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PENGENALPASTIAN PERENCAT NEURAMINIDASE YANG 

BERPOTENSI MENGGUNAKAN SARINGAN MAYA  

BERASASKAN ENSEMBEL 

ABSTRAK 

Sehingga kini, wabak virus Influenza A telah menyebabkan impak yang 

serius dalam kesihatan manusia. Ia telah muncul sebagai ancaman wabak di seluruh 

dunia pada abad ke-21 dan menjejaskan populasi manusia yang besar setiap tahun. 

Pada masa ini, Oseltamivir (Tamiflu) dan Zanamivir (Relenza) digunakan sebagai 

pilihan ubat yang penting untuk penyakit wabak influenza. Walaubagaimanapun, 

rintangan virus influenza kepada ubat-ubatan ini telah dilaporkan kebelakangan ini. 

Jadi, pencarian perencat influenza yang baru adalah sangat penting untuk mengatasi 

penularan wabak influenza ini. Projek ini adalah mengenai penemuan perencat baru 

yang berpotensi untuk merencatkan virus Influenza melalui kaedah penskrinan 

virtual berasaskan pendokkan ensembel. Sebagai reseptor yang membebaskan sel 

daripada virus, neuraminidase (NA) telah menjadi target reseptor yang terkenal untuk 

direncat dan kajian ini tertumpu kepada NA subjenis-1. Variasi konformasi NA 

daripada Protein Data Bank (PDB) dan struktur simulasi dinamik molekul (MD) 

telah digunakan dalam kajian ini. Dengan bantuan perisian komputer, penskrinan 

virtual berasaskan pendokkan ensembel telah dijalankan. NA telah disaringkan 

terhadap pangkalan data daripada Institut Kanser Kebangsaan US atau “National 

Cancer Institute” (NCI) dan Sistem Penemuan Hasil Semulajadi “Natural Product 

Discovery System” (NADI) untuk penemuan sebatian yang berpotensi sebagai 

perencat NA. Dari hasil pendokkan, 20 sebatian daripada Pangkalan Data NCI telah 

dipilih. Untuk Pangkalan Data NADI, terdapat 40 sebatian telah dipilih dan mereka 

telah berkelompok kepada 7 tumbuh-tumbuhan. Semua sebatian (NCI dan NADI) 
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mampu mengikat kepada semua 13 struktur ensembel. Ini telah menunjukkan 

activiti-activiti yang berkemungkinan untuk anti-neuraminidase. Kemudiannya, 

sebatian ini tertakluk kepada penilaian perencatan aktiviti melalui MUNANA assay. 

Dari hasil assay, ia telah menunjukkan bahawa kebanyakan sebatian NCI dan 

kesemua ekstrak tumbuhan menunjukkan perencatan aktiviti NA untuk kedua-dua 

jenis reseptor NA samada jenis normal ataupun jenis mutan.  Secara khususnya, 

NSC5069, NSC114449, NSC343344 dan NSC373427 dari Pangkalan Data NCI dan 

Jambu Batu daripada Pangkalan Data NADI telah menunjukkan perencatan aktiviti 

NA yang lebih baik dengan nilai IC50 dari 118.0 μgmL-1 sehingga 250.0 μgmL-1 

untuk kedua-dua jenis reseptor NA samada jenis normal ataupun  jenis mutan. Walau 

bagaimanapun, kesan potensi perencatan mereka didapati lebih rendah berbanding 

dengan DANA [4 μgmL-1]. Oleh itu, sebatian ini dianggap sebagai perencat yang 

lemah untuk NA subtype-1. Walaupun perencatan aktiviti NA untuk sebatian ini 

tidak sebaik DANA, sebatian ini masih mampu menunjukkan perencatan aktiviti NA. 

Oleh itu, penerokaan Pangkalan Data NADI dan NCI melalui penskrinan virtual 

berasaskan pendokkan ensembel telah menunjukkan kesan perencatan yang 

memuaskan pada neuraminidase subjenis -1. 
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IDENTIFICATION OF POTENTIAL NEURAMINIDASE INHIBITORS 

USING ENSEMBLE-BASED VIRTUAL SCREENING 

ABSTRACT 

To date, influenza A virus cause a serious impact in human health. It has 

emerged as a worldwide pandemic threat in the 21st century where large human 

populations were affected annually. At present, Oseltamivir (Tamiflu) and Zanamivir 

(Relenza) have become important treatments for influenza infectious disease. 

Unfortunately, the resistance of influenza viruses to these drugs has been reported 

recently. So, it is important to discover new anti-influenza inhibitors to overcome the 

on-going and potential influenza outbreak. This project is about the discovery of the 

potential inhibitor for influenza infectious disease via ensemble-based virtual 

screening. As a receptor destroying enzyme, neuraminidase has been widely used as 

a drug target for drug discovery. Thus, this study was focused on Neuraminidase 

subtype-1. Variation of neuraminidase conformations from Protein Data Bank (PDB) 

and molecular dynamics (MD) simulation structures were used in this study. With 

the aid of computational resource, ensemble-based virtual screening was performed. 

Neuraminidase was screened against the National Cancer Institute (NCI) Database 

and the Natural Product Discovery System (NADI) Database to discover the 

potential compounds as the neuraminidase inhibitors. From docking results, 20 

compounds from NCI Database were selected. For NADI Database, there were 40 

compounds have been selected and they were clustered into 7 plants. All these 

compounds (NCI and NADI) were able to bind to all 13 ensemble structures. This 

has exhibited the probable anti-neuraminidase activity. These compounds were then 

subjected to inhibitory activity evaluation via MUNANA assay. From the assay 

results, they showed that most of the NCI compounds and all plant extracts have 
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exhibited NA inhibitory activity on both wild-type and mutant-type of NA. 

Particularly, NSC5069, NSC114449, NSC343344 and NSC373427 from NCI 

Database and Jambu Batu from NADI Database showed a better NA inhibitory 

activity with IC50 value ranging from 118.0 μgmL-1 to 250.0 μgmL-1 on both wild-

type and mutant-type NA. However, their inhibition potency were found lesser 

compared to DANA [4 μgmL-1]. Thus, these compounds were considered as weak 

inhibitors toward NA subtype-1. Although the NA inhibitory activities of these 

compounds were not as good as DANA, these compounds have exhibited NA 

inhibitory activities.  Hence, this suggested that exploration of NADI and NCI 

Database through ensemble-based virtual screening had demonstrated promising 

inhibitory effects on neuraminidase subtype-1. 
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CHAPTER 1 

 INTRODUCTION 

1.1 General background  

Influenza which is also known as flu is an infection disease of respiratory 

tract (Ge et al., 2010). Every year, millions of peoples are affected (Wang et al., 

2006). Influenza infection is characterized as acute febrile illness. It causes variable 

degree of systemic symptoms such as fever, cough, sore throat, sputum production, 

nasal obstruction and sneezing. For complicated case, bronchitis and pneumonia are 

observed. Sometime, aggravation of asthma and chronic obstructive pulmonary 

disease will happen. The severity of influenza infection can range from mild to 

severe. For serious case, it can lead to death (Johnston, 2001, CDC, 2011a).   

To date, influenza infectious diseases remain as a life threatening illness due 

to its ability to spread rapidly and undergo antigenic drift and antigenic shift (Lin et 

al., 2004). Influenza virus generally attacks human respiratory tract and it doesn’t 

have to travel very far into body to take root. This is why until today, influenza virus 

exists and brings serious impact to human health. Because of the ability of antigenic 

drift and antigenic shift of influenza virus, periodic epidemics and occasionally 

pandemics happen causing significant morbidity and mortality in human population 

and pose serious impact in global economy (Webster et al., 1992, Cox and Subbarao, 

2000, Roberts, 2008). 

Influenza viruses are seems to be change and evolve in two different ways: 

antigenic drift and antigenic shift. Antigenic drift occur gradually by randomly 

accumulates point mutations within the viral glycoproteins genome (in the HA, the 

NA, or both) in response to immune pressure (Murphy and Webster, 1996). Point 
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mutations results in the minor changes to the viral glycoproteins and this cause virus 

may not recognized by the host immunity. So, the newly forms viruses cannot be 

recognize and defend well by antibodies induced by the previous infectious strains 

(Olsen, 2002). Antigenic shift is a sudden and more dramatic form of genetic and 

antigenic change in influenza virus. This can occurs through genetic reassortment 

between two or more different virus strains, mixing together to produce a new strain 

of influenza virus (Olsen, 2002). As influenza A viruses have a broad range of 

susceptible host to infect, reassortment and recombination of genetic materials from 

different animal species are commonly detected. The resulted changes will thus 

create novel subtypes that have not been present in human viruses for a long time. 

Consequently, the introduction of a novel strain into human population is usually a 

pandemic or a worldwide epidemic that will result in hundreds of thousands or 

millions of influenza-related deaths (Scholtissek, 1994, Treanor, 2004). 

In the 21st century, influenza pandemic turns up four times, in 1918, 1957, 

1968 and 2009 (Table 1.1). Each of these pandemic was caused by the emergence of 

new strain of influenza virus. Influenza pandemic occur when influenza virus spread 

rapidly throughout the world and affecting a large proportion of human population. It 

usually happens with the emergence of a novel strain of influenza virus and caused 

serious impact to human health (Michaelis et al., 2009).  

Historically, 1918 pandemic (Spanish flu) caused the most devastating impact 

to human population where about 25% of the world’s population affected. It is one of 

the worst natural disasters in modern history. Estimated, Spanish flu killed over 50 

million peoples globally and it was caused by influenza virus H1N1 subtype.  

Usually influenza kills the weaker member of the human population, but Spanish flu 

affected healthy adults quickly. It seriously affected human in the age between 20 to  
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Table 1.1 Summaries of influenza pandemics 

Year Name Virus subtype Global Deaths 
1918 Spanish flu H1N1 20-50 million 
1957 Asian flu H2N2 2-4 million 
1968 Hong Kong flu H3N2 1-2 million 
2009 Swine flu H1N1 In progress 

Adapted from (Michaelis et al., 2009, Hudson, 2009). 
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40 years and half of the influenza death was made up of this group (Johnson and 

Mueller, 2002, Taubenberger and Morens, 2006). In 1957, there was another 

pandemic occurred which called Asian flu. This 1957 pandemic was caused by 

influenza virus H2N2 subtype resulted in 2-4 million peoples died. Although the 

proportion of people affected was high, Asian flu pandemic was relatively mild 

compared to Spanish flu pandemic (Taubenberger and Morens, 2010). During early 

of 1963, third pandemic happened in Hong Kong thus was then known as Hong 

Kong flu. Hong Kong flu was caused by H3N2 subtype of influenza virus which 

replaced previous the H2N2 subtype virus. It is estimated that 1-2 million peoples 

died from this pandemic (Taubenberger and Morens, 2010). Influenza viruses are 

undergoing antigenic drift and antigenic shift from time to time and during 2009 

resulting in another pandemic. Influenza virus H1N1 subtype appeared again after 

the 1918 pandemic. This time, the pandemic was known as swine flu or 2009 

pandemic influenza virus which was actually derived from four different strains of 

influenza virus result of re-assortment of North American swine influenza, North 

American avian influenza, human influenza and a swine influenza typically found in 

Asia and Europe. It was entirely new combination that was not seen before (Ge et al., 

2010, Taubenberger and Morens, 2010). The first case was detected in Mexico 

during March-April 2009 (Perez-Padilla et al., 2009). Since March 19, 2010, World 

Health Organization (WHO) reported there were a million of cases detected and from 

that number at least 16,813 deaths were documented (Taubenberger and Morens, 

2010). Although swine flu was relatively mild compared to Spanish flu, pandemic 

2009 is still a threat (Padlan, 2010). Therefore, efforts to improve understanding of 

the pathogenicity and transmissibility of influenza are important and develope new 
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and improved antiviral and vaccine are crucial for controlling the future influenza 

outbreak (Ge et al., 2010).  

Although vaccines play important role in preventing the influenza, but the use 

still have significant drawbacks as they provide limited scope of control. 

Furthermore, the virus mutates rapidly in order to escape from human immune 

system (Johnston, 2001). Antiviral is another option for influenza treatment. The 

number of antiviral has increase in the past few years (Table 1.2) where antiviral 

agents targeting M2 ion channels and neuraminidase (NA) of influenza have been 

introduced. M2 ion channels inhibitors were the first drugs available for influenza 

treatment. Amantadine and Rimantadine are two Adamantane-based M2 ion channel 

inhibitors. Both of these drugs are effective only for influenza A virus because 

influenza B and C virus does not have M2 ion channel protein. Currently, 

Amantadine and Rimantadine have not been widely used because of their side effects 

and rapid emergence of drug resistance strains (Johnston, 2001, Ge et al., 2010). 

Zanamivir and Oseltamivir are other antiviral drugs but they are targeting on NA. 

Both these drugs are effective against all types of influenza viruses. Although NA 

inhibitors are important option for influenza treatment, the increasing use of these 

drugs will raise the chance of the emergence of drug resistance influenza strain 

(Johnston, 2001, Ge et al., 2010). 

Recently, the resistance of influenza virus to NA inhibitors has been reported.  

The resistance of influenza virus to Zanamivir has been observed in an immune-

compromised child (Gubareva et al., 2000). During late January 2008, there are 

unexpected spreading of Oseltamivir resistance influenza strain in Europe country. 

The resistance occured because of the substitution of amino acid H275Y (H274Y in 

N2 numbering) in NA of these viruses (Lackenby et al., 2008). There were also a  
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Table 1.2 Anti-influenza drugs 

Drug Originator/Licensee Year (country) of 
first launch 

Amantadine hydrochloride 
(Symmetrel®) 

Endo 1964 

Rimantadine hydrochloride 
(Flumadine®) 

Forest 1987 (France) 

Zanamivir (Relenza®) Biota/GlaxoSmithKline 1999 (Australia) 
Oseltamivir (Tamiflu®) Gilead/Roche 1999 (Switzerland) 
Adopted from (Ge et al., 2010) 
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large portion of Oseltamivir-resistance influenza virus circulating in Norway and 

ready to be transmitted between peoples (Lackenby et al., 2008). Up until 8 

December 2009, WHO reported there are 109 Oseltamivir-resistance viruses have 

been detected worldwide (WHO, 2009). This provokes the need for discovery and 

development of new and novel drug to fight the on-going and future influenza 

outbreak.  

 

1.2 Biology of influenza virus 

 

1.2.1 Classification of influenza virus 

Influenza virus is a spherical shape enveloped virus that belongs to 

Orthomyxoviridae family (Kawaoka, 2006, Cheung and Poon, 2007, Bouvier and 

Palese, 2008). Influenza virus is categorized into three serologically distinct types: 

type A, type B and type C based on the antigenic characteristics of the core proteins 

such as nucleoproteins and matrix proteins (Fields et al., 1996, Hampson and 

Mackenzie, 2006, Cheung and Poon, 2007, Ferraris and Lina, 2008). The different 

types of influenza viruses are summarized in Table 1.3.  Influenza A viruses are the 

most common virulent pathogens that caused major pandemics around the world 

since 1918 (Cox and Subbarao, 1999, Kilbourne, 2006, Lewis, 2006). Influenza B 

viruses are less common and it produces less severe cases such as seasonal epidemics 

(Osterhaus et al., 2000, Hay et al., 2001). Influenza C cases are seldom reported but 

it can cause local epidemics (Matsuzaki et al., 2002).  Influenza C virus can attack 

upper and lower respiratory system of their host. Bronchitis and pneumonia are 

usually observed when lower respiratory are infected. (Katagiri et al., 1983, Moriuchi 

et al., 1991, Matsuzaki et al., 2002).   
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Table 1.3 Type of influenza virus 

Type of influenza virus Number of 
gene 

segment 

Surface 
glycoprotein 

Host range 

Influenza A virus   8 Hemagglutinin 
& 

Neuraminidase 

Wide (humans, 
pigs, horses, 

whales, seals and 
birds) 

Influenza B virus  8 Hemagglutinin 
& 

Neuraminidase 

Humans and seals 

Influenza C virus 7 Hemagglutinin-
esterase-fusion 

(HEF) 

Mainly humans, 
but also found in 

swine 
Adapted from (Lamb and Krug, 2001, Cheung and Poon, 2007) 
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These three serologically distinct type influenza viruses have a similarity 

where they infect human causing the disease in human population. Influenza A 

viruses are likely to have more widely host range where they can infects birds (swine, 

chicken, duck, turkey and geese), humans and many other species of mammals (pigs, 

horses, seals). Influenza viruses type B and C have only limited host range where 

they infect human and some mammal species (Sun, 2009).  

The major differences among influenza virus are the glycoprotein found on 

the envelope of virion and the genetic material of influenza viruses (Figure 1.1). 

Influenza A and influenza B virus contain 2 enveloped glycoproteins namely 

Hemagglutinin (HA) and NA while Influenza C virus contains only one envelope 

glycoprotein called Hemagglutiin-esterase fusion protein. Influenza virus can also be 

distinguished by their genetic materials where influenza A and B virus contain eight 

RNA segment but influenza C virus contains only seven RNA segments (Cox et al., 

2010). Among them, influenza A viruses tend to become most of the public attention 

because of high mortality rate happen in human population. Therefore our studies 

mainly focused on the influenza A viruses because of its virulence, widely host range 

and pandemic treat. 

 

1.2.2 Genome and structure of influenza A virus 

Influenza A virus is an enveloped virus and it is roughly spherical in shape 

which consists of an outer lipid bilayer membrane (Figure 1.2). Lipid bilayer 

membrane of influenza virus is actually derived from the plasma membrane of the 

infected host cell. M1, Matrix protein found underneath the lipid bilayer membrane 

of influenza virus forms a shell that gives strength and rigidity to the lipid envelope. 

On the surface of the lipid envelope are glycoproteins and M2 ion channel proteins.  
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Figure 1.1 Structural of three different types of influenza viruses: A, B, and C. 

Adopted from (SIB, n.d.) 
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Figure 1.2 The structure of influenza A virus 
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The glycoproteins look like a spike protrudes from the lipid bilayer membrane of 

virus. There are two different types glycoproteins found on the surface of the 

envelope of influenza virus: HA and NA. Influenza A virus are categorised into 

different subtypes based on the antigenic properties of the viral envelope surface 

glycoprotein HA and NA. There are 16 known types of HA (H1-H16) and 9 known 

types of NA (N1-N9) (Webster et al., 1992). Different subtype of influenza A virus 

encodes for different HA and NA glycoprotein and are name based on the 

combinations of these two viral envelope surface glycoprotein (Russell et al., 2006a, 

Palese and Shaw, 2007, Bouvier and Palese, 2008).  

The genetic materials of influenza virus are embedded within the interior of 

the virion. There are total 8 negative-stranded RNA segments, covered by 

nucleoprotein (NP). These 8 RNAs carry all the important information needed for 

making a new influenza particle. Different RNA encodes for different protein (Table 

1.4) (McGeoch et al., 1976, Bouvier and Palese, 2008, Racaniello, 2009b). Each of 

viral RNA wrapped into viral ribo-nucleoprotein (vRNP) complex (Figure 1.3) by 

nucleoproteins (NP) and RNA-dependent RNA polymerase complex: PB1, PB2 and 

PA (Cheung and Poon, 2007, Chan, 2009). 

 

1.2.2.1 Neuraminidase 

Neuraminidase (NA), also known as sialidase, is the major envelope 

glycoprotein of influenza virus. It is a glycoside hydrolase (EC3.2.1.18) that has 

essential role during viral replication and infection. NA has a shape that looks like 

mushroom where it has a long thin stalk with a spherical head on the top.  Generally, 

NA is constituted of a stalk region, a globular head, a cytoplasmic tail and a 

transmembrane domain. The cytoplasmic tail is anchored in the lipid bilayer of the  
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Table 1.4 Genetic materials of Influenza A virus and encoded proteins 

RNA Segments Encoded Proteins 
1 Polymerase basic protein 2, PB2 
2 Polymerase basic protein 1, PB1;  

Polymerase basic protein 1-F2, PB1-F2 
3 Polymerase acidic protein, PA 
4 Hemagglutinin, HA 
5 Nucleoprotein, NP 
6 Neuraminidase, NA 
7 Matrix protein, M1;  

Ion channel protein, M2 
8 Non-structural basic protein 1, NS1;  

Non-structural basic protein 2, NS2 
Adapted from (Nicholson et al., 1998, Cheung and Poon, 2007, Michaelis et al., 2009) 
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Figure 1.3 The structure of viral Ribo-nucleoprotein complex (vRNP complex). 

Adapted from (Agustin and Paul, 2002)  
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viral membrane that makes the rest of NA structure projected out. (Laver and 

Valentine, 1969, Grienke et al., 2012).  

NA play critical role in facilitating the release of the newly form progeny 

virion to infect other host cell and prevent them from self-aggregation (Li et al., 

2010). NA destroys receptors recognised by hemaglutinin by catalyses the cleavage 

of the terminal of α-ketosidic linked sialic acid residue from the infected cell during 

the final step of the replication cycle. The cleavage enables progeny virions to bud 

out from the infected cell and spread the infection to neighbouring cell. (Palese et al., 

1974). Besides, NA also assists the mobility of the influenza virus within the host 

respiratory tract. This is done by decoy receptors found on the mucins, cilia, and 

cellular glycocalyx of host respiratory tract and allows virus to go through host 

ciliated epithelium to reach to the host cells for infection. (Matrosovich et al., 2004, 

Gong et al., 2007).  

In nature, there are 9 NA subtypes have been identified in the influenza virus 

family (Swayne and Halvorson, 2003). They can be classified into 2 phylogenetic 

groups (Figure 1.4): Group 1 is consisting of N1, N4, N5, and N8 and Group 2 

include N2, N3, N6, N7 and N9 (Russell et al., 2006a). Recently, a comparative 

study of crystal structure of NA showed that, Group 1 NA contains an extra cavity 

near the binding site while this cavity is lacked in Group 2. This is because 150-loop 

of Group 2 NA retains a close conformation, so it leads to the missing of this cavity.   

(Russell et al., 2006a, Xu et al., 2008).  

The crystal structure of head domain of NA and its complex: sialic acid and 

other inhibitors have been identified and solved (Varghese et al., 1992). It is actually 

composed of four identical subunits forming a mushroom-like shape homotetramer 

(Figure 1.5). Analysis of these structures showed that NA has a highly conserved  
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Figure 1.4 Phylogenetic tree of neuraminidase of influenza A virus. Nine 

subtypes of NA have been identified in nature and are classified into 2 

groups: Group1 and Group 2.  Adapted from (Russell et al., 2006a) 
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Figure 1.5 Three-dimensional structure of an N1 neuraminidase tetramer [PDB 

entry: 2HU0]. Neuraminidase is making of four identical polypeptides. Adopted 

from (Russell et al., 2006a) 
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binding site across all serotypes of influenza A and B viruses (Russell et al., 2006a). 

NA was an established target in structure-based drug design (Grienke et al., 2012). 

Due to this property, NA becomes an attractive target for drug discovery and 

development. The use of NA crystal structure in drug discovery and development has 

resulted in the discovery of two potent NA inhibitors; Zanamivir and Oseltamivir 

(von Itzstein et al., 1993, Kim et al., 1997). 

 

1.2.2.2 Hemagglutinin 

Hemagglutinin (HA) is a viral envelope glycoprotein. It is a triangular rod-

shape molecule that protrudes from the influenza virus envelope. HA have two 

specific roles during the replication cycle of influenza virus. First, it provides initial 

contact of influenza virus to the host cell by attaching the virus to the sialic acid 

receptor found on the surface of the host cells (Russell et al., 2006b). Then, it 

mediates the entry of influenza virus into the cytoplasm of host cell by triggering 

membrane fusion process of virus and host cell (Chizmadzhev, 2004, Sollner, 2004, 

von Itzstein, 2007). During 1981, Wilson and colleagues have published the first HA 

structure (Wilson et al., 1981). Since then, there is continuously appearance of other 

HA crystal structures resolved and deposited in Protein Data Bank (PDB). Both the 

HA and fusion activity of influenza virus have been targeted in drug discovery and 

development research, but until today there is no successful drug come out from this 

approach (Gong et al., 2007). 

 

1.2.2.3 M2 and other viral proteins 

 M2 protein is an integral membrane protein that is distributed on the cell 

membrane of influenza virus (Lamb et al., 1985). It acts as proton channel that 
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mediates the pH regulation activity of viral particles trapped in endosomes. M2 

protein allows the acidification of the interior of the viral particle inside the 

endosome which then enables the release of the vRNP into the host cell (Martin and 

Helenius, 1991a, Bui et al., 1996). The ion channel activity of M2 protein is also 

important for stabilizing the native conformation of the newly formed HA during 

intracellular transport of HA for viral assembly. This process is done by maintaining 

a high pH in the Golgi vesicles (Takeuchi and Lamb, 1994). A number of M2 

proteins have been determined and it is reported to exist as homotetramer. There are 

two known M2 inhibitors: Amantadine and Rimantadine. Both are bound to the 

transmembrane region of M2 protein to inhibit the H+ ion from entering into the viral 

particles (Ge et al., 2010).  

Other interesting proteins such as nucleoprotein, viral polymerase and non-

structural protein 1, NS1 have been targeted for drug discovery and development 

(Das et al., 2010). Nucleoprotein is the molecule that wraps viral RNA. It is a part of 

vRNP where numerous copies of nucleoproteins packaged together with viral RNA 

and viral polymerase to form a vRNP complex. Nucleoproteins are believed to take 

part in transportation of vRNPs and viral replication. Viral polymerase exists as a 

heterotrimer and it is composed of PA, PB1 and PB2. It is important during 

replication cycle for viral transcription and replication. Non-structural protein 1 (NS1) 

is a multifunctional protein that exists as an oligomer and it is normally found in the 

nucleus. NS1 protein is important for regulation of viral and cellular protein 

expression (Cheung and Poon, 2007). Until today, there is not any small molecule 

against these targets are reported (Das et al., 2010). The rest of viral proteins are less 

common thus are not discussed here. 
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1.2.3 Life cycle of influenza virus 

Influenza virus cannot reproduce outside the cell; the reproduction must take 

place within a living host cell. Therefore, Influenza virus requires a host cell for 

reproduction. The life cycle of influenza A virus can be divided into multiple steps, 

which is the attachment and the entry of the virus into the host cell, transport of ribo-

nucleoproteins into host nucleus, synthesis of viral RNA, synthesis of viral proteins, 

and assembly of new particles and release of particles from the host cell (Figure 1.6). 

 

1.2.3.1 Attachment of influenza virus into the host cell 

Influenza virus begins the life cycle by attaching to the sialic acid containing 

receptors found on the host cell surface (Figure 1.8). The attachment involved the 

binding of influenza outer membrane glycoprotein HA to the sialic acid receptors of 

host (Figure 1.7) (Mochalova et al., 2003). HAs recognise the sialic acid moiety 

receptors and then bind to them (Bouvier and Palese, 2008).  

 

1.2.3.2 Virus entry 

Once virus attaches to the host cell, the bound virus is taken up by the host 

cell via receptor-mediated endocytosis in an endosome. (Palese and Shaw, 2007, Luo, 

2012). Inside the host cell, the fusion and un-coating of influenza virus involved the 

acidification of the endosome environment to a low pH (pH5-6). A pH drop inside 

the endosome causes the viral HA protein to undergo structural/conformation 

changes which then result in the fusion of viral and endosomal membrane. The acidic 

environment of the endosome is not only important for the fusion of viral and 

endosome membrane but also important to enable the opening of M2 ion channel 

proteins. The opening of M2 ion channel protein acidified the viral core environment  
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Figure 1.6 The influenza virus replication cycle. 1. Attachment of virus to the 

host cell, 2. Entry of virus into the host cell, 3. Transport of ribo-

nucleoproteins into host nucleus, 4. Synthesis of viral RNAs, 5. 

Synthesis of viral proteins, and 6. Assembly of new particles and 

release of particles from the host cell 
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Figure 1.7 Sialic acid on the host cell surface. On the left is the sialic acid found 

at the terminal position of glycans attached to the cell surface. The 

spheres (orange) are sugars and the sialic acid (yellow) is found at the 

last sugar in the chain that attached to protein (cyan). On the right is 

the chemical structure of SA-galactose linkage. Adopted from 

(Racaniello, 2009a) 
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by allowing the influx of H+ ions into the virion. This process disrupts protein-

protein interaction and result the releases of the viral genome segments or Ribo-

nucleoproteins (RNPs) from M1 matrix protein to the host cell’s cytoplasm 

(Stegmann et al., 1987, Martin and Helenius, 1991b, Stegmann, 2000, Palese and 

Shaw, 2007). 

 

1.2.3.3 Transport of Ribo-nucleoproteins into the host nucleus 

After the fusion and un-coating of influenza virus, the cycle is continued by 

the transcription and replication of influenza virus. Transcription and replication of 

influenza virus occur in the nucleus of the host cell. Therefore, to enable the 

transcription and replication of influenza virus to be taking place, the viral RNPs 

must be transported into the host cell nucleus. The size of viral RNPs is relatively 

large (10-20nm) and they cannot enter the host cell’s nucleus through passive 

diffusion process. They must therefore transport into the nucleus of host cell via 

active transport mechanism through the host cell nuclear pore complex (NPC) with 

the aid of viral protein nuclear localization signals (NLS) (Figure 1.6). (O'Neill et al., 

1995, Cros and Palese, 2003, Fodor and Smith, 2004, Cros et al., 2005, Palese and 

Shaw, 2007). 

 

1.2.3.4 Synthesis of viral RNA 

Influenza A virus possesses 8 negative-stranded RNA segments. These viral 

RNAs segments are serve as the templates for the synthesis of messenger RNA 

(mRNA) and complementary RNA (cRNA). Newly synthesized cRNAs are used as 

template for the further synthesis of the new viral RNA (Cheung and Poon, 2007, 

Resa-Infante et al., 2011). In general, the synthesis of cRNA occurs in the early 
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process before the viral RNA synthesis take place (Resa-Infante et al., 2011). Viral 

RNA polymerase subunits (PB1, PB2 and PA) and nucleoprotein (NP) are important 

during the transcription and replication of influenza virus. They enter host cell 

nucleus as a part of viral RNP complex. The first viral mRNA generated is 

transported out of the host cell nucleus into host cell cytoplasm for the translation 

process into protein. In the cytoplasm, the mRNAs will translate into their 

respectively proteins according to the RNA segments of influenza virus. The newly 

synthesized viral polymerase proteins and nucleoprotein will then be transported 

back to the nucleus for further catalyses the mRNA transcription and viral 

RNA/cRNA replication. This process will keep repeating to produce viral genome. 

During the late infection process, the process of synthesis of viral RNA is increased 

(Krug, 1981, Braam et al., 1983, Kawakami and Ishihama, 1983, Huang et al., 1990, 

Cros and Palese, 2003, Fodor and Smith, 2004, Neumann et al., 2004, Deng et al., 

2005, Amorim and Digard, 2006, Engelhardt and Fodor, 2006, Boulo et al., 2007). 

The newly synthesized viral RNA will form viral RNP complex by binding to RNA 

polymerase subunits and nucleoprotein and later exported into the cytoplasm to 

prepare for the construction of new virion (Braam et al., 1983, Cros and Palese, 2003, 

Boulo et al., 2007). 

Unlike other organism, the transcription of influenza virus involved cap-

snatching mechanism (Figure 1.8). This is because viral RNAs contain only a poly 

(A) tail which lacks of 5’-cap. In order to initiate the transcription, influenza virus 

need to grab 5’-capped RNA fragments from host cell mRNA (Krug, 1981, Hagen et 

al., 1994, Samji, 2009, Resa-Infante et al., 2011). RNA dependent RNA polymerase 

(RdRp) constitutes PB1, PB2 and PA proteins are important for the influenza virus 

transcription. During the transcription process, PB2 binds to 5’-7-methylguanosine  
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