t=6 to 

capture most faults (Kuhn and Reilly, 2002, Kuhn et al., 2004, Dalal et al., 1999, Yuan 

et al., 2011). As such, the exploration and implementation of other strategies with 

lightweight computation is essential. 

 

Particle Swarm Optimization (PSO) has proven its effectiveness in many research areas 

(Ganjali, 2008, Windisch et al., 2007, Jarboui et al., 2007, Panda and Padhy, 2008, 

Afzal et al., 2009). The effectiveness of PSO is due to three main features, namely, 

recombination, mutation, and selection (Padhy, 2009). With regard to recombination, 

PSO does not have a direct recombination operator despite the stochastic acceleration of 

a particle toward its previous best position resembling the recombination procedure of 

other techniques. Instead, it manages information exchange only between the possession 

experience of the particle and the experience of the best particle in the swarm. In terms 

of mutation, the standard PSO method has the advantage of not using evolutionary 

operators such as crossover and mutation (Liang et al., 2006, Liu and Maghsoodloo, 
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2011), thereby enabling a lighter computational load. For selection, PSO does not use 

the survival of the fittest concept, denoting that it does not use direct selection. 

Therefore, during optimization, particles with lower fitness values can survive and 

likely visit any point of the search space (Padhy, 2009). 

 

Due to such alluring prospects whilst complementing earlier work on t-way and 

variable-strength strategies, this thesis presents the design and implementation of a new 

strategy called (Particle Swarm-based Test Generator) PSTG. As the name suggests, 

PSTG generates the interaction test suites using Particle Swarm Optimization (PSO). 

Thus, it is the hypothesis that suggests the adoption of PSO is useful for t-way and 

variable-strength test suite generation. 

 

 

1.3 Aim and Objectives 

 

The aim of the research is to design, implement, and evaluate a new interaction testing 

strategy, called Particle Swarm Test Generator (PSTG), for constructing t-way and 

variable interaction strength test suites based on Particle Swarm Optimization. To 

realize this aim, the following objectives are adopted: 

i. To investigate the application of Particle Swarm Optimization for PSTG’s 

design and implementation in order to support t-way and variable-strength test 

suites construction. 
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ii. To investigate and evaluate the performance of the PSTG strategy against other 

computational and AI-based strategies in term of the generated test suite size. 

iii. To investigate and evaluate the effectiveness of the test suites generated by the 

PSTG strategy for interaction fault detection. 

 

 

1.4 Methodology of the Research 

 

Overall, the research’s methodology is divided mainly into three phases.  

 

i. Literature review: in this phase, the literature survey is undertaken to establish 

the state-of-the-art on interaction testing. The literature starts by reviewing the 

importance of the software testing in the software quality assurance process. By 

establishing this importance, the existing sampling and test design techniques 

are reviewed also and the importance of the interaction testing as 

complementary technique in software test design is established. Then, the 

existing literature of interaction testing strategies is reviewed to identify the 

features and drawbacks of the strategies and techniques. Based on the literature 

review survey, the requirement of the research is established in this phase. From 

the requirement, how the PSO, t-way, and variable-strength algorithms will be 

implemented is decided here. 
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ii. Design and Implementation: here, the adoption of PSO is established and the 

required algorithms are decided. Then, the complete algorithms making up the 

PSTG strategy are designed, implemented, and optimized in this phase. In 

addition, the parameter tuning of the strategy is performed here also. 

 

iii. Evaluation, Benchmarking, and Case study: experiments with well-known 

benchmarking configuration as well as a case study are undertaken in this phase 

to investigate and evaluate the performance and effectiveness of the strategy. 

 

To illustrate how the aforementioned phases are related, Figure 1-1 summarizes the 

research’s activities. 
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Figure 1-1 The Research’s Activities and Flow 
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1.5 Thesis Organization 

 

This thesis is organized into five chapters. The rest of the thesis is organized as follows. 

Chapter 2 reviews the state-of-the-art for the software interaction testing and test case 

generation strategies. The chapter starts by introducing the test case design techniques 

and illustrating how the test cases are selected in each technique. Then, a simple e-

commerce model is given as a configurable software system to illustrate the t-way and 

variable-strength interaction testing. Thereafter, the chapter provides an extensive 

elaboration to understand how the interaction elements could be generated and how they 

could be covered. A theoretical background for interaction testing is then given. Finally, 

the chapter discusses and examines the existing literatures on t-way and variable-

strength test suites generation strategies and different applications of interaction testing. 

 

Chapter 3 outlines the design and implementation of the PSTG strategy, including its 

corresponding algorithms. The chapter illustrates each algorithm in brief with examples. 

The chapter also gives the justifications for using PSO and how to use it in the strategy. 

Finally, the chapter shows how the design parameters of the PSO are tuned to achieve 

the best possible result. 

 

Chapter 4 highlights the evaluation of PSTG. Benchmarking of PSTG is undertaken to 

evaluate its competitiveness by comparing the results achieved with those published and 

publicly available well-known strategy implementations. In addition, the chapter 

presents a case study using a reliable artifact to demonstrate the applicability and 
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effectiveness of the test suites generated by PSTG. The presentation of the evaluation 

results in each stage and the case study is accompanied by the analysis. 

 

Finally, in Chapter 5, the conclusions of the research are presented as well as the 

findings and contributions of the research are highlighted clearly. In addition, the 

chapter highlights the possible future works as a continuation of this work.  
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CHAPTER 2   

 

 

LITERATURE REVIEW 

 

 

In the previous chapter, the basic concepts of software quality assurance and software 

testing have been discussed. In addition, the importance of interaction testing as a 

compromise to exhaustive testing whilst complementing existing test case design 

techniques is elaborated.  

 

Complementing the previous chapter, this chapter introduces the necessary background 

concepts and literature relating to interaction testing. To realize the usefulness of 

interaction testing, the chapter starts by reviewing three well-known test design 

techniques. Then, the problem of t-way and variable-strength interaction testing is 

identified using a modern e-commerce model. After that, a systematic example is given 

to illustrate how an interaction testing strategy works using the interaction elements 

generation and coverage mechanism. Next, the theoretical background, notations, and 

definitions for interaction testing are presented. Finally, the existing literature on t-way 

and variable-strength interaction is reviewed by identifying the generation strategies and 

the recent use of t-way and variable-strength interaction testing in different software 

testing applications.  
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2.1 Test Case Design Techniques 

 

As mentioned previously, an important part of the testing process is the preparation of 

the appropriate test cases. To realize the importance of test case design techniques, the 

following sub sections highlight three well-known techniques and illustrate each 

technique with simplified examples. 

 

2.1.1 Equivalence Class Partitioning 

 

The equivalence class partitioning technique is used for designing test cases when the 

inputs and the outputs of the software-under-test are well-defined (Burnstein, 2003). In 

such a technique, the inputs are partitioned into classes that receive equivalent 

treatment. The test cases are selected by considering a test case for each class to be a 

representative of that class supposing that all the members of that class are processed 

equivalently by the software-under-test (Hass, 2008). In other words, the value of any 

test case in a class partition is supposed to be equivalent to any other test case in that 

partition (Sharma and B., 2010). Hence, if a fault is detected by a test case in the class 

partition, it supposed to be detected by the other test cases in the same partition (Myers, 

2004). Figure 2-1 represents a simple example to illustrate this technique clearly.  
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Figure 2-1 A Simple Application to Illustrate Equivalence Partitioning Technique 

 

The example in Figure 2-1 represents a simple application to calculate the ticket’s price 

after the fare considering the age of the costumer. The fare depends mainly on the age 

of costumer. For example, the tickets for children under 5 years old are free, and those 

aged between 5-15 years old will receive 50% discount, while those over 65 years old 

get a 25% discount. It should be noted here that no discount is given for age range 

between 16 to 64 years. Indeed, there are a finite number of age values that could be 

tested for the program. However, practically it is impossible to test all those values. 

Hence, equivalence class partitioning is used here to partition the values of the age into 

classes depending on the fare. Clearly, in this example, there are four classes of the age, 

those under the age of five years, those over the age 65 years, those between 5 and 15, 

and those between 16 and 64. To test the fare feature of the software, it is desirable to 

choose one value from each class partition, the middle value if possible. Therefore, 2, 

10, 40, and 70 are needed to undertake the equivalence partition testing. 
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2.1.2 Boundary Value Testing and Analysis 

 

While the equivalence class partitioning technique leads to select the test cases from the 

equivalence class, many faults could also occur exactly on, above, and below the edges 

of equivalence classes (Myers, 2004, Burnstein, 2003). Boundary value analysis is a test 

case design technique in which tests are selected to include representatives of boundary 

values.  

 

For the example in Figure 2-1, the boundaries are at ages 0, 5, 15, and 65. Using the 

boundary value technique, the tester has to choose test values on and at either side of 

each boundary. Therefore, the tester must consider (-1, 0, 1), (4, 5, 6), (14, 15, 16), and 

(64, 65, 66) as test cases. 

 

2.1.3 Cause and Effect Graphing 

 

Cause and effect graphing (CEG) is another test case design technique used to validate a 

given software from its specification. In contrast with the aforementioned techniques, 

which are important for data processing intensive applications, the CEG is used with the 

control intensive application (Srivastava et al., 2009). The test cases in such a technique 

are designed to represent the input events (or causes) and the corresponding actions (or 

effects) (Naik and Tripathy, 2008). The cause is an input condition in the specification 

that may affect the output of the program, whereas the effect is the response of the 

program to any combination of input conditions (Srivastava et al., 2009). 
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With this technique, the tester first identifies the causes, effects, and constraints from 

the specification of the software-under-test. Then, the cause and effect graph is 

constructed as combinational logic network graph. The graph consists of nodes, which 

represent the causes and effects, constraints, and arcs with Boolean operators (and, or, 

not) between causes and effects. A unique identifier for each cause and effect is 

assigned then, and the relationship between causes and effects is marked on the cause 

and effect graph. Hereafter, the cause and effect graph is transformed to a decision table 

to prepare the test cases. 

 

For the aforementioned example in Figure 2-1, suppose that the specification of the 

application states that the name field in the application should not contain any special 

characters or numbers and its length should not exceed a specific length. If the length of 

the name is out-of-range an error message will appear, and if the name contains special 

characters the message “not valid” will appear. Otherwise, the price of the ticket will 

appear. Hence, the input conditions, or causes are C1: The length of the name from 1 to 

80, and C2: The name without special characters. Whereas, the output conditions or 

effects are E1: The name is out-of-range, E2: The price of the ticket, and E3: The name 

is not valid. Based on these causes and effects, the relationships of the CEG can be 

identified as shown in Figure 2-2. 
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Figure 2-2 The CEG for the Example in Figure 2-1 

 

The next step is to develop a decision table. Each row in the table is dedicated for a 

cause or an effect. The cells in the table can be filled by “0”, “1”, or “*”. The “1” 

indicates the inclusion of a cause or effect, a “0” indicates the exclusion or absence of a 

cause or effect, while the “*” indicates a “don’t care” value. Therefore, the decision 

table could be summarized in Table 2-1, where columns T1, T2, T3 represent the test 

cases. 

Table 2-1 The Decision Table for the CEG in Figure 2-2 
 

 T1 T2 T3 

C1 1 1 0 

C2 1 0 * 

E1 0 0 1 

E2 1 0 0 

E3 0 1 0 
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2.2 A Problem Definition Model for Interaction Testing 

 

A simple model to illustrate the t-way and variable-strength interaction is used here. 

Figure 2-3 represents the topology of a modern e-commerce configurable software 

system based on the Internet. The system may use different components or parameters. 

In this thesis, the term “parameter” (or P) is used to describe the components of the 

system similar to its usage in the literature. In this example, the system consists of five 

parameters. The client side has two parameters or two types of clients: those who use 

smart phones and those who use normal computers. There are different configurations 

in both cases. On the other side are different servers and databases. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 An e-Commerce Configurable Software System 
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The term “value” (or v) is used to describe the configuration of each component. Thus, 

the system in Figure 2-3 can be summarized as a five-parameter system with a 

combination of three parameters with two values, and two parameters with three values, 

as in Table 2-2. 

 

Table 2-2 The e- Commerce System Components and Configurations 

 Components or Parameters 
Payment 
Server 

Smart 
Phone 

Web 
Server 

User 
Browser 

Business 
Database 

Configurations 
or Values 

Master Card iPhone iPlanet Chrome SQL 
Visa Card Blackberry Apache Explorer Oracle 

   Firefox Access 
 

Different testing technique could be useful for this software system, but unexpected 

interactions between parameters is a common source of software fault (Williams and 

Probert, 2001). This risk increases when the number of parameters increases. To reduce 

this risk and ensure the quality of such software, manufacturers may need to test all 

combinations (i.e., exhaustive testing) or interactions among parameters, which requires 

72 test cases (i.e., 2×2×2×3×3). However, all pairwise (two-way) interactions of the 

system parameters can only be tested using nine samples (i.e., test cases) as shown in 

the first nine test cases in Table 2-3. Although this will minimize the test cases and 

cover all pairwise interactions, testing the interactions between two servers (Web server 

and payment server) and the business database may be necessary to ensure that there are 

no interaction problems arise among the parameters. One way to achieve this is to 

compute the two-way test cases for all five parameters, then compute three-way test 

cases for all three parameters (Web server, payment server, and the business database), 
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which results in 21 test cases. However, this will require higher expenses due to the 

large amount of test cases, particularly in highly configurable systems. Another way to 

achieve two- and three-way test cases simultaneously is to combine them in one test 

suite. Hence, minimal coverage across the parameters is maintained and there is no need 

to run all 72 or 21 test cases. The test suite shown in Table 2-3 provides the variable-

strength coverage for the system in Figure 2-3 with only 12 test cases by using the nine 

pairwise test cases and adding the last three test cases.  

 

Table 2-3 The Pairwise and Variable-Strength Test Suite for the System in Table 2-1 

Test 
No. 

Payment 
Server 

Smart 
Phone 

Web 
Server 

User 
Browser 

Business 
Database 

1 Master Card Blackberry Apache Firefox Oracle 
2 Visa Card iPhone iPlanet Explorer Oracle 
3 Visa Card iPhone Apache Chrome SQL 
4 Master Card Blackberry iPlanet Chrome Access 
5 Master Card Blackberry iPlanet Explorer SQL 
6 Visa Card iPhone iPlanet Firefox Access 
7 Master Card iPhone Apache Explorer Access 
8 Visa Card Blackberry iPlanet Chrome Oracle 
9 Visa Card Blackberry iPlanet Firefox SQL 

10 Master Card Blackberry iPlanet Explorer Oracle 
11 Master Card iPhone Apache Firefox SQL 
12 Visa Card Blackberry Apache Chrome Oracle 

 

As a result, it is essential to define and create test suites with t-way and variable-

strength interactions, especially when the interactions grown. Finding efficient ways to 

construct the test suite within a minimum test size is also advantageous to save cost and 

time, especially for highly configurable systems. 
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2.3 Understanding the Interaction Coverage 

 

In order to understand how the interaction test suites are constructed and how the 

interaction elements are covered, the following simplified example is considered. The 

example in Table 2-4 represents a system with three input parameters (P1, P2, and P3) 

each of which having two values (0 and 1).  

 

Table 2-4 A Simplified Example for a System with 3 Parameters 2 Values 

 Input Parameters 

 P1 P2 P3 

Values 
0 0 0 
1 1 1 

 

Here, as illustrated previously, the exhaustive test suite or the full strength (i.e., t=3) of 

the system could be achieved using eight test cases (i.e., 23 ) as in the Figure 2-4. 

 

Figure 2-4 The Exhaustive Test Suite for the System in Table 2-4 
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When the number of parameters and values are grown, this exhaustive test suite grows 

exponentially. By considering pairwise interaction test suite as a compromise test suite, 

the number of test cases can be reduced significantly with full coverage of the 

interaction elements. The number of these interaction elements can be predicted 

mathematically using the following equation (Colbourn and Dinitz, 2006).  

Interaction Elements =  
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The interaction elements were constructed by taking all the combination of system 

parameters then assign the related values for each combination. Figure 2-5 shows all the 

pairwise interaction elements for the system in Table 2-4. 

 

Figure 2-5 Total Pairwise Interaction Elements for the System in Table 2-4 

 

The interaction test suite tends to cover all the interaction elements at least once to 

ensure that all the interactions are tested. The coverage of the interaction elements 

depends on how the test case is constructed. A test case could cover one or more 

interaction element depending on the arrangement of the test case itself. For the above 

example, Figure 2-6 illustrates how the test case can cover the interaction elements.  
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Figure 2-6 An Example to Illustrate the Interaction Elements Coverage for the System 
in Table 2-4 

 

In the figure, 100% coverage of all the pairwise interactions could be achieved by only 

four test cases. However, it could be achieved by more test cases if other test cases are 

chosen rather than those test cases in the figure. As illustrated in Figure 2-7 clearly, the 

test case (0,0,0) covers 25% of the pairwise interaction elements when it is covering 

three interactions. By considering the next test case i.e., (0,1,1), three more interactions 
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