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CARTA-CARTA KAWALAN TUNGGAL YANG BARU BAGI 

 DATA SELANJAR BERDASARKAN STATISTIK EWMA GANDA DUA 

 

 

 

ABSTRAK  

 

 

Dalam situasi pemantauan kawalan proses berstatistik (SPC), min proses dan varians 

proses berkecenderungan beranjak secara serentak. Secara tradisional, dua carta 

kawalan yang berasingan, setiap satu untuk min dan varians digunakan secara 

serentak untuk memantau min proses dan varians proses. Walau bagaimanapun, 

dalam banyak situasi pemantauan proses yang sebenar, kawalan serentak min proses 

dan varians proses diperlukan. Hal ini telah mendorong kami untuk membangunkan 

carta-carta DEWMA tunggal (dikenali sebagai purata bergerak berpemberat 

eksponen ganda dua) yang mampu memantau anjakan serentak dalam kedua-dua min 

dan varians proses, apabila taburan pendasar proses adalah normal. Statistik 

DEWMA adalah berdasarkan pendekatan melaksanakan pelicinan eksponen 

sebanyak dua kali pada statistik asal proses pendasar. Objektif kajian ini adalah untuk 

mencadangkan tiga carta DEWMA tunggal, iaitu carta-carta DEWMA-Max (dikenali 

sebagai DEWMA maksimum), Max-DEWMA (dikenali sebagai maksimum 

DEWMA) dan SS-DEWMA (dikenali sebagai hasiltambah kuasa dua DEWMA). 

Selain membandingkan prestasi ketiga-tiga carta ini, setiap carta juga dibandingkan 

dengan carta EWMA tunggal yang setara dengannya. Pada keseluruhannya, 

keputusan simulasi menunjukkan bahawa prestasi carta-carta DEWMA-Max, Max-

DEWMA dan SS-DEWMA mengatasi carta-carta EWMA tunggal setara, masing-

masing, daripada segi prestasi purata panjang larian (ARL) dan sisihan piawai 

panjang larian (SDRL), serta keupayaan diagnostik dalam pengecaman sumber dan 

arah anjakan dengan tepat. Antara carta-carta yang dicadangkan, carta SS-DEWMA 
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dan carta Max-DEWMA didapati mempunyai kelajuan terpantas dalam pengesanan 

anjakan kecil dan sederhana dalam min dan/atau varians proses. 

 

Kata-kata kunci: carta DEWMA-Max; carta Max-DEWMA; carta SS-DEWMA; 

purata panjang larian (ARL); sisihan piawai panjang larian (SDRL); min proses; 

varians proses; carta kawalan tunggal 
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NEW SINGLE VARIABLES CONTROL CHARTS  

BASED ON THE DOUBLE EWMA STATISTICS 

 

 

 

ABSTRACT 

 

In Statistical Process Control (SPC) monitoring situations, there is a tendency for 

both the process mean and process variability to shift simultaneously. Traditionally, 

two separate control charts, each for the mean and variance are used concurrently to 

monitor the process mean and process variance. However, in many real life process 

monitoring situations, a simultaneous control of the process mean and process 

variance is necessary. This has motivated us to develop single DEWMA (called 

Double Exponentially Weighted Moving Average) charts which are capable of 

monitoring simultaneous shifts in both the process mean and process variance, when 

the underlying distribution of the process is normal. The DEWMA statistics are 

based on the approach of performing exponential smoothing twice on the original 

statistics of the underlying process. The objective of this study is to propose three 

single DEWMA charts, namely the DEWMA-Max (called the DEWMA maximum), 

Max-DEWMA (called the maximum DEWMA) and SS-DEWMA (called the sum of 

squares of DEWMA) charts. Besides comparing the performances of the three charts, 

each of these charts is also compared with its corresponding single EWMA chart 

counterpart. Overall, the simulation results show that the DEWMA-Max, Max-

DEWMA and SS-DEWMA charts outperform their corresponding single EWMA 

chart counterparts, in terms of the average run length (ARL) and standard deviation 

of the run length (SDRL) performances, as well as the diagnostic abilities in 

identifying the source and direction of a shift accurately. Among the proposed charts, 



 
 

xxiii 

the SS-DEWMA chart and Max-DEWMA chart are found to have the quickest speed 

in detecting small and moderate shifts in the process mean and/or variance. 

 

Key words: DEWMA-Max chart; Max-DEWMA chart; SS-DEWMA chart; average 

run length (ARL); standard deviation of the run length (SDRL); process mean; 

process variance; single control chart 
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CHAPTER 1   

INTRODUCTION 

 

 

1.1   Overview 

 Since the last decade, many organizations are increasingly concerned with 

improvements on quality, in order to survive in an increasingly competitive global 

market. In other words, quality improvement is becoming a major concern to many 

corporations. The field of statistical quality control (SQC) can be broadly defined as 

those statistical and engineering methods that are used in measuring, monitoring, 

controlling and improving quality (Gupta & Walker, 2007). 

 Dating back to the 1920s, Dr. Walter A. Shewhart of the Bell Telephone 

Laboratories was one of the pioneers who formulated a statistically-based approach 

to quality control or improvement. In 1924, he wrote a memorandum showing a 

modern control chart, which was the most powerful tool in statistical process control 

(SPC), used for monitoring the quality characteristics of a process over time. Dr. W. 

Edwards Deming (philosophy of 14 points) and Dr. Joseph M. Juran (philosophy of 

Quality Trilogy) were then influential in spreading SQC methods for quality 

management, quality planning, process control and process or product quality 

improvement (DeVor et al., 2007). Since then, SPC was proven to be an effective 

means to improve the quality and productivity of processes. From here onwards, a 

process is referred to as a set of causes and conditions that repeatedly come together 

to transform inputs into outputs. The inputs refer to raw materials, machineries, 

human resources and information, while the outputs refer to products and services 

(Thaga, 2003). 
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In any production process, regardless of how well-designed or carefully 

maintained it is, a certain amount of variability will always exist. Shewhart, Deming 

and Juran all clearly pointed out that the variability present in a process falls into two 

categories, i.e. common causes and assignable causes of variation (Montgomery, 

2009). The common (chance) causes of variation or "background noise" are the 

cumulative effect of many small, essentially unavoidable causes inherent in the 

process. When the background noise in a process is relatively small, we usually 

consider it an acceptable level of process performance. In the framework of SQC, 

this common cause of variation is frequently called a "stable system of chance 

causes". A process that is operating with only the presence of common causes is said 

to be in statistical control. The assignable (special) causes of variation are sources of 

variability that are not part of the chance causes. Assignable causes which are 

occasionally present in a process (very few and perhaps only one or none) usually 

arises from sources, such as improperly adjusted machines, machine wear, machine 

downtime, operator errors, introduction of new workers, defective raw materials, 

materials contamination, a change in the inspection method or standard and other 

factors that can be controlled. A process that is operating in the presence of 

assignable causes is said to be out-of-control (Montgomery, 2009).  

The primary objective of SPC is to quickly identify the presence of assignable 

cause(s) or process shift(s) so that an investigation of the process and corrective 

actions can be taken to bring the process into statistical control before many 

nonconforming units are being manufactured (DeVor et al., 2007). Control charts 

have an excellent history of more than 80 years. Most processes do not operate in a 

state of statistical control. Therefore, routine and attentive use of control charts 
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enable the detection of assignable causes present in a process. If these causes can be 

eliminated, variability will be reduced and the process will be improved. 

Control charts are classified into two categories. Control charts with quality 

characteristics that can be measured and expressed as numbers on some continuous 

scale of measurement, like weight, length, width, diameter, thickness, volume, 

density and temperature, are called variables control charts. In such cases, it is 

convenient to describe the quality characteristics with a measure of central tendency 

(mean) or a measure of variability (variance). On the contrary, attributes control 

charts judge a unit of product as either conforming or nonconforming on the basis of 

whether or not the product possesses certain attributes.  

Before the introduction of control charts, practitioners inspect every single unit 

of the end product, in order to produce high-quality products. Thus, in those days, 

quality control was in fact quality inspection and not quality improvement. 

Improving quality and productivity using conventional methods, such as upgrading 

of technology and modifying of the existing system are usually not practical, besides 

consuming more resources, time, manpower and cost. Therefore, improving the 

quality of processes and products by means of control charts is more practical and 

effective (Woodall, 1997).  

Shewhart (1931) published a complete exposition of the theory, practical 

applications and economics of control charts, where he pointed out that control charts 

are useful (i) to set goals or standards for a process, for practitioners to control 

against predefined standards; (ii) as a device to achieve goals; and (iii) to judge 

whether the goals have been met. However, conventional control charts have several 

limitations. Firstly, if the underlying distribution of the quality characteristic is 

nonnormal and the sample points are not independent and identically distributed over 
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time, the Shewhart chart (Shewhart, 1931) in particular, may not perform well. 

Secondly, the Shewhart chart which focuses only on the current sample point and 

pays no attention to the historical information about the process when a new point is 

plotted, is not effective in detecting small shifts in the process; while the cumulative 

sum (CUSUM) and exponentially weighted moving average (EWMA) charts are 

ineffective in detecting large shifts. Thirdly, two control charts, each for the mean 

and variance are required to be plotted concurrently to monitor the process mean and 

variability, hence, making process monitoring cumbersome and time consuming.  

 

1.2    Problem Statements   

Traditionally, the mean and variance type charts are plotted concurrently to 

monitor the process mean and variance, respectively. However, in many real life 

process monitoring situations, a simultaneous control of the mean and variance is 

necessary. For example, Gan et al. (2004) have shown a case in the integrated circuit 

manufacturing, where the solder paste is printed onto the printed circuit board (PCB) 

before the mounting of circuit components. Here, the thickness of the solder paste 

influences the soldering ability of circuit components on the PCB. If the process goes 

out-of-control, the thickness of the paste is off-target and meanwhile the process 

variability is large because the solder paste thickness is not uniformly distributed 

over the PCB. Therefore, the process mean and variance are simultaneously affected 

by the same assignable cause in this manufacturing setting. The need for an effective 

chart to simultaneously monitor the mean and variance has motivated us to develop 

three single variables DEWMA (Double EWMA) charts. These charts are referred to 

as the DEWMA-Max (called the DEWMA maximum), Max-DEWMA (called the 

maximum DEWMA) and SS-DEWMA (called the sum of squares of DEWMA) 
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charts, in the thesis. The proposed charts are capable of simultaneously monitoring 

shifts in both the process mean and variance, which are more effective than the 

existing single EWMA charts, in terms of out-of-control detection speed and 

diagnostic abilities. The term „variables‟ refers to quality characteristics that can be 

measured and expressed as a number on some continuous scale of measurement 

(Montgomery, 2009). 

 

1.3 Objectives of the Thesis   

       The objectives of this thesis are:  

(i)    to propose the DEWMA-Max chart. The technique of performing exponential 

smoothing twice to construct a DEWMA chart is applied to the maximum of 

the absolute values of the statistics controlling the process mean and variance 

(whichever is larger), so that a new chart is proposed.  

(ii) to propose the Max-DEWMA chart. The statistics of this chart are based on the 

maximum of the absolute values of two DEWMA statistics, one for controlling 

the process mean while the other the process variance. 

(iii) to propose the SS-DEWMA control chart. This chart uses the sum of squares 

statistics and it simultaneously monitors the process mean and variance in a 

single chart. 

 

1.4    Organization of the Thesis 

 Chapter 1 gives an overview of control charts and highlights the problem 

statements of the study. It also mentions the objectives of the study. Chapter 2 

introduces the principles of SQC and discusses the developments in quality control. 

A literature review is given to explain existing works on single variables charts. 
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 Three single variables DEWMA charts are proposed and described, each in 

Chapters 3, 4 and 5. Here, the performances of the proposed optimal single DEWMA 

charts are compared with that of their competing optimal single EWMA counterparts, 

in terms of the out-of-control detection speed and diagnostic abilities. Examples on 

how these charts are put to work in a real situation are also shown in these chapters. 

  In Chapter 6, the performances of the three proposed single DEWMA charts are 

compared, in terms of their average run length (ARL), standard deviation of the run 

length (SDRL) and diagnostic abilities performances. Finally, the main contributions 

of the thesis and some suggestions for further research are summarized in Chapter 7. 

 The derivation of the statistics for the proposed single DEWMA charts and the 

numerous computer programs written in the Statistical Analysis Software (SAS) and 

FORTRAN codes are included in Appendices A to C. The programs are used to 

compute the ARLs and SDRLs, as well as, to study the diagnostic abilities of the 

charts. 
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CHAPTER 2   

LITERATURE REVIEW 

 

 

2.1 Introduction 

 Quality has always been an essential part of almost all products and services. 

Statistical quality control (SQC) is a set of interrelated tools used to monitor and 

improve the performance of a process producing a product or service. This chapter 

presents a review on the literature related to this study. The discussion covers both 

the philosophical and analytical sides. Section 2.2 is directed towards the 

philosophical side of quality control (QC). In this section, some important milestones 

or historical perspectives in the evolutionary process of SQC with some of the 

pioneers and their basic principles will be briefly reviewed.  

 Control charts are the basic tools of SPC to identify the presence of a special 

cause of variation in a process and an analysis can suggest causes of any out-of-

control occurrences in the process. Theoretical basis of control charts, like the 

common steps in constructing a control chart, the theory of hypothesis testing 

employed in control charts and the benefits of control charts are discussed in Section 

2.3, as they form the foundation of this study.  

 Both the philosophical and analytical sides of the developments in quality 

control charts will be covered in Section 2.4. The development of variables control 

charts, in chronological order, from the Shewhart, CUSUM, EWMA to DEWMA 

charts, as well as the differences between these charts will be explained. 

 The existing works on single variables control charts, for both mean and 

variance are highlighted in Section 2.5. Two different approaches used in 

constructing single variables charts will be discussed. The discussion will emphasize 
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on the EWMA-type single variables control charts because the EWMA control chart 

is superior to the Shewhart chart as explained in Section 2.4. The performance of 

EWMA chart is approximately equivalent to that of the CUSUM chart, and it is less 

sensitive to the normality assumption. 

 In Section 2.6, the ARL and the SDRL which are used to measure the 

performance of a chart will be defined. 

 

2.2    Statistical Quality Control (SQC)  

From here onwards, SQC is referred to as the collection, analysis and 

interpretation of data for application in QC activities aimed at monitoring and 

improving the performance of a process (Besterfield, 2009). SQC is different from 

SPC, as SPC is one of the statistical tools that make up SQC (Gupta & Walker, 2007). 

In ancient times, people were already concerned about the quality of products 

and it was known that elementary techniques for QC must have existed (Wierda, 

1994). Before industrialization, that is in the early production era before the 1920‟s, 

operators inspected the quality of their own works through their eyes and were 

responsible for the quality of products that they produced. They inspected every 

single product, in order to ensure that the products were all identical and were able to 

meet the market‟s quality demand. This is in fact 100% quality inspection because 

the products which were unacceptable were discarded but the assignable causes 

leading to the defects were neither identified nor eliminated (Besterfield, 2009). 

During the industrial revolution from the 18th to the 19th century, high 

volumes of products were produced and the use of a 100% visual inspection to avoid 

defective products from being produced was impractical. In addition, a major setback 
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of a 100% visual inspection is that no variability patterns could be gauged 

(Besterfield, 2009). 

The work of Shewhart in the 1920s led to an approach of an examination of the 

pattern of the underlying process variation, followed by the removal of the sources of 

variation. This approach was more effective than a 100% visual inspection of the end 

products. In 1928, H. F. Dodge and H. G. Romig developed and refined the 

statistically based acceptance sampling inspection of the process output prior to 

shipping to decide on the extent to which process output conforms to specifications. 

This method was also considered in QC as an alternative to 100% inspection. All of 

the earliest recorded works in QC as mentioned above were conducted at the Bell 

Telephone Laboratories. Walter A. Shewhart and his colleagues recognized that 

variation in a process is a statistical incident and developed statistical methods for 

QC (Chandra, 2001). 

In 1924, Walter A. Shewhart presented to his chief at the Bell Telephone 

Laboratories his first statistical control chart, showing the monthly number of percent 

defective items in some devices. This was often considered as the formal beginning 

of SQC. In December 1925, Shewhart published a paper entitled “The Application of 

Statistics as an Aid in Maintaining Quality of a Manufactured Product” in the 

Journal of the American Statistical Association. In this paper, he officially introduced 

the control chart to the world. Later in 1931, he published his famous book, i.e. 

Economic Control of Quality of a Manufactured Product, outlining the statistical 

methods for use in production and his proposed control charting methods (Shewhart, 

1931). His proposed charts include the X , R and S charts for variables data and the p, 

np, c and u charts for attributes data. Shewhart‟s is the beginning of SQC, where the 

main objective is to improve the quality of a product through process monitoring and 
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not correcting defects at the end product. However, during Shewhart‟s time, the 

importance of SQC was still not widely recognized and applied by industries 

(Montgomery, 2009). 

The high demand for war equipments during World War II, followed by the 

high demand for products after World War II, has boosted the productivity of the 

American manufacturing industries. The consequence was employment of many 

semiskilled and even unskilled operators who emphasized on the quantity but not the 

quality of products. As such, many products did not meet customers‟ expectations 

and were returned for rework. This brought about the realization of the importance of 

SQC and the necessity of quality improvement techniques, like control charts, 

acceptance sampling and design of experiments (DOE) in manufacturing industries 

(DeVor et al., 2007). 

As a result, widespread training courses were established extensively by the 

American manufacturing industries, where the applications of SQC in manufacturing 

and service industries were taught during the training. Besides training, publications 

and conferences for the promotion of SQC techniques were also done by several 

organizations, such as the American Society for Quality (Control), which was formed 

in 1946. At the same time, Britain also witnessed similar developments of SQC 

(DeVor et al., 2007).  

SQC gained popularity in the Japanese industries during the 1950s through W. 

Edwards Deming‟s (who learned SQC from Shewhart) training programs which 

emphasized on total quality management (TQM). Since the birth of QC, most 

industrial organizations have a QC manager, leading the QC department to monitor 

the quality of products. The concepts of TQM is not only applied in the production 

floor but in all departments involved in the production process. These include the 
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management, planning, purchasing, sales and accounting departments. Deming 

emphasized the concept of “do it right the first time”, in order to reduce rework costs. 

In 1954, Joseph M. Juran made his first trip to Japan, where he emphasized on the 

management‟s responsibility to achieve quality. Through this, the Japanese set the 

quality standards for the rest of the world to follow (Montgomery, 2009). 

By the late 1970s and early 1980s, the American industrial leaders studied from 

the Japanese, where a quality renaissance occurred in products and services. The 

Americans embraced the Deming‟s philosophy for quality improvement, and the 

Taguchi‟s methods and techniques of statistical DOE. The industrial revolution in the 

1980s emphasized on SPC and aimed at preventing the manufacturing of defective 

products through improved process monitoring and diagnostic from the very 

beginning of the process, especially in the automotive industry (DeVor et al., 2007). 

QC in today‟s context refers to the case, where both quality and productivity go 

hand in hand, in the correct direction, by means of process control, in identifying the 

root cause of a process failure and in taking actions to remove the assignable cause 

when one exists. The next section discusses the theoretical basis of a control chart.  

 

2.3 Theoretical Basis of a Control Chart  

A control chart is a graphical tool for monitoring the stability of a process. A 

typical univariate control chart displays a quality characteristic which has been 

measured from a sequence of samples on a graph versus the sample number or time. 

Although there are many types of control charts to monitor different processes and 

various ways to construct the charts, the common steps in setting up a control chart, 

in practice, can be summarized as follows (Xie et al., 2002): 

1) Obtain a sequence of sample points for the process being monitored. 
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2) Then calculate the process mean and use it as the center line (CL) of the chart 

representing the target value, 
0μ . 

3) Calculate the process standard deviation, 
0σ . 

4) Assuming a normal underlying distribution, the upper control limit (UCL) and 

the lower control limit (LCL) are established at  3 standard deviations from the 

CL. 

5) Plot the sample points on the chart and connect the consecutive points to show 

how the sequence of points has evolved over time. 

6) Assess if any sample point falls beyond the control limits. If at least a sample 

point falls beyond the limits, an investigation and suitable corrective actions are 

required to find and eliminate the assignable cause(s) so that the process returns 

into an in-control state (within the control limits). 

7) Revise the CL, UCL and LCL, if necessary. Then, construct the revised chart. 

8) Continue plotting whenever a new sample point is obtained. 

Practices since 1930 in all types of industries show that the 3 standard 

deviations width of the control limits from the CL provide an economical balance 

between the costs resulting from the Type-I and Type-II errors (Umble & Umble, 

2000). Unless there are strong practical reasons for doing otherwise, the 3  limits 

should be applied. For a normal underlying distribution, a total of 99.73% of the 

population points will fall within the 3 σ  control limits. This means that almost all 

of the population points fall within the 3 σ  limits if the process is free from any 

assignable causes. In other words, the false alarm rate or Type-I error size, α  is as 

low as 1 in every 370 (0.27%) random samples (Besterfield, 2009; Gupta & Walker, 

2007). This can be determined by using the in-control ARL (
0ARL ) formula in 

Equation (2.1). 
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  0

1
ARL ,

α
  (2.1) 

where α  = 0.0027.  

 The statistical theory employed in control charts is the theory of hypotheses 

testing. Applying a control chart can be considered as doing repeated tests of the 

statistical hypothesis that the process is in a state of statistical control. When a 

sample point is plotted on a control chart, the hypothesis of statistical control is to be 

tested based on the information obtained from the sample. A point falling within the 

control limits is equivalent to accepting the hypothesis of statistical control and a 

point falling beyond the control limits is equivalent to rejecting the said hypothesis. 

As in hypothesis testing, there are also two types of errors for a control chart. The 

probability of a Type-I error represents the probability that a control chart will give 

an out-of-control signal when in fact the process is actually in-control. The 

probability of a Type-II error represents the probability that a control chart fails to 

signal an out-of-control when the process is actually out-of-control. Table 2.1 

illustrates the differences between the Type-I error and the Type-II error. An optimal 

design of a control chart is to achieve the smallest probability of a Type-II error when 

a desired probability of a Type-I error is specified (Besterfield, 2009; Montgomery, 

2009). 

 

Table 2.1 Type-I error and Type-II error 

True state of nature 
Hypotheses (plotted point shows) 

Assignable cause is present Common cause is present 

Out-of-control OK Type-II error 

In-control Type-I error OK 

 

 



14 

 

There are many benefits that can be obtained from control charts if they are 

properly designed (Gupta & Walker, 2007): 

1. Control charts can help practitioners, i.e. production operators, in ongoing 

process control. 

2. Control charts can help a process to run consistently and predictably. 

3. Control charts are proven techniques for improving productivity, quality and 

capacity, and hence lowering the manufacturing cost. 

4. Control charts are effective in defect prevention. 

5. Control charts can distinguish between assignable causes and common causes of 

variations and help practitioners to take corrective actions. 

 

2.4    Developments in Quality Control Charts 

 Shewhart (1931) formulated a statistically-based approach to QC and 

introduced the X , R and S control charts in 1924. A control chart is one of the basic 

and most powerful tools in statistical process control (SPC), used in the monitoring 

of a quality characteristic of a process over time. 

Assume that the underlying process consists of sample points, 1 2 ii i inX ,X ,…,X , 

in the i
th

 sample of size 
i

n  from a normal distribution. The normal distribution is 

described by its parameters, i.e. the mean,   and the standard deviation,  . The 

X chart, which is based on the underlying distribution of the sample mean, is used to 

monitor the process mean. The R chart utilizes the sample ranges and the S chart 

utilizes the sample standard deviations to monitor the process variance.  

Montgomery (2009) pointed out that it is necessary to monitor the process 

mean and variance because in real situations, both the mean and variance are more 

likely to shift simultaneously. The X R  charts are used because they are easily 
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comprehensible by practitioners. However, the sample range ignores all information 

between the two most extreme values and hence the sample range method becomes 

inefficient as a measure of variability for large sample sizes. The X S  charts are 

sometimes used in place of the X R  charts because the sample standard deviation 

makes use of all the information available and can provide a better estimate of the 

process variance compared to the sample range. 

 The main drawback of the classical Shewhart control chart (Shewhart, 1931) is 

that it focuses only on the current sample point and pays no attention to the historical 

information about the process when a new point is plotted. Therefore, it is inefficient 

in detecting small shifts in the process. To overcome this drawback, the cumulative 

sum (CUSUM) and the exponentially weighted moving average (EWMA) charts 

which take into account historical sample points were proposed for detecting 

small/moderate shifts in the process.  

 The CUSUM chart developed by Page (1954) incorporates past information 

into each individually plotted sample point to increase the chart‟s sensitivity for 

detecting small shifts in the process. This chart plots the cumulative sums of 

deviations of the sample values from a target value against time. There are two types 

of CUSUM charts, the tabular CUSUM and the V-mask CUSUM. The tabular 

CUSUM employs two sample statistics (C
+
 and C


), where the one based on C

+
 is the 

one-sided upper CUSUM that accumulates positive deviations above the target while 

the other is the one-sided lower CUSUM that accumulates negative deviations below 

the target. Being similar to the Shewhart charts, the center line of the tabular 

CUSUM chart represents the target value, 0 . If either C
+
 or C

 
exceeds the 

predetermined decision interval, H, the process is considered to be out-of-control.  
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Instead of the classical control limits, the V-mask CUSUM chart requires the 

use of a mobile V-shaped mask which can be superimposed on the CUSUM plot to 

decide whether a shift occurs (Barnard, 1959). The mask is in the shape of a “>” 

placed over the chart with its vertex placed at a fixed distance from the last sample 

plotted. If all the samples previously plotted lie within the two arms of the V-mask, 

the process is assumed to be in-control, otherwise, the process is said to be out-of-

control (Oakland, 2008). However, the CUSUM chart‟s statistics assign the same 

weight to all the sample points.  

Roberts (1959) introduced the EWMA control chart for monitoring the process 

mean. Then, Hunter (1986) suggested writing the current EWMA as the previous 

EWMA plus a fraction of the difference between the current observation and the 

previous EWMA. Crowder (1987) evaluated the properties of EWMA‟s by 

formulating and solving a system of integral equations. The EWMA property 

introduces a weighting factor, , which weights the current sample point more 

heavily than the historical sample points, i.e. a shift in the process can be aggregated 

in the charting statistics so that it can be detected quickly. In other words, each 

sample point is assigned a weight, and the weight increases exponentially from the 

previous sample point to the present one. Thus, the EWMA chart is more sensitive 

than the Shewhart and CUSUM charts to reflect crucial information on the recent 

process. The EWMA chart is insensitive to the normality assumption, whereas the 

CUSUM chart is sensitive to the normality assumption (Hawkins & Olwell, 1998). 

The design parameters of the EWMA chart are the multiple of the standard 

deviation used in the control limits (K) and the smoothing constant ( λ ). The 

smoothing constant determines the rate of decay of the weights and hence the amount 

of information obtained from the historical data. A combination of (K, λ ) is chosen 
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to obtain a desired ARL0 value. The EWMA chart reduces to the Shewhart chart 

when  = 1. The differences between the Shewhart, CUSUM and EWMA charts, in 

terms of how past sample points are weighted, are shown in Figures 1.1 (a)  1.1 (c) 

(Cheng et al., 2007). 

 

 
          (a) Shewhart                     (b) CUSUM                   (c) EWMA 

 

Figure 1.1 The weighted functions for the Shewhart, CUSUM and EWMA charts 

 

The DEWMA (called the double EWMA) control chart is an extension of the 

usual EWMA mean chart by performing exponential smoothing twice on the original 

statistics of the underlying process. EWMA is a statistic that always gives strictly 

decreasing weights to historical sample points. However, this is not always applied 

to DEWMA statistics and weights may be non-monotones occasionally. According to 

the process characteristics, the previous sample points may have a greater 

importance than the current sample points. Therefore, the DEWMA can be a more 

flexible technique than the EWMA in applying the weights (Hong et al., 2011). 

The DEWMA chart was originally proposed by Shamma et al. (1991), and 

Shamma and Shamma (1992), which was later studied by Zhang and Chen (2005). 

Zhang and Chen (2005) recommended the use of the DEWMA chart for detecting 

small shifts in the mean of a zero state process. A comparison of the EWMA and 

DEWMA charts, in terms of the zero state ARL performance indicates that the latter 

is superior to the former. Zhang (2002) showed that the DEWMA chart can improve 
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upon the EWMA chart‟s performance for variables data. He also proposed the 

DEWMA p chart for attribute data with time-varying control limits, which dominates 

the EWMA p chart. Zhang et al. (2003) applied the DEWMA chart to the monitoring 

of Poisson data. Lately, Hong et al. (2011) proposed the DEWMA chart for the 

coefficient of variation (called the CV-DEWMA chart) that combines the DEWMA 

technique with the CV chart developed by Chang et al. (2007). The results revealed 

that the CV-DEWMA chart performs better than the CV-EWMA chart, proposed by 

Hong et al. (2008) in detecting small shifts in the variance when the sample size n is 

greater than 5. 

 

2.5    Single Variables Control Charts 

Most of the Shewhart, CUSUM and EWMA charts discussed in the literature 

monitor the process mean and variance separately. Using two charts plotted 

separately to monitor the process mean and variance is inconvenient, besides 

consuming more resources, time, manpower and cost. According to Gan (2000), by 

referring to either the mean or the variance chart alone without making reference to 

the other one might mislead QC engineers into making a wrong decision. In real life, 

the process variance tends to increase with the process mean. An ideal situation is a 

decrease in the variance when the mean is in control, but the situation is undesirable 

if a decrease in the variance is accompanied by a decrease in the mean. For this case, 

the mean chart becomes insensitive to the change in the process mean because the 

variance of the sample mean has decreased. Any detection of the mean with a 

decrease in the variance could lead to a false conclusion that the process mean has 

improved. The example from Gan et al. (2004) discussed in Section 1.2 of this thesis 

shows that the process mean and variance are simultaneously affected by the same 
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assignable cause in the said manufacturing setting and they need to be looked at 

jointly, in order to make meaningful inferences.  

For practical concern, this has led to the development of one control chart to 

simultaneously monitor the process mean and variance. The following discussion 

focuses more on the EWMA-type single variables control charts because the EWMA 

control chart is superior to the Shewhart and CUSUM charts, as discussed in the 

previous section.  

White and Schroeder (1987) introduced the use of one control chart to 

simultaneously monitor the process mean and variance. This simultaneous chart was 

constructed using resistant measures and a modified box plot display to monitor the 

process mean and variance. Since then, many efforts have been made to design a 

single control chart which can simultaneously monitor both the process mean and 

variance. Iglewicz and Hoaglin (1987) extended and refined the technique discussed 

by White and Schroeder (1987). The former authors claimed that the information 

contained in a simultaneous chart with two statistics can be confusing due to its 

complexity and that the chart is ineffective for small sample sizes. To overcome this 

setback, Chan et al. (1990) provided an alternative to the box-plot style of 

simultaneous charts that is effective for both small and large sample sizes. 

Domangue and Patch (1991) proposed simultaneous omnibus EWMA charts 

for detecting changes in both the location and dispersion. The EWMA statistic is 

based on the exponentiation of the absolute value of the standardized sample mean. 

The setback of this chart is that it is incapable of identifying the source and direction 

of a shift. To overcome this, Gan (1995) proposed a combined scheme consisting of a 

two-sided EWMA mean chart and a two-sided EWMA variance chart. To ensure that 

charts controlling the mean and variance are interpreted jointly, Gan (1997) 
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constructed a joint monitoring of both the mean and variance using simultaneous 

EWMA charts, i.e. plotting the EWMA of 2log( )S  against the EWMA of X . The 

position of an out-of-control point for this chart is able to provide insights to both the 

magnitude and direction of a process shift. Later, Gan (2000) developed a joint 

EWMA chart to monitor the process mean and variance using a rectangular or an 

elliptical chart.  

The single EWMA charts discussed in the preceding paragraph plots two 

statistics on the same chart, for a joint monitoring of both the process mean and 

variance. However, there are two different approaches that are used in constructing 

single variables charts. The first is to plot two statistics, one representing the mean 

and the other the variance, both having a standard scale on the same chart as 

discussed above. The second approach uses one plotting variable to represent both 

the mean and variance. The first approach is not simple because it requires plotting 

two different types of quantities on the same chart. The following paragraph 

discusses single charts that use the second approach. 

Xie (1999) proposed several single EWMA control charts that use only one 

plotting characteristic. Firstly, he extended the Max chart, proposed by Chen and 

Cheng (1998) to the EWMA-Max chart. The EWMA technique is applied to the Max 

statistic to construct the EWMA-Max chart. It is capable of detecting small changes 

in the process mean and/or variance. Xie (1999) also suggested the Max-EWMA and 

EWMA-SC charts, which were later published by Chen et al. (2001) and Chen et al. 

(2004), respectively. The Max-EWMA chart plots the maximum of the two EWMA 

statistics containing the mean and variance, while the EWMA-SC chart applies the 

EWMA techniques to the statistics employed in the semicircle chart. In addition, Xie 

(1999) proposed the SS-EWMA chart, based on the sum of squares of the maximum 
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standard EWMA values. Costa and Rahim (2004) proposed an EWMA chart based 

on a non-central chi-square statistic for a joint monitoring of the process mean and 

variance and found that their chart has a similar ARL performance to that of the 

Max-EWMA chart. Costa and Rahim (2006) proposed a single EWMA chart for a 

simultaneous monitoring of the process mean and variance as an extension to the 

chart studied by Chen et al. (2004). Cheng and Thaga (2006) provided a 

comprehensive overview of single variables charts. They concluded that single charts 

are more appealing than the simultaneous charts because single charts are easy to 

construct, and the source and direction of a shift is easily identified and interpreted. 

The works of Xie (1999) on single EWMA charts and Zhang and Chen (2005) 

on DEWMA chart have motivated us to propose three single DEWMA control 

charts, where each uses only one plotting variable to represent both the mean and 

variance. This study extends the EWMA-Max chart to the DEWMA-Max chart; the 

Max-EWMA chart to the Max-DEWMA chart; and the SS-EWMA chart to the SS-

DEWMA chart. To the best of our knowledge, no attempt has been made to develop 

single DEWMA charts for a simultaneous monitoring of the mean and variance, prior 

to the work in this thesis. 

 

 

2.6 Average Run Length (ARL) and Standard Deviation of the Run Length 

(SDRL) 

The performance of control charts for monitoring a process is commonly 

measured by the ARL which is defined as the average (expected) number of sample 

points that must be plotted on the chart before the first out-of-control signal is 

detected (Xie et al., 2002). In other words, ARL is a measure of the speed of a chart 

in detecting the occurrence of assignable causes (Zhang & Chen, 2005).  
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When the process is in-control, the ARL0 should be sufficiently large to avoid 

too frequent false alarms produced by the chart. When the process is out-of-control, it 

is desirable to have a small out-of-control ARL (ARL1), so that an out-of-control 

condition can be detected quickly. The out-of-control condition is represented by a 

significant change or shift in the mean and/or variance (Montgomery, 2009). 

Using the ARL as a sole measure of performance of a chart is insufficient. 

Instead, supplementing the ARL with other characteristics of the run-length 

distribution is important (Chakraborti, 2007; Radson & Boyd, 2005). For example, in 

addition to the ARL, the standard deviation of the run length (SDRL) can also be 

computed to get an idea about the variation of the run length distribution. SDRL 

measures the spread of the run length distribution. A small SDRL value is desirable, 

while a large one is undesirable. A chart with a smaller ARL1 and a small out-of-

control SDRL (SDRL1) compared to its counterparts having the same ARL0 value is 

said to be more effective in detecting a process change.  

Thaga (2003) commented that using ARL alone to measure a chart‟s 

performance is inadequate as only a fraction of the behavior of the control chart is 

shown by the size of the ARL. Thus, it would be better to study the chart‟s behavior 

by investigating the properties of its run length distribution, i.e. via the use of SDRL. 

Moreover, Di Bucchianico et al. (2005) also commented that when the run length 

distributions are highly skewed, it is less meaningful to judge the performance of a 

control chart by considering its ARL only. Instead, the SDRL should also be taken 

into account.  

 

 

http://www.reference-global.com/loi/eqc
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The simulation, integral equation and Markov chain approaches have been used 

in the literature to compute the ARL and SDRL values of control charts (Champ & 

Ridgon, 1991; Chen et al., 2004; Costa & Rahim, 2006; Zhang & Chen, 2005). The 

simulation method will be used in this study to obtain the ARL and SDRL values. 
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CHAPTER 3   

DEWMA-MAX CHART 

 

 

3.1 Introduction 

 As discussed in Chapter 2, there is an abundance of new developments in 

control chart techniques. The EWMA-type charts are more sensitive in detecting 

small shifts in the process mean and/or variance and thus they serve as alternatives to 

the Shewhart-type charts. Firstly, Section 3.2 elucidates the EWMA-Max chart 

proposed by Xie (1999), which effectively combines two EWMA charts into one 

chart with a single quality characteristic to monitor both the process mean and 

variance. The EWMA-Max chart is an extension of the Max chart (Chen & Cheng, 

1998). It indicates the source and direction of a shift when an out-of-control signal is 

detected. The EWMA technique applied to the Max statistic has increased the 

sensitivity of the Max chart, as the Max chart is not sensitive to small changes in the 

process. 

 Secondly, Section 3.3 introduces the proposed DEWMA-Max chart as a 

superior alternative to the EWMA-Max chart. It is assumed that an assignable cause 

of variation may shift the process mean and/or variance. The proposed chart is based 

on the assumption that the underlying distribution is normally distributed. The 

technical details are provided in Section 3.4. The charting procedure and the optimal 

design of the DEWMA-Max chart are presented in Section 3.5 and Section 3.6, 

respectively. 

 A simulation study is conducted in Section 3.7 to compare the performances of 

the optimal DEWMA-Max and the optimal EWMA-Max charts. In addition, an 

example of application is presented in Section 3.8 to show how the DEWMA-Max 
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