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SUBORDINASI DAN KONVOLUSI FUNGSI MULTIVALEN DAN
PENJELMAAN KAMIRAN BAK–BINTANG

ABSTRAK

Tesis ini membincangkan fungsi analisis dan fungsi multivalen yang tertakrif

pada cakera unit terbuka U . Umumnya, fungsi-fungsi tersebut diandaikan ternor-

mal, sama ada dalam bentuk

f(z) = z +
∞∑
k=2

akz
k,

atau

f(z) = zp +
∞∑
k=1

ak+pz
k+p,

dengan p integer positif tetap. Andaikan A sebagai kelas yang terdiri daripada

fungsi-fungsi f dengan penormalan pertama, manakala Ap terdiri daripada fungsi-

fungsi f dengan penormalan kedua. Tesis ini mengkaji lima masalah penyelidikan.

Pertama, andaikan f (q) sebagai terbitan peringkat ke-q bagi fungsi f ∈ Ap.

Dengan menggunakan teori subordinasi pembeza, syarat cukup diperoleh agar

rantai pembeza berikut dipenuhi:

f (q)(z)

λ(p; q)zp−q
≺ Q(z), atau

zf (q+1)(z)

f (q)(z)
− p+ q + 1 ≺ Q(z).

Di sini, Q ialah fungsi superordinasi yang bersesuaian, λ(p, q) = p!/(p − q)!, dan

≺ menandai subordinasi. Sebagai hasil susulan penting, beberapa kriteria sifat

univalen dan cembung diperoleh bagi kes p = q = 1.

Sifat bak-bintang terhadap titik n-lipat juga diitlakkan kepada kes fungsi mul-
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tivalen. Hal ini melibatkan fungsi-fungsi f ∈ Ap yang memenuhi subordinasi

1

p

zf ′(z)

1
n

n−1∑
k=0

εn−kf(εkz)

≺ h(z),

dengan h sebagai fungsi cembung ternormalkan yang mempunyai bahagian nyata

positif serta h(0) = 1, n integer positif tetap, dan ε memenuhi εn = 1, ε 6= 1.

Dengan cara yang serupa, kelas fungsi p-valen cembung, hampir-cembung dan

kuasicembung terhadap titik n-lipat diperkenalkan, serta juga fungsi p-valen bak-

bintang dan fungsi cembung terhadap titik simetri n-lipat, titik konjugat dan titik

konjugat simetri. Sifat rangkuman kelas dan konvolusi bagi kelas-kelas tersebut

dikaji.

Sifat mengawetkan rangkuman bagi pengoperasian kamiran juga diperluaskan.

Dua pengoperasian kamiran F : An×U2 → A dan G : An×U2 → A dibincangkan,

dengan

F (z) = Ff1,··· ,fn;z1,z2(z) =

∫ z

0

n∏
j=1

(
fj(z2ζ)− fj(z1ζ)

(z2 − z1)ζ

)αj
dζ (z1, z2 ∈ U),

G(z) = Gf1,··· ,fn;z1,z2(z) = z
n∏
j=1

(
fj(z2z)− fj(z1z)

(z2 − z1)z

)αj
(z1, z2 ∈ U).

Pengoperasian tersebut merupakan pengitlakan hasil kajian-kajian terdahulu. Sifat

mengawetkan bak-bintang, cembung, dan hampir-cembung dikaji, bukan sahaja

bagi fungsi fj yang terletak di dalam kelas-kelas tertentu, tetapi juga bagi fungsi

fj yang terletak di dalam kelas fungsi bak-bintang ala Ma-Minda dan cembung

ala Ma-Minda.

Satu penjelmaan kamiran menarik yang mendapat perhatian pelbagai kajian
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dewasa ini ialah Vλ : A → A dengan

Vλ(f)(z) :=

∫ 1

0
λ(t)

f(tz)

t
dt.

Di sini λmerupakan fungsi nyata tak negatif terkamirkan pada [0, 1] yang memenuhi

syarat
∫ 1

0 λ(t)dt = 1. Penjelmaan tersebut mempunyai penggunaan signifikan

dalam teori fungsi geometri. Tesis ini mengkaji sifat bak-bintang penjelmaan Vλ

pada kelas

Wβ(α, γ) :=

{
f ∈ A : ∃φ ∈ R with Re eiφ

(
(1− α + 2γ)

f(z)

z

+ (α− 2γ)f ′(z) + γzf ′′(z)− β
)
> 0, z ∈ U

}

dengan menggunakan Prinsip Dual. Sebagai hasil susulan penting, nilai terbaik

β < 1 diperoleh yang mempastikan fungsi-fungsi f ∈ A yang memenuhi syarat

Re
(
f ′(z) + αzf ′′(z) + γz2f ′′′(z)

)
> β

in U adalah semestinya bak-bintang pada U . Contoh-contoh penting turut diban-

gunkan sepadan dengan pilihan tertentu fungsi teraku λ.

Tesis ini diakhiri dengan memperkenalkan dua subkelas multivalen pada Ap.

Kelas-kelas tersebut terdiri daripada fungsi bak-bintang parabola teritlak per-

ingkat α jenis λ, ditandai SPp(α, λ), dan kelas fungsi cembung parabola peringkat

α jenis λ, ditandai CPp(α, λ). Kedua-dua kelas tersebut ditunjukkan tertutup ter-

hadap konvolusi dengan fungsi prabak-bintang. Turut diperoleh adalah kriteria

baru bagi fungsi-fungsi untuk terletak di dalam kelas SPp(α, λ). Jiranan- δ bagi

fungsi-fungsi di dalam kelas-kelas tersebut juga dicirikan.
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SUBORDINATION AND CONVOLUTION OF MULTIVALENT
FUNCTIONS AND STARLIKENESS OF INTEGRAL

TRANSFORMS

ABSTRACT

This thesis deals with analytic functions as well as multivalent functions de-

fined on the unit disk U . In most cases, these functions are assumed to be nor-

malized, either of the form

f(z) = z +
∞∑
k=2

akz
k,

or

f(z) = zp +
∞∑
k=1

ak+pz
k+p,

p a fixed positive integer. Let A be the class of functions f with the first nor-

malization, while Ap consists of functions f with the latter normalization. Five

research problems are discussed in this work.

First, let f (q) denote the q-th derivative of a function f ∈ Ap. Using the theory

of differential subordination, sufficient conditions are obtained for the following

differential chain to hold:

f (q)(z)

λ(p; q)zp−q
≺ Q(z), or

zf (q+1)(z)

f (q)(z)
− p+ q + 1 ≺ Q(z).

Here Q is an appropriate superordinate function, λ(p; q) = p!/(p − q)!, and ≺

denotes subordination. As important consequences, several criteria for univalence

and convexity are obtained for the case p = q = 1.

The notion of starlikeness with respect to n−ply points is also generalized to

xii



the case of multivalent functions. These are functions f ∈ Ap satisfying

1

p

zf ′(z)

1
n

n−1∑
k=0

εn−kf(εkz)

≺ h(z),

where h is a normalized convex function with positive real part satisfying h(0) = 1,

n a fixed positive integer, and ε satisfies εn = 1, ε 6= 1. Similar classes of p-valent

functions to be convex, close-to-convex and quasi-convex functions with respect

to n-ply points, as well as p-valent starlike and convex functions with respect to

n-ply symmetric points, conjugate points and symmetric conjugate points respec-

tively are introduced. Inclusion and convolution properties of these classes are

investigated.

Membership preservation properties of integral operators are also extended.

Two integral operators F : An × U2 → A and G : An × U2 → A are considered,

where

F (z) = Ff1,··· ,fn;z1,z2(z) =

∫ z

0

n∏
j=1

(
fj(z2ζ)− fj(z1ζ)

(z2 − z1)ζ

)αj
dζ (z1, z2 ∈ U),

G(z) = Gf1,··· ,fn;z1,z2(z) = z
n∏
j=1

(
fj(z2z)− fj(z1z)

(z2 − z1)z

)αj
(z1, z2 ∈ U).

These operators are generalization of earlier works. Preservation properties of star-

likeness, convexity, and close-to-convexity are investigated, not only for functions

fj belonging to those respective classes, but also for functions fj in the classes of

Ma-Minda type starlike and convex functions.

An interesting integral transform that has attracted many recent works is the

transform Vλ : A → A given by

Vλ(f)(z) :=

∫ 1

0
λ(t)

f(tz)

t
dt,
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where λ is an integrable non-negative real-valued function on [0, 1] satisfying∫ 1
0 λ(t)dt = 1. This transform has significant applications in geometric function

theory. This thesis investigates starlikeness of the transform Vλ over the class

Wβ(α, γ) :=

{
f ∈ A : ∃φ ∈ R with Re eiφ

(
(1− α + 2γ)

f(z)

z

+ (α− 2γ)f ′(z) + γzf ′′(z)− β
)
> 0, z ∈ U

}

using the Duality Principle. As a significant consequence, the best value of β < 1

is obtained that ensures functions f ∈ A satisfying

Re
(
f ′(z) + αzf ′′(z) + γz2f ′′′(z)

)
> β

in U are necessarily starlike. Important examples are also determined for specific

choices of the admissible function λ.

Finally, two multivalent subclasses of Ap are introduced. These classes con-

sist of generalized parabolic starlike functions of order α and type λ, denoted by

SPp(α, λ), and parabolic convex functions of order α and type λ, denoted by

CPp(α, λ). It is shown that these two classes are closed under convolution with

prestarlike functions. Additionally, a new criterion for functions to belong to the

class SPp(α, λ) is derived. We also describe the δ-neighborhood of functions be-

longing to these classes.
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CHAPTER 1

INTRODUCTION

1.1 Univalent Functions

Let C be the complex plane. A function f is analytic at z0 in a domain D if it

is differentiable in some neighborhood of z0, and it is analytic on a domain D if

it is analytic at all points in D. A function f which is analytic on a domain D

is said to be univalent there if it is a one-to-one mapping on D, and f is locally

univalent at z0 ∈ D if it is univalent in some neighborhood of z0. It is evident

that f is locally univalent at z0 provided f ′(z0) 6= 0. The Riemann Mapping

theorem is an important theorem in geometric function theory. It states that every

simply connected domain which is not the whole complex plane can be mapped

conformally onto the unit disk U ={z ∈ C : |z| < 1}.

Theorem 1.1 (Riemann Mapping Theorem) [40, p. 11] Let D be a simply con-

nected domain which is a proper subset of the complex plane. Let ζ be a given

point in D. Then there is a unique univalent analytic function f which maps D

onto the unit disk U satisfying f(ζ) = 0 and f ′(ζ) > 0.

Let H(U) be the class of analytic functions in U and H[b, n] be the subclass of

H(U) consisting of functions of the form

g(z) = b+ bnz
n + bn+1z

n+1 + · · · . (1.1)

Denote by H0 ≡ H[0, 1] and H ≡ H[1, 1]. If g ∈ H[b0, 1] is univalent in U , then

g(z) − b0 is again univalent in U as the addition of a constant only translates

the image. Since g is univalent in U , then b1 = g′(0) 6= 0, and hence f(z) =

(g(z)− b0)/b1 is also univalent in U . Conversely, if f is univalent in U , then so is
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g. Putting bn/b1 = an, n = 1, 2, 3 · · · in (1.1) gives the normalized form

f(z) = z + a2z
2 + a3z

3 + · · · .

In the treatment of univalent analytic functions in U , it is sufficient to consider

the class A consisting of all functions f analytic in U normalized by the conditions

f(0) = 0 and f ′(0) = 1. A function f in A has a Taylor series of the form

f(z) = z +
∞∑
k=2

akz
k (z ∈ U).

The subclass of A consisting of univalent functions is denoted by S. The function

k in the class S given by

k(z) =
z

(1− z)2 =
1

4

((
1 + z

1− z

)2
− 1

)
=
∞∑
n=1

nzn (z ∈ U) (1.2)

is called the Koebe function. It maps U onto the complex plane except for a slit

along the half-line (−∞,−1/4]. The Koebe function and its rotations e−iβk(eiβz), β

∈ R (R is the set of real numbers), play a very important role in the study of S.

They often are the extremal functions for various problems in S. In 1916, Bieber-

bach [20] proved the following theorem for functions in S.

Theorem 1.2 (Bieberbach’s Theorem) [40, p. 30] If f ∈ S, then |a2| ≤ 2, with

equality if and only if f is a rotation of the Koebe function k.

In the same paper, Bieberbach conjectured that, for f ∈ S, |an| ≤ n is generally

valid. For the cases n = 3, and n = 4, the conjecture was proved respectively by

Löwner [69], and Garabedian and Schiffer [50]. Much later in 1985, de Branges

[22] proved the Bieberbach’s conjecture for all coefficients with the help of the

hypergeometric functions. Bieberbach’s theorem has important implications in

the theory of univalent functions. These include the famous covering theorem
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which states that if f ∈ S, then the image of U under f must cover the open disk

centered at the origin of radius 1/4.

Theorem 1.3 (Koebe One-Quarter Theorem) [40, p. 31] The range of every func-

tion f ∈ S contains the disk {w : |w| < 1/4}.

The Koebe function shows that the radius one-quarter is sharp. Another important

consequence of the Bieberbach’s theorem is the Distortion Theorem which provides

sharp upper and lower bounds for |f ′(z)|.

Theorem 1.4 (Distortion Theorem) [40, p. 32] For each f ∈ S,

1− r
(1 + r)3 ≤ |f

′(z)| ≤ 1 + r

(1− r)3 (|z| = r < 1).

The Distortion Theorem can be applied to obtain sharp upper and lower bounds

for |f(z)|, known as the Growth Theorem.

Theorem 1.5 (Growth Theorem) [40, p. 33] For each f ∈ S,

r

(1 + r)2 ≤ |f(z)| ≤ r

(1− r)2 (|z| = r < 1).

Again the Koebe function demonstrates sharpness of both theorems above.

Another implication of the Bieberbach’s theorem is the Rotation Theorem

which provides sharp upper bound for | arg f ′(z)|.

Theorem 1.6 (Rotation Theorem) [40, p. 99] For each f ∈ S,

| arg f ′(z)| ≤


4sin−1r (r ≤ 1√

2
),

π + log r2

1−r2 (r ≥ 1√
2
),

where r = |z| < 1. The bound is sharp for each z ∈ U .

3



Figure 1.1: Starlike and convex domains

The very long gap between the Bieberbach’s conjecture [20] of 1916 and its proof in

1985 by de Branges [22] motivated researchers to work in several directions. One of

these directions was to prove the Bieberbach’s conjecture |an| ≤ n for subclasses of

S defined by geometric conditions. Among these classes are the classes of starlike

functions, convex functions, close-to-convex functions, and quasi-convex functions.

A set D ⊂ C is called starlike with respect to w0 ∈ D if the line segment joining

w0 to every other point w ∈ D lies in the interior of D (see Figure 1.1a). The set

D is called convex if for every pair of points w1 and w2 in D, the line segment

joining w1 and w2 lies in the interior of D (see Figure 1.1b). A function f ∈ A

is said to be a starlike function if f(U) is a starlike domain with respect to 0,

and f ∈ A is a convex function if f(U) is a convex domain. Analytically, these

geometric properties are respectively equivalent to the conditions [40,51,52,55,93]

Re

(
zf ′(z)

f(z)

)
> 0, and Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0,
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where Re(w) is the real part of the complex number w. The Koebe function k in

(1.2) is an example of a starlike function. The function

f(z) =
z

1− z
=
∞∑
n=1

zn

which maps U onto the half-plane {w : Rew > −1/2} is convex. The subclasses of

A consisting of starlike and convex functions are denoted respectively by ST and

CV . An important relationship between convex and starlike functions was first

observed by Alexander [5] in 1915.

Theorem 1.7 (Alexander’s Theorem) [40, p. 43] Let f ∈ A. Then f ∈ CV if and

only if zf ′ ∈ ST .

Robertson [105] in 1936 introduced the concepts of starlike and convex functions

of order α, 0 ≤ α < 1. A function f ∈ A is said to be starlike or convex of order

α if it satisfies the condition

Re

(
zf ′(z)

f(z)

)
≥ α or Re

(
1 +

zf ′′(z)

f ′(z)

)
≥ α (0 ≤ α < 1).

These classes will be denoted respectively by ST (α) and CV(α). Evidently ST (0) =

ST and CV(0) = CV .

For 0 < α ≤ 1, Brannan and Kirwan [23] introduced the classes of strongly

starlike and strongly convex functions of order α. A function f ∈ A is said to be

strongly starlike of order α if it satisfies

∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ ≤ απ

2
(z ∈ U , 0 < α ≤ 1),

and is strongly convex of order α if

∣∣∣∣arg

(
1 +

zf ′′(z)

f ′(z)

)∣∣∣∣ ≤ απ

2
(z ∈ U , 0 < α ≤ 1).
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The subclasses of A consisting of strongly starlike and strongly convex functions

of order α are denoted respectively by SST α and SCVα. Since the condition

Rew(z) > 0 is equivalent to | argw(z)| < π/2, it follows that SST 1 ≡ ST and

SCV1 ≡ CV .

In 1952, Kaplan [61] introduced the class of close-to-convex functions. A func-

tion f ∈ A is said to be close-to-convex if there is a function g ∈ CV such that

Re
(
f ′(z)/g′(z)

)
> 0 for all z ∈ U , or equivalently, if there is a function g ∈ ST

such that Re
(
zf ′(z)/g(z)

)
> 0 for all z ∈ U . The class of all close-to-convex func-

tions in A is denoted by CCV . A function f ∈ A is said to be close-to-convex of

order α, 0 ≤ α < 1, if there is a function g ∈ CV such that Re
(
f ′(z)/g′(z)

)
> α

for all z ∈ U . This class is denoted by CCVα.

Reade [104] introduced the class of strongly close-to-convex functions of order

α, 0 < α ≤ 1. A function f ∈ A is said to be strongly close-to-convex of order α

if there is function φ ∈ CV satisfying

∣∣∣∣arg
f ′(z)

φ′(z)

∣∣∣∣ ≤ απ

2
(z ∈ U , 0 < α ≤ 1).

The subclass of A consisting of strongly close-to-convex functions of order α is

denoted by SCCVα. When α = 1, SCCV1 ≡ CCV .

In 1980, Noor and Thomas [80] introduced the class of quasi-convex functions.

A function f ∈ A is said to be quasi-convex if there is a function g ∈ CV such that

Re
(
(zf ′(z))′/g′(z)

)
> 0 for all z ∈ U . The class of all quasi-convex functions in

A is denoted by QCV .

A function f ∈ A is said to be starlike with respect to symmetric points in U

if for every r less than and sufficiently close to one and every ζ on |z| = r, the

angular velocity of f(z) about the point f(−ζ) is positive at z = ζ as z traverses

6



the circle |z| = r in the positive direction, that is,

Re

(
zf ′(z)

f(z)− f(−ζ)

)
> 0 (z = ζ, |ζ| = r).

This class was introduced and studied in 1959 by Sakaguchi [115]. Let the class

of these functions be denoted by ST s. An equivalent description of this class is

given by the following theorem.

Theorem 1.8 [115] Let f ∈ A. Then f ∈ ST s if and only if

Re

(
zf ′(z)

f(z)− f(−z)

)
> 0 (z ∈ U).

Further investigations into the class of starlike functions with respect to symmetric

points can be found in [35, 79, 85, 117, 128, 130–132, 135]. El-Ashwah and Thomas

[41] introduced and studied the classes consisting of starlike functions with respect

to conjugate points, and starlike functions with respect to symmetric conjugate

points defined respectively by the conditions

Re

(
zf ′(z)

f(z) + f(z)

)
> 0, Re

(
zf ′(z)

f(z)− f(−z)

)
> 0.

Let the classes of these functions be denoted respectively by ST c and ST sc .

Ford [44] observed that convex or starlike functions inherit hereditary proper-

ties. In other words, if f ∈ S is starlike or convex, then f(Ur) is also a starlike or

a convex domain, where Ur = {z : |z| < r}.

Theorem 1.9 (Ford’s Theorem) [52, p. 114] Let f be in S. If f (U) is a convex

domain, then for each positive r < 1, f (Ur) is also a convex domain. If f (U)

is starlike with respect to the origin, then for each positive r < 1, f (Ur) is also

starlike with respect to the origin.
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It follows from the above theorem that convex (starlike) functions map circles

centered at the origin in the unit disk onto convex (starlike) area. However this

geometric property does not hold in general for circles whose centers are not at the

origin. This motivated Goodman [53, 54] to introduce the classes UCV and UST

of uniformly convex and uniformly starlike functions. An analytic function f ∈ S

is uniformly convex (uniformly starlike) if f maps every circular arc γ contained

in U with center ζ also in U onto a convex (starlike with respect to f(ζ)) arc.

Analytic descriptions of these classes are given by the following theorem.

Theorem 1.10 [53, 54] Let f ∈ A. Then

(a) f ∈ UCV if and only if

Re

(
1 + (z − ζ)

f ′′(z)

f ′(z)

)
≥ 0 ( (z, ζ) ∈ U × U) .

(b) f ∈ UST if and only if

Re
f(z)− f(ζ)

(z − ζ)f ′(z)
≥ 0 ( (z, ζ) ∈ U × U) .

Rønning [106] (also, see [70]) gave a more applicable one variable analytic charac-

terization for UCV . A normalized analytic function f ∈ A belongs to UCV if and

only if it satisfies

Re

(
1 +

zf ′′(z)

f ′(z)

)
>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (z ∈ U).

Goodman [54] gave examples that demonstrated the Alexander’s relation (Theo-

rem 1.7) does not hold between the classes UCV and UST . Later Rønning [107]

introduced the class of parabolic starlike functions PST consisting of functions
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F = zf ′ such that f ∈ UCV . It is evident that f ∈ PST if and only if

Re

(
zf ′(z)

f(z)

)
>

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (z ∈ U).

Let

Ω = {w : Rew > |w − 1|} =
{
w : (Imw)2 < 2 Rew − 1

}
.

Clearly, Ω is a parabolic region bounded by y2 = 2x − 1. The function f ∈ UCV

if and only if
(
1 + zf ′′/f ′

)
∈ Ω. Similarly, f ∈ PST if and only if zf ′/f ∈ Ω.

For this reason, a function f ∈ PST is called a parabolic starlike function. A

survey of these functions can be found in [108]. In [106,109], Rønning generalized

the classes UCV and PST by introducing a parameter α in the following way: a

function f ∈ A is in PST (α) if it satisfies the analytic characterization

Re

(
zf ′(z)

f(z)
− α

)
>

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (α ∈ R, z ∈ U),

and f ∈ UCV(α), the class of uniformly convex functions of order α, if it satisfies

Re

(
1 +

zf ′′(z)

f ′(z)
− α

)
>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (α ∈ R, z ∈ U).

He also introduced the more general classes PST (α, β) consisting of parabolic

β-starlike functions of order α that satisfies the condition

Re

(
zf ′(z)

f(z)
− α

)
> β

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (−1 < α ≤ 1, β ≥ 0, z ∈ U). (1.3)
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Analogously, the class UCV(α, β) consists of uniformly β-convex functions of order

α satisfying the condition

Re

(
1 +

zf ′′(z)

f ′(z)
− α

)
> β

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (−1 < α ≤ 1, β ≥ 0, z ∈ U). (1.4)

Indeed, it follows from (1.3) and (1.4) that f ∈ UCV(α, β) if and only if zf ′ ∈

PST (α, β). The geometric representation of the relation (1.3) is that the class

PST (α, β) consists of functions f for which the function
(
zf ′/f

)
takes values in

the parabolic region Ω, where

Ω = {w : Rew − α > β|w − 1|} =

{
w : Imw <

1

β

√
(Rew − α)2 − β2 (Rew − 1)2

}
.

Clearly, PST (α, 1) = PST (α) and UCV(α, 1) = UCV(α).

The transform ∫ z

0

f(t)

t
dt ≡

∫ 1

0

f(tz)

t
dt

introduced by Alexander [5] is known as Alexander transform of f . Using Alexan-

der’s Theorem (Theorem 1.7), it is clear that f ∈ ST if and only if the Alexander

transform of f is in CV . Libera [67] and Livingston [68] investigated the transform

2

∫ 1

0
f(tz)dt,

and Bernardi [17] later considered the transform

(c+ 1)

∫ 1

0
tc−1f(tz)dt, (c > −1) (1.5)

which generalizes the Libera and Livingston transform. For that reason, the trans-

form (1.5) is called the generalized Bernardi-Libera-Livingston integral transform.

It is well-known [17] that the classes of starlike, convex and close-to-convex func-
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tions are closed under the Bernardi-Libera-Livingston transform for all c > −1.

An analytic function f is subordinate to g in U , written f ≺ g, or f(z) ≺

g(z) (z ∈ U), if there exists a function w analytic in U with w(0) = 0 and

|w(z)| < 1 satisfying f(z) = g(w(z)). In particular, if the function g is univalent

in U , then f(z) ≺ g(z) is equivalent to f(0) = g(0) and f(U) ⊂ g(U).

Recall that a function f ∈ A belongs to the class of starlike functions ST ,

convex functions CV , or close-to-convex functions CCV if it satisfies respectively

the analytic condition

Re

(
zf ′(z)

f(z)

)
> 0, Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 and Re

(
f ′(z)

g′(z)

)
> 0, g(z) ∈ CV .

A function in any one of these classes is characterized by either of the quantities

zf ′(z)/f(z), 1 + zf ′′(z)/f ′(z) or f ′(z)/g′(z) lying in a given region in the right

half plane; the region is convex and symmetric with respect to the real axis [71].

Since p(z) = (1 + z)/(1 − z) is a normalized analytic function mapping U onto

{w : Rew > 0}, in terms of subordination, the above conditions are respectively

equivalent to

zf ′(z)

f(z)
≺ 1 + z

1− z
, 1 +

zf ′′(z)

f ′(z)
≺ 1 + z

1− z
and

f ′(z)

g′(z)
≺ 1 + z

1− z
.

Ma and Minda [71] gave a unified presentation of various subclasses of starlike

and convex functions by replacing the superordinate function p(z) = (1+z)/(1−z)

by a more general analytic function ϕ with positive real part and normalized by

the conditions ϕ(0) = 1 and ϕ′(0) > 0. Further it is assumed that ϕ maps the unit

disk U onto a region starlike with respect to 1 that is symmetric with respect to

the real axis. They introduced the following general classes that enveloped several
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well-known classes as special cases:

CV(ϕ) :=

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ ϕ(z)

}
,

and

ST (ϕ) :=

{
f ∈ A :

zf ′(z)

f(z)
≺ ϕ(z)

}
.

When

ϕ(z) = ϕα(z) =
1 + (1− 2α)z

1− z
(0 ≤ α < 1),

the classes CV(ϕα) and ST (ϕα) reduce to the familiar classes CV(α) and ST (α)

of univalent convex and starlike functions of order α.

When

ϕ(z) =
1 + Az

1 +Bz
(−1 ≤ B ≤ A ≤ 1),

the classes CV(ϕ) and ST (ϕ) reduce respectively to the class CV [A,B] of Janowski

convex functions and the class ST [A,B] of Janowski starlike functions [60, 90].

Thus

CV [A,B] =: CV
(

1 + Az

1 +Bz

)
and ST [A,B] =: ST

(
1 + Az

1 +Bz

)
.

When

ϕ(z) = 1 +
2

π2

(
log

1 +
√
z

1−
√
z

)2
,

the classes CV(ϕ) and ST (ϕ) reduce to the familiar classes of uniformly convex

functions UCV and its associated class PST .
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Define the functions hϕ ∈ ST (ϕ) and kϕ ∈ CV(ϕ) respectively by

zh′ϕ(z)

hϕ(z)
= ϕ(z) (z ∈ U , hϕ ∈ A)

1 +
zk′′ϕ(z)

k′ϕ(z)
= ϕ(z) (z ∈ U , kϕ ∈ A).

In [71], Ma and Minda showed that the functions hϕ and kϕ turned out to be ex-

tremal for certain functionals in ST (ϕ) and CV(ϕ). In addition, they derived dis-

tortion, growth, covering and rotation theorems for the classes ST (ϕ) and CV(ϕ)

and obtained sharp order of growth for coefficients of these classes.

Theorem 1.11 (Distortion Theorem for CV(ϕ)) [71, Corollary 1] For each f ∈

CV(ϕ),

k′ϕ(−r) ≤ |f ′(z)| ≤ k′ϕ(r) (|z| = r < 1).

Equality holds for some z 6= 0 if and only if f is a rotation of kϕ.

Theorem 1.12 (Growth Theorem for CV(ϕ)) [71, Corollary 2] For each f ∈

CV(ϕ),

−kϕ(−r) ≤ |f(z)| ≤ kϕ(r) (|z| = r < 1).

Equality holds for some z 6= 0 if and only if f is a rotation of kϕ.

Theorem 1.13 (Covering Theorem for CV(ϕ)) [71, Corollary 3] Suppose f ∈

CV(ϕ). Then either f is a rotation of kϕ or f(U) ⊇
{
w : |w| ≤ −kϕ(−1)

}
. Here

−kϕ(−1) is understood to be the limit of −kϕ(−r) as r tends to 1.

Theorem 1.14 (Rotation Theorem for CV(ϕ)) [71, Corollary 4] For each f ∈

CV(ϕ),

| arg f ′(z)| ≤ max
|z|=r

arg
(
k′ϕ(z)

)
(|z| = r < 1).

Equality holds for some z 6= 0 if and only if f is a rotation of kϕ.
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Next, we state the corresponding results for the class ST (ϕ). These results

follows from the correspondence between ST (ϕ) and CV(ϕ).

Theorem 1.15 (Distortion Theorem for ST (ϕ)) [71, Theorem 2] If f ∈ ST (ϕ)

with min|z|=r |ϕ(z)| = |ϕ(−r)| and max|z|=r |ϕ(z)| = |ϕ(r)|, then

h′ϕ(−r) ≤ |f ′(z)| ≤ h′ϕ(r) (|z| = r < 1).

Equality holds for some z 6= 0 if and only if f is a rotation of hϕ.

Theorem 1.16 (Growth Theorem for ST (ϕ)) [71, Corollary 1’] If f ∈ ST (ϕ),

then

−hϕ(−r) ≤ |f(z)| ≤ hϕ(r) (|z| = r < 1).

Equality holds for some z 6= 0 if and only if f is a rotation of hϕ.

Theorem 1.17 (Covering Theorem for ST (ϕ)) [71, Corollary 2’] Suppose f ∈

ST (ϕ). Then either f is a rotation of hϕ or f(U) ⊇
{
w : |w| ≤ −hϕ(−1)

}
. Here

−hϕ(−1) is the limit of −hϕ(−r) as r tends to 1.

Let f(z) =
∑∞
n=1 anz

n be analytic in |z| < R1, and g(z) =
∑∞
n=1 bnz

n be

analytic in |z| < R2. The convolution, or Hadamard product, of f and g is the

function h = f ∗ g given by the power series

h(z) = (f ∗ g)(z) =
∞∑
n=1

anbnz
n. (1.6)

This power series is convergent in |z| < R1R2. The term ”convolution” arose from

the following equivalent representation

(f ∗ g)(z) =
1

2πi

∫
|ζ|=ρ

f

(
z

ζ

)
g(ζ)

dζ

ζ

(
|z|
R1

< ρ < R2

)
.
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The geometric series

l(z) =
∞∑
n=1

zn =
z

1− z
,

acts as the identity element under convolution [40, pp. 246-247] for the class A.

The functions f and zf ′ can be represented in terms of convolution as

f(z) = f ∗ z

1− z
and zf ′(z) = f ∗ z

(1− z)2 .

Using Alexander’s theorem (Theorem 1.7), a function f ∈ A is convex if and only if

f ∗
(
z/(1− z)2) is starlike. So the classes ST and CV can be unified by considering

Sg = {f ∈ A : f ∗ g ∈ ST } for an appropriate g. For g(z) = z/(1− z), Sg = ST ,

while for g(z) = z/(1− z)2, Sg = CV .

An important subclass of A defined by using convolution is the class of prestar-

like functions introduced by Ruscheweyh [111]. For α < 1, the class Rα of prestar-

like functions of order α is defined by

Rα :=

{
f ∈ A : f ∗ z

(1− z)2−2α ∈ ST (α)

}
,

while R1 consists of f ∈ A satisfying Re f(z)/z > 1/2. Prestarlike functions

have a number of interesting geometric properties. For instance, R0 is the class of

univalent convex functions CV , and R1/2 is the class of univalent starlike functions

ST (1/2) of order 1/2.

1.2 Multivalent Functions

A function f is p-valent (or multivalent of order p) if for each w0 (w0 may be

infinity), the equation f(z) = w0 has at most p roots in U , where the roots are

counted with their multiplicities, and for some w1 the equation f(z) = w1 has

exactly p roots in U [52]. For a fixed p ∈ N := {1, 2, · · · }, let Ap denote the class
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of all analytic functions f of the form

f(z) = zp +
∞∑
k=1

ak+pz
k+p (1.7)

that are p-valent in the open unit disk U , and for p = 1, let A1 := A.

The convolution, or Hadamard product, of two p-valent functions

f(z) = zp +
∞∑
k=1

ak+pz
k+p and g(z) = zp +

∞∑
k=1

bk+pz
k+p

is defined as

(f ∗ g)(z) = zp +
∞∑
k=1

ak+pbk+pz
k+p.

A p-valent function f ∈ Ap is starlike if it satisfies the condition

1

p
Re

zf ′(z)

f(z)
> 0 (f(z)/z 6= 0, z ∈ U),

and is convex if it satisfies the condition

1

p
Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 (f ′(z) 6= 0, z ∈ U).

The subclasses of Ap consisting of starlike and convex functions are denoted re-

spectively by ST p and CVp. More generally, let ϕ be an analytic function with

positive real part in U , ϕ(0) = 1, ϕ′(0) > 0, and ϕ maps the unit disk U onto a

region starlike with respect to 1 and symmetric with respect to the real axis. The

classes ST p(ϕ) and CVp(ϕ) consist respectively of p-valent functions f starlike

with respect to ϕ and p-valent functions f convex with respect to ϕ in U given by

ST p(ϕ) :=

{
f ∈ Ap :

1

p

zf ′(z)

f(z)
≺ ϕ(z)

}
,
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and

CVp(ϕ) :=

{
f ∈ Ap :

1

p

(
1 +

zf ′′(z)

f ′(z)

)
≺ ϕ(z)

}
.

These classes were introduced and investigated by Ali et al. in [8]. The func-

tions hϕ,p and kϕ,p defined respectively by

1

p

zh′ϕ,p(z)

hϕ,p(z)
= ϕ(z) (z ∈ U , hϕ,p ∈ Ap),

1

p

(
1 +

zk′′ϕ,p(z)

k′ϕ,p(z)

)
= ϕ(z) (z ∈ U , kϕ,p ∈ Ap),

are important examples of functions in ST p(ϕ) and CVp(ϕ). A result analogues

to Alexander’ theorem (Theorem 1.7) was obtained by Ali et al. in [8].

Theorem 1.18 [8, Theorem 2.1] The function f belongs to CVp(ϕ) if and only

if (1/p)zf ′ ∈ ST p(ϕ).

When p = 1 these classes reduced to the ST (ϕ) and CV(ϕ) classes introduced by

Ma and Minda [71].

When

ϕ(z) =
1 + z

1− z
,

the classes ST p(ϕ) and CVp(ϕ) reduce to the familiar classes of p-valent starlike

and convex functions ST p and CVp. In addition if p = 1 these classes are respec-

tively the classes of univalent starlike and convex functions ST and CV .

When

ϕ(z) = ϕβ(z) =
1 + (1− 2β)z

1− z
(0 ≤ β < 1)

the classes ST p(ϕβ) and CVp(ϕβ) reduce to the familiar classes of p-valent starlike
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and convex functions of order β introduced by Patil and Thakare in [88]:

ST p(β) :=

{
f ∈ Ap :

1

p
Re

(
zf ′(z)

f(z)

)
> β

}
,

CVp(β) :=

{
f ∈ Ap :

1

p
Re

(
1 +

zf ′′(z)

f ′(z)

)
> β

}
.

For p ∈ N and α < 1, Kumar and Reddy [12] defined the class Rp(α) of

p-valent prestarlike functions of order α by

Rp(α) =

{
f ∈ Ap : f(z) ∗ zp

(1− z)2p(1−α)
∈ ST p(α)

}
.

They obtained necessary and sufficient coefficient conditions for a function f to be

in the class Rp(α). Evidently, this class reduces to the class of prestarlike functions

R(α) introduced by Ruscheweyh [111] for p = 1.

1.3 Differential Subordination

In the theory of complex-valued functions there are many differential conditions

which shape the characteristics of a function. A simple example is the Noshiro-

Warschawski Theorem [40, Theorem 2.16, p.47]: If f is analytic in a convex domain

D, then

Re
(
f ′(z)

)
> 0⇒ f is univalent in D.

This theorem and many known similar differential implications dealt with real-

valued inequalities that involved the real part, imaginary part or modulus of a

complex expression. In 1981 Miller and Mocanu [74] replaced the differential in-

equality, a real valued concept, with its complex analogue of differential subordi-

nation.

Let ψ : C3×U → C be an analytic function and let h be univalent in the unit
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disk U . If p is analytic in U and satisfies the second-order differential subordination

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), (1.8)

then p is called a solution of the differential subordination. A univalent function

q is called a dominant if p(z) ≺ q(z) for all p satisfying (1.8). A dominant q1

satisfying q1(z) ≺ q(z) for all dominants q of (1.8) is said to be the best dominant

of (1.8). The best dominant is unique up to a rotation of U . If p ∈ H[a, n], then p

is called an (a, n)-solution, q an (a, n)-dominant, and q1 the best (a, n)-dominant.

Let Ω ⊂ C and let (1.8) be replaced by

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω (z ∈ U), (1.9)

where Ω is a simply connected domain containing h(U). Even though this is

a “differential inclusion” and ψ(p(z), zp′(z), z2p′′(z); z) may not be analytic in

U , the condition in (1.9) will also be referred to as a second-order differential

subordination, and the same definition for solution, dominant and best dominant as

given above can be extended to this generalization. The monograph [75] by Miller

and Mocanu provides a detailed account on the theory of differential subordination.

Denote byQ the set of all functions q that are analytic and injective on U\E(q),

where

E(q) = {ζ ∈ ∂U : lim
z→ζ

q(z) =∞},

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U \ E(q).

Definition 1.1 [75, Definition 2.3a, p. 27] Let Ω be a set in C, q ∈ Q and n

be a positive integer. The class of admissible functions Ψn[Ω, q] consists of those

functions ψ : C3 × U → C satisfying the admissibility condition

ψ(r, s, t; z) 6∈ Ω (1.10)
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whenever r = q(ζ), s = kζq′(ζ), and

Re

(
t

s
+ 1

)
≥ kRe

(
ζq′′(ζ)

q′(ζ)
+ 1

)
,

z ∈ U, ζ ∈ ∂U \E(q) and k ≥ n. Additionally, Ψ1[Ω, q] will be written as Ψ[Ω, q].

If ψ : C2 × U → C, then the admissibility condition (1.10) reduces to

ψ(q(ζ), kζq′(ζ); z) 6∈ Ω,

z ∈ U , ζ ∈ ∂U \ E(q) and k ≥ n.

If ψ : C× U → C, then the admissibility condition (1.10) becomes

ψ(q(ζ); z) 6∈ Ω,

z ∈ U , and ζ ∈ ∂U \ E(q).

A foundation result in the theory of first and second order differential subordina-

tion is the following theorem:

Theorem 1.19 [75, Theorem 2.3b, p.28] Let ψ ∈ Ψn[Ω, q] with q(0) = a. If

p ∈ H[a, n] satisfies

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω, (1.11)

then p ≺ q.

It is evident that the dominant of a differential subordination of the form (1.11)

can be obtained by checking that the function ψ is an admissible function. This

requires that the function ψ satisfies (1.10). Considering the special case when

Ω = h(U) is a simply connected domain, and h is a conformal mapping of U onto
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Ω, the following second-order differential subordination result is an immediate

consequence of Theorem 1.19. The set Ψn[h(U), q] is written as Ψn[h, q].

Theorem 1.20 [75, Theorem 2.3c, p.30] Let ψ ∈ Ψn[h, q] with q(0) = a. If

p ∈ H[a, n], ψ(p(z), zp′(z), z2p′′(z); z) is analytic in U , and

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), (1.12)

then p ≺ q.

The next theorem yields best dominant of the differential subordination (1.12)

Theorem 1.21 [75, Theorem 2.3f, p.32] Let h be univalent in U and ψ : C3×U →

C. Suppose that the differential equation

ψ(q(z), nzq′(z), n(n− 1)zq′(z) + n2z2q′′(z); z) = h(z)

has a solution q, with q(0) = a, and one of the following conditions is satisfied:

(i) q ∈ Q and ψ ∈ Ψn[h, q],

(ii) q is univalent in U and ψ ∈ Ψn[h, qρ] for some ρ ∈ (0, 1), or

(iii) q is univalent in U and there exists ρ0 ∈ (0, 1) such that ψ ∈ Ψn[hρ, qρ]

for all ρ ∈ (ρ0, 1).

If p ∈ H[a, n], ψ(p(z), zp′(z), z2p′′(z); z) is analytic in U , and p satisfies

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z),

then p ≺ q, and q is the best (a, n)-dominant.

When dealing with first-order differential subordination, the following theorem is

useful.
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Theorem 1.22 [75, Theorem 3.4h, p.132] Let q be univalent in U and let θ and

φ be analytic in a domain D containing q(U), with φ(w) 6= 0 when w ∈ q(U). Set

Q(z) = zq′(z)φ (q(z)) , h(z) = θ (q(z)) +Q(z) and suppose that either

(i) h is convex, or

(ii) Q is starlike.

In addition, assume that

(iii) Re
zh′(z)
Q(z) = Re

(
θ′(q(z))
φ(q(z)) +

zQ′(z)
Q(z)

)
> 0.

If p is analytic in U , with p(0) = q(0), p(U) ⊂ D and

θ (p(z)) + zp′(z)φ (p(z)) ≺ θ (q(z)) + zq′(z)φ (q(z)) = h(z),

then p ≺ q, and q is the best dominant.

Let f ∈ Ap be given by (1.7). Upon differentiating both sides of f q-times with

respect to z, the following differential operator is obtained:

f (q)(z) = λ(p; q)zp−q +
∞∑
k=1

λ(k + p; q)ak+pz
k+p−q,

where

λ(p; q) :=
p!

(p− q)!
(p ≥ q; p ∈ N; q ∈ N ∪ {0}).

Several researchers have investigated higher-order derivatives of multivalent func-

tions, see for example [10, 11, 37, 56–58, 81, 89, 120, 141]. Recently, by use of the

well-known Jack’s Lemma [59, 75], Irmak and Cho [57] obtained interesting re-

sults for certain classes of functions defined by higher-order derivatives. We shall

continue this investigation in Chapter 2.
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1.4 Functions with Respect to n-ply Points

As defined on p. 14, the convolution of two functions f and g with power series

f(z) = z +
∞∑
n=1

anz
n and g(z) = z +

∞∑
n=1

bnz
n

convergent in U is defined by

(f ∗ g)(z) := z +
∞∑
n=1

anbnz
n (z ∈ U).

Pólya and Schoenberg in 1958 [91] posed two important conjectures:

1. If f and g ∈ CV , then f ∗ g ∈ CV .

2. If f ∈ CV and g ∈ ST , then f ∗ g ∈ ST .

Using Alexander’s theorem, (Theorem 1.7), it is clear that any one of these con-

jectures implies the other. These conjunctures were later proved by Ruscheweyh

and Sheil-Small [114].

Let h : U → C be a convex function with positive real part in U , h(0) = 1, and

g be a given fixed function in A. Shanmugam [116] introduced the classes ST g(h)

and CVg(h) consisting of functions f satisfying

z(f ∗ g)′(z)

(f ∗ g)(z)
≺ h(z) and 1 +

z(f ∗ g)′′(z)

(f ∗ g)′(z)
≺ h(z).

Note that for g(z) = z/(1− z), the class ST g(h) ≡ ST (h) and the class CVg(h) ≡

CV(h). He introduced these classes [116] and other related classes, and investigated

inclusion and convolution properties by using the convex hull method [113, 114]

and the method of differential subordination [75]. Ali et al. [8] investigated the

subclasses of p−valent starlike and convex functions, and obtained several subor-

dination and convolution properties, as well as sharp distortion, growth and rota-
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tion estimates. These works were recently extended by Supramaniam et al. [127].

Similar problems but for the class of meromorphic functions were also recently

investigated by Mohd et al. [78].

For a fixed positive integer n, εn = 1, ε 6= 1 and f ∈ A, define the function

with n−ply points fn ∈ A by

fn(z) :=
1

n

n−1∑
k=0

εn−kf(εkz). (1.13)

It is clear that f1(z) = f(z) and f2(z) = (f(z)− f(−z)) /2. A function f ∈ A is

starlike with respect to n-symmetric points if it satisfies

Re
zf ′(z)

fn(z)
> 0. (1.14)

Denote the class of these functions by ST ns . For n = 2, the class ST ns reduces to

the class ST s consisting of the starlike functions with respect to symmetric points

in U introduced by Sakaguchi [115]. If k is an integer, then the following identities

follow directly from (1.13) :

fn(εkz) = εkfn(z),

f ′n(εkz) = f ′n(z) =
1

n

n−1∑
m=0

f ′(εmz),

εkf ′′n(εkz) = f ′′n(z) =
1

n

n−1∑
m=0

εmf ′′(εmz).

More generally, the condition (1.14) can be generalized to the subordination

zf ′(z)

fn(z)
≺ h(z),
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where h is a given convex function, with h(0) = 1 and Re (h) > 0. El-Ashwah

and Thomas [41] introduced the classes ST c and ST sc consisting of the starlike

functions with respect to conjugate points in U and the starlike functions with

respect to symmetric conjugate points in U respectively. In 2004, Ravichandran

[101] introduced the classes of starlike, convex and close-to-convex functions with

respect to n−ply symmetric points, conjugate points and symmetric conjugate

points, and obtained several convolution properties. Other investigations into the

classes defined by using conjugate and symmetric conjugate points can be found

in [4,38,62,133,134,136,137,139]. These classes of functions will be treated further

in Chapter 3.

1.5 Integral Operators

The study of integral operators is an important problem in the field of Geometric

Function Theory. In [21], Biernacki falsely claimed that
∫ z

0 (f(ζ)/ζ) dζ is univalent

whenever f is univalent. Moved by this, Causey [34] considered a related problem

of finding conditions on δ ∈ C such that the integral operator Fδ : A → A given

by

(Fδf) (z) =

∫ z

0

(
f(ζ)

ζ

)δ
dζ

is univalent whenever f is univalent. It is known [64] that Fδ ∈ S when |δ| < 1/4.

The case δ = 1 was earlier considered by Alexander [5] and he proved that F1 is in

CV whenever f is in ST . In [73], Merkes obtained various extension of inclusion

results for certain subclasses of S. He showed that

Fδ(ST ) ⊂ S whenever |δ| ≤ 1/2. (1.15)

There is no larger disk |δ| ≤ R, R > 1/2, such that the inclusion (1.15) holds.
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