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PASANGAN

MONOKUTUB-ANTIMONOKUTUB

ELIPTIK JACOBI KEPADA TEORI

YANG-MILLS-HIGGS SU(2)

ABSTRAK

Monokutub magnet dan multikutub magnet adalah penyelesaian soliton topologi

dalam ruang tiga dimensi bagi model Georgi-Glashow SU(2) tak Abelian. Ianya meru-

pakan hasil sampingan akibat pemecahan simetri secara spontan daripada kumpulan

SU(2) kepada kumpulan U(1) dan seterusnya memperolehi cas magnet.

Dalam tesis ini, model Georgi-Glashow SU(2) ataupun dikenali sebagai teori Yang-

Mills-Higgs SU(2) dikaji untuk mencari lebih banyak konfigurasi klasikal monokutub

magnet berserta dengan ciri-cirinya. Dalam kajian konfigurasi dalam model terse-

but, gantian ansatz yang bersesuaian diperlukan dalam persamaan gerakan pembezaan

tertib kedua dan seterusnya mencari penyelesaian analitik ataupun berangka.

Konfigurasi monokutub eliptik Jacobi bersimetri paksi (Teh et al. 2010) diperolehi

dengan mengitlakkan penyelesaian asimptot jarak besar kepada fungsi eliptik Jacobi

dan kemudiannya menyelesaikan persamaan pembezaan medan tertib kedua secara be-

rangka. Kami mengkaji penyelesaian ini secara berangka dengan mengubah nombor

magnetnya dan menganalisis sifat-sifatnya apabila keupayaan Higgs tidak sifar. Semua

penyelesaian ini adalah tak-BPS, sekata dan memiliki jumlah tenaga yang sama den-

gan monokutub umum ’t Hooft-Polyakov. Sesetengah monokutub ini didapati terherot

dan memperolehi momen dwikutub magnet.

xi



Penyelesaian baharu satu pasangan monokutub-antimonokutub (1-MAP) dan cincin

vorteks eliptik Jacobi bersimetri paksi juga dikaji. Dengan cara yang sama, 1-MAP

eliptik Jacobi ini turut diperolehi dengan kaedah mengitlakkan penyelesaian asimptot

jarak besar kepada fungsi eliptik Jacobi dan menyelesaikan persamaan permbezaan

medan tertib kedua secara berangka apabila keupayaan Higgs sifar dan tidak sifar.

Sifat-sifat penyelesaian baru ini dibandingkan dengan 1-MAP piawai dan 1-MAP yang

terhasil daripada bilangan belitan-θ m = 2. Secara konklusinya, walaupun ciri-ciri 1-

MAP yang berbilangan belitan m = 1 adalah setara dengan 1-MAP berbilangan belitan

m = 2, jumlah tenaga 1-MAP dengan m = 1 adalah jauh lebih rendah daripada 1-MAP

dengan m = 2.
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JACOBI ELLIPTIC

MONOPOLE-ANTIMONOPOLE PAIR OF

THE SU(2) YANG-MILLS-HIGGS THEORY

ABSTRACT

Magnetic monopoles and multimonopole are well known three dimensional topo-

logical soliton solutions of the non-Abelian SU(2) Georgi-Glashow model. They are

remnants of the spontaneous symmetry breaking of the gauge group SU(2) into the

group U(1) with net magnetic charge.

In this thesis, the SU(2) Georgi-Glashow model or synonymously SU(2) Yang-

Mills-Higgs theory is studied to seek for more magnetic monopole configurations

along with their properties at the classical level. To find such configurations in the

model, one need to substitute a suitable ansatz into the second order equations of mo-

tions and look for an analytical or numerical solutions.

The axially symmetric Jacobi elliptic one-monopole (Teh et al. 2010) configu-

rations were obtained by generalizing the large distance asymptotic solutions to the

Jacobi elliptic functions and solving the second order field equations numerically.

We study them numerically by varying its magnetic number and analyze its proper-

ties when the Higgs potential is non-vanishing. These are non-BPS, regular solutions

which possess the same total energy as the generalized ’t Hooft-Polyakov monopole.

Some of these monopoles are distorted and possess magnetic dipole moment.

The new axially symmetric Jacobi elliptic one monopole-antimonopole pair (1-

MAP) and vortex rings are studied as well. Similarly, these Jacobi elliptic 1-MAP are

obtained by using large distance asymptotic solutions generalization to Jacobi elliptic

xiii



functions and solving the second order field equations numerically when the Higgs

potential is vanishing and non-vanishing. The properties of these new solutions are

compared with the standard 1-MAP and 1-MAP obtained from θ -winding number

m = 2. It can be concluded that while the properties of the 1-MAP of winding number

m = 1 are comparable to the 1-MAP of winding number m = 2, the total energy of the

former is significantly lower than the latter.
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CHAPTER 1

INTRODUCTION

1.1 Particle Physics and Gauge Theory

The subject of physics would most probably be well remembered with the lessons

of classical mechanics. This is the ‘mechanics’ that emerged during the 17th century

and lasted until early 20th century. Since then, it was realized that classical mechanics

is not sufficient to explain everything and it was eventually superceded by relativistic

mechanics. From that moment onwards, relativistic mechanics (or sometimes known

as special relativity) forms another branch or domain of physics. At the same time,

another equally bizarre but as well tested as the relativistic mechanics was forming

another domain in physics. It was constructed by renown figures such as Planck, Bohr,

Einstein, and many others and the name of this new domain is called the quantum me-

chanics. For particle physicists, these two new domains are essential for the study of

subatomic matter, forces and interactions between them. Nevertheless, particle physi-

cists would require another well established domain that could incorporate both the

quantum effect as well as the relativistic effect. This is the point where quantum field

theory comes in.

A culmination of quantum mechanics and relativistic mechanics, quantum field

theory is widely considered as the correct method to study the elementary particles. It

has a good reason to be a valid theory since it is accountable for theoretical predictions

with accuracies up to one part in a billion. The major driving force behind the success

of quantum field theory is the idea of gauge theory. By definition, gauge theory is a

field theory where its Lagrangian remains invariant under a continuous group of local

1



transformations. Field with such property is sometimes referred as gauge invariance or

gauge symmetry. We will discuss about gauge theory in more detail in later chapter.

Hermann Weyl (1918) was the first person who invoked the idea of gauge theory

in his attempt to unify general relativity and electromagnetism, the two fundamental

forces known that time. While admiring Weyl’s work, Einstein did not believe that it

truly reflects the Nature and this leads to some intense exchanges of letters between the

two. Einstein’s hunch proved to be right and Weyl’s initial attempt was a failed physical

theory. However, with the development of quantum theory, Weyl succesfully showed

that electrodynamics was invariant under the gauge transformation of the gauge field

and wave function of a charged particle (suggested earlier by London and Fock). Very

importantly, Weyl enunciated the role of gauge invariance as a symmetry principle to

rederive the electromagnetism (O’Raifeartaigh and Straumann, 2000). This was the

moment when gauge theory was born. The similar gauge theory is also applicable to

the quantum version of the electrodynamics. Dubbed as Quantum Electrodynamics

(QED), it has the gauge group, G =U(1) and is an Abelian group. It describes how the

light and matter interact and is fully compatible with quantum mechanics and special

relativity. The prominent physicist, Richard Feynman called it ‘the jewel of physics’

for its extraordinary predictions of physical quantities. In fact, QED predictions are so

good that it is considered as the most accurate theoretical prediction in the history of

science.

Following the immense success of QED, physicists are curious whether the non-

Abelian gauge theory could be applied on other fundamental forces as well, notably the

weak interaction and strong interaction? In 1954, Chen Ning Yang and Robert Mills

invented the non-Abelian gauge theory in an attempt to study isospin doublet of pro-

ton and neutron (Yang and Mills, 1954). This brings the generalization of the gauge

group, G from U(1) to SU(2), which is the simplest non-Abelian group. However,

this generalization of Yang-Mills SU(2) suffers a serious drawback simply because the

gauge fields are predicted to be massless. At that time, the only known massless gauge

field is the photon. Therefore, this generalization is incompatible with the known char-

2



acteristic of weak interactions which is short-range and being mediated by a massive

boson. Receiving heavy criticism from Pauli and lack of experimental support, Yang-

Mills theory was soon abandoned until the late 1960s except by a very few theorists.It

seems that there are only two logical solutions to why experimentalists could not see

any massless particles except for photon (Zee, 2003). First is the Yang-Mills particles

somehow through some mechanism did acquire mass. Second is the Yang-Mills parti-

cles are in fact massless but somehow are not observed. Later, it turns out that both are

right in the sense that the former was realized in electroweak theory and the latter in

strong interaction. We will briefly discuss the weak interaction before moving on into

strong interaction.

Schwinger (1957) was the first person to try to unify electromagnetic and weak

forces into a larger gauge group. Soon, Glashow realized that a renormalizable theory

of weak force necessarily involves this unification and in 1961, proposed a model of

SU(2)× U(1) but lacked the important ‘Higgs fields’. The major breakthrough was

made by Weinberg (1967) and Salam (1968) when they introduce the Higgs field to

break the gauge symmetry, which will render the gauge bosons to acquire mass. The

resulting field theory, known as Glashow-Weinberg-Salam model (famously known as

Weinberg-Salam electroweak theory) was confirmed sixteen years later with the dis-

covery of W±,Z0 bosons at European Center for Nuclear Research (CERN). Glashow,

Weinberg and Salam shared the 1979 Physics Nobel Prize for their contributions to the

theory of the unified weak and electromagnetic interaction as well as the prediction of

the weak neutral current.

On the other hand, the application of Yang-Mills theory on strong interaction (or

strong force/color force) was equally formidable. Around late 1960th period, the parti-

cle physics was in deep mess with hundreds of ‘elementary particles’ keep pouring out

from the accelerator. Frustrated, J. Robert Oppenheimer once said that the Nobel Prize

should be awarded to physicist who did not discover a new particle. In 1964, Gell-

Mann and his student George Zweig, proposed a quark model to explain the variety

of hadrons (Fritzsch, 2012). In quark model, hadrons are not elementary but instead

3



comprise of smaller constituents called ‘quarks’. Each quarks carry a fractional charge

of the hadrons. Although this model can classify any hadron by its constituents, it has

a huge problem for violating the Pauli exclusion principle. To get around this problem,

Greenberg at the same year and subsequently, Han and Nambu suggested that quark

neccessarily carry an extra quantum number called color charge. The color charge as

we know today is taken to be the three primary color: red, blue and green. These

‘colors’ are quantum property and are not related to the visual perception of color.

Fritzsch, Leutwyler and Gell-Mann then proposed the quark’s triplet color as the fun-

damental representation of the gauge group SU(3)C (index C for color) or just simply

SU(3) (Fritzsch et al., 1973). This gauge theory that describes the strong interaction

using color symmetry is named the Quantum Chromodynamics (QCD).

There are eight gauge bosons in QCD called the gluons and they intrinsically carry

color charge too. To our best knowledge of SU(3) symmetry, it is unbroken in Na-

ture, the reason that gluons do not have mass. Gluons interact with quarks as well

as with themselves. At very high energy, gluon-gluon interaction actually reduces the

strength of coupling constant, causing the quarks and gluons to behave like a free par-

ticle (Fritzsch, 2012). This behaviour prediction known as asymptotic freedom was

discovered in 1972 by Gerard ’t Hooft (unpublished) and in 1973 by David Gross,

David Politzer and Frank Wilczek (Gross and Wilczek, 1973; Politzer, 1973). The

Nobel Prize in Physics 2004 were awarded jointly to Gross, Politzer, and Wilczek for

their contribution to the theory of strong interaction.

1.2 Standard Model of Particle Physics

Putting the Glashow-Weinberg-Salam model and QCD together is the famous Stan-

dard Model of Particle Physics or simply ‘Standard Model’ with gauge group SU(3)C×

SU(2)L× U(1). Standard Model accurately describes three of the four fundamental

forces, namely electomagnetism, weak interaction and strong interaction. Standard

Model is constructed with the combined effort of the best theorists and the finest ex-

perimentalists, involving global scale collaboration between the largest group of intel-
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lects. It was finalized in the mid 1970s and has correctly predicted elementary particles

ahead of its time. Comprised of 61 elementary particles, all of them are experimentally

verified except for the one very important Higgs boson, which is the key building block

of the Standard Model. For many years, Higgs boson has eluded experimentalists and

some might suggest that Standard Model has been in the wrong path. It was until very

recently on July 4th 2012, strong hints of Higgs boson finally emerges from the Large

Hadron Collider (LHC) in CERN. In the following year on March 14th, the ATLAS

(A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) collaborations at

LHC finally confirmed the existence of Higgs boson to complete up the final piece of

the Standard Model.

Powerful as it may be, Standard Model does have its weaknesses as well. In partic-

ular, there are several experimental observations that Standard Model could not explain

adequately. First and foremost, Standard Model does not incorporate the final funda-

mental force, which we know now as the general relativity. Of course, physicists have

attempted this before since 1970s but the effort of bringing these two ‘recipes’ to-

gether seems to be disastrous. The mathematics between them are inconsistent with

each other under certain conditions and will only yield illogical result. Moreover, the

recent discovery of dark matter and dark energy which make up the 96% constituents

of the universe has nothing accountable to Standard Model. There are simply no known

interaction between ordinary matter with dark matter nor the origin of the dark energy.

Effort to answer some of these shortcomings lead to the development of Physics

beyond Standard Model (BSM). One of the main research field in BSM is the Grand

Unified Theories or GUT in short. GUT is a model to merge the three interactions:

electromagnetism, weak interaction, and strong interaction into a single interaction

categorized by a larger gauge group and with just one coupling constant. The moti-

vation behind GUT is that while the Standard Model has three gauge groups, the cou-

pling constant of each groups actually varies with the energy. Based on experiments,

physicists predicts that the strength of the three coupling constants almost converge at

energy approaching 1016 GeV. The first and simplest model of GUT was proposed by
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Georgi and Glashow which based on the gauge group SU(5) :

SU(5) ⊃ SU(3) × SU(2) × U(1)

Perhaps the most compelling GUT is the Georgi-Glashow SU(5) model with the in-

clusion of the theory of supersymmetry called the Minimal Supersymmetric Standard

Model (MSSM). In supersymmetry, it is theorized that for every particle of spin one

(force particle), there is neccessarily a ‘superpartner’ that differs by half a unit spin

(matter particle). These superpartners or superparticles are believed to be a hundred to

a thousand times heavier than a proton and will effectively double the number of par-

ticles in Standard Model. Apparently MSSM was put forward to explain the hierarchy

problem, a long standing question in physics (and still is). Secondly, supersymmetry

offers a possibility that the unseen, dormant dark matter which makes up 24% of the

universe is somehow a manifest of superparticles. Finally and probably the most ap-

pealing feature of MSSM is that supersymmetry allows the three coupling constants

to match and converge perfectly at energy around 1016 GeV called the grand unifica-

tion energy. This feature is almost but cannot be attained without supersymmetry and

many physicists believe that this perfect matching is no coincidence. In the experimen-

tal point of view, it is speculated that the LHC in CERN might be powerful enough to

find the tell tale signs of these exotic superparticles.

Besides MSSM, there are many candidates of GUT such as the SO(10), Pati-Salam

model, E6 to name a few. When discussing the topic of GUT, there is one very impor-

tant fact that we need to bear in mind. As for today, we live in a time when the-

oretical physics has developed way far beyond where the experiments can go. The

scenario nowadays is the complete opposite of the 1960th era where a theory is desper-

ately needed to explain the bulk of elementary particles spewing out from accelerator.

Nowadays, advances in theory allows theorists to construct various plausible models to

explain the Nature but then the question lingers on which model is the most accurate?

Only through experimental guidance can physicists rule out the inconsistent model

and re-focus their attention on the other model. At least this is the way the physics

works since Galileo’s time. Unfortunetely, the new physics behind GUT lies within
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the energy range of 1016 GeV. This fantastically huge figure is so much higher than

what the accelerator can achieve today and would be unlikely to be attained in future.

In short, we have absolutely no way to determine which model is the best. The best

that theorists can do is to investigate each and every possibility, which translates into a

slow and pain staking progress in physics for the pass several decades. Of course, the

discovery of Higgs boson in LHC or potentially superparticles would serves as a major

motivation for physicists to strive on.

As readers should realize, even the GUT is still fall short of including gravity.

Combining these two together into a single Theory of Everything (TOE) is the ultimate

dream of every theorists. So far, there is no mutual agreement on which theory is

the best candidate of TOE but one of the hottest subject pursued is the superstring

theory (or M-theory). Likewise, superstring theory severely lacks of any experimental

guidances to make any progress in physical theories. However, one thing for certain is

that combining GUT and gravity would be one notoriously difficult task to accomplish.

1.3 Magnetic Monopole

Like its name implies, the term magnetic monopole is reserved for a hypothetical

particles with only one magnetic pole. Specifically, a magnetic monopole possesses a

net ‘magnetic charge’. This particle is totally different from the ordinary magnet or to

be more precise, a ‘magnetic dipole’ that has two poles (one south and one north). A

magnet cannot be broken into two single pole magnets by any means (cutting, splitting)

possible and the outcome would only yield two magnetic dipole instead.

The scientific development of magnetism came hand in hand with electricity dur-

ing the late 19th century and it was Maxwell who unify them together in one swift

stroke using his four famous equations. In vacuum state, the Maxwell equations dis-

play some degree of symmetry between electricity and magnetism. However in reality,

this symmetry is ruined by the fact that we could only find electric monopole (charge)

and not magnetic monopole. It is said that the absence of magnetic monopole leads

to the broken symmetry in classical electrodynamics. Using quantum approach, Dirac
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(1931) showed that the existence of magnetic monopole is compatible with Maxwell’s

equations and at the same time deduce some important result. His approach in one way

or another, symmetrized the Maxwell’s equations thus making it mathematically more

appealing. But one question remains, is magnetic monopole a necessity?

Despite the absence of magnetic monopole, the research to investigate one is still

very much alive. The next major development made after Dirac was the ’t Hooft-

Polyakov monopole, found independently by Gerard ’t Hooft and Alexander Polyakov

(1974). They discovered that the magnetic monopole exists as a ‘soliton solution’ in

gauge theory with spontaneous symmetry breaking. Solitons are defined as stable so-

lutions with well defined energy to the non-linear classical gauge field theories. Since

gauge theories have become a very important tool in physics, it is imperative to take

solitons seriously as well. We will explore more about ’t Hooft-Polyakov monopole

later on.

Even though solitons are classical solutions, they are not deem to be unimportant.

Time and again, classical approach proves to be an extremely useful method for con-

structing the quantum theory. For example, development of classical mechanics led

to the principle of conservation of energy and ideas of Hamiltonian mechanics. These

ideas became crucial ingredients for the development of quantum mechanics, even as

classical mechanics itself was superceded. If one knew everything about classical field

configurations, then in principle all questions concerning the quantum theory could be

answered (Actor, 1979). Even partial information about classical fields provide some

insight into the quantum theory.

On top of that, magnetic monopoles inevitably reappear in the context of GUT.

Despite the various possible models of GUT, many of them commonly predict the

existence of magnetic monopoles even though its properties are model dependent. This

came as no suprise as was stressed by ’t Hooft and Polyakov, any ‘grand unified’ theory

of particle physics necessarily contains magnetic monopoles. Even the more ambitious

TOE model also predicts their existence.
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1.4 The Search for Magnetic Monopoles

Given the ample arguement that monopoles should exist, physicists are still riddled

by the same old mystery: where are they? Of course, there have been many attempts

to detect the monopoles experimentally. These attempts include producing monopoles

in the particle accelerator and secondly by finding them through cosmic rays activities.

1.4.1 Accelerator Searches

In principle, particles or monopoles are always reproducible in the particle accel-

erator provided that the collision energy is high enough. Another fact is that GUT

monopoles require energy at least a trillion times more powerful than LHC and this

seems to be unrealistic to achieve in foreseeable future. However, our best acceler-

ators did help to determine the law of physics up to electroweak scale, which is at

around 100 GeV and there are monopoles much lighter than GUT’s being predicted.

For example, there is Cho-Maison monopole (1997) resides in the electroweak model.

These so called intermediate-mass monopoles might be light enough to be seen in

LHC. In 2009, CERN Research Board approved the LHC’s seventh experiment : the

Monopole and Exotics Detector At the LHC (MoEDAL) with its primary objective to

detect monopoles (Pinfold, 2010). The detector of MoEDAL comprises of an array

of approximately 400 plastic nuclear track detectors (NTDs). Conceptually, MoEDAL

detectors act like a giant camera to capture the activities of highly ionizing particles

with the plastic NTDs as its ‘photographic film’. Monopoles with its high ionizing

power (> 4000 times of e) will microscopically damage the polymeric bonds in NTD

to register a detection. These plastic detectors can always be removed and analyzed

during the short shutdown of LHC.

1.4.2 Cosmic Rays Searches

Probably our best hope to observe a monopole is through the detection from cos-

mic rays. It has been postulated that monopoles are created during the early universe

and they should be around even to this day. Monopoles in cosmic rays are measured
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in flux and generally higher flux means higher possibility of hitting the detector (thus

registrating detection). One type of detector uses the concept of electromagnetic in-

duction when a monopole passes by a superconducting loop. The attractive feature

of these inductive detectors is that they respond specifically to a magnetically-charged

particle, not any electric charges or magnetic dipoles (Caplin et al., 1986). Monopole

that traverses in the superconducting loop induces a current by Faraday’s law of in-

duction. There are seven groups that did this experiment using the electromagnetic

induction technique (Groom, 1986) and some early experiments do show promising

evidence for them. One notable evidence was reported by Blas Cabrera (1982) where

his superconducting loop recorded a jump in current by exactly the same amount that a

monopole would generate; a perfect signature of monopole. Another group by Caplin

et al. (1986) reported a similar event three years later in Imperial College. However,

because later experiments have not been able to reproduce them, no conclusive state-

ment was made. Even Cabrera himself never claimed that the event were due to a

monopole’s passage.

From past experience, perhaps it would be wise to be more critical on the subject

of monopole. For example, the announcement of the detection of moving magnetic

monopole in cosmic rays by Price et al. (1975) was retracted after some error was

found. A possible explaination for the detection was offered by Alvarez (1975) as the

consequence of the decay of platinum nucleus. Recent prediction on how the GUT

monopoles could have catalyze the proton decay still yield no result after prolonged

research.

Nevertheless, monopole theory still remains a great interest to theorist as it has

been closely connected with many actual directions of theoretical physics such as the

problem of confinement in QCD, proton decay, and evolution of universe (Shnir, 2005).

The distinguised string theorist Joseph Polchinski (2004), famously quoted that the

existence of monopoles as ‘one of the safest bets that one can make about physics not

yet seen’. In any way, theoretical study of monopole proves to be highly beneficial to

physics and mathematics while we are still waiting for some empirical evidence.
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1.5 Objectives

Since the idea of gauge theory has been deeply enrooted in our physical world,

it is not suprising that magnetic monopole too has gained much enthusiasm. In the

next chapter, we will journey into the important concepts and ideas of gauge theory.

Besides, some basic and vital mathematical expressions will be highlighted. In the

chapter after that, we will give some literature review on the magnetic monopoles in the

SU(2) Yang-Mills-Higgs field theory and discussed some of the more recent research

on multimonopoles. In Chapter 4 and Chapter 5, research works on the Jacobi elliptic

monopole systems will be constructed and discussed. The monopole solutions are

obtained by using suitable substitution on the SU(2) Yang-Mills-Higgs second order

field equations and solving these equations numerically. Through these solutions, we

could retrieved informations on their energies, magnetic field, magnetic dipole moment

and others. From here, it is hopeful that these informations will give us insights into

the more realistic GUT monopoles model.
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CHAPTER 2

GAUGE FIELD THEORIES

2.1 What is Gauge Theory?

As was defined earlier, gauge theory is a type of field theory where its Lagrangian

is invariant under continuous group of local transformations. These transformations

are called the gauge transformations and they form the Lie group or synonymously,

gauge group of the theory. For every Lie group, there are generators that form the Lie

algebra. As an analogy, one can think of Lie algebra which resembles elements that

spanned the vector space. For each generators, there exists corresponding gauge field

that responsible for restoring the Lagrangian and ensure its invariance. In quantum

field theory, act of quantizing the gauge fields will produce the gauge bosons. Gauge

groups can be categorized to be commutative (Abelian) or non-commutative (non-

Abelian).

2.2 Generators and Lie Algebras

The idea of symmetry often becomes the driving force for physicists in construct-

ing a physical theory. The mathematical machinery that is closely related to symmetry

is called the group theory and its branch known as the Lie groups. The circle group, or-

thogonal groups O(n), unitary groups U(n) and special unitary groups SU(n) are a few

examples of the compact Lie groups. Most gauge theory uses compact Lie groups to

ensure that the Hamiltonian (energy) of the system is bounded from below. In a ‘loose’

definition, Lie groups belong to a continuous groups that can be parameterized by one

or more continuous variables. For example, every point on a unit circle can always be
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specified by an angle or variable θ measured from the positive z-axis. Associated with

every variable or parameter is a generator, which is akin to the ‘basis’ of the vector

space. Every particular element in the group can be expressed in term of the generator

eiα jX j , (2.2.1)

where α j is the parameter and X j is a Hermitian generator. (Index j runs from 1,2,...,n

where n is dimension of the group)

The product of two elements, one with parameter α j and another with βk is neces-

sarily an element in the group (attributed by the closure property)

eiα jX jeiβkXk = eiδlXl . (2.2.2)

The fact that the generators are matrices implies that their product do not commute in

general. However, after some mathematical manipulation, expression (2.2.2) can be

written as

eiα jX jeiβkXk = ei(α jX j+βkXk)− 1
2 [α jX j,βkXk]. (2.2.3)

Eq.(2.2.3) is called the Baker-Campbell-Hausdorff formula and it is a generalization

of exponential multiplication rule. The commutator [X j,Xk] is proportional to a linear

combination of generators of the group (again due to closure property).

[X j,Xk] = i f jklXl, (2.2.4)

where f jkl is called the structure constants of the group.

The generators that satisfy the commutation relationship (2.2.4) defined by the

structure constants form the Lie algebra of the group. In other words, the Lie algebra

is the vector space spanned by the generators X j under the rule of (2.2.4). The groups

SU(n) are often used in the construction of particle physics model. Here, SU(n) stands

for Special Unitary n× n matrices with unit determinant and generally has (n2− 1)
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number of generators. Common SU(n) groups encountered are the SU(2) which is

associated with isotopic-spin vector and SU(3) which relates to color quarks.

2.3 Abelian Gauge Theory

Gauge field theory first appeared in Maxwell’s formulation of electrodynamics in

1864 and in addition, was the first field theory to appear in physics. Classical elec-

trodynamics can be described by using the gauge group, G =U(1) or Unitary matrix

of dimension 1. Mathematically, this group belongs to the circle group, and is the

simplest gauge group possible. It consists of only one generator and is always commu-

tative (Abelian). Therefore, classical electrodynamics is synonymously known as the

Abelian gauge theory.

2.3.1 Global Gauge Transformations

Consider the Lagrangian of a complex scalar field φ with two real components

(Rubakov, 2002), φ = φ1 + iφ2

L = (∂µφ)(∂ µ
φ
∗)−m2

φ φ
∗, (2.3.1)

where µ,ν is the space-time indices that runs from 0,1,2 and 3. Applying Euler-

Lagrange equations on Lagrangian (2.3.1) gives two Klein-Gordon equations

∂µ∂
µ

φ +m2
φ = 0 ,

∂µ∂
µ

φ
∗+m2

φ
∗ = 0 . (2.3.2)

Let us now consider the scalar field that transforms under the gauge group, G according

to the rule

φ(x)→ φ
′(x) = ωφ(x), (2.3.3)

where ω ∈ G. In particular, for G =U(1), ω = eiα where α is independent of space-

time or ‘global’.

Obviously, Lagrangian (2.3.1) is invariant under the transformation of (2.3.3). This
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kind of transformation is called the gauge transformation of the first kind or global

gauge transformation (Ryder, 1996). Noether theorem then gives the conserved current

(Gross, 1992)

jµ = ∑
φi

∂L

∂ (∂µφi)
δφi

= −i(φ∗∂ µ
φ −φ∂

µ
φ
∗) . (2.3.4)

Using equations (2.3.2), the current has a vanishing 4-divergence, as it should

∂µ jµ = 0 . (2.3.5)

This implies that due to the invariance of action under the gauge transformation

(2.3.3), there is a conserved quantity. Since α is a constant (global), the gauge trans-

formation is the same for all points in space-time. Physically, it means that suppose

a rotation is performed on one point by angle α , then all the other points will also be

rotated by an angle α instantaneously. This is not a realistic idea since it violates the

law of special relativity. In the next section, we will consider the case where α being

space-time dependent and see how it leads to a much more interesting result.

2.3.2 Local Gauge Transformations

Suppose we let α to be space-time dependent, α(x) instead of being a constant.

Clearly, Lagrangian (2.3.1) would not be invariant anymore due to the derivative term

∂µφ(x)→ ∂µφ
′(x) = ∂µ(eiα(x)

φ(x))

= eiα(x)[i∂µα(x)φ(x)+∂µφ(x)] , (2.3.6)

which contains an extra term of i∂µα(x)φ(x) and this effectively ruins the invariance.

To allow the field φ to transforms covariantly again, the normal derivative, ∂µ has to

be replaced with a covariant derivative, Dµ which is defined as
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Dµ = ∂µ − ieAµ , (2.3.7)

and postulates that Aµ transforms according to Aµ(x)→ Aµ(x)+ 1
e ∂µα(x). Here, Aµ

is the gauge field and it’s introduced to make the Lagrangian invariant once more. To

illustrate this, it can be seen that the idea of gauge field enables the term (Dµφ) to

transform covariantly as itself again

(Dµφ)→ (Dµφ)′ = ∂µφ
′− ieA′µφ

′

= eiα
∂µφ + eiα iφ(∂µα)− ieAµeiα

φ − i(∂µα)φeiα

= eiα [∂µφ − ieAµφ ]

= eiα(Dµφ) . (2.3.8)

This is called the gauge transformation of the second kind or local gauge transforma-

tion (Ryder, 1996). Now, we need to add in the kinetic term for the Aµ to make it

dynamical and a suitable term would be the field strength tensor

Fµν = ∂µAν −∂νAµ . (2.3.9)

Of course, the field strength tensor is invariant under the local transformation as

can be verified by reader. After some modification, the final Lagrangian can be written

as

L =−1
4

FµνFµν +(Dµφ)(Dµ
φ
∗)−m2

φ φ
∗ . (2.3.10)

Expression (2.3.10) is actually the Lagrangian of the Maxwell classical electrodynam-

ics. As an illustration, we use the Euler-Lagrange equation and take the variation of

Aµ on (2.3.10)

∂νFµν = −ie(φ∗∂µφ −φ∂µφ
∗)−2eAµφ

∗
φ

= −i[φ∗Dµ
φ −φDµφ

∗]

= Jµ , (2.3.11)
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where

Jµ =−i[φ∗Dµ
φ −φDµφ

∗] . (2.3.12)

Eq.(2.3.11) is exactly the inhomogeneous Maxwell equations. The electric and mag-

netic components of the field strength tensor are given by

Ei = Fi0 , (2.3.13)

Bi = −1
2

εi jkFjk . (2.3.14)

The current here, Jµ which is the covariant version of (2.3.4) is conserved by the

antisymmetric properties of field strength tensor, ∂µJµ =0.

To summarize the ideas, it can be shown that classical electrodynamics can be

derived solely by gauge theory. We see that the electromagnetic field arises naturally

just by demanding the invariance of action under the local gauge transformation. By

doing so, gauge field Aµ is introduced and for G =U(1), this field is identified as

the electromagnetic field. The constant e in (2.3.7) is the coupling constant. Besides

serving as a conserved quantity, it also measures the interaction between scalar field

with electromagnetic field and particles with electromagnetic field.

2.4 Non-Abelian Gauge Theory

After the Abelian group, the next simplest group is the non-Abelian SU(2). This

brings the generalization of the gauge group, G from U(1) to SU(2). Let us construct

the gauge invariance model for the group SU(2) with two complex scalar fields, form-

ing the column, φ=

φ1

φ2


L = (∂µφ

†)(∂ µ
φ)−m2(φ †

φ)−λ (φ †
φ)2 . (2.4.1)

As has been clarified earlier, Lagrangian (2.4.1) is invariant under global gauge

transformation. However, we would like to generalize (2.4.1) so that it becomes in-
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variant under the local transformation of group SU(2),

φ(x)→ φ(x)′ = ω(x)φ(x) ; ω(x) ∈ SU(2) . (2.4.2)

Adapting similar idea as in Abelian case, a covariant derivative is introduced to replace

the normal derivative so that under transformation (2.4.2),

(Dµφ)′→ ω(Dµφ) . (2.4.3)

This is done by introducing a gauge field, Aµ and defining the covariant derivative as

Dµφ = ∂µφ +Aµφ . (2.4.4)

At such, the transformation rule for Aµ is

Aµ → A′µ = ωAµω
−1− (∂µω)ω−1 . (2.4.5)

The gauge potential, Aµ which is known as Yang-Mills fields take the values of

the Lie algebra in group SU(2). Next is to construct a kinetic term for the gauge field

by using field strength tensor, Fµν . Since the Aµ transforms according to the adjoint

representation : A′µ → ωAµω−1, the field strength tensor, Fµν should transforms in a

similar manner as well, that is

Fµν(x)→ F ′µν(x) = ω(x)Fµν(x)ω−1(x) . (2.4.6)

A suitable field strength tensor that transforms according to the adjoint representation

is given by

Fµν = ∂µAν −∂νAµ +[Aµ ,Aν ] (2.4.7)

= [Dµ ,Dν ] . (2.4.8)
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The kinetic term invariant Lagrangian for the gauge field can be chosen to be

Lkin =
1

2g2 Tr(FµνFµν) , (2.4.9)

where g2 is some positive constant.

2.4.1 Gauge Group SU(2) Representation

The gauge field and strength tensor terms which take the values of the SU(2) al-

gebra can be expressed in terms of three real fields (Rubakov, 2002), which equal the

total number of generators in gauge group SU(2),

Aµ(x) = −ig
σa

2
Aa

µ(x) , (2.4.10)

Fµν(x) = −ig
σa

2
Fa

µν(x) , (2.4.11)

whereby a,b,c are SU(2) internal indices which run from 1 to 3; Aa
µ(x) are real fields,

σa

2 are Hermitian generators of the SU(2) algebra and g is gauge coupling constant. To

be precise, σa here refers to the famous Pauli matrices which are given by

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (2.4.12)

Pauli matrices have the following algebraic properties

σaσb = δab + iεabcσc, Tr(σa) = 0, Tr(σaσb) = 2δab , (2.4.13)

and they obey the commutation (square bracket) and anticommutation (braces) relation

[σa,σb] = 2iεabcσc, {σa,σb}= 2δabI , (2.4.14)

where εabc is the Levi-Civita symbol, δab as the Kronecker delta and I is the identity

matrix. The field strength tensor can be written in term of real fields by using definition
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(2.4.10)

Fµν = −ig
σa

2
(∂µAa

ν −∂νAa
µ)−g2Aa

µAb
ν [

σa

2
,
σb

2
] (2.4.15)

= −ig
σa

2
(∂µAa

ν −∂νAa
µ)−g2Aa

µAb
ν iεabc σ c

2

= −ig
σa

2
(∂µAa

ν −∂νAa
µ +gε

abcAb
µAc

ν) .

Comparing with expression (2.4.11), the real components of the strength tensor,

Fµν is

Fa
µν = ∂µAa

ν −∂νAa
µ +gε

abcAb
µAc

ν . (2.4.16)

Similarly, the kinetic term of (2.4.9) can be expressed as

Lkin =
1

2g2 FaµνFb
µν(−ig)2Tr(

σa

2
σb

2
) =−1

4
FaµνFa

µν . (2.4.17)

The local SU(2) gauge transformation are usually written in 2×2 matrix form

ω(x) = exp[
i
2

σaθa(x)] (2.4.18)

= cos
1
2

θ(x)+ in̂a(x)σa sin
1
2

θ(x) ,

where the first line is the usual representation of unitary and hermitian matrices and

second line is derived using Pauli matrices properties. Here, θa is parameter and n̂a is

unit vector defined by

θa(x)≡ n̂a(x)θ(x) . (2.4.19)

It is possible to determine the gauge transformation formulas for components of

the gauge potentials. From (2.4.5) and (2.4.10), the pure gauge is given by

gAa
µ = −iTr[σa(∂µω)ω−1]

=
1
2

Tr
(
σan̂bσb(∂µθ)+σa(∂µ n̂b)σb sinθ +2εbck(∂µ n̂b)n̂cσkσa sin2

θ/2
)

= n̂a(∂µθ)+ sinθ(∂µ n̂a)+2εabc(∂µ n̂b)n̂c sin2(θ/2) . (2.4.20)
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Meanwhile, the first term in (2.4.5) is given by the formula (Goddard and Olive, 1978)

ωAµω
−1 = cosθ σaAa

µ + sinθεabcAa
µ n̂bσc +2n̂aAa

µ(n̂ ·σ)sin2(θ/2) . (2.4.21)

Finally, expression (2.4.5) can be written as

A′aµ = cosθAa
µ + sinθεabcAb

µ n̂c +2sin2(θ/2)n̂a(n̂bAb
µ)

+
1
g

(
n̂a(∂µθ)+ sinθ(∂µ n̂a)+2εabc(∂µ n̂b)n̂c sin2(θ/2)

)
. (2.4.22)

2.4.2 Gauge Field Masses

Taking the kinetic term in (2.4.17) and Lagrangian (2.4.1), we could write the

SU(2) gauge-invariant Lagrangian

L =−1
4

FaµνFa
µν −

1
2
(Dµφ

a)(Dµ
φ

a)−m2(φ a
φ

a)−λ (φ a
φ

a)2 . (2.4.23)

A quick glance on above Lagrangian shows a serious defect since it hinders the intro-

duction of mass terms for the gauge fields. If mass term such as

m2AµAµ , (2.4.24)

are put in by hand, it will destroy the gauge invariance since this term is not invariant

(Ryder, 1996). Early works were plagued by this problem because the only observable

massless gauge field is photon. Meanwhile, experimental results show the presence

of massive gauge fields. How then can masses be introduced without destroying the

gauge invariance of the Lagrangian? The answer is provided by spontaneous symme-

try breaking or in physics jargon, through Higgs mechanism which will be discussed

shortly.
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2.5 SU(2) Yang-Mills-Higgs Theory

The model that will be used extensively in this thesis is the non-Abelian SU(2)

Yang-Mills-Higgs (YMH) model with Yang-Mills fields, Aa
µ coupled with Higgs triplet,

Φa in adjoint representation in 3+1 dimensions. It is also known as the SU(2) Georgi-

Glashow model and was once competitor of the electroweak model before the dis-

covery of ‘neutral currents’ (Georgi and Glashow, 1972a). Aa
µ and Φa are vector and

scalar fields respectively under the Lorentz transformation. The Lagrangian for the

SU(2) YMH model is given by

L = − 1
4

Fa
µνFaµν − 1

2
Dµ

Φ
aDµΦ

a−V (Φ) , (2.5.1)

V (Φ) =
1
4

λ (Φa
Φ

a− µ2

λ
)2 . (2.5.2)

Here, λ is the strength of the Higgs potential and µ is Higgs field mass in which both

are constants. The vacuum expectation value of the Higgs field is given by ξ =µ/
√

λ .

Lagrangian (2.5.1) is gauge invariant under the set of independent local SU(2) trans-

formations at each space-time point. The covariant derivative of the Higgs field and

the gauge field strength tensor are given respectively by

DµΦ
a = ∂µΦ

a +gε
abcAb

µΦ
c , (2.5.3)

Fa
µν = ∂µAa

ν −∂νAa
µ +gε

abcAb
µAc

ν , (2.5.4)

where g is the gauge field coupling constant and the metric used is gµν = (−+++).

By taking the variation with respect to gauge field and Higgs field, the equations of

motion emerged from Lagrangian (2.5.1) are

DµFa
µν = ∂

µFa
µν +gε

abcAbµFc
µν = gε

abc
Φ

bDνΦ
c, (2.5.5)

DµDµΦ
a = λΦ

a(Φb
Φ

b−ξ
2) . (2.5.6)

The symmetric energy-momentum tensor, Tµν which follows from Lagrangian
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density (2.5.1) is given by (Prasad and Sommerfield, 1975)

Tµν = Fa
µλ

Faλ
ν +DµΦ

aDνΦ
a +gµνL

= Fa
µαFaα

ν +DµΦ
aDνΦ

a− 1
4

gµνFa
αβ

Faαβ

− 1
2

gµνDαΦ
aDαΦ

a− 1
4

gµνλ (Φa
Φ

a−ξ
2)2 , (2.5.7)

and it is conserved by the virtue of field equation

∂µT µν = 0 . (2.5.8)

The static energy or Hamiltonian can be expressed explicitly as

E =
∫

T00d3x =
∫
(Fa

0αFaα
0 +D0Φ

aD0Φ
a +g00L ) d3x

=
∫
{Ea

i Ea
i +D0Φ

aD0Φ
a +

1
4
(−Ea

i Ea
i −Ea

i Ea
i +2Ba

i Ba
i )

+
1
2
(−D0Φ

aD0Φ
a +DiΦ

aDiΦ
a)+

1
4

λ (Φa
Φ

a−ξ
2)2} d3x

=
∫ {1

2
(Ea

i Ea
i +Ba

i Ba
i +D0Φ

aD0Φ
a +DiΦ

aDiΦ
a)+V

}
d3x . (2.5.9)

where the electric and magnetic field are given respectively by

Ea
i = Fa

i0 and Ba
i =−

1
2

εi jkFa
jk . (2.5.10)

2.6 Spontaneous Symmetry Breaking

The YMH theory differs from the SU(2) Yang-Mills theory in the sense that it

borrows the idea of Higgs-like mechanism to ‘spontaneously’ breaks the local gauge

invariance (Actor, 1979). Even though the Lagrangian (2.5.1) appears to be symmet-

rical, its ground state is not. The introduction of Higgs fields forces the vacuum to

take up a similar direction as the field itself and this effectively breaks the symmetry.

Specifically, the SU(2) YMH will be spontaneously broken into subgroup, U(1). As

a result, it has one massless boson, corresponds to the unbroken U(1) and with the
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remaining Yang-Mills bosons being massive.

By looking at the energy functional (2.5.9), we know that the first two terms are

minimum when the electric and magnetic fields are equal to zero, Fa
µν = 0 or when

Aµ is a pure gauge. Subsequent third and fourth terms are minimal when DµΦa =

0, meaning that the field, Φa is covariantly constant. Finally, minimization of the

potential energy tells us that the minima is at

Φ
a
0 = ξ =

µ√
λ

. (2.6.1)

For simplicity, we choose the ground state or vacuum field configuration, Φa
0 such that

Φ
a
0 = (Φ1

0,Φ
2
0,Φ

3
0) = (0,0,ξ ) . (2.6.2)

In practice, to observe a field in the ground state involves some changes of physical

quantities in space-time. Therefore, it is crucial to perturb the field around the ground

state in order to create some small excitations around it. In the context of field theory,

these excitations corresponds to the elementary particles. In other words, perturbation

around a ground state will break the symmetry and produce a spectrum of particles.

Consider a perturbation term, χ(x) around the ground state

Φ
a
0 = (Φ1

0,Φ
2
0,Φ

3
0) = (0,0,ξ +χ(x)) . (2.6.3)

Substituting Higgs configuration (2.6.3) into the Lagrangian (2.5.1) and the potential

term gives (keeping the term up to quadratic order and neglecting constant)

V (Φ) =
1
4

λ (Φa
Φ

a−ξ
2)2 (2.6.4)

=
1
4

λ ((ξ +χ(x))2−ξ
2)2 ≈ 1

4
λ (4ξ

2
χ

2)

= λξ
2
χ

2 .

Assuming a small field Aa
µ , the first and second term in the Lagrangian reduces to

quadratic order to just
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