

STUDIES OF VARIOUS STRAINS OF ECHINOCOCCUS GRANULOSUS IN LIVESTOCK IN LIBYA: PREVLENCE, ULTRA-STRUCTURE, AND GENOTYPES OF HYDATID CYSTS.

LAYLA OMRAN ELMAJDOUB

UNIVERSITI SAINS MALAYSIA

2013

STUDIES OF VARIOUS STRAINS OF *ECHINOCOCCUS GRANULOSUS* IN LIVESTOCK IN LIBYA: PREVLENCE, ULTRA-STRUCTURE, AND GENOTYPES OF HYDATID CYSTS.

BY

LAYLA OMRAN ELMAJDOUB

Thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

UNIVERSITI SAINS MALAYSIA

2013

ACKNOWLEDGEMENTS

First of all, my profound gratitude to Allah who has given me the strength and health to finish this thesis. I would like to express my sincere appreciation and everlasting thanks to **Associate. Prof. Dr Mustafa Fadzil Farid Wajidi** Deputy Dean in School of Distance Education for being kind and helpful, guidance, advices and encouragement were of great importance for me to carry out this study.

I would like to express my deepest thanks and my deep gratitude to my first Co-supervisor **Professor. Abd. Wahab A. Rahman**, Professor of Parasitology; School of Biological Sciences, for helpful fruitful guidance, and for the benefit of his extensive knowledge throughout this work and for his suggesting and supervising this investigation. My special thanks and warmest congratulations to my second Cosupervisor **Professor. Siti Azizah Mohd Nor**. Deputy Dean in School of Biological Sciences, for being supportive, constructive, kind and wonderfully cooperative during the accomplishment of this work.

I am greatly indebted to Vet. Dr. Farag Debbek from the Veterinary services department, Tripoli, Libya, for providing me hydatid cysts from the government abattoirs and date of parasitic infection. My gratitude also goes to all my laboratory mates for their valuable help and fruitful discussions within my study.

I would like to thank all the staff of School of Distance Education and School of Biological Sciences, Universiti Sains Malaysia, for their help and continuous encouragement during the progress of this work.

Late but not the least, I would like to express my greatest appreciation to my husband Osama and my kids Alamin and Alaa, also to all members of my family.

TABLE OF CONTENTS

ACKNOWLEGEMENTSi
TABLE OF CONTENTS 4
LIST OF TABLESxi
LIST OF FIGURESxvii
LIST OF PLATESxxi
LIST OF ABBREVIATIONS xxvi
ABSTRAKxxvii
ABSTRACTxxx
CHAPTER 1 – INTRODUCTION 1
1.1. Background
1.2. Objectives
CHPTER 2 – LITERATURE REVIEW7
2.1. History of hydatid disease
2.2.1 Taxonomy of Echinococcus granulosus
2.2.2 Strains of <i>Echinococcus granulosus</i>
2.3. Distribution of <i>Echinococcus granulosus</i>
2.4. Morphology of <i>Echinococcus granulosus</i>
2.5. Life cycle of <i>Echinococcus granulosus</i>

2.5.1. Final host	14
2.5.2. Intermediate host	14
2.5.3. Development	14
2.5.4 Unilocular hydatid cyst	
	.18
2.5.5 Diagnosis of hydatid cysts	20
2.6. Prevalence of hydatid cysts in livestock	20
2.6.1. North Africa	21
2.6.2. Other locations	23
2.7. Molecular characterization of <i>Echinococcus granulosus</i>	25
2.7.1. Genetic variation in <i>Echinococcus granulosus</i>	26
2.8. Identification of <i>Echinococcus</i> using molecular methods	
2.8.1. PCR-Amplified DNA sequences	30
2.8.2. RFLP/RAPD analysis	31
2.8.4. Microsatellite markers	
2.9. Classification of <i>Echinococcus granulosus</i> strains	32
2.9.1. Sheep-Dog (G1) and Horse-Dog (G4) Strains	
2.9.2. Cattle-Dog Strain (G5)	35
2.9.3. Camel-Dog Strain (G6)	
2.9.4. Pig-Dog Strain (G7)	
2.9.5. Cervid Strains (G8-10)	36
2.10. Molecular Phylogenetic Analysis	

2.11. DNA Detection of Infection in Definitive and Intermediate Hosts Based on	
Enzyme-linked Immunosorbent Assay (ELISA) and Copor-DNA	
by PCR 4	1
2.12 Molecular methods in epidemiological studies of hydatid cysts4	1
CHAPTER 3 – Epidemiological Survey of Hydatid Cysts in Slaughtered Animals	S
from Different Areas of Libya4	3
3.1. Introduction	.3
3.2. Material and Methods	5
3.2.1. Description of the Study Area	.5
3.2.2. Climate in Libya4	.7
3.2.3. Examination of slaughtered livestock	.8
3.2.4. Selection of unilocular hydatid cysts for examination	0
3.2.5. Assessment of the fertility of hydatid cysts	0
3.2.6. Examination of Viability of Protoscoleces	1
3.2.7. Data analysis	1
3.3. Results	2
3.3.1 Variation of hydatid cyst infection rates in all examined livestock and	
areas	2
3.3.1.1. Hydatid Cyst Infection Rates in Tripoli Area5	2
3.3.1.2. Bayda and Yafran Areas5	3
3.3.1.3. Misurata Area5	3
3.3. 2 Distribution of hydatid cysts according to sex 5	5
3.3. 3 Variation of hydatid cysts infection rates based on animal age	8
3.3.3.1. Variation of the infection rate of Hydatid Cysts in sheep	0
3.3.3.2. Variation of infection rate of hydatid cysts in camels and cattle	3

	3.3. 4 Infection rates of organs	. 65
	3.3.4.1. Tripoli Area	67
3	.3.4.2. Bayda and Yafran Areas	.68
3	.3.4.3. Misurata Area	69
	3.3. 5 Fertility of Hydatid Cysts	. 70
	3.3. 6 Viability Rate of Hydatid Cysts	. 81
	3.4. Discussion	. 85
	3.4.1. Prevalence of variation of hydatid cysts in slaughtered livestock	. 85
	3.4.2. Variation in infection Rate of Hydatid Cysts in Livestock Based on Age	. 88
	3.4.3. Infection rate of hydatid cysts in livestock based on the organ	. 89
	3.4.4. Fertility and viability of cystic echinococcosis	. 90
	3.5. Conclusion	. 93

CHAPTER 4 – Cystic echinococcosis in livestock animals from Libya	94
4.1. Introduction	94
4.2. Material and Methods	97
4.2.1. Collection and Examination of Hydatid Cysts	97
4.2.2. Preparation of paraffin sections for hydatid fluid	99
4.2.3. Staining of the sections using Haematoxylin and Eosin	99
4.2.4. Statistical Analysis	99
4.3. Results	100
4.3.1. External appearance of hydatid cyst	100
4.3.2. Estimating the diameter of hydatid cysts of different livestock	115
4.3.3. Examination of stained hydatid cyst	116
4.4. Discussion	119

4.5. Conclusion
CHAPTER 5 – Morphological and morphometric studies on hydatid sand consist
of <i>E. granulosus</i> in sheep and camel using various techniques . 122
5.1. Introduction
5.2. Material and Methods
5.2.1. Collection and examination of hydatid cysts
5.2.2. Collection of protoscoleces
5.2.3. Examination of protoscoleces
5.2.4. The measurements of the rostellar hooks
5.2.5. Preparation of hydatid sand for Scanning Electron Microscopy128
5.2.6. Data Analysis130
5.3. Results
5.3.1. Light Microscopy (LM)
5.3.1.1 Brood capsules, protoscoleces and calcareous corpuscles
5.3.1.2 Measurements of Protoscoleces and Brood Capsules in Cysts from Sheep
and Camels151
5.3.1.3. Measurements of calcareous corpuscles between sheep and camel
cysts160
5.3.1.4. Description of rostellar hooks
5.3.1.5. Variations of some abnormal components of hooks between sheep and
camels
5.3.1.6 The measurements (μ) of large hooks

5.3.1.7 The measurements	(µ) of small hooks	
--------------------------	--------------------	--

5.3.2. Scanning Electron Microscopy (SEM)	209
5.3.2.1 Estimation of the relationship between the measurements of hooks from	m
sheep and camel	226
5.4. Discussion	229
5.4.1. Description the contents of hydatid fluid	229
5.4.2. Estimation of the measurement (μ) of brood capsules, protoscoleces an	d
calcareous corpuscles	230
5.4.3. Arrangement and abnormality of hooks	232
5.4. Measurement (µ) of large and small hooks	234
5.4.5. Scanning Electron Microscopy (SEM)	238
5.5. Conclusion	

CHAPTER 6 – Chemical elements in the hydatid sand of *Echinococcus*

granulosus cysts from livestock in Libya	. 241
6.1. Introduction	. 241
6.2. Material and Methods	. 242
6.2.1. Estimation of chemical elements in hydatid sand	.242
6.2.2. Statistical Analysis	242
5.3. Results	.244
6.3.1. Estimation of the concentration of organic elements in hydatid sand	.244
6.4. Discussion	.255
6.5. Conclusions	

CHAPTER 7 –	Molecular classification	of Echinococcus	granulosus strains fi	rom
	the livestock animals in	Libya		. 257

7.1. Introduction	257
7.2. Material and Methods	261
7.2.1 Parasite samples	261
7.2.2. DNA extraction	262
7.2.3. Polymerase chain reaction (PCR) amplification	264
7.2.3.1. Mitochondrial ATP6 gene	264
7.2.3.2. Nuclear Act II gene	264
7.2.4. DNA purification and sequencing	265
7.2.5. Data analysis	266
7.3. Results	267
7.3.1. Extraction & Purity of Genomic DNA	267
7.3.2. Amplification of mitochondrial ATP6 and nuclear Act II genes	267
7.3.3. Purification of mitochondrial ATP6 and nuclear Act II PCR Product	267
7.3.4. Sequencing of Purified PCR Products	269
7.3.5. Analysis of Partial MtDNA ATP6 Gene of E. granulosus Sheep Hydatid	l Cyst
Populations	270
7.3.5.1. Intrapopulation Genetic Diversity based on ATP6 gene	270
7.3.5.2. Interpopulation genetic variability based on ATP6 gene	274
7.3.5.3. Neighbour Joining (NJ) analysis	277
7.3.5.4. Maximum Parsimony (MP) analysis	279
7.3.5.5. Minimum Evolution (ME) analysis	279
7.3.5.6. Minimum Spanning Network (MSN)	280
7.3.6. Analysis of Partial Mitochondrial ATP6 Gene of E. granulosus of Con	nbined
Sheep, Camel and Cattle Hydatid Cyst Populations	282
7.3.6.1. Intrapopulation Genetic Diversity based on ATP6 Gene	282

7.3.6.2. Interpopulation genetic variability	287
7.3.6.3. Neighbour Joining (NJ) analysis	290
7.3.6.4. Maximum Parsimony (MP) analysis	292
7.3.6.5. Minimum Evolution (ME) analysis	292
7.3.6.6. Minimum Spanning Network (MSN)	293
7.3.7. Analysis of Partial Nuclear Act II Gene of E. granulosus of Sheep H	Iydatid
Cyst Populations	295
7.3.7.1. Intrapopulation Genetic Diversity based on Act II gene	295
7.3.7.2. Interpopulation genetic variability	298
7.3.7.3. Neighbour Joining (NJ) analysis	301
7.3.7.4. Maximum Parsimony (MP) analysis	303
7.3.7.5. Minimum Evolution (ME) analysis	303
7.3.7.6. Minimum Spanning Network (MSN)	304

7.3.8. Analysis of Partial Nuclear Act II Gene of <i>E. granulosus</i> of combined S	Sheep,
Camel and Cattle Hydatid Cyst Populations	306
7.3.8.1. Intrapopulation Genetic Diversity	306
7.3.8.2. Interpopulation genetic variability	310
7.3.8.3. Neighbour Joining (NJ) analysis	313
7.3.8.4. Maximum Parsimony (MP) analysis	315
7.3.8.5. Minimum Evolution (ME) analysis	315
7.3.8.6. Minimum Spanning Network (MSN)	316
7.4. Discussion	318
7.4.1. Mitochondrial DNA- ATP6	318
7.4.1.1 Genetic diversity of <i>E. granulosus</i> in sheep populations	319

7.4.1.2 Genetic diversity of <i>E. granulosus</i> populations in sheep, camel	
and cattle	.1
7.4.1.3 Phylogenetic analysis of <i>E. granulosus</i> populations in sheep, camel and	
cattle	322
7.4.1. Nuclear gene Act II	325
7.5. Conclusion	329
ADDENDUM 1– Unusual presentation of a mesenteric hydatid cyst	30
CHPTER 8 – conclusions and recommendations	332
8.1. Conclusions.	332
8.2. Recommendations	334
REFERENCES	335
APPENDICES	364
LIST OF PUBLICATIONS	••

LIST OF TABLES

Table 2.1	Different Strains of E. granulosus based on DNA Analysis	27
Table 3.1	The number of slaughtered animals from different study areas	49
Table 3.2	Number of hydatid cysts from different organs in slaughtered animals	50
Table 3.3	Seasonal variation of infection rate in the livestock from overall regions	52
Table 3.4	Seasonal variation of infection rate for slaughtered sheep	54
Table 3.5	Seasonal variation of total infection rate for slaughtered camels and cattle at Misurata area	54
Table 3.6	The mean and infection ratio of hydatid cysts in slaughtered sheep	55
Table 3.7	The mean and infection ratio of hydatid cysts in camels and cattle	56
Table 3.8	Seasonal infection rates of slaughtered livestock based on age	58
Table 3.9	Variation of hydatid cysts infection rates in sheep based on age	61
Table 3.10	Infection rate of slaughtered camels and cattle based on animal age	63
Table 3.11	The infection rate of hydatid cysts in different organs	65
Table 3.12	The mean and infection ratio of hydatid cysts in sheep in Tripoli area	67
Table 3.13	The mean and rate of infection of hydatid cysts in sheep in Bayda and Yafran areas	68

List of table	s continued	Page
Table 3.14	The mean and rate of infection of hydatid cysts in livestock in Misurata area	69
Table 3.15	Fertility rate of hydatid cysts of all slaughtered livestock from all regions	73
Table 3.16	Fertility rate of hydatid cysts from sheep in different regions	73
Table 3.17	Fertility rate of hydatid cysts of slaughtered livestock based on sex	74
Table 3.18	Fertility rate of hydatid cysts from sheep and camels based on Age	76
Table 3.19	Fertility rate of hydatid cysts of different slaughtered livestock based on organ	79
Table 3.20	Statistical variation of fertile cysts in slaughtered sheep and camel based on organ	79
Table 3.21	Viability rate of protoscolex of hydatid cysts in slaughtered sheep and camels	82
Table 4.1	Diameter of hydatid cysts of different slaughtered animals	115
Table 5.1	Measurement of Protoscoleces from Infected Organs in Sheep and Camels	152
Table 5.2	The Mean \pm S.E of the number of hooks from sheep and camels	155
Table 5.3	The Measurement of length of brood capsules $(\boldsymbol{\mu})$ in sheep and camel	156
Table 5.4	The measurement of the width brood capsules $(\boldsymbol{\mu})\;$ in sheep and camel	157
Table 5.5	The Mean \pm S.E of the number of protoscoleces from sheep and camels	157
Table 5.6	The measurement of length (μ) and significant difference for calcareous corpuscles	160
Table 5.7	The measurement of width (μ) and significant difference for calcareous corpuscles	161

List of tables continued		Page
Table 5.8	Rates of abnormal components of hooks from various organs in sheep and camels	183
Table 5.9	Statistical analysis of abnormal arrangement of hooks from various organs in sheep and camels	184
Table 5.10	Statistical analysis of abnormal hooks from various organs in sheep and camels	184
Table 5.11	Statistical analysis of abnormal shapes of hooks from various organs in sheep and camels	185
Table 5.12	Discriminant Function Analysis from camel organs	185
Table 5.13	Discriminant Function Analysis from sheep organs	186
Table 5.14	The statistical analysis and measurements of large hooks from sheep	187
Table 5.15	Discriminant Function Analysis of large hooks from sheep	188
Table 5.16	Correlation matrices for the measurements of different parts of large hooks from sheep	190
Table 5.17	Statistical analysis and measurements of large hooks from camels	191
Table 5.18	Discriminant Function Analysis of large camel hooks	192
Table 5.19	Correlation matrices for the length of various parts of large hooks from camel	194
Table 5.20	Statistical analysis and measurements of various parts of large hooks from sheep and camel	195
Table 5.21	Discriminant function analysis were supplied from large hooks of sheep and camel samples	195
Table 5.22	Correlation matrices for length of various parts of large hooks from sheep and camel	197
Table 5.23	The Measurements of small hooks in different sheep organs	198

List of table	es continued	Page
Table 5.24	Discriminant Function Analysis of different sheep organs	199
Table 5.25	Correlation matrices for the length of various parts of small hooks from sheep	201
Table 5.26	Statistical analysis and measurements (μ) of small hooks from camel	202
Table 5.27	Discriminant Function Analysis of small hooks from camel	203
Table 5.28	Correlation matrices for length of parts of small hooks from camel	205
Table 5.29	Statistical analysis and measurement (μ) of small hooks from sheep and camel	206
Table 5.30	Discriminant Function Analysis of small hooks from sheep and camel	206
Table 5.31	Correlation matrices for length of parts of small hooks from sheep and camel	208
Table 5.32	The Mean (μ) and statistical analysis of Total and Blade lengths of large and small hooks from sheep	212
Table 5.33	The Mean (μ) of Handle length, width and guard angle of large and small hooks from sheep	213
Table 5.34	The Mean (μ) and statistical analysis of Blade lengths from large and small hooks in camels	224
Table 5.35	The Mean (μ) and statistical analysis of Handle length, Width and Guard angle large and small hooks in lung and liver of camel	225
Table 6.1	Concentration of chemical elements in infected organs of sheep	247
Table 6.2	Concentration of chemical elements in infected organs of camel	247
Table 6.3	Concentration of chemical elements in infected organs of cattle	247
Table 6.4	Mean \pm S.E of carbon, oxygen and calcium concentrations between different animals	248
Table 6.5	Mean \pm S.E of potassium, sodium, magnesium and phosphorus concentrations between different animals	289

List of tables continued......

Table 6.6	Values of correlation coefficient (r) between different chemical elements in various organs from sheep	253
Table 6.7	Values of correlation coefficients (r) between different chemical elements in various organs from camel	254
Table 6.8	Values of correlation coefficients (r) between different chemical elements in various organs from cattle	254
Table 7.1	Locations, host, organ, population code and sample size of DNA hydatid cysts (2010 collections)	262
Table 7.2	Number and frequencies of haplotypes identified in each sheep hydatid cyst population based on ATP6	271
Table 7.3	Nucleotide diversity (π) , number of haplotypes, haplotype diversity (h) , number of observed transitions (TS) and transversions (TV) among sheep populations of <i>E. granulosus</i> hydatid cysts based on ATP6 gene	273
Table 7.4	Mean pairwise genetic distance between and within (bold) of sheep populations of <i>E. granulosus</i> based on ATP6 gene	275
Table 7.5	Population differentiation (F_{ST}) between sheep samples based on mtDNA ATP6 gene of <i>E. granulosus</i>	276
Table 7.6	Number and frequencies of haplotypes identified in each livestock population	283
Table 7.7	Nucleotide diversity (π), number of haplotypes, haplotype diversity (h), number of observed transitions (TS), and number of observed transversions (TV) between all livestock populations of <i>E. granulosus</i> hydatid cysts based on ATP6 gene	286
Table 7.8	Mean pairwise genetic distance index between and within (bold) of all livestock populations of <i>E. granulosus</i>	288
Table 7.9	Population differentiation (F_{ST}) among all livestock populations based on mtDNA ATP6 sequence of <i>E. granulosus</i>	289
Table 7.10	Number and frequencies of haplotypes identified in each sheep hydatid cyst population based on Act II gene	296
Table 7.11	Nucleotide diversity (π) , number of haplotypes, haplotype diversity (h) , number of observed transitions (TS) and transversions (TV) among sheep populations of <i>E. granulosus</i> hydatid cysts based on Act II gene.	297

Table 7.12	Mean pairwise genetic distance between and within (bold) of sheep populations of E. granulosus based on Act II gene	299
Table 7.13	Table 7.13 Population divergence (F_{ST}) between sheep samples based on the nuclear Act II gene of <i>E. granulosus</i>	300
Table 7.14	Number and frequencies of haplotypes identified in each livestock population	307
Table 7.15	Nucleotide diversity (π) , number of haplotypes, haplotype diversity (h) , number of transitions (TS) and transversions (TV) in livestock populations of <i>E. granulosus</i> hydatid cysts based on Act II gene.	309
Table 7.16	Mean pairwise genetic distance between and within (bold) of all livestock populations of <i>E. granulosus</i> based on Act II gene	316
Table 7.17	Population divergence (F_{ST}) between all livestock samples based on the DNA Act II sequence of <i>E. granulosus</i>	317

LIST OF FIGURES

Fig 2.1	Worldwide Distribution of E. granulosus	11
Fig 2.2	Morphology of Adult Worm of E. granulosus	13
Fig 2.3	Morphology of egg of E. granulosus	13
Fig 2.4	Life Cycle of E. granulosus	17
Fig 2.5	Inferred Relationships between Species and Genotypes of <i>Echinococcus</i> , Using Concatenated Sequences of the Mitochondrial Genes <i>atp6</i> , <i>nad1</i> and <i>cox1</i>	34
Fig 2.6	Relationships of G1, G4, G6, G7, G8, <i>E. vogeli</i> , and <i>E. oligarthrus</i> based on mtDNA	38
Fig 2.7	Phylogenetic relationships among <i>Echinococcus</i> strains based on the mitochondrial(CO1; ND1) genes	40
Fig 2.8	Phylogenetic relationships among <i>Echinococcus</i> strains based on Nuclear Gene (ITS1)	40
Fig 3.1	Map of Libya illustrating the study areas	46
Fig 3.2	Variation of infection rate of hydatid cysts based on sex	57
Fig 3.3	Infection rates of slaughtered livestock of different age groups	59
Fig 3.4	The infection rate of slaughtered sheep based on animal age	62
Fig 3.5	The infection rate of slaughtered camels and cattle based on age	64
Fig 3.6	Location of hydatid cysts in various organs	66
Fig 3.7	Overall fertility rate of examined hydatid cysts from slaughtered livestock in all study areas	71
Fig 3.8	Fertility rate of hydatid cysts in male and female animals	75

List of figures	continued	Page
Fig 3.9	Fertility rate of hydatid cysts of slaughtered livestock based on age	77
Fig 3.10	Fertility rate of hydatid cysts of slaughtered livestock based on organ	80
Fig 3.11	Viability rate of protoscolex of hydatid cysts from slaughtered sheep and camel	83
Fig 3.21	Viability rate of protoscolex of hydatid cysts of slaughtered sheep and camel with infected organs	84
Fig 4.1	Structure of a hydatid cyst	95
Fig 4.2	The diameter of hydatid cysts	98
Fig 5.1	Measurement of length and width of invaginated protoscolex	126
Fig 5.2	View of hooks after applying slight pressure on the cover slide	126
Fig 5.3	Measurement of length and width of brood capsule	127
Fig 5.4	Measurement of length and width of calcareous corpuscles	127
Fig 5.5	Measurement of length of hooks	129
Fig 5.6	Measurement of the Hook Lengths Using Computer Image Analysis System	129
Fig 5.7	The different measurements (Mean \pm S.E) of the length of protoscoleces in sheep and camels	153
Fig 5.8	Distribution of the number of protoscoleces in brood capsules in sheep and camel	159
Fig 5.9	Total and Blade lengths in large hooks of different sheep organs	189
Fig 5.10	Total and blade lengths of large hooks in different camel organs	193
Fig 5.11	Total and blade length of large hooks between sheep and camel	196

List of figures continued......

Fig 5.12	Total and blade length of small hooks from different sheep organs	200
Fig 5.13	Total and blade length of small hooks from different camel organs	204
Fig 5.14	Total and blade length in small hooks between sheep and camel	207
Fig 6.1	Estimation method of chemical element concentrations by Energy Dispersive X- ray Spectroscopy system	243
Fig 6.2	Mean \pm SE of carbon, oxygen and calcium concentrations in hydatid sand	250
Fig 6.3	Mean± SE of potassium, sodium, magnesium and phosphorus elements in hydatid sand	251
Fig 7.1	The PCR products of ATP6 gene. Lane M: Marker 100 bp plus DNA, Lane 1- 10: <i>E. granulosus</i> samples from livestock animals	268
Fig 7.2	The PCR products of Act II gene. Lane M: Marker 100 bp plus DNA, Lane 1- 14: <i>E. granulosus</i> samples from different livestock animals	268
Fig 7.3	Neighbour joining tree of <i>E. granulosus</i> haplotypes from Libyan sheep of ATP6 gene with 1000 bootstrap replications.	278
Fig 7.4	The Minimum Spanning Network of 39 ATP6 gene haplotypes obtained from ten <i>E. granulosus</i> populations	281
Fig 7.5	Neighbour joining tree of <i>E. granulosus</i> haplotypes from Libyan combined sheep, cattle and camel livestock of ATP6 gene.	291
Fig 7.6	A Minimum Spanning Network of ATP6 gene haplotypes obtained from <i>E. granulosus</i> from combined livestock of sheep, cattle and camel	294
Fig 7.7	Neighbour joining tree of <i>E. granulosus</i> haplotypes from Libyan sheep of Act II gene with 1000 bootstrap replications	302
Fig 7.8	The Minimum Spanning Network of 26 haplotypes obtained ten <i>E. granulosus</i> populations based on Act II gene	305

List of figures continued......

Fig 7.9	Neighbour joining phylogenetic tree of <i>E. granulosus</i> haplotypes from Libyan livestock of Act II gene	314
Fig 7.10	A minimum spanning network of Act II gene haplotypes obtained from <i>E. granulosus</i> from all livestock animals	317
Fig 8.1	Mesentery hydatid cyst from male sheep, filling by solid substance	329

LIST OF PLATES

Plate 3.1	Unilocular hydatid cysts from slaughtered animal: (A) fertile cyst, (B) sterile cyst, (C) calcified cyst	72
Plate 4.1, 2	Hydatid cysts from liver of sheep	101
Plate 4.3,4	Hydatid cysts from lungs of sheep	103
Plate 4.5	Daughter hydatid cysts from sheep lung	104
Plate 4.6	Hydatid cyst from infected mesentery of sheep	106
Plate 4.7	Hydatid cyst from infected spleen of sheep	106
Plate 4.8,9	Hydatid cysts from liver of camel	108
Plate 4.10	Daughter hydatid cysts attached to the outer surface of mother cyst	109
Plate 4.11	Dissected liver cysts of camel showing fertile germinal layer	109
Plate 4.12	Germinal layer of liver cysts from camel showing brood capsule	110
Plate 4.13	Bright daughter hydatid cyst from inside a mother cyst	110
Plate 4.14	Liver cyst of camel showing a thin, sterile germinal layer	111
Plate 4.15	Fertile lung cyst showing a bright germinal layer	111
Plate 4.16	Hydatid cyst from sheep spleen showing presence of gelatinous substance	112
Plate 4.17	Hydatid cysts from liver of cattle	114
Plate 4.18	Hydatid cyst from the lung of cattle, showing irregular surface	114
Plate 4.19	General view of hydatid wall stained with H&E	117
Plate 4.20, 21	Small buds attached to germinal layer, magnification from 4 B showing mictrotriches on the surface of bud	117
List of plates continued		

Plate 4.22	Protoscolex attached to the germinal layer	118
Plate 4.23	Hooks and calcareous corpuscles with H& E	118
Plate 5.1, 2	Intact brood capsules from hepatic hydatid sand of sheep	132
Plate 5.3, 4	Viable invaginated protoscoleces from hepatic hydatid cysts	133
Plate 5.5	Disfigured protoscolex with suckers, hooks and calcareous corpuscles	134
Plate 5.6	Evaginated protoscolex showing parts of it	134
Plate 5.7	Protoscolex with calcareous corpuscles	135
Plate 5.8	Brood capsule in pulmonary hydatid fluid of sheep	137
Plate 5.9	Protoscolex still attached to germinal layer	137
Plate 5.10, 11	Different forms of pulmonary protoscoleces	138
Plate 5.12	Normal invaginated protoscolex from mesenteric fluid of sheep	140
Plate 5.13	Protoscoleces with irregular surface from mesenteric fluid of sheep	140
Plate 5.14, 15	Invaginated protoscoleces, showing hooks, suckers and calcareous corpuscles	141
Plate 5.16	Protoscolex before the formation of suckers and hooks	141
Plate 5.17, 18	Some protoscoleces still attached to the germinal layer	143
Plate 5.19	Invaginated protoscolex inside gelatinous substance	143
Plate 5.20, 21	Different sizes of brood capsules from pulmonary hydatid fluid of camels	145
Plate 5.22	Brood capsule with protoscolex attached to outer surface	145
Plate 5.23	Ruptured brood capsule with invaginated protoscoleces	145
Plate 5.24, 25	Invaginated protoscoleces still attached to germinal	147
List of plates continued		Page