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PENGKULTURAN CHLORELLA VULGARIS MENGGUNAKAN BAJA 

ORGANIK SEBAGAI SUMBER NUTRIEN UNTUK PENGHASILAN 

BIODIESEL, MALTODEKSTRIN DAN BIO-PENGURANGAN CO2 

 

ABSTRAK 

 Dalam kajian ini, baja organik yang berasal dari kompos telah digunakan 

sebagai sumber nutrien alternatif kepada baja kimia untuk pengkulturan Chlorella 

vulgaris. Kajian ini menunjukkan bahawa Chlorella vulgaris bertumbuh baik dengan 

bekalan 100 mL medium baja organik (kandungan nitrat 26.67 mg/L), 24 jam 

pendedahan kepada cahaya yang berterusan dan pH 5. Biojisim mikroalga yang 

berjumlah 0.50 g/L boleh dicapai selepas 12 hari pengkulturan. Kadar pertumbuhan 

Chlorella vulgaris didapati meningkat dengan peningkatan kepekatan CO2, tetapi, 

kecekapan penyingkiran CO2 didapati berkurangan. Kecekapan penyingkiran CO2 

yang tertinggi, 92.2%, dapat dicapai dengan menggunakan udara persekitaran yang 

mengandungi 0.03% CO2. Di samping itu, dengan menggunakan pelarut Bligh dan 

Dyer (nisbah metanol kepada kloroform pada 2:1), 18% lipid boleh diekstrakkan 

daripada biojisim kering Chlorella vulgaris. Sebahagian besar lipid tersebut terdiri 

daripada asid lemak tak tepu, seperti C18:1, C18:2 dan C18:3. Melalui kajian 

parameter tindak balas transesterifikasi, 95% asid lemak metil ester (FAME) atau 

biodiesel telah diperolehi dengan keadaan tindak balas berikut: nisbah molar metanol 

kepada THF kepada lipid pada 60:15:1, 21 %  berat H2SO4, suhu 60°C dan 3 jam 

masa tindak balas. Tambahan pula, karbohidrat yang masih terkandung dalam sisa 

biojisim mikroalga selepas pengekstrakan lipid telah berjaya dipulihkan untuk 

penghasilan maltodekstrin (produk sampingan). 90% maltodekstrin boleh dihasilkan 
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dengan menggunakan 3 %  isipadu H2SO4 (atau 0.56 M), pada suhu 90
o
C dan masa 

hydrolisis selama 1 jam. Selain itu, skala pilot pengkulturan Chlorella vulgaris 

dengan 100 L photobioreaktor penyekat berturutan juga telah dijalankan dalam 

kajian ini. Kuantiti tertinggi biojisim mikroalga yang dihasilkan apabila dikultur 

dalam persekitaran dalaman dan luaran adalah 0.52 g/L dan 0.28 g/L, masing-masing. 

Walaupun kuantiti biojisim mikroalga yang dihasilkan adalah rendah pada 

persekitaraan luaran, namun, nisbah kecekapan tenaganya adalah 3.3 kali lebih tinggi 

daripada pengkulturan dalaman. Akan tetapi, kedua-dua kaedah pengkulturan 

dalaman dan luaran didapati mempunyai imbangan tenaga yang negatif untuk 

penghasilan mikroalga biodiesel. Anggaran minimum kos pengeluaran mikroalga 

biodiesel dalam kajian ini adalah RM 237/L, iaitu lebih tinggi berbanding dengan 

harga diesel petrol semasa (RM 3.6/L). Sebaliknya, anggaran kos pengeluaran 

biojisim mikroalga kering adalah RM 46/kg, menunjukkan harga yang lebih rendah 

berbanding dengan pengkulturan menggunakan baja kimia (RM 111/kg) serta harga 

pasaran semasa biojisim Chlorella (RM 145/kg). Pertumbuhan Chlorella vulgaris di 

dalam kajian ini didapati mematuhi model Richards, dengan nilai R
2
 yang tertinggi 

serta memaparkan nilai RMSD dan varians yang terendah.   
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CULTIVATION OF CHLORELLA VULGARIS USING ORGANIC 

FERTILIZER AS NUTRIENT SOURCE FOR BIODIESEL, 

MALTODEXTRIN PRODUCTION AND CO2-BIOMITIGATION 

 

ABSTRACT 

In the present study, attempt was made to solve the problems by cultivating 

Chlorella vulgaris using organic fertilizer (derived from compost) instead of 

depending on chemical fertilizer. Under the supplement of organic nutrients, it was 

found that Chlorella vulgaris grown favourably with 100 mL of organic fertilizer 

medium (or corresponded to nitrate content of 26.67 mg/L), 24 hours of continuous 

illumination and pH of 5. About 0.50 g/L of biomass yield was attained after 12 days 

of cultivation. Increasing the CO2 concentration to the cultivation could accelerate 

the growth of Chlorella vulgaris, however, reducing the CO2 removal efficiency. The 

highest CO2 removal efficiency, 92.2 %, was achieved by using atmosphere air (0.03 % 

of CO2). By using Bligh and Dyer extraction solvents (methanol to chloroform 

volume ratio of 2:1), about 18 % of lipid can be extracted from the dried Chlorella 

vulgaris biomass. The lipid was mainly comprised of unsaturated fatty acids, such as 

C18:1, C18:2 and C18:3. Through transesterification reaction parametric study, 

about 95 % of fatty acid methyl ester (FAME) or biodiesel was attained under the 

following conditions: methanol to THF to lipid molar ratio of 60:15:1, H2SO4 

concentration of 21 wt.%, temperature of 60 °C and reaction time of 3 hours. In 

addition, the carbohydrate left over in the lipid-extracted microalgae biomass 

residues was successfully recovered for maltodextrin production (co-product). 90 % 

of maltodextrin yield could be attained by using 3 vol. % of H2SO4 (or 0.56 M) at 
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operating temperature of 90
o
C after 1 hour of hydrolysis time. Apart from that, pilot-

scale cultivation of Chlorella vulgaris in a 100 L sequential baffled photobioreactor 

was carried out in the present study. The highest biomass yield attained under indoor 

and outdoor environment was 0.52 g/L and 0.28 g/L, respectively. Although low 

microalgae biomass yield was attained under outdoor cultivation, however, the 

overall life cycle energy efficiency ratio was 3.3 times higher than the indoor 

cultivation. It was found that negative energy balance was observed in producing the 

microalgae biodiesel for both indoor and outdoor cultivation. The minimum 

microalgae biodiesel production cost was about RM 237/L, which was exceptionally 

high compared to the current petrol diesel price (RM 3.6/L). On the other hand, the 

estimated production cost of dried microalgae biomass was RM 46/kg, which was 

lower than cultivation using chemical fertilizer (RM 111/kg) and current market 

price of Chlorella biomass (RM 145/kg). The growth of Chlorella vulgaris in the 

present study was found to fit well with the Richards model, with the highest R
2
 

value and displayed the lowest RMSD and variance values.  
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CHAPTER ONE: 

INTRODUCTION 

 

1.1 Current status of fossil fuel and renewable energy 

Since the last few decades, fossil fuels have become an integral part of human 

daily lives. Specifically, fossil fuels are burned to produce energy for transportation 

and electricity generation, in which these two sectors have played a vital role in 

improving human living standard and accelerating advance technological 

development. In 2010, fossil fuels accounted for about 81 % (or 12,717 million tonne 

of oil equivalent) of the world’s primary energy use, in which crude petroleum oil, 

coal and natural gas contributed 32.4 %, 27.3 % and 21.4 %, respectively, to this 

total energy supply (International Energy Agency, 2012). Specifically, global 

consumption of fossil diesel fuel was estimated to be 934 million tonnes per year 

(Kulkarni and Dalai, 2006).  

Thus, there is no doubt that fossil fuels will be exhausted in less than 10 

decades as predicted by The World Energy Forum if no new oil well is found 

(Sharma and Singh, 2009). The concern regarding the stingy crunch of energy 

resources is caused by rapid growth in human population, industrialization and 

urbanization (Huang and Wang, 2013). Hence, the era of inexpensive fossil fuel no 

longer exists; instead, the world is facing a shortage in the fossil fuel supply, bitter 

conflicts, and an increasing number of undernourished people, especially in the 

undeveloped countries (Lam et al., 2010).  

Furthermore, burning fossil fuels have raised numerous environmental 

concerns, including greenhouse gas (GHG) emission which is the main cause of 

global warming. In the recent years, the impacts of global warming have caused 
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severe damages towards human and environment ecosystem, such as melting of 

arctic ice that reduces the natural habitat of polar bears, rising of sea level resulted to 

inundation of low-lying islands, warmer water causing massive dying of sea coral, 

extreme heat waves continue to hamper agricultural sector and affecting human's 

health and frequent occurrence of droughts and desertification (Ho et al., 2011, 

Huang and Wang, 2013). The consequences of all these phenomena combined with 

the rising prices of energy have raised the public awareness to reduce fossil fuels 

consumption and to lower their personal shares in GHG emission (Yang et al., 2012).  

One of the potential solutions to this problem is the continuous development 

of renewable and sustainable energy sector for the benefits of human and 

environment. Figure 1.1 shows the projection of energy demand by sector indicating 

that there is an urgent need to find more new renewable energy sources to overcome 

the global energy crisis and for the benefits of human and environment (Exxon Mobil, 

2013). Renewable energy sources such as solar energy, wind energy, hydro energy, 

and energy from biomass and waste have been successfully developed and used by 

different nations to limit the use of fossil fuels.  

Nevertheless, based on recent study by International Energy Agency (IEA), 

only energy produced from biofuels and waste has the highest potential among other 

renewable resources (International Energy Agency, 2012). From the report, biofuels 

and waste accounted for 10.0% of the total energy supply, compared to hydro energy 

2.3 % and other 0.9 % (geothermal, solar, wind and heat). Hence, it was predicted 

that renewable energy from combustible sources such as biodiesel will play a more 

crucial role as an alternative renewable fuel in the near future to further diversify the 

global energy sources. 
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Figure 1.1: Projection of energy demand for the near future (Exxon Mobil, 2013) 

 

 

1.2 Introduction to biodiesel  

Biodiesel is a renewable diesel fuel, mainly derived from triglycerides 

sources such as vegetable oils, greases and animal fats (Vasudevan and Briggs, 2008). 

Triglycerides from these sources usually consist of different fatty acids, in which the 

composition of these fatty acids will be the most important factor influencing the 

corresponding properties of the produced biodiesel (Ramos et al., 2009). Fatty acids 

vary in terms of carbon chain length and number of unsaturated bonds (double 

bonds). For example, fatty acids that have no double bonds are termed "saturated" 

such as stearic acid. The carbon chains for these fatty acids contain maximum 

number of possible hydrogen atoms per carbon atom.  
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On the other hand, fatty acids that have double bonds are termed 

"unsaturated" such as linoleic acid. These fatty acids carbon chains do not contain 

maximum number of hydrogen atoms due to the presence of double bond(s) on some 

carbon atoms. Table 1.1 summarized several common fatty acids found in edible and 

non-edible oils. 

 

Table 1.1: Common fatty acid composition for different oil sources (Ma and Hanna, 

1999, Balat and Balat, 2010, Yee et al., 2011, Kansedo and Lee, 2012) 

Fatty acid 
Edible Oil Non-edible oil 

Soybean Rapeseed Palm Jatropha Sea Mango Microalgae 

Lauric (C12:0) 0.1 - 0.1 - - - 

Myristic (C14:0) 0.1 0.1 1 - - 2.7 

Palmitic (C16:0) 0.2 4.8 42.8 14.4 24.9 20.9 

Palmitoleic (C16:1) - 0.2 - 0.1 - 10.6 

Stearic (C18:0) 3.7 1.9 4.5 3.6 5.8 6.9 

Oleic (C18:1) 22.8 61.9 40.5 43.2 53 33.3 

Linoleic (C18:2) 53.7 19.8 10.1 - 13.7 18.5 

Linolenic (C18:3) 8.6 9.2 0.2 38.7 0.1 1.2 

 

Direct use of vegetable oils and animal fats as combustible fuel is not suitable 

due to their high kinematic viscosity (about 11-17 times higher than diesel fuel) and 

low volatility (Meher et al., 2006, Mondal et al., 2008). Due to incomplete 

combustion and non-suitable vaporization characteristics of straight vegetable oils 

and animal fats, this will caused several severe problems to ignition diesel engine. 

This include coking and trumpet formation on the injectors to such an extent that fuel 

combustion does not occur, oil ring sticking and gelling of lubricating oil due to 

contamination of straight vegetable oils and animal fats (Muniyappa et al., 1996, 
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Mondal et al., 2008). Consequently, the performance of diesel engine decreases and 

resulting to higher exhaust gas emissions of CO, NOx and hydrocarbon. Thus, 

vegetable oils and animal fats must be subjected to chemical reaction such as 

transesterification to reduce the viscosity of the oils and to avoid its negative effect 

on the diesel engine during combustion.  

 In transesterification reaction, triglycerides are converted into fatty acid alkyl 

esters (biodiesel), in the presence of short chain alcohol, such as methanol or ethanol, 

and a catalyst, such as alkali or acid, with glycerol as a by-product (Vasudevan and 

Briggs, 2008). In the case when methanol is used as reactant, it will be a mixture of 

fatty acid methyl esters (FAME) whereas if ethanol is used as reactant, the mixture 

will be fatty acid ethyl esters (FAEE). Methanol is preferred to be used in biodiesel 

production due to its low cost, widely available in the market and faster reaction rate 

than ethanol (Lam and Lee, 2011). Equation 1.1 shows a typical transesterification 

reaction involving methanol as reactant. Another alternative way to produce 

biodiesel is through thermal cracking or pyrolysis. However, this process is rather 

complicated to operate and produce side products that have no commercial value 

(Sharma and Singh, 2009).  

CH2-O-C-R1

CH2-O-C-R3

O

O

O

Triglyceride

+ 3CH3OH

CH3O-C-R1

O

CH3O-C-R2

O

O

CH3O-C-R3 CH2-OH

CH2-OH

CH-OH+

Methanol Methyl Ester Glycerol

CH-O-C-R2

catalyst

 

 

(1.1) 
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1.3 Current status of biodiesel production 

 With the crude fossil fuel price near all-time high, biodiesel has emerged as 

the fastest growing industries worldwide. Several countries especially United States 

of America (USA) and members of European Union (EU) are actively supporting the 

production of biodiesel from the agriculture sector. The progress of biodiesel 

production can be clearly seen in Figure 1.2 ( er   et al ,     ). In year 2000, the 

world production of biodiesel was merely 0.8 billion liters. The total biodiesel 

production reaches 4 billion liters after 5 years and more than 16 billion liters ten 

years later ( er   et al ,     ).  

EU countries are the major producer of biodiesel, accounted for 55 % of the 

market share in year 2010. This is due to substantial support from government such 

as consumption incentive (fuel tax reduction) and production incentive (tax 

incentives and loan guarantees) that has and will further accelerate the global market 

of biodiesel to grow explosively in the next ten years. Other non-EU countries such 

as Argentina, Brazil and USA are also experiencing an increase in biodiesel 

production. However, for US, the decreasing trend from 2008 to 2010 is due to the 

anti-dumping policy that imposed by the EU countries on US exports of biodiesel.  

The total biodiesel production from the non-EU counties are 0.16 billion 

liters in year 2004 and increased to 7.7 billion liters in year 2009. By the year 2020, 

it is expected that biodiesel production from Brazil, China, India and some Asian 

countries such as Malaysia, Indonesia and Thailand could contribute as much as 20 % 

of the total biodiesel production (Multi-Client Study, 2008). The driving forces for 

development of biodiesel in these countries are economic, energy and environmental 

security, improving trade balances and expansion of agriculture sector (Zhou and 
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Thomson, 2009). If governments from these countries continue to aggressively 

promote biodiesel production and continue to invest in research and development for 

non-edible feedstock such as jatropha, castor and microalgae, the prospects to 

achieve biodiesel targets will be realized faster than anticipated. 

 

 

Figure 1.2: Biodiesel production from main producing countries, 1991-2010 

( er   et al ,     ) 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

20

B
io

d
ie

se
l 

p
ro

d
u
ct

io
n
 (

b
il

li
o

n
 l

it
er

s)
 

Total EU US Brazil Argentina Thailand Malaysia



8 
 

1.4 First and second generation biodiesel 

  First-generation biodiesel which has attained commercial-scale production in 

several countries is generally produced from edible oils using conventional 

technology (Singh et al., 2011b). The edible oils include soybean, rapeseed, palm and 

sunflower. Normally, the crude edible oil is extracted through mechanical pressing 

and refined before diverting to biodiesel production process. However, the viability 

and sustainability of the first-generation biodiesel are questionable, mainly due to the 

food versus fuel feud, low oil yield that resulted to larger arable land is required to 

accommodate the increasing oil demand, heavy fertilization, huge water requirement, 

and issue related to biodiversity conservation (Mata et al., 2010, Singh et al., 2011a, 

Singh et al., 2011b). This will certainly raises the price of food-grade oils in the 

global market, causing the production cost of biodiesel to increase and slowly losing 

its competitive advantages compared to fossil diesel  (Lin et al., 2011). In fact, the 

cost of edible oils contribute nearly 80 % of the overall biodiesel production cost; an 

important factor that determines its commercial value and economic feasibility (Lam 

et al., 2009b).  

Based on the current edible oils production rate, it is still in the infancy stage 

to fulfill the EU’s target on the    % market share of biodiesel by year 2020 due to 

the limited arable land for bio-energy crops (Mata et al., 2010).  This can be clearly 

seen in Figure 1.3 which shows that although the overall edible oil production is 

increasing, the ending stocks of the oil as food feedstock are continuously decreasing 

due to the expansion of biodiesel (Gui et al., 2008). As a result, one day, the edible 

oil supply may not be enough to fulfill its demand as food source if new renewable 

oil source is not explored for biodiesel production. 
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Figure 1.3: Vegetable oil ending stocks and biodiesel production  

(Gui et al., 2008,  er   et al ,     ) 

 

Hence, second-generation biodiesel derived from non-edible oils, such as 

Jatropha curcas L., Cerbera odollam (sea mango), Moringa oleifera and Karanja 

appeared as an attractive alternative feedstock (Kumar and Sharma, 2008, Kansedo et 

al., 2009, Kafuku et al., 2010, Lam et al., 2010, Borugadda and Goud, 2012). These 

non-edible oils usually contain high concentration of toxic compounds which are not 

suitable for human consumption or as nutrition supplement. For example, the toxic 

compound found in Jatropha oil is protein crucin, gluosidase cerberin in Cerbera 

odollam oil and flavonoids pongamiin and karajiin in Karanja oil (Gui et al., 2008, 

Banko ić-Ilić et al ,     ).  

Among all the non-edible oils sources, Jatropha oil is the most promising and 

widely accepted feedstock for biodiesel production. Jatropha is a drought-resistant 

plant which is widely distributed in the wild or semi-cultivated in areas of Central 
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and South America, Africa, India and South East Asia (Lam et al., 2009a). The 

average oil content in the dry Jatropha seed is about 34.4% (mass basis) (Achten et 

al., 2008).  

To date, Jatropha oil is the main feedstock for biodiesel production in China, 

with estimated production rate of 170,000 tonnes annually (Yang et al., 2012). 

Although Jatropha plant can be grown on wasteland or non-fertile soil, however the 

overall seed yield is only 2.38 tonne/hectare/year; instead of 12 tonne/hectare/year 

when the plant is grown on fertile land (Achten et al., 2008, Lam et al., 2009a). Thus, 

regular irrigation, heavy fertilization and good management practises are still 

required to ensure a high seed yield from Jatropha plant.  

 

1.5 An outlook of microalgae biomass as the third generation biodiesel 

1.5.1 Introduction to microalgae 

Microalgae are one of the oldest living microorganisms on Earth (Song et al., 

2008). They are single cell organisms, representative of both bacteria and eukaryotes. 

A significant characteristic that distinguish between bacteria and eukaryotes is that 

the former lack of discrete internal, sub-cellular structures, organelles (chloroplasts, 

mitochondria and nuclei) (Williams and Laurens, 2010). Eukaryotes, which comprise 

of many different types of common microalgae, do have organelles that control the 

functions of the cell, allowing it to survive and reproduce (Brennan and Owende, 

2010). To date, microalgae species are divided into four categories: diatoms 

(Bacillariophyceae), green algae (Chlorophyceae), blue-green algae (Cyanophyceae) 

and golden algae (Chrysophyceae), depending on their pigmentation, life cycle and 
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basic cellular structure (Khan et al., 2009). Carbohydrates, proteins, nucleic acids 

and lipids are the major constituents of microalgae (Williams and Laurens, 2010).  

 

1.5.2 Advantages of microalgae biodiesel 

In the last few years, research on growing microalgae for biofuels production 

has gained increasing attention from various research groups across the world. 

Researchers have demonstrated the potential of converting lipid and carbohydrate 

from microalgae biomass to biodiesel and bioethanol, respectively, which are 

alternative fuels to existing fossil diesel and gasoline.  

One of the reasons that microalgae appear as an attractive renewable energy 

source is due to its rapid growth rate; 100 times faster than land-based plant and they 

can double their biomass in less than 1 day (Tredici, 2010). Furthermore, microalgae 

are able to divide once every 3–4 hours, but mostly divide every 1–2 days under 

favourable growing conditions (Williams and Laurens, 2010). This is mainly due to 

their simple cellular structure and large surface to volume ratio that allow them to 

uptake large amount of nutrients from water sources (Khan et al., 2009).  

Apart from that, microalgae can be cultivated either phototrophic or 

heterotrophic. Phototrophic microalgae such as Botryococcus braunii and Dunaliella 

salina require sunlight, CO2 and nutrients as a basic requirement for growing 

whereas heterotrophic microalgae such as Chlorella protothecoides require organic 

carbons sources (sugar and organic acids) and nutrients but do not require sunlight 

(Liang et al., 2009).  In some special cases, for example Cholorela protothecoides 

can be grown phototrophically or heterotrophically under different cultivation 
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conditions. However, heterotrophically growth of Chlorella protothecoides is more 

favourable due to higher accumulation of lipid content in cells (Miao and Wu, 2006).  

The potential of microalgae cultivation for biofuels production can be clearly 

seen in Table 1.2. From the table, cultivating microalgae (either high or low lipid 

content) requires the least land area than other oil-bearing crops such as soybean, 

sunflower, rapeseed and oil palm in order to meet EU biofuels target in year 2010. 

According to recent studies, a realistic microalgae biomass production rate should 

lies between 15 and 25 tonne/ha/year. With an assumption of 30% lipid content in 

microalgae cells (without optimizing the growth condition), the microalgae lipid 

production rate is equivalent to 4.5–7.5 tonne/ha/year. This amount is certainly 

higher compared to the oil production from soybean (0.4 tonne/ha/year), rapeseed 

(0.68 tonne/ha/year), oil palm (3.62 tonne/ha/year) and jatropha (4.14 tonne/ha/year). 

An added advantage to microalgae biofuels is it does not compete land area with 

food production and thus, holding an important key for a sustainable energy 

development in the future. 
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Table 1.2. Comparison of oil yield for various oil bearing plants and microalgae 

(Chisti, 2007, Lam et al., 2009a, Lam et al., 2009b) 

Oil crop 
Average oil yield 

(tonne/ha/year) 

Area to meet EU biodiesel 

demand in 2010  

(million hectares)
a
 

% of current 

Malaysian's 

agricultural land 

area
b
 

Soybean 0.4 25.0 379 

Sunflower 0.46 21.7 329 

Rapeseed 0.68 14.7 223 

Oil palm 3.62 2.8 42 

Jatropha
c
 0.14 71.4 1082 

Jatropha
d
 4.13 2.4 37 

Microalgae
e
 126 0.1 1 

Microalgae
f
 54 0.2 3 

Note: 

a
EU biodiesel target in year 2010 is equivalent to 10 million tonnes 

b
Total agricultural land area in Malaysia is equivalent to 6.6 million hectares 

c
Jatropha are planted without irrigation and fertilization  

d
Jatropha are planted with irrigation and heavy fertilization  

e
Microalgae synthesized high lipid content (70 % lipid based on biomass weight) 

f
Microalgae synthesized low lipid content (30 % lipid based on biomass weight) 

 

1.5.3 CO2 mitigation and co-product production from microalgae biomass  

Due to the advantages of fast growth rate and high lipid productivity, 

phototrophic microalgae can convert solar energy to chemical energy with efficiency 

of 10–50 times greater than terrestrial plants by fixing CO2 from atmosphere, flue 

gases or soluble carbonate during photosynthesis (Li et al., 2008b, Khan et al., 2009, 

Rosenberg et al., 2011). Furthermore, it was reported that microalgae cells contain 

approximately 50% carbon, in which 1.8 kg of CO2 are fixed by producing 1 kg of 
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microalgae biomass; a golden opportunity for carbon credit program (Chisti, 2007). 

In addition, some microalgae strains have high adaptability and could withstand high 

concentration of CO2 (up to 20 %), such as Chlorella sp., Scenedesmus sp. and 

Botryococcus braunii (Brennan and Owende, 2010, Yoo et al., 2010). Hence, this 

method is thought to be more technologically feasible and microalgae can act as an 

effective carbon sink in bio-fixing the CO2 from atmosphere and flue gases while 

producing renewable green fuel. 

Besides lipid, microalgae cells also consist of a large portion of carbohydrate 

which has high commercial value. Identified microalgae strains that have high 

carbohydrates content are such as Chlamydomonas reinhardtii (53 %), C. reinhardtii 

(45 %), Chlorella vulgaris (12-37 %), Chlorella sp. (21-27 %) and Scenedesmus sp. 

(13-20 %) (John et al., 2011). Different from terrestrial plants, microalgae cells are 

buoyant and do not require lignin and hemicelluloses for structural support. 

Therefore, it is expected that carbohydrate extraction from microalgae biomass are 

simpler than lignocellulosic materials (e.g. wood), in which complicated pre-

treatment steps to remove the lignin can be avoided. In fact, some of the pre-

treatment methods, such as ozonolysis, organosolv, steam explosion and ammonia 

fiber explosion (AFEX) are usually costly and generate toxic compounds to the 

environment if proper waste treatment system is not implemented (Cardona and 

Sánchez, 2007, Alvira et al., 2010). After lipid extraction, the carbohydrate 

remaining in the microalgae residues can be further hydrolyzed to simple reducing 

sugar (e.g. glucose) for subsequent fermentation process to produce bioethanol, 

which is an alternative renewable fuel to gasoline. Besides being used for 

fermentation, the hydrolyzed carbohydrate has a wide range of industrial applications, 
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such as water soluble glues, thickening agents in food processing, and binding agents 

in the pharmaceutical industry (Biswas et al., 2009).  

 

1.6 Problem Statement 

In the last few years, researches on growing microalgae for biofuel 

production have gained increasing attention from various research groups across the 

world. Researchers have demonstrated the potential of converting lipid and 

carbohydrate from microalgae biomass to biodiesel and bioethanol, respectively, 

which are alternative fuels to existing fossil diesel and gasoline. However, several 

recent life cycle assessments (LCA) on microalgae biofuels have demonstrated that 

massive energy input are required in producing the biofuels, especially during the 

cultivation and harvesting of microalgae biomass. One of the limitations to cultivate 

microalgae at industrial scale is the availability of low cost nutrients sources. 

Chemical or inorganic fertilizers are commonly used to achieve promising growth 

rate of microalgae are relatively expensive and not environmentally friendly for long 

term usage. On the other hand, utilizing secondary or tertiary wastewater as nutrients 

source to cultivate microalgae appears as a promising choice to reduce the overall 

energy input. Nevertheless, the key challenges of using wastewater as cultivation 

medium are serious contamination and inconsistent nutrients composition, in which 

these factors will significantly retard the growth of microalgae. Other associated 

problems that directly impede the commercialization of microalgae biodiesel are 

such as possibility of outdoor cultivation, efficiency of CO2 capture by microalgae, 

issue of life cycle energy balance and economic feasibility.  
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1.7  Objectives 

Current research work focused on the following objectives: 

1. To optimize the growing conditions of Chlorella vulgaris using organic fertilizer 

as nutrient source and to study the effect of carbon source towards the growth 

and lipid accumulation in microalgae.  

2. To extract the lipid from dried microalgae biomass and to optimize the 

transesterification of lipid to biodiesel.  

3. To optimize the carbohydrate hydrolysis condition from lipid-extracted 

microalgae biomass residue for maltodextrin production.  

4. To scale up the microalgae cultivation in a vertical column photobioreactor 

(pilot scale).  

5. To evaluate the life cycle energy balance and economic assessment of 

microalgae biodiesel production.  

6. To evaluate the growth kinetic of Chlorella vulgaris when cultivated using 

organic fertilizer as nutrients source.  
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1.8 Scope of study 

1.8.1 Microalgae cultivation 

 Optimization on the growth of Chlorella vulgaris using organic fertilizer as 

nutrient source was performed. Chlorella vulgaris was selected in the present study 

because it is easy to cultivate, able to grow under contaminated environment and is a 

native species in Malaysia. Two cultivation methods were assessed, which were free 

cells cultivation and immobilization cultivation. Growth parameters, such as amount 

of nutrients, cultivation pH, light exposure duration and effect of outdoor cultivation 

were studied. The growth performance of the microalgae was evaluated based on 

their specific growth rate, biomass yield and biomass productivity. Since the aim of 

the present study is to optimize the microalgae biomass productivity, the effect of 

limited nitrogen source (which was reported to be able to increase the lipid content in 

microalgae cells, but with lower biomass productivity) was excluded in the study.  

 The effect of different carbon sources towards the growth of the microalgae 

was also studied. Two types of carbon source, namely CO2 gas and sodium 

bicarbonate, were used as the carbon source to cultivate Chlorella vulgaris. Different 

concentration of CO2 gas or sodium bicarbonate was varied to optimize the growth of 

microalgae. The result was tabulated in term of carbon removal efficiency, specific 

growth rate, biomass yield and biomass productivity. Since the present study focused 

on phototrophic cultivation, the effect of other carbon source, such as glucose, 

glycerol and volatile fatty acids, were not assessed because the carbon source will 

only be utilized by microalgae in the absence of light (heterotrophic cultivation).  
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1.8.2 Lipid extraction and transesterification 

 Dried microalgae biomass was subjected to lipid extraction using various 

chemical solvents, such as hexane, methanol, ethanol and chloroform. The 

performance of the chemical solvents was determined based on the lipid yield 

obtained. Then, the extracted microalgae lipid was converted to biodiesel through 

transesterification. Various reaction parameters will be assessed to optimize the 

microalgae biodiesel conversion, such as reaction temperature, methanol to lipid 

molar ratio, catalyst concentration and effect of co-solvents. Only homogeneous acid 

catalyst (H2SO4) was utilized in the present study due to the high free fatty acid (FFA) 

content in the microalgae lipid. Heterogeneous acid catalyst was not included in this 

work since the catalyst are mostly still at research and development stage and yet to 

be commercialized.  

 

1.8.3 Co-product production 

 The lipid-extracted microalgae residues were utilized for maltodextrin 

production by hydrolyzing the carbohydrate. Various hydrolysis parameters were 

assessed to optimize the maltodextrin yield, such as hydrolysis reagents (acid, 

alkaline and enzymatic), hydrolysis temperature and duration. However, in this study 

the microalgae residue was not subjected to protein extraction as co-product since the 

Chlorella vulgaris was cultivated under contaminated conditions. The extracted 

protein (usually used for human and animal consumption) may require extensive 

purification that will indirectly impede sustainable production of microalgae 

biodiesel through bio-refinery concept.  
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1.8.4 Photobioreactor design and scale up study 

 A pilot-scale column photobioreactor with working volume of 100 L was 

designed based on the lab-scale experimental results. The lab-scale optimum 

cultivation conditions were applied in the pilot-scale photobioreactor to validate the 

reproducibility of the result. Potential of semi-batch cultivation under indoor and 

outdoor environment in the pilot-scale photobioreactor was also carried out to 

accelerate the biomass productivity.  

 

1.8.5 Life cycle energy balance analysis and economic assessment 

 Life cycle energy balance on producing microalgae biodiesel was performed 

based on the experimental data obtained in the present study. The life cycle boundary 

includes cultivation of Chlorella vulgaris, harvesting and drying of microalgae 

biomass, lipid extraction, biodiesel and maltodextrin production. Energy efficiency 

ratio (EER) was used as an indicator to determine the sustainability of microalgae 

biodiesel production from the energy perspective. Apart from that, economic 

assessment on producing the Chlorella vulgaris biomass and biodiesel was also 

carried out in the present study to estimate the economic potential of this renewable 

feedstock. However, the capital cost (cost of land, buildings, equipment and 

infrastructures) was excluded in the assessment due to limited information available.  

 

1.8.6 Growth kinetic of microalgae 

 The growth kinetic of Chlorella vulgaris was evaluated based on five non-

linear mathematical models, namely logistic, Gompertz, modified Gompertz, Baranyi 
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and Richards model. A non-linear regression technique was used to solve growth 

models by using POLYMATH 6.0. 

 

1.9 Organization of thesis 

This thesis consists of five chapters: 

 Chapter one gives an outline of the overall research project covering 

introduction to biodiesel, current status of biodiesel market and potential of 

microalgae biomass as the third generation feedstock for biodiesel production. 

Problem statement was then written after reviewing the present scenario and related 

issues in producing microalgae biodiesel. The problem statement therefore reveals 

current bottlenecks faced in the bio-refinery of microalgae biodiesel and the need of 

this research project. The objectives of this research project were then carefully 

devised with the aim to improve the sustainability of microalgae biodiesel and 

increase its potential for commercialization purposes. Finally, the organization of 

thesis highlights the content of each chapter. 

 Chapter two gives an overall review of microalgae cultivation for biofuel 

production. The review started with the bio-refinery concept of microalgae biofuel, 

advantages of microalgae biomass compared with other renewable sources and the 

opportunity of CO2 bio-mitigation by microalgae. Then, related problems and issues 

facing the microalgae biofuels production were critically depicted through the latest 

findings from LCA. Apart from that, technical information on the entire microalgae 

biodiesel process chain, ranging from upstream (microalgae cultivation, biomass 

harvesting and drying) to downstream processes (lipid extraction and biodiesel 

conversion techniques) are also included in this chapter.  
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 Chapter three mainly discusses on experimental materials and research 

methodology. This chapter describes detailed information on the flow of this 

research work, starting from seed cultivation of microalgae until biodiesel and 

maltodextrin production. Besides, information on the chemicals used in this study as 

well as several analytical methods and tools were also being described. Kinetic study 

and modelling on the growth of microalgae was included at the last part of this 

chapter.  

 Chapter four is the most important chapter in the thesis. It encompasses 

detailed discussion on the results obtained in the present research work. The first 

section discussed the optimization result of using the organic fertilizer as the 

nutrients source to cultivate Chlorella vulgaris via either free cell cultivation or 

immobilization cultivation. Then, the effect of carbon sources (CO2 and bicarbonate) 

towards the growth of microalgae was carefully evaluated. This was followed by 

study on lipid extraction from dried microalgae biomass and optimization of 

microalgae lipid conversion to biodiesel through catalytic transesterification. Section 

four discussed the potential utilization of lipid extracted microalgae residue for 

maltodextrin production whereas section five discussed the scale up study (pilot scale) 

of Chlorella vulgaris in a vertical column photobioreactor. LCA of producing 

microalgae biodiesel in this particular study was revealed in section six. At the end of 

this chapter, kinetic study and modelling on the growth of Chlorella vulgaris was 

presented.  

 Chapter five is the last chapter in this thesis that gives concluding remarks of 

all the findings in this research work and recommendations for future study.  
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CHAPTER TWO: 

LITERATURE REVIEW 

 

This chapter reviews studies that are related to microalgae cultivation and 

biodiesel production from this renewable feedstock. This chapter focused on the 

findings from the life cycle energy balance in the process flow of producing 

microalgae biodiesel and to identify the actual problems and research that are 

required to improve the processes. Then, critical reviews and comments on each of 

the process flow will be provided as a platform to facilitate a better understanding on 

the actual issues, sustainability and prospective of microalgae biodiesel. The process 

flow includes the nutrients source, cultivation system, harvesting and drying of 

microalgae biomass, additional CO2 supplement, lipid extraction, microalgae 

biodiesel production methods and potential utilization of lipid-extracted microalgae 

residue. A summary will be provided at the end of this chapter to outline some 

important notes on the overall process flow of microalgae biodiesel production. 

 

2.1 Life cycle assessment (LCA) of microalgae biofuels 

Although microalgae biofuels (mainly refer to biodiesel and bioethanol) have 

been predicted to make a significant contribution in diversifying the global 

renewable energy sector, however, the long term sustainability of this renewable 

feedstock is still questionable. Up to now, there is still no commercial plant 

producing and processing microalgae biomass into biofuels. This has subsequently 

caused a lack of understanding in each of the unit operations in the entire process at 

industrial scale. A conceptual process flow of producing microalgae biodiesel and 
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other related co-products is shown in Figure 2.1. The process chain can be divided 

into two sections: (1) up-stream process which includes microalgae cultivation 

system, harvesting and drying of microalgae biomass, and (2) downstream process 

which focuses on biodiesel production and utilization of microalgae biomass residue 

for bioethanol production.   

LCA is widely accepted as an effective tool to guide and give a clear idea to 

researchers and policy makers on revealing the real potential of a particular product 

that is being evaluated (Lam et al., 2009a). It also can be used to indicate if the 

production of a particular product can lead to negative environmental phenomena 

such as eutrophication, global warming, ozone depletion, human and marine toxicity, 

land competition, photochemical oxidation and etc. so that precautionary steps can be 

suggested to reduce the negative impacts (Andersson, 2000). In addition, energy 

balance can be calculated to determine and justify the energy hotspot of all stages 

within the system boundary of the LCA.  

Apparently, there are only a few LCAs performed on microalgae biofuels due 

to limited comprehensive data. Therefore, parameters related to microalgae biofuels 

production such as biomass productivity, lipid content and downstream energy 

consumption (harvesting, drying and transesterification) were obtained based purely 

on lab scale experimental data. Although the data used in those assessments might be 

irrelevant when applied to large-scale production, however, most of the studies have 

concluded that producing biofuels from microalgae is an extremely energy intensive 

process. This finding is represented by the energy efficiency ratio (EER), defined as 

energy output to energy input, which is generally used to indicate the sustainability 

energy index to produce a particular product, in which a ratio higher than 1 

designates to net positive energy generated and vice versa.  
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Figure 2.1: Process flow of producing microalgae biodiesel and co-products 
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