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KHANYOUNIS GOVERNORATE, GAZA, PALESTINE 
 

5 ABSTRAK 
 

Air bawah tanah merupakan sumber air yang unik untuk lebih daripada satu pertiga 

daripada penduduk dunia. Kualiti air bawah tanah adalah di bawah ancaman serius 

kerana urbanisasi dan perindustrian yang pesat dewasa ini. Pencemaran air bawah 

tanah dipengaruhi oleh pelbagai pembolehubah bergerakbalas, yang membawa 

kepada kesukaran yang tinggi untuk proses pemodelan kualiti air bawah tanah.  

Kaedah statistik dan kecerdasan buatan (AI) telah menjadi alat pemodelan air bawah 

tanah yang biasa disebabkan oleh prestasi yang tinggi. Dalam kajian ini, sistem 

hibrid terdiri daripada dua teknik AI iaitu rangkaian neural tiruan (ANNs) dan mesin 

penyokong vektor (SVM) disamping teknik statistik multivariat pelbagai telah 

digunakan untuk mensimulasikan dua parameter kualiti air bawah tanah terutamanya 

nitrat (NO3
-) dan klorida (Cl-) dalam akuifer kompleks. Model telah dilatih 

menggunakan data pemantauan terhad dan tidak teratur daripada 22 telaga 

perbandaran 1998-2010 di Pantai Gaza Akuifer (GCA) yang merupakan akuifer yang 

kompleks dan sangat heterogen. Keputusan analisis statistik pembolehubah GCA 

yang mendalam menunjukkan kebolehpercayaan teknik statistik dalam menangkap 

gambaran yang ringkas namun menyeluruh tentang trend kualiti air bawah tanah. 

Kedua-dua ANNs dan teknik SVM menunjukkan simulasi prestasi yang sangat 

memuaskan dengan keputusan yang setanding. Pekali korelasi (r) dan bermakna 

peratusan ralat purata (MAPE) bagi NO3
- model simulasi adalah 0.996 dan 7% 

masing-masing. Sementara itu, r dan MAPE bagi model simulasi Cl adalah 0.998 dan 

3.7% masing-masing. Keputusan menunjukkan merit melakukan pengelompokan 

data input kepada kelompok yang konsisten sebelum permohonan yang berasingan 

teknik AI bagi setiap kluster. Memandangkan prestasi yang tinggi dan 

kesederhanaan, model simulasi yang dibangunkan telah digunakan dengan berkesan 

sebagai air bawah tanah pengurusan kualiti alat sokongan keputusan dengan menilai 

kesan pilihan pengurusan pelbagai NO3
- dan penumpuan Cl- di GCA bagi tahun 2020 

dan 2030. Penilaian air bawah tanah pilihan pengurusan kualiti menunjukkan bahawa 

min NO3
- dan kepekatan Cl- dalam telaga perbandaran kawasan kajian setiap tahun 

akan meningkat sebanyak 7 mg/l dan 21 mg/l masing-masing jika keadaan kekal 
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tanpa sebarang campur tangan segera. Sebaliknya, penggunaan kombinasi pilihan 

pengurusan tunggal yang sangat akan meningkatkan tahap NO3
- dan Cl- dalam 

telaga. Kajian menunjukkan keupayaan teknik AI untuk digunakan sebagai alat 

kualiti pengurusan air bawah tanah terutama di negara-negara membangun 

mengalami kekurangan dan ketidakteraturan data pemantauan air bawah tanah. 
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DEVELOPMENT OF GROUNDWATER QUALITY MANAGEMENT 
MODELS USING ARTIFICIAL INTELLIGENCE (AI) APPROACH – CASE 
STUDY – KHANYOUNIS GOVERNORATE – GAZA STRIP – PALESTINE 

 

6 ABSTRACT 

Groundwater (GW) is the unique water source for more than one third of the world's 

populations. GW quality is under serious threat due to the recent rapid urbanization 

and industrialization. GW contamination is influenced by various interrelated 

variables, leading to high complexity in the GW quality modelling process. 

Statistical and artificial intelligence (AI) techniques have recently become common 

GW modelling tools due to their high performance. In this research, hybrid systems 

composed of two AI techniques namely artificial neural networks (ANNs) and 

support vector machine (SVM) in addition to various multivariate statistical 

techniques, were utilized to simulate the concentrations of two GW quality 

parameters particularly nitrate (NO3
-) and chloride (Cl-) in complex aquifers. The 

models were trained using limited and irregular monitoring data from 22 municipal 

wells from 1998 to 2010 in Gaza Coastal Aquifer (GCA) which is a complex and 

highly heterogeneous aquifer. Results of the statistical analyses deepened the 

understanding of the GCA influencing variables and GW quality trends. Both ANNs 

and SVM techniques showed very satisfactory simulation performance with 

comparable results. The correlation coefficient (r) and mean average percentage error 

(MAPE) for NO3
- simulation model were 0.996 and 7% respectively. Meanwhile r 

and MAPE for Cl- simulation model were 0.998 and 3.7% respectively. The results 

demonstrated also the merit of performing clustering of input data into consistent 

clusters prior to separate application of AI techniques for each cluster. Given their 

high performance and simplicity, the developed models were effectively utilized as 

GW quality management decision support tools by assessing the effects of various 

management scenarios on NO3
- and Cl- concentration in GCA for 2020 and 2030. 

Evaluation of GW quality management scenarios indicated that NO3
- and Cl- 

concentrations in the study area municipal wells would noticeably increase if the 

situation remained without any immediate intervention. On the other hand, GW 

quality levels in most study area wells would be highly improved if a combination of 

management scenarios was adopted. NO3
- management scenarios included 

completion of the wastewater collection system in the study area, reduction of 
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manure and fertilizers used in agricultural activities by 50%, duplication of GW 

recharge. While Cl- management scenarios included reduction of GW abstractions by 

50% and duplication of GW recharge. The study showed the ability of AI-based 

hybrid techniques to be used as a GW quality management tools especially in 

developing countries suffering from lack and irregularity of GW monitoring data. 
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1 CHAPTER 1- 

INTRODUCTION 

 

"We made from water every living thing. Will they not then believe?"  

Holly Quran (Alanbia’a 30) 

 

1.1 Preface 

Noble prize winner Albert Szent-Gyorgyi summarized the priceless value of 

water stating that "Water is life's mater and matrix, mother and medium. There is no 

life without water" (Beattie, 2011). However, the ecosystem including water 

resources is horribly deteriorated as a result of the rapid population growth 

associated with urbanization and diversity of human activities (Chofqi et al., 2004) 

Groundwater (GW) is the unique water source for more than one third of 

world's population (Morris et al., 2003). GW is an important source for sustainable 

economic growth in any community specially in arid and semi-arid regions (Sheng, 

2013). This valuable source is not completely isolated from the surrounding 

environment. It is affected by both natural and anthropogenic contamination sources. 

Therefore an assessment of GW quality is of great importance for society and 

particularly for public health aspects (Ramakrishnaiah et al., 2009; Sener et al., 

2009). Nevertheless, GW contamination is a complicated process that is influenced 

by various interrelated physical, chemical, and biological variables, resulting in high 

spatial and temporal variability (ASCE, 2000). These characteristics add more 

complexity to GW modelling process that requires considering all potential variables 

and integrating different disciplines and fields of knowledge. 

http://www.searchquotes.com/quotation/Water_is_life%27s_mater_and_matrix%2C_mother_and_medium._There_is_no_life_without_water./242426/
http://www.searchquotes.com/quotation/Water_is_life%27s_mater_and_matrix%2C_mother_and_medium._There_is_no_life_without_water./242426/
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During recent years, various artificial intelligence (AI) techniques such as 

artificial neural networks (ANNs) and support vector machine (SVM) have been 

utilized for hydrological modelling purposes using relatively less cost, effort and data 

(Almasri and Kaluarachchi, 2005a; Chau, 2006). These techniques have exhibited a 

satisfactory simulation performance notably when the hydrological process is 

difficult to be accurately described and / or when the available data are insufficient 

for applying numerical and physical models which is the case for many GW 

problems (Trichakis et al., 2009).  

ANNs have been successfully applied for different GW applications such as 

forecasting GW level and modelling GW quality (Nourani et al., 2008; Banerjee et 

al., 2011; Seyam and Mogheir, 2011; Trichakis et al., 2011; Yesilnacar and 

Sahinkaya, 2012). Likewise, the application of SVM has attracted higher attention 

during recent years for modelling both surface water and GW processes. For 

example, SVM has been utilized for stream flow predictions (Asefa et al., 2006), 

river flow discharge (Wang et al., 2009), GW level forecasting (Behzad et al., 2010; 

Yoon et al., 2010), and GW quality assessment (Dixon, 2009).  

Statistical techniques have also been widely used in GW studies due to their 

suitability in dealing with the nature of GW monitoring data (Sorichetta et al., 2013). 

Among different statistical techniques, multivariate techniques such as correlation 

matrix (CM), cluster analysis (CA), and principal component analysis (PCA), have 

widely been utilized in GW studies to help in exploring the hidden relationships 

among different parameters especially at cases of difficulties in the integration, 

interpretation and representation of the available data (Chen et al., 2007; Prasanna et 

al., 2010). 
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In a recent report entitled "Gaza in 2020 A liveable place?", UNCT (2012) 

expected that, based on the current water and sanitation situation, the GW in Gaza 

Strip (GS) could become unusable as early as 2016; moreover the damage of the GW 

in GS would be irreversible by 2020. This study also mentioned that 90% of the GW 

in GS is currently not safe for drinking purposes without adequate treatment. Being 

the only source of water in GS population of more than 1.6 million (PCBS, 2012), 

Gaza coastal aquifer (GCA) is in a disastrous quality situation (Qahman and Larabi, 

2006). Increased concentrations of nitrate (NO3
-) and chloride (Cl-) are the main 

dominant water quality problems in GCA (Almasri and Ghabayen, 2008). The 

average concentration of NO3
- in GS domestic wells is 128 mg/l compared with the 

World Health Organization (WHO) standards of 50 mg/l (Shomar et al., 2008; WHO, 

2008). Untreated wastewater and agricultural activities are the main sources NO3
- 

(Baalousha, 2008). The concentration of Cl- in many locations of GCA exceeded 

2000 mg/l. Furthermore, less than 5% of municipal water wells in GS meet WHO Cl- 

standards of 250 mg/l. Overexploitation and lateral flow from adjacent eastern 

aquifer are the main sources of high Cl- concentrations in GCA (Al-Khatib and 

Arafat, 2009; Shomar et al., 2010). What worsens the problem is the political 

situation along with the difficult economical conditions that delay almost all actions 

to de-stress GCA and find reliable and sustainable solutions (Shomar, 2011). 

Khanyounis governorate has the largest area among the five GS governorates. 

The water quality situation in Khanyounis governorate is the worst among GS 

governorates. According to Shomar et. al. (2008), the average NO3
- concentration in 

Khanyounis governorate in 2007 was 191 mg/l. Work done by Almasri and 

Ghabayen (2008) related such high concentrations to the fact that most of 

Khanyounis governorate inhabitants are still using cesspits for disposing their 
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wastewater. The highest Cl- concentration in GS was also recorded to be 2652 mg/l 

in one of Khanyounis governorate wells in 2008; i.e. 10 times more than WHO 

standards for Cl-; this high concentration is due to seawater intrusion and lateral flow 

from adjacent eastern aquifer (Yakirevich et al., 1998; Shomar et al., 2010).  

 

1.2 Problem statement  

Despite the wide strides and the increasing trends during the recent years 

regarding the utilization of AI techniques for GW quality modelling, there remain 

some areas that need further investigation. For example, the literature review reveals 

that there are very limited studies on the assessment of the performance of SVM 

technique in modelling GW contamination compared with ANNs and compared with 

surface water applications. Additionally, the comparison between the performance of 

ANNs and SVM for different hydrological processes is an attractive field that 

requires a lot of further research (Behzad et al., 2010; Yoon et al., 2010). 

Simplicity, accuracy, and cost effectiveness are the main characteristics of the 

efficient and feasible GW quality modelling and management processes (Bierkens, 

2006; Ammar et al., 2009; Harou et al., 2009). Therefore the recent trends in the field 

of hydrological modelling are related to proposing techniques for improving 

modelling prediction ability without the need for extra data and effort. Thus, AI-

based hybrid models that combine AI with other techniques are considered to be one 

of the promising research areas in the field of GW quality modelling (Nourani, 

2012). The hybrid models are characterized by their improved accuracy, and are 

developed using minimum data, time and effort. These targeted models are 

effectively and reliably utilized to support management decisions related to GW 

quality especially in complex heterogeneous aquifers (Chau, 2006; Li et al., 2013).  
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Reviewing the literature showed that most of the previous modelling studies 

on GW quality using AI techniques were more concerned with optimization of the 

models performance by investigating the model's parameters and architecture that 

achieve the highest performance. On the other hand, lack of studies are concerned 

with utilization of AI-based GW quality models for future prediction of GW quality 

situations under various management scenarios. (Yesilnacar et al., 2008; Trichakis et 

al., 2011).  

NO3
- contamination of GW is a serious worldwide problem, where high 

concentrations of NO3
- in water can cause blood disorder called methemoglobinemia, 

commonly known as blue baby syndrome, which at severe cases can result in brain 

damage and death especially for infants below six months of age (Cissé and Mao, 

2008). Therefore modelling of NO3
- concentration in GW is of a great important 

especially for public health aspects. Regarding AI-based NO3
- modelling, none of the 

earlier studies utilized SVM for estimating NO3
- concentration in GW based on the 

potential influencing variables. Furthermore, there is a dearth of studies that is 

related to ANNs based models for NO3
-; however all the few developed ANNs-based 

NO3
- simulation models could be categorized into three categories; (1) Models that 

required a lot of input data and used sophisticated methods for input calculations 

such as the study conducted by Almasri and Kaluarachchi (2005a) in an agriculture 

dominated area. Though their accuracy, the applicability of these models is limited 

due to the detailed and accurate data required. (2) Models that predicted NO3
- levels 

in the GW using the concentration of other variables (Yesilnacar et al., 2008). The 

main shortcoming of these types of models is that these models could not be used for 

future GW management because the absence of the physical meaning of 

contamination process. (3) Relatively simple models with less input dimensionality 
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but their accuracy needed to be further improved, as found in the model developed 

by Al-Mahallawi et al. (2012).  

Cl- is usually used as a representative of GW salinity problems; and excessive 

concentration of Cl- in drinking water is an indicator of the deterioration of its quality 

(Melloul and Collin, 2000; Abyaneh et al., 2005). Elevated concentration of Cl- in 

drinking water has negative effects on human health especially to persons who have 

kidney or heart problems (Versari et al., 2002; Aichele, 2004; Virkutyte and 

Sillanpää, 2006). As for AI-based modelling of Cl- in GW using explanatory input 

variables, only one study has been found using ANNs (Seyam and Mogheir, 2011), 

however, the accuracy of their model was relatively low due to neglecting many 

influencing variables; therefore their model needs further improvement. 

Additionally, none of the previous studies utilized SVM to model Cl- concentration 

in GW. 

Gaza Strip, the study area, is an extreme model on how unstable political 

environment, disastrous economic situation, decaying environmental conditions and 

unplanned human activities are combined together to further deteriorate the GW 

quality (Shomar, 2011). Therefore, understanding of GW trends and modelling the 

most sensitive and dominant GW quality parameters using cost–effective techniques 

depending on few monitoring data can be considered to be very much advantageous 

point not only in GS but also in all developing countries that suffer from lack of 

financial and technical capabilities.  

The present research attempts to form a comprehensive view about GW 

situation in complex aquifers by investigating the most influencing variables using a 

hybrid system composed of two AI techniques namely ANNs and SVM along with 

various multivariate statistical techniques (CM, PCA and CA). Almost all potential 
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influencing variables on GW quality are investigated including land use activities 

and aquifer physical settings. The most significant variables are selected as input 

variables in the final models for modelling both NO3
- and Cl- using the available 

limited monitoring data. Furthermore an improvement technique is proposed that 

positively affects the modelling efficiency. Moreover the developed models are used 

for assessing the implications of various GW quality management scenarios on the 

future GW quality in 2020 and 2030. The applicability of the developed models was 

validated using data from GCA which is an extremely complex hydro-geological 

system with deteriorated conditions. Figure 1.1 summarizes the problem statement 

mentioned above and illustrates the driving forces of conducting the current research.   
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Figure 1.1: Research problem tree
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1.3 Research Objectives 

This research is designed and carried out to develop an artificial intelligence 

based hybrid models to be used as a decision support tools for effectively managing 

groundwater quality using limited monitoring data in Khanyounis governorate as a 

case study. To be more specific, the research is intended to achieve the following 

objectives: 

1. To investigate the performance of multivariate statistical techniques for 

capturing a simple and general view about GW system in complex aquifers,  

2. To develop reliable and simple AI-based models for simulating the 

concentrations of NO3
- and Cl- in complex aquifer systems by ANNs and 

SVM, 

3. To evaluate the effect of clustering the input data on the simulation 

performance of the developed AI models, and 

4. To predict the implications of various proposed GW quality management 

scenarios on the future concentrations of NO3
- and Cl-. 

  

1.4 Scope of the study 

This study is concerned in modelling the concentration of both NO3
- and Cl- in 

GW using ANNs and SVM as AI techniques. Several statistical techniques (i.e. CM, 

PCA, CA), geographical information systems (GIS), and classification of aerial 

photos into and different land use land cover (LULC) categories are integrated with 

AI to achieve best models' accuracy.  

The study area of the present research is Khanyounis governorate which is the 

largest governorate in GS in terms of area (110 km2). The available data for 
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developing GW quality models are obtained from 22 municipal wells from 1998 to 

2010 with a lot of missing records. Such missing records are due to irregularity of 

GW quality monitoring, in addition to financial and technical constraints in the area. 

 

1.5 Thesis Organization 

 The thesis consists of 5 chapters as follows; Chapter One is the introduction 

which gives a preface about the research topic and the study area. Identification of 

research problem, objectives, and scope are also included in this chapter. Chapter 

Two describes the literature review; where several topics are reviewed, including GW 

quality issues with a focus on NO3
- and Cl-, GW quality modelling approaches and 

GW quality management practices. The latest research efforts pertaining AI 

applications for GW quality modelling are also reviewed. Additionally this chapter 

describes GW quality problems and the management prospects in GS and Khanyounis 

governorate as the study area. Chapter Three contains detailed description about the 

study area, data collection, data pre-processing, calculations of models' input variables 

for both  NO3
- and Cl-; as well as the steps for carrying out the statistical analyses and 

AI models. Chapter Four presents the results and discussion of the application of 

the statistical analyses and AI simulation models for NO3
- and Cl-. The chapter also 

illustrates the results and discussion of application of the developed AI based hybrid 

models for GW quality management in the study area. Finally Chapter Five contains 

conclusions related to GCA status, AI modelling techniques, research importance and 

constraints. In this chapter, various recommendations derived from the research 

results are presented including recommendations related to GW management in GS, 

GW modelling process as well as proposed future research works.  
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2 CHAPTER 2 -  

LITERATURE REVIEW  
 

2.1 Introduction 

This chapter presents a general overview about various GW quality aspects 

concentrating on the two water quality contaminants namely, nitrate (NO3
-) and 

chloride (Cl-). Sources, characteristics, modelling, and management of these 

contaminants are also tackled. Theoretical background of artificial intelligence (AI) 

techniques along with their applications in hydrology is provided as well. 

Furthermore, the characteristics of Gaza Coastal Aquifer (GCA) as the study area 

and its conditions in terms of quality situation are described. 

 

2.2 Groundwater Quality  

Water constitutes one of the basic components of nation‘s development. Rapid 

population growth coupled with the increasing diversity of human activities are 

inseparable to such development, which consequently lead to increase water demand 

(de Andrade et al., 2008; Sinan and Razack, 2009).  

GW is considered as the most important natural resource that mankind is 

challenged to manage, since it constitutes about 89% of the freshwater on the earth 

(Koundouri, 2004). In many regions of the world, GW is the unique source of 

drinking water, especially in the cases of limited or contaminated surface water 

resources (Schmoll, 2006; Sener et al., 2009). It is estimated that more than one third 

of world's population completely depend on GW to satisfy their water needs (Morris 

et al., 2003). Compared with surface water, GW has generally lower vulnerability to 
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contamination (Zhang et al., 2009). Therefore GW plays an important role in meeting 

the continuously increasing water demand.  

2.2.1 Contamination of Groundwater  

GW is not completely detached from the ground surface. Therefore, almost 

every human activity such as rapid urbanization has the potential to directly or 

indirectly affect the aquifer system to a certain extent (Harter and Walker, 2001; 

Chofqi et al., 2004; Kresic, 2009). During the last decades, it has been noticed that 

the GW availability and its quality have been negatively affected by over-abstraction 

in addition to various land use activities such as improper disposal of human solid 

wastes and wastewater, and intensive agricultural activities (Ramakrishnaiah et al., 

2009). For instance, the extensive use of fertilizers coupled with utilization of new 

agricultural equipment aiming at increasing the crops' yield in many areas of the 

world, have highly deteriorated the GW quality in these areas (de Andrade et al., 

2008) 

In addition to the anthropogenic factors resulted from human activities, natural 

factors have also considerable effects on GW quality; these factors are related to the 

characteristics of aquifer's media and unsaturated zone, climate and topography 

(Helena et al., 2000; Wu and Huang, 2009). The effects of both anthropogenic and 

natural contaminations sources on GW quality are noticeably appeared in many 

regions of the world (Draoui et al., 2008; Sener et al., 2009). But as a general fact, 

the anthropogenic contaminants usually have much greater negative impacts on GW 

quality than the natural contaminants (Kresic, 2009). 

As depicted from Figure 2.1, many sources can be considered as potential GW 

contamination sources; these include septic tanks, agricultural activities, saltwater 

intrusion, landfills, accidental spills, underground storage tanks and pipelines  
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(Bedient et al., 1994). If contaminants released from the aforementioned sources 

reach the aquifer, the GW quality is altered and deteriorated. Such GW alteration and 

deterioration definitely constrains its usage, and may make it unreliable for domestic 

and other usages (Kumar and Alappat, 2005; Zhang et al., 2009).  

 

 

Figure 2.1: Potential sources of GW contamination 
(Source: Bedient et. al. (1994)) 

 

2.2.2 Mechanisms of Groundwater Contamination  

When contaminants are released from their sources, percolate through the 

unsaturated zone, and finally reach the GW and contaminate it (Mirbagheri, 2004),  

these contaminant are mixed with GW contaminants forming a plume that spread 

with GW system based on the characteristics of GW flow (Javadi and Al-Najjar, 

2007; Vasanthi et al., 2008). Many variables can influence the potential of a 

contaminant to impact the underlying GW quality. These variables can be classified 

into three categories: (1) environmental variables; (2) contamination source related 

variables; and (3) pathway related variables. 
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Environmental variables mainly include climate related parameters such as 

precipitation and humidity (Mato, 2002). Contamination source related variables 

include the location of contamination source, contaminants load and quantity, in 

addition to contaminant characteristics such as its resistance to degradation (Mato, 

2002). Pathway related variables are referred  to the course taken by contaminants 

while being transported from the source to aquifers, and is described by various 

characteristics of unsaturated and saturated zones that govern contaminant transport 

processes (Islam and Singhal, 2004).  

Complex interactions usually occur between contaminants and transport media; 

moreover contaminants themselves may react with each other adding further 

complexity to transport process (Ferguson et al., 1998). Therefore, once a 

contaminant gets released out from its source, its chemical, biochemical and physical 

characteristics may be altered (Islam and Singhal, 2004). For example, many 

contaminants experience natural attenuation (purification) by natural processes 

leading to reduce their concentration to acceptable level (Bagchi, 1990). This process 

is highly dependent on the interaction between the source related characteristics 

(chemical parameters of the contaminant) and the pathway related hydro-geological 

characteristics (Harter and Walker, 2001; Park et al., 2008). Therefore, understanding 

the behavior of contaminants through these zones is essential in predicting the 

potential for GW contamination by these contaminants (Islam and Singhal, 2004; 

Park et al., 2008). 

The main transport processes of concern in GW include advection, diffusion, 

dispersion, adsorption, and biodegradation. The following is a brief description of 

these processes (McBean et al., 1995; Javadi and Al-Najjar, 2007):   
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 Advection: is the transport of contaminants caused by the net flow of the 

fluid in which the contaminant is suspended.  

 Diffusion: is a molecular mass-transport process in which contaminants 

move from areas of higher concentration to areas of lower concentration. 

 Dispersion: is a mixing process caused by velocity variations in the porous 

media. 

 Adsorption: refers to adherence of chemical species (contaminants) 

primarily on the surface of the porous matrix.  

 Biodegradation: represents the transformation of certain organic materials to 

simple CO2 and water in the presence of microbes. 

 

Such complex processes result in high nonlinearity and high degree of spatial 

and temporal variability of contaminants in GW. Moreover uncertainties in 

hydrological variables‘ estimates are one of the main features of GW contamination 

process (ASCE, 2000). Therefore, GW contamination is a complex dynamic process 

that is difficult to be sufficiently understood due to its dependency on the 

characteristics of the contaminant, pathway media as well as the surrounding 

environmental conditions leading to difficulty in GW quality modelling process 

(Daliakopoulos et al., 2005) 

 

2.2.3 Water Quality in Gaza Coastal Aquifer  

2.2.3.1 Preface about Gaza Coastal Aquifer  

Gaza Coastal Aquifer (GCA) is a highly heterogeneous hydro-geological 

system (Yakirevich et al., 1998). It is the only natural source of water in GS where 

water is pumped from the aquifer by more than 4000 municipal and agricultural 
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wells (UNEP, 2009; ANERA, 2012); among them more than 1000 wells exist in 

Khanyounis governorate (Qahman and Larabi, 2006). GCA is a part of the coastal 

aquifer that extends from GS in the south to Carmel Mountains in the north along the 

Mediterranean coast line (about 120 km) as shown in Figure 2.2 that illustrates the 

layout of GCA and the adjacent aquifers (UNEP, 2003). The width of GCA varies 

from 3-10 km in the north to about 20 km in the south (Yakirevich et al., 1998; 

Almasri, 2008). GCA thickness varies from about 120 m in the west (at the 

shoreline) to few meters in the east (Baalousha, 2006b). Meanwhile, the depth of 

water level of GCA ranges from about 60 m below ground surface in the east to few 

meters near the coastline in the west (UNEP, 2003). 

 

 

Figure 2.2 : Layout of Gaza Coastal Aquifer (GCA)  

(Source: UNEP (2003)) 
  

Geologically, GCA is a Pleistocene-age granular phreatic hydro-geological 

system. It is composed of layers of dune sand, sandstone, calcareous sandstone, and 

A 

A 
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silt as shown in Figure 2.3. It also contains several silty-clayey impermeable layers 

which partially intercalate and subdivide it into sub-aquifers (Yakirevich et al., 1998; 

Melloul and Collin, 2000; Baalousha, 2006b). GCA is considered as unconfined in 

the east, while, in the west it becomes confined / unconfined multi-aquifer. In this 

area sub-aquifer A is phreatic, whereas sub-aquifers B and C (Figure 2.4) become 

increasingly confined towards the coastline in the west, (Qahman and Larabi, 2006). 

Many municipal wells in GS have been constructed and screened across more than 

one sub aquifer, each of which has specific characteristics, and few data are known 

about hydraulic properties of each sub aquifer (Shomar, 2011). 

 

 

Figure 2.3: GCA basin and lithology 
 (Source: Baalousha (2006 b))   

 
 

GCA materials are underlain by a very thick impermeable clay layer called 

―Saqiya Formation‖ which acts as the aquifer bed. Saqiya Formation is an aquiclude 

layer consisting of about 100 m of black shale of Pliocene age (Al-Agha and El-
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Nakhal, 2004).  There is a connection between GCA and the Eocene aquifer which is 

located in the east. This connection leads to increase GCA salinity in the eastern part 

(Yakirevich et al., 1998). Typical cross section (sec. A-A in Figure 2.2) of GCA at 

Khanyounis governorate area is depicted in Figure 2.4.  

 

 

Figure 2.4: Typical cross section of GCA at Khanyounis governorate area 
(Source: Yakirevich et al. (1998))  

 

GW flow in GCA as whole is generally from the southeast to the northwest. 

However, flow direction may change due to high abstraction rates from some wells 

(Al-Agha and El-Nakhal, 2004; Weinthal et al., 2005; Almasri and Ghabayen, 2008). 

Hajhamad and Almasri (2009) reported that the hydraulic conductivity of GCA is in 

the range of 20–80 m/d.  

 

2.2.3.2 Gaza Coastal Aquifer Problems 

GCA is considered as the most precious and valuable natural resource in GS 

area, where it is extensively utilized to meet the various water demands (Ghabayen et 

al., 2006; Shomar et al., 2010). This utilization makes GCA under increasing 
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problematic conditions in terms of quantity and quality (Shomar, 2011). Where, the 

rapid increase in GS population coupled with the growth of urban and agricultural 

activities have resulted in increasing GW demand and horrible decline in GW quality 

(Al-Agha and El-Nakhal, 2004).  

 

a. Groundwater Shortage Problem in Gaza Strip   

GCA is a dynamic system that exhibits a continuous variation in the inflow 

and outflow conditions (Qahman and Larabi, 2006). The main sources of GCA 

recharge are precipitation, inflow from the adjacent eastern aquifer through the 

connection between the two aquifers, irrigation return flow, leakage from water 

distribution and wastewater collection networks, and discharge from wastewater 

facilities (Baalousha, 2008). Baalousha (2006b) reported that about 30% to 40% of 

the annual precipitation percolated to the aquifer. Hajhamad and Almasri (2009) 

estimated that about 15% of water used for irrigation was considered as a return flow 

that recharged into the GCA. It is clear from water balance of GCA presented in 

Table 2.1 that the current abstraction rates from GCA are unsustainable leading to 

annual deficit of at least 58 million m3 implying lowering of the GW table, reduction 

in availability of fresh GW and increased seawater and deep brines intrusion (UNEP, 

2003). For the near future, Baalousha (2006a) estimated that with increasing water 

demand for different uses, the annual water deficit in GS would exceed 100 million 

m3 in 2020. 

b. Groundwater Quality Problem in Gaza Strip   

GCA is considered as a characteristic case of highly contaminated aquifer due 

to hydrological stresses in addition to insufficient water resources management 

(Zoller et al., 1998). Recent studies reported that no GW in GS meets all WHO 
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drinking water standards; additionally more than 90% of GW in GS is not suitable 

for drinking due to the elevated concentrations of many chemical parameters 

particularly NO3
- and Cl- in addition to microbiological contamination which exists 

in many locations within GS (Shomar et al., 2008; Shomar et al., 2010; UNCT, 2012; 

Abbas et al., 2013). On the other hand, and due to the economical problems, only 3% 

of GS populations uses the imported bottled-water, and around 25% has home water 

filters (Shomar, 2011). 

 
Table 2.1: Water balance of Gaza Coastal Aquifer 

(Source: MOA (2010)) 
 

Inflow Outflow 

Item Annual Quantity 
million m3 Item Annual Quantity 

million m3 

Recharge from rainfall 40 – 50 Municipal Abstraction 90 

 Return flow from 
irrigation  15 – 30 Agricultural 

abstraction 80 - 90 

Return flow from 
wastewater collection 
networks  

15 – 25 Industrial abstraction 10 

Return flow from water 
distribution networks  25 – 30 Natural discharge to 

the sea 8 

Lateral flow from adjacent 
eastern aquifer 15 – 25   

Total 110 – 130 Total 188 - 198 

Deficit 58 – 88 MCM 
 

 In general, GCA is susceptible to contamination sources applied to ground 

surface (Shomar et al., 2008). Contamination sources in GS include cesspools, 

seawater intrusion, agricultural activities, and inadequate waste management (UNEP, 

2003; Ghabayen et al., 2006). These sources  produce a ―cocktail‖ of contaminants 

that have the potential to highly deteriorate GCA (Al-Agha and El-Nakhal, 2004). 

GW quality is influenced by many variables including land use activities, soil/water 
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interaction in the unsaturated zone, rainfall, return flows, sea water intrusion, effect 

of deep brines, and disposal of municipal and industrial wastes into the aquifer 

(Abbas et al., 2013).  

In GS, land use is one of the main influencing variables that govern the 

concentration of chemical parameters in GW (Almasri and Ghabayen, 2008). For 

instance, many urban areas in GS are not connected to wastewater collection 

systems; in these areas, people still use cesspools for disposing their wastewater. 

Considerable quantities of such sewage percolate through unsaturated zone to the 

aquifer, and the remaining sewage in these cesspools is collected by vacuum 

vehicles; then the collected sewage is discharged to open fields without any 

treatment (Baalousha, 2008). This in turn results in elevated concentrations of many 

contaminants such as NO3
- and microbes. Likewise in agricultural areas, the 

intensive application of manures and fertilizers results in GW contamination with 

several contaminants notably NO3
- (UNEP, 2003). 

Consequently, the concentrations of many water quality parameters in GCA 

exceed the maximum contaminant level set by various related agencies such as WHO 

guidelines (Almasri and Ghabayen, 2008; Shomar, 2011). This obviously indicates 

the deterioration and disastrous conditions of GCA as seen in Table 2.2 that 

summarizes the main contaminants in GCA, and their potential sources. It is noticed 

that over-pumping resulted from rapid population growth leading to seawater 

intrusion along with low GW recharge due to low rainfall and urbanization are the 

main sources of most GW quality parameters notably EC, TDS, Cl, Ca, Mg and total 

hardness. Whereas untreated wastewater, uncontrolled agricultural activities and 

improper solid waste disposal are the main sources of NO3
-.    
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Table 2.2: The average concentrations of the main GCA contaminants and their 
potential sources 

(Source: Shomar (2011)) 
 

Parameter 
Average 

concentration 
in GCA 

WHO 
guidelines Potential contamination sources 

EC 3308 2000 Over-pumping, Low recharge, Seawater intrusion 

TDS 2045 500 Over-pumping, Low recharge, Seawater intrusion 

NO3 170 50 Wastewater, fertilizers, solid waste leachate 

Cl 779 250 Over-pumping, Low recharge, Seawater intrusion 

Ca 91 50 Natural, Over-pumping, Low recharge, Seawater intrusion 

Mg 72 30 Natural, Over-pumping, Low recharge, Seawater intrusion 

T. Hardness 553 200 Natural , Over-pumping, Low recharge, Seawater intrusion 
 

 

Basically, GCA suffers from two main GW quality problems, NO3
- and Cl- 

contamination (Hamdan and Jaber, 2001; Al-Mahallawi, 2005). Among GS five 

governorates, particularly, Khanyounis governorate has the most serious situation in 

relation to GW quality problems; where the highest concentrations of both NO3
- and 

Cl- were recorded in Khanyounis governorate (Baalousha, 2006a; Shomar et al., 

2008; Shomar et al., 2010). Brief theoretical background about these two main GW 

quality parameters (NO3
- and Cl-) will be described in the following sections 

highlighting the dimension of the problems in the study area. 

 

2.2.4 Nitrate Contamination of Groundwater 

2.2.4.1 Introduction 

Nitrogen (N) is one of the basic components for the production of a number of 

complex organic matters such as proteins, amino and nucleic acids that are essential 

elements for humans and animals (Pidwirny, 2006). It is also an important nutrient 

element that enhances growth rates of crops and plants (Almasri and Kaluarachchi, 

2005b). N is converted from one form to another when it is subjected to a series of 

http://www.physicalgeography.net/physgeoglos/o.html#organic
http://www.physicalgeography.net/physgeoglos/p.html#protein
http://www.physicalgeography.net/physgeoglos/a.html#amino_acid
http://www.physicalgeography.net/physgeoglos/a.html#amino_acid
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biological and chemical processes during its cycle in the environment in which 

bacteria play major roles (Harrison, 2003). Figure 2.5 illustrates the nitrogen cycle in 

the environment and its effects on water quality.  

 

 

Figure 2.5: Nitrogen cycle and its effect on water resources  

 (Source: Rivett et al. (2008)) 

 

Nitrate (NO3
-) is a part of the nitrogen cycle. It is formed when bacteria 

decompose wastes containing organic nitrogen forming ammonia. Afterward 

ammonia is oxidized into nitrite (NO2
-) which in then easily oxidized to NO3

-. 

Therefore, NO3
- is always found in GW under oxidizing conditions. Because of its 

high mobility and solubility, NO3
- is easily carried by water percolating through soil 

(Ramasamy et al., 2003; Almasri and Ghabayen, 2008; Majumder et al., 2008; 

Shomar et al., 2008).  

GW contamination with NO3
- is a worldwide problem and it is considered as 

the most frequent and common GW contaminant (McLay et al., 2001; Leone et al., 

2009; Huang et al., 2011). NO3
- is usually used as a GW contamination index (or 
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quality indicator) in various GW studies due to being the main contaminant 

associated with human activities (Panagopoulos et al., 2006). 

 

2.2.4.2 Mechanism of Groundwater Contamination with Nitrate 

NO3
- concentration at a specific location of the aquifer is a function of many 

interrelated and complicated variables and processes that occur on the ground surface 

as well as in both unsaturated and saturated zones. These variables include on-ground 

nitrogen loading (N-load) which is related to the quantity of nitrogen associated with 

each nitrogen source which is dependent on land use practice. Other influencing 

variables include soil characteristics, soil nitrogen dynamics, aquifer characteristics, 

GW recharge, as well as bacterial effects. Therefore, NO3
- concentration in GW 

exhibits high spatial and temporal variability (Almasri and Kaluarachchi, 2005b; 

Almasri and Ghabayen, 2008; Kundu and Mandal, 2009). 

NO3
- concentration in GW is affected by various variables that could be 

divided into three categories: (a) variables related to the on-ground nitrogen load (N-

load), and its spatial distribution; (b) variables related to the unsaturated zone that 

govern soil nitrogen transformations; and (c) variables related to the aquifer itself 

and the processes occur through transport of NO3
- with GW system (Almasri and 

Kaluarachchi, 2005a). 

Estimation of the on-ground N-load is not an easy task, since it is 

characterized by both spatial and temporal variability (Almasri and Kaluarachchi, 

2005a). The spatial variability is due to the changeability of land use categories from 

location to another, which consequently leads to different on-ground N-load. The 

temporal variability is related to the changeability of N-load over the time, such as 

variability of fertilizers and manures applications, and variability of precipitation and 
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