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IWMI    International Water Management Institute  

LAP    Perak Water Board (Lembaga Air Perak) 

LM    Levenberg-Marquardt 

MLD    Million Litres per Day 

MLPs    Multilayered perceptrons 

MLR   Multiple linear regression  

MNF   Minimum night flow  

MS    Mild steel 

MSE    Mean squared error 

MWA    Malaysian Water Association 

MWIG   Malaysian Water Industry Guide  

NC    Night consumption 

NN    New Network 

NRW    Non-revenue water  
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NU    Night Use 

ON    Old Network 

PCA    Principle Component Analysis 

PE    Polyethylene 

PLC    Passive leakage control 

PM    Pressure management 

PMA    Pressure management area 

PR   Mean of pressure 

PRV    Pressure reducing valve 

PVC    Polyvinyl chloride 

RL   Total pipe length 

RM    Ringgit Malaysia 

RR    Rate of rise of unreported leakage  

SD   Standard deviation 

SIS    Sultan Idris Shah 

SIV    System input volume 

SLR    Simple linear regression 

SPAN    National water Services Commission 

SPSS    Statistical Package for the Social Sciences 

SRELL   Short-run economic leakage level  

SSWD   Sacramento Suburban Water District 

UARL    Unavoidable annual real losses  

UFW    Unaccounted-For Water  

UNEP   United Nations Environmental Program  

UNL    Utility night leakage 
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UPVC    Unplasticized polyvinyl chloride 

VIF    Variation inflation factor  

WDS    Water distribution system  

WMA   Weighted mean age of pipe 

WWC   World Water Council 
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7 LIST OF SYMBOLS 

 

A   A hole of area (m2) 

bil   Billion 

Cd     A discharge coefficient 

D   Pipe diameter 

€   Euro 

ft   Feet (0.3048 m) 

g   The acceleration due to gravity (m2/s) 

gal   Gallon (≈ 3.79 L) 

Hm
3
/year  Cubic hectometers per year = million cubic meters per year 

I    Number of input nodes 

k    The number of independence variables 

km   kilometer 

L    Litre 

L   Leakage flow rate through a hole of area (L/s) 

l/cap/d   litre/cap/day 

L/conn/day  Litre/connection/day 

L/h   Litre/hour 

Lm    Total main length of the network in km 

m
3
    Cubic meters 

mi   Mile (1.60934km) 

MLD   Million litres per day 

MWh/year  Mega watt hours per year 

N1   The leakage exponent 

Nc    Total number of service connections 
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Nh    Number of neurons in the hidden layer 

P    Average operating pressure (m) 

P    P value 

R    Multiple correlation coefficient 

r   Pearson‘s coefficient of correlation 

R
2
   Coefficient of multiple determination 

s    Second 

SSE   Sum of squared errors 

S   The average RR of unreported leakage (m³/d.d)   

$   US Dollar 

sq. km   Square kilometer 

T    Time 

V   The volume of the unreported leakage 

x    The mean 

Xi   Explanatory variables 

Y    Response variable  

ȳ    The mean values of y 

y    The observed values of y    

ŷ    The predicted values of y 

α    Significance level 

βi    Partial regression coefficients 
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TAHAP EKONOMI TERHADAP KEHILANGAN AIR SEBENAR DALAM 

SISTEM AGIHAN AIR MENGGUNAKAN MODEL STATISTIK ALIRAN 

MALAM MINIMUM 

 

8 ABSTRAK 

Aliran Malam Minimum (AMM) adalah kaedah yang lazim digunakan bagi 

menyukat kehilangan air di dalam sistem bekalan air. Dalam tahun 2011, purata 

peratusan air tidak berhasil bagi negeri Perak di Malaysia adalah pada kadar 30.4%, 

suatu jumlah yang menyumbang kepada kerugian besar dari segi kewangan, bekalan 

dan tekanan air, dan ia juga merupakan penggunaan tenaga yang besar. Bagi kajian 

ini, suatu julat masa yang bersesuaian bagi AMM serta  kehilangan sebenar air atau 

kadar NRW, bagi daerah Kinta di Negeri Perak, Malaysia telah dikaji selidik. Aliran 

dan tekanan bagi 361 zon telah dipantau bagi tempoh 24 jam oleh Lembaga Air 

Perak (LAP) dengan menggunakan perisian PrimeWorks (versi 1.5.57.0). Sembilan 

puluh (90) daripada 361 zon kajian telah dipilih secara rawak. 90 zon kajian ini 

kemudian dibahagikan kepada tiga kumpulan, dengan setiap kumpulan mempunyai 

30 zon. Data nilai minimum aliran air bagi tahun 2010 telah disaring  mengikut julat 

masa di antara jam 1.00 pagi  sehingga 5.00 pagi. Frekuensi kekerapan data AMM 

dianalisis setiap 15 minit. Hasil kajian menunjukkan, majoriti sebanyak 85% 

daripada frekuensi AMM di 90 kawasan kajian terjadi dalam tempoh masa antara 

jam 2.30 pagi sehingga 4.30 pagi, manakala 95% daripada frekuensi tersebut 

mengambil tempat dari jam 1.45 pagi sehingga 4.45 pagi. Ia menunjukkan kejadian 

AMM bagi setiap zon pada tahun 2010 dianggarkan berlaku dari jam 1.00 pagi 

sehingga 5.00 pagi. Oleh itu, suatu analisis statistik rangkaian agihan air dan ujian 

model AMM telah dijalankan untuk tujuan menganggarkan jumlah kehilangan air di 
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daerah Kinta, Perak. Faktor-faktor fizikal, hidraulik dan faktor bolehubah operasi 

telah dipilih dan dikaitkan dengan terjadinya AMM (L/s). Kaedah statistik regresi 

linear berganda (MLR) telah diguna pakai bagi tujuan menentukan faktor-faktor 

yang menyumbang kepada AMM (L/s). Hasilnya, didapati bilangan sambungan, 

panjang paip (meter) dan tempoh penggunaan paip (tahun) adalah penyumbang 

utama kepada terjadinya AMM (L/s). 

Kelebihan kajian ini berbanding kajian-kajian yang terdahulu dapat dilihat dari aspek 

model yang telah dibangunkan bagi mengenal pasti akibat daripada setiap daripada 

faktor yang menyebabkan kehilangan air. Perbandingan di antara analisis MLR dan 

rangkaian neural buatan (ANNs) telah diguna pakai bagi menilai pencapaian model-

model yang telah dibangunkan. Hasil ujian perbandingan ujian t-berpasangan 

menunjukkan bahawa nilai p (nilai p adalah 0.573) tidak begitu signifikan. Oleh 

kerana itu,  model yang dibangunkan tidak memberi kesan signifikan dari segi 

statistik, dan ini menunjukkan kepada suatu kesimpulan bahawa tiada perbezaan 

dapat dikesan di dalam jangkaan bacaan AMM (L/s) akibat daripada pembalikan 

regresi serta ANNS, dan kedua-dua kaedah tersebut didapati berfungsi dengan baik. 

Justeru, nilai R
2
 untuk pembalikan dan model rangkaian neural buatan adalah pada 

kadar 0.605 dan 0.672. Pada masa ini, belum ada kajian dibuat bagi mengenal pasti 

aras bocor ekonomi (ELL) bagi LAP di dalam mana-mana kajian sebelum ini. 

Justeru, kajian ini adalah suatu inisiatif bagi membangunkan suatu garis panduan 

berkenaan operasi pengawalan tahap ekonomi air tidak berhasil bagi daerah Kinta, 

untuk tujuan meminimumkan kebocoran di dalam sistem bekalan air.  Anggaran 

kehilangan air untuk kes ketirisan dan kebocoran yang dilaporkan boleh dikira 

menggunakan perisian PrimeWorks. Kehilangan sebenar/ketara pula disukat 

menggunakan teori campur tangan ekonomi (economic intervention theory) dan 
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analisis pembalikan, bagi tujuan menganggarkan purata kadar kenaikan kebocoran 

yang tidak dilaporkan. 97% dari jumlah pembaikan paip yang didaftarkan dalam 

tahun 2010 telah dijalankan ke atas paip yang mempunyai ukuran diameter kecil, 

yakni kurang dari 50mm. Paip-paip dalam saiz ini lazimnya digunakan sebagai paip 

servis dan paip komunikasi. Hasil kajian ini juga menunjukkan bahawa aras bocor 

ekonomi jangka pendek (SRELL) dijangkakan pada kadar 17.99 liter/sambungan / 

hari, atau 2.0 m
3
/km paip utama/hari. Hasil kajian ini membentangkan suatu 

penambahbaikan yang lebih berkesan di dalam pengurusan sistem bekalan air, yang 

memberi kesan signifikan dari segi kewangan, penjagaan alam sekitar dan 

kepentingan sosial bersama. 
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ECONOMIC LEVEL OF REAL WATER LOSSES IN WATER 

DISTRIBUTION SYSTEM USING MINIMUM NIGHT FLOW 

STATISTICAL MODEL 

 

9 ABSTRACT 

Minimum night flow (MNF) is a common method used to evaluate water loss in a 

water network. In 2011, the average percentage of non-revenue water (NRW) for the 

state of Perak in Malaysia was 30.4 %, a figure which resulted in major financial, 

supply, and pressure losses, as well as excessive energy consumption. In this study, 

the appropriate time band of MNF and the actual water loss or amount of NRW for 

the district of Kinta in Perak, Malaysia were investigated. Flow and pressure for 361 

zones were monitored for 24 h by the Perak Water Board (Lembaga Air Perak, LAP) 

using PrimeWorks software (version: 1.5.57.0). Ninety study zones were randomly 

selected from 361 zones. The 90 study zones were divided into three groups, with 

each group having 30 zones. Data on the minimum value of flow in 2010 were 

screened within the time band of 1:00 am to 5:00 am. The frequency of MNF 

occurrences was analysed every 15 minutes. Results of the study revealed that the 

majority (85%) of MNF frequencies in the 90 study areas were found at the time 

band 2:30 am to 4:30 am, whereas 95% of the frequencies were at time band 1:45 am 

to 4:45 am; therefore, the mean MNF for each zone in 2010 was determined to be 

between 1:00 am and 5:00 am. Furthermore, a statistical analysis of the characteristic 

of water distribution network and a modelling of MNF were carried out to estimate 

water loss in Kinta District, Perak. Factors for physical, hydraulic, and operational 

variables were selected and correlated with MNF (L/s). Multiple linear regression 

(MLR) was used as a statistical technique to determine factors that contributed to 
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MNF (L/s). Consequently, number of connections, pipe length (m) and pipe age 

(year) were the main contributors to MNF (L/s).The advantage of the present study 

over the past studies is that the models developed were able to determine the 

contribution of each factor of water loss. Comparisons of MLR analyses with 

Artificial Neural Networks (ANNs) have been applied to evaluate the performance of 

developed models. The output of the paired t-test showed that p value (p value 0.573) 

was not significant. Thus, the model was not statistically significant, which suggests 

that no differences were observed in the predictions of MNF (L/s) from regression 

and ANNs and both techniques are performing equally well. Hence, R
2
 values for 

regression and neural networks models are 0.605 and 0.672, respectively. Currently, 

there is no study taken to determine the economic leakage level (ELL) for LAP in the 

study area. Thus, this study has taken the initiative to estimate the economic level of 

non-revenue water operational control in Kinta district for minimising leakage in 

water supply system. The estimated water loss for reported leaks and bursts can be 

calculated using PrimeWorks software. Unreported real losses are calculated using 

economic intervention theory and regression analysis to estimate the average rate of 

rise of unreported leakage. About 97 % of the registered pipe repairs in 2010 were 

conducted on pipes with small diameters fewer than 50 mm. Pipes within this size 

range are usually used as service pipes and service connections. Results of the study 

revealed that short-run economic leakage level (SRELL) will be around 17.88 

litres/service connection /day or 2.0 m
3
/km mains/day. The research results show an 

effective improvement in the management of water distribution systems (WDSs), 

which could result in financial, environmental and social benefits. 
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1 CHAPTER ‎1- 

INTRODUCTION 

 

1.1 Background of the study 

Water losses occurring in water distribution systems (WDSs) are  now 

considered as a serious problem, necessitating a robust and effective management 

strategy (Kanakoudis and Tsitsifli, 2010a). Approximately, one third of total 

abstracted water for urban uses is either lost because of leaks and pipe bursts 

occurring in WDSs, or not included in revenue and financing systems (Klein, 2008; 

Mounce et al., 2010). Water losses are occurring in both developed and developing 

countries throughout the world (Thornton et al., 2008). Estimated NRW levels for 

developed and developing countries were 15 % and 35 % of the annual system input 

volume, respectively (Kanakoudis and Tsitsifli, 2012). A large percentage of water 

loss in distribution networks is common in many Asian cities, averaging 35% and 

even reaching much higher levels (Frauendorfer et al., 2010).  

In Malaysia, according to Malaysian Water Industry Guide (MWIG, 2012), 

the average percentages of NRW in Malaysia and in the state of Perak in 2011 were 

36.7 % and 30.4 %, respectively. The total volume of treated water loss has recorded 

1.94 billion cubic meters (m
3
) and 123.03 million m

3
, respectively. These average 

percentages have led to lower income generation which could create constraints on 

maintenance and operation of water reticulation systems (Frauendorfer et al., 2010). 

Moreover, water losses not only have economic and environment aspects but also 

public health and social impacts. Often, leakage leads to service interruption, is 

costly in terms of energy losses as well as may cause water quality contamination via 

pathogen intrusion (Mutikanga and Sharma, 2012). NRW control has been given a 

high priority issue by the Malaysian Government.  For example, in the Eighth 
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Malaysian Plan, a total of RM (Ringgit Malaysia) 640 million was expended to 

reduce the NRW; the activities involved the replacement of old pipes and old water 

meters, reduction of water pilferages, and the rehabilitation and upgrading of WDSs 

(Ku-Mahamud et al., 2007a).  

Leakage is one of the major contributors to water loss in WDSs, which means 

that major amounts of water and revenue are being lost, forcing water utilities to 

develop effective water loss and NRW reduction strategies (Kanakoudis and Tsitsifli, 

2010a). Leakage from a WDS can be determined by adopting several approaches. In 

the context of WDS operation and management, the sectorisation of large networks 

(division in district metered areas or DMAs) can evaluate leakage level in each 

DMA, allowing leakage location activities to be directed to the worst parts of the 

system, thus increasing their efficiency (Crowder et al., 2012; Gomes et al., 2012). 

The introduction of DMAs and pressure management areas (PMAs) can achieve 

significant reduction in real losses and frequency of bursts (Fantozzi et al., 2009). To 

estimate leakage levels in a water network, minimum night flow (MNF) can be an 

indicator of distribution leakage and is considered to be the major contributor to cost-

effective and efficient leakage management (García et al., 2006; Farley, 2012; 

Loureiro et al., 2012). 

 

1.2 Problem statement 

Nowadays, more than developing new resources, optimal use of water is 

considered by improving operational management of WDSs. In WDSs, a 

considerable part of supplied water is unused because of water losses (Nazif et al., 

2010). Basically, water loss is a part of non-revenue water (NRW), whereas water 

losses in a WDS consist of real losses and apparent losses. Real losses are mainly 
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due to leakage from service connections, joints in water pipes, pipe bursts, pipe 

cracks and overflows from storage tanks, whereas apparent losses are produced by 

illegal water consumption and inaccurate customer metering  (Farley and Trow, 

2003; Karadirek et al., 2012). The problem of excessive water losses from WDSs is 

common in many countries such as Malaysia. Beginning from the Sixth Malaysian 

Plan, NRW control program has shown a major reduction of NRW. For example, in 

the Ninth Malaysia Plan, RM 1.09 billion is budgeted to reduce the NRW from 38% 

(2007) to 30% (2011), and to improve the efficiency of water supply (Ku-Mahamud 

et al., 2007b). The MWIG (2012) reported that the average percentage of NRW in 

Malaysia in 2010 was 36.4% and the total water loss amount was 1.87 billion m
3
. 

The National Water Services Commission (SPAN) stated that 25% NRW target can 

be achieved way before 2020 (AWER, 2012).  

Furthermore, most states experience high NRW and this problem is more 

serious in some states than in others (Lee, 2005; Lee, 2007; Munisamy, 2009). For 

example, Perak, one of the 14 states of Malaysia (Gazzaz et al., 2012b), has also 

experienced high level of NRW.  Previous research shows that the NRW percentage 

for Perak from year 2001 until 2004 is reduced from 37.2% to 31.7%, while in 2005 

to 2006; the percentage slightly increases from 30.6% to 30.7% (Adlan et al., 2009), 

as shown in Table 1.1. Table 1.1 summarises the average percentages of NRW in 

Perak (Lee, 2005; Lee, 2007; Adlan et al., 2009; MWIG, 2011; MWIG, 2012).   The 

average percentages of NRW in the state of Perak in 2010 and 2011 were 29.4% and 

30.4%, respectively, ranking No. 5 of the 14 states in 2011. The estimated annual 

volume of NRW was in the order of 116.14 and 123.03 million m
3
 in 2010 and 2011, 

respectively (MWIG, 2012). 

 

http://en.wikipedia.org/wiki/Perak
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Table ‎1.1: The average percentages of NRW in Perak 

Year % NRW, 

Perak 

Reference 

2001 37.2% Adlan et al. (2009) 

2002 30.2% Lee (2005) 

2003 30.2% Lee (2007) 

2004 31.7% Adlan et al. (2009) 

2005 30.6% Adlan et al. (2009) 

2006 30.7% Adlan et al. (2009) 

2009 30.7% MWIG (2011) 

2010 29.4% MWIG (2011) 

2011 30.4% MWIG (2012) 

 

 Consequently, high levels of NRW represent huge volumes of water being 

lost and affect the financial capability of water utilities through lost revenues and 

increased operational costs (Kingdom et al., 2006). Furthermore,  NRW is a good 

indicative of water utility performance; high levels of NRW usually indicate a poorly 

managed water utility (Frauendorfer et al., 2010). Significant amounts of water loss 

is being lost because of leakage in WDSs (Kanakoudis and Tsitsifli, 2010a). The 

large volume of water leakage can also cause contaminant intrusion under low- or 

negative-pressure conditions within pipes, which may lead to harmful or even serious 

water quality incidents (Boulos and AbouJaoude, 2011; Mutikanga and Sharma, 

2012). On the other hand, financial, environmental, and social benefits can be 

derived from controlling and improving management of water losses caused by 

leakage (Uyak et al., 2007; Kanakoudis et al., 2011b). Hence, minimising water lost 

through leakage from water supply systems is one of the main challenges that faced 

water network managers. Significant amounts of money must be invested every year 

for leak detection and repairs. This investment will be balanced by the benefits 

resulting from the use of recovered water from repaired leaks (Delgado-Galván et al., 

2010).  
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Water losses vary among systems and can be attributed to a number of 

different factors. These factors include network length, number of service 

connections, pressure fluctuation over the day, pipe material, leaks, bursts, and age of 

the system (Uyak et al., 2007; Gomes et al., 2011). Water losses can be either real 

(physical) losses or apparent losses and real losses generally represent the majority of 

water loss. (Kanakoudis and Tsitsifli, 2012). To estimate real losses, MNF can be an 

indicator of distribution leakage and consumer wastage (Johnson et al., 2009). The 

technique of MNF monitoring to identify areas of leakage is considered to be the 

major contributor to cost-effective and efficient leakage management. (García et al., 

2006; Farley, 2012).  

In general, most of the research studies estimated water losses in water 

distribution networks by applying the International Water Association (IWA) Water 

Balance and MNF analyses combined with hydraulic simulation models (such as 

EPANET and GIS models)  (Tabesh et al., 2009; Cheung et al., 2010; Karadirek et 

al., 2012) and developing an empirical model for estimating background leakage 

rates (Hunaidi, 2010). Other studies proposed statistical modelling to predict 

variations in pipe bursts rates in water main pipes (Shamir and Howard, 1979; 

Kettler and Goulter, 1985; Kanakoudis and Tolikas, 2001; Cannarozzo et al., 2006). 

However, all reviewed statistical applications were focused on developing models 

that predict pipe bursts as a function of several variables, such as pipe age, type, and 

diameter; and occurrence of previous bursts. Previous models did not consider the 

number of connections and the pressure. 

In this study, modelling of MNF was carried out to estimate leakage in Kinta 

District, Perak. Several factors for physical, hydraulic, and operational variables 

were selected. The detailed contribution of each factor to leakage was not fully 
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clarified in previous studies. Considering this gap and using statistical analysis, the 

present study aims to determine the contributions of major factors that affect leakage 

in a water supply network in Malaysia (Kinta District, Perak State). Hence, the 

models developed in terms of predictor variables may conveniently be applied in the 

regions selected for the present study and, in the regions with similar WDSs.  

The water supply in the state of Perak is managed by the Perak Water Board 

(Lembaga Air Perak, LAP) which was formed under the state legislation. LAP has 

the goal to supply clean water for the needs of the population, both urban and rural, 

and the requirements for commerce and industry. Currently, there is no study taken 

to determine the economic leakage control level for the LAP, Perak, Malaysian water 

network. As such resources may have been spent without specific economical limit 

for leakage reduction. Nevertheless these unending studies need to be strategised so 

that economic level of leakages control could be obtained and leakages management 

could be developed. This study also aims to estimate the economic level of leakage 

for water operational control in Kinta district to minimise leakage in water supply 

system and to achieve better management of water losses. Consequently, the research 

results show an effective improvement in the management of WDSs, which could 

result in financial, environmental and social benefits. 
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1.3 Objectives of Research: 

This research was planned and executed based on the following objectives:  

1. To investigate the appropriate time band of MNF and to determine the MNF 

(L/s), and the real water loss for the selected DMAs. 

2. To determine the major factors affecting water loss in a water supply network 

using statistical analysis, and to evaluate the final prediction model of the 

relationship of the factors that contributed to the MNF (L/s) using multiple 

linear regression (MLR) 

3. To compare the regression model with Artificial Neural Networks (ANNs).  

4. To estimate the economic leakage level (ELL) using economic intervention 

approach. 

 

1.4 Scope of study 

Flow and pressure for 361 zones in Kinta district were monitored for 24 h by 

the Perak Water Board (Lembaga Air Perak, LAP) using PrimeWorks software 

(version: 1.5.57.0). A total of 90 DMAs out of 361 DMAs were randomly selected. 

The 90 study zones were divided into three groups, with each group having 30 zones. 

By using ‗PrimeWorks‘, data on flow and pressure for the 90 DMAs in 2010 were 

collected from the records of the water network in the study areas. Screening of 

recorded data of MNF (L/s) for 90 DMAs in the time interval between 1:00 – 5:00 

am was carried out, and the frequency of time of MNF (L/s) was analysed.  

Generally, water losses vary from system to system and are influenced by a 

number of factors, including network length, number of service connections, pressure 

fluctuations throughout the day, pipe material, and age of the system. According to 

the LAP, the characteristics of the pipe networks for particular DMAs were 
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identified; mainly, the total length of pipe network (meter), number of connections, 

age of pipes (year), and type of reticulation pipe. In order to estimate leakage in a 

WDS in the study area, statistical analyses of the water distribution network and 

modelling of MNF were carried out. Numerous statistical techniques were applied 

for modelling of MNF to estimate real losses in Kinta District, Perak. To evaluate the 

results of the linear regression models, neural network models were developed to 

forecast the MNF (L/s). Comparisons of MLR analyses with Artificial Neural 

Networks (ANNs) have been applied to evaluate the performance of developed 

models. 

Leakage in WDSs is an important issue which is affecting water companies 

and their customers. Many utilities have developed strategies to reduce water losses 

to an economic or acceptable level. The economic level of leakage (ELL) can be 

predicted using bursts and background estimates (BABE) component analysis 

models. Based on the concepts of BABE, real losses consist of background leakage 

(flow rate less than 0.5 m3/h), reported leaks and bursts, and unreported leaks and 

bursts. For a policy of regular survey, at current operating pressure, the three 

components of short-run economic leakage level (SRELL) can be calculated using 

the economic intervention concept. Thereupon, the real losses from reported bursts 

are estimated from number of reported burst repairs; background (undetectable) 

leakage is evaluated as a multiple of unavoidable background leakage as well as 

economic annual volume of unreported real losses is determined using economic 

intervention theory. Consequently, the SRELL at current operating pressure for the 

present system is estimated.  

 



9 

 

1.5 Layout of the Thesis 

The present thesis is organised in five chapters. A brief outline of the 

structure is given below. 

 

Chapter 1     Introduction: This chapter introduces the background of the study and 

provides insight into the problem of water distribution loss and 

highlights the importance of water loss management. It also gives a 

short overview of the problem statement and objectives of research. 

 

Chapter 2     Literature review: This chapter gives an overview of the magnitude 

of water losses in both the developing and developed countries and 

specifically for Malaysia with emphasis on the water supply network 

in Kinta District, Perak State. It presents a comprehensive review of 

the state-of-the-art of methods and tools applied for water loss 

management in WDSs, and the major factors that affect water loss in a 

water supply network in Kinta District. In addition, it highlights the 

advantage of applications of Artificial Neural Networks (ANNs) in 

prediction of the water resources system. Lastly, to improve the 

efficiency of WDS in Kinta District and to reduce water loss, the 

benefits of the economic intervention concept is also focussed on.  

 

Chapter 3   Study area & Methodology: This chapter represents details of data 

collection for a total of 90 DMAs out of 361 DMAs randomly 

selected. The procedure to determine the appropriate time band of 

MNF and water loss in the Perak, Malaysian water network was fully 
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described using PrimeWorks. It highlights the characteristics of the 

pipe networks for particular DMA synchronised to be consistent with 

the LAP. It also describes the statistical techniques for analysis of the 

water distribution network and modelling of MNF (L/s). Also, it 

introduces the application of ANNs to forecast the MNF (L/s). 

Finally, it provides a practical method for calculating economic 

leakage levels (ELL). 

 

Chapter 4     Results and Discussion: This chapter presents the results of the data 

analysis and discusses the main finding of the study. The period of 

MNF (L/s) as between 1:00 am and 5:00 am was identified.  The 

procedure how to arrive to this conclusion was fully described. Data 

analysis on the main characteristics of the pipe networks was carried 

out and extensively discussed. Using statistical analysis, the detailed 

contribution of each factor to MNF (L/s) was fully clarified. 

Comparisons of MLR and ANN techniques have been used to 

evaluate the performance of developed models. For a policy of regular 

survey, at current operating pressure, the economic intervention 

concept for the calculation of the three components of short-run 

economic leakage level (SRELL) was included. 

 

Chapter 5     Conclusions and recommendations: The closing chapter outlines the 

major findings and conclusions of the research and offers some 

recommendations for future research. 
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2 CHAPTER ‎2 -  

LITERATURE REVIEW  

 

2.1 Introduction 

Globally, many water utilities specifically in developing countries continue to 

operate WDSs with significant amount of water and revenues losses. There are 

various factors that contribute to water losses such as ageing infrastructure, high 

pressure, network length etc. Hence, many tools and methods for minimising water 

loss in the distribution system have been developed and applied over the years. The 

management of water losses requires understanding why, where and how much water 

is lost, and developing appropriate intervention measures. This chapter highlights 

and reviews the existing methods and tools for water loss management, and identifies 

the research knowledge gaps. 

 

2.2  Non-revenue water (NRW) 

Water is the world‘s most valuable elements and one of the main sources for 

life (Ku-Mahamud et al., 2005). The growing pressure on water has led this resource 

to be considered scarce and therefore, the efficient management of water resources is 

a growing necessity (Farley et al., 2008; Farley et al., 2010; Gonzalez-Gomez et al., 

2011; Mutikanga and Sharma, 2012). With increasing global changes such as climate 

change, urbanization and population growth, there is a high probability of an 

additional reduction in the available water resources in the future (Adamowski and 

Karapataki, 2010; Nikolic et al., 2013; Tan et al., 2013). This could be combined by 

the high rate of water infrastructure deterioration which would cause greater loss of 

treated and pressurized drinking water. Besides, the impact of poorly managed urban 
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WDSs associated with the global change could result in extreme scarcity scenarios 

(Babovic et al., 2002; Thornton et al., 2008; Mounce et al., 2010; Mutikanga et al., 

2012). Nowadays, many international organizations such as International Water 

Management Institute (IWMI), The International Water Association (IWA) and 

World Water Council (WWC) are set up to organise and monitor global water 

management (Ku-Mahamud et al., 2005). One of the most important issues affecting 

water utilities, especially in urban areas in the developing countries, is the 

considerable difference between the volume of water flow into the distribution 

system and the volume of water billed to consumers which is called ―non-revenue 

water‖ (Kingdom et al., 2006; Koelbl et al., 2009b). In the year 2000, the IWA and 

American Water Works Association (AWWA) recommended water utilities and 

drinking water stakeholders to use the term NRW (AWWA, 2009). The expression 

―water loss‖ and ―non-revenue water‖ are now internationally accepted, and have 

replaced expression such as ―Unaccounted-For Water‖ (UFW) (Farley and Trow, 

2003; Brothers, 2005; McKenzie and Seago, 2005; Çakmakcı et al., 2007; 

Frauendorfer et al., 2010).  

 

2.3  Water loss – a global problem 

2.3.1  NRW levels in developed and developing countries 

Water loss is considered as a global problem and major issue in water 

management that requires a solid and effective management strategy (Koelbl et al., 

2009a; Wyatt, 2010; Kanakoudis and Tsitsifli, 2010a; Kanakoudis and Tsitsifli, 

2010b). Approximately one-third of total abstracted water for urban uses is either lost 

due to leaks and pipe bursts occurring in water distribution systems (WDSs), or not 

included in revenue and financing systems (Cabrera et al., 1995; Kanakoudis and 
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Tolikas, 2001; Hunaidi et al., 2004; Klein, 2008; Mounce et al., 2010; Nazif et al., 

2010). Water loss in many countries worldwide can be as high as 50% of the water 

input in the system (Lambert, 2002; Hunaidi et al., 2004; Çakmakcı et al., 2007; 

Öztürk et al., 2007; Uyak et al., 2007; Puust et al., 2010; Kanakoudis et al., 2012; 

Palau et al., 2012). Water losses are occurring in both developed and developing 

countries (McKenzie and Seago, 2005; Gurría, 2007; Thornton et al., 2008; 

Gonzalez-Gomez et al., 2011) with an estimated NRW levels of 15% and 35% of the 

annual system input volume, respectively (Kingdom et al., 2006; Gonzalez-Gomez et 

al., 2011; Kanakoudis and Tsitsifli, 2012; Al-Omari, 2013).  

The Global Water Supply and Sanitation Assessment 2000 Report pointed 

out that NRW levels in Africa, Asia, Latin America and the Caribbean, and North 

America are 39%, 42%, 42%, and 15%, respectively (WHO-UNICEF-WSSCC, 

2000; Islam et al., 2011). Moreover, the average water loss  in European Union (EU) 

countries is about 20%, whereas several countries have water loss levels lower than 

10% such as Germany and Denmark (Colombo and Karney, 2002; Çakmakcı et al., 

2007; Öztürk et al., 2007; Puust et al., 2010). A pipe network with NRW less than 

15% is supposed to be in good condition. If the value of NRW is greater than 30% 

the network needs immediate inspection (Kanakoudis, 2004a). The Word Bank 

estimates the world wide NRW volume to be 48.6 billion m
3
/year and the real losses 

volume (40%) occurring in the developing countries is sufficient to supply 

approximately 200 million people. Furthermore, the Word Bank estimates the 

monetary value of the global annual NRW volume to be US $ 14.6 billion per year 

(Kingdom et al., 2006; Thornton et al., 2008; Kanakoudis and Tsitsifli, 2012). 
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2.3.2  NRW levels in Asia 

A large proportion of water loss in distribution networks is common in many 

Asian cities, averaging 35% in the region‘s cities and even reaching much higher 

levels (Frauendorfer et al., 2010).  A recent report by the Asian Development Bank 

(ADB) pointed out that NRW levels in 47 water utility systems across Indonesia, 

Malaysia, Thailand, the Philippines, and Vietnam, make up an average of 30% of 

water produced, with wide variations among individual utilities ranging from 4% 

(PUB, Singapore)  to 65% (Maynilad, Manila)  (Kingdom et al., 2006; Mutikanga 

and Sharma, 2012).  

 

2.3.3  NRW levels in Malaysia 

2.3.3.1 Introduction 

Water loss in WDSs is now an issue of growing importance, and much effort 

is being made to ensure the sustainability of these public services (Gomes et al., 

2011). The problem of excessive water losses from water supply distribution 

networks is common in Malaysia. The effort to reduce the NRW is to be continued in 

the Ninth Malaysia Plan in order to improve the efficiency of water supply (Ku-

Mahamud et al., 2007b). According to the Association of Water and Energy 

Research Malaysia (AWER, 2012), the National Water Services Commission 

(SPAN) reported that 25% NRW target can be achieved way before 2020.  

 

2.3.3.2 Water Supply in Malaysia 

Malaysia is located between 1° to 7° in North latitude and 100° to 120° in 

East longitude within the equatorial zone. Malaysia consists of Peninsular Malaysia 
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(West Malaysia) and the island of Borneo, namely Sabah and Sarawak (East 

Malaysia) (Ho, 1996; Kubota and Ahmad, 2006; Mekhilef, 2010; Shafie et al., 2011; 

Mekhilef et al., 2012). The total land area of Malaysia is about 330,000 sq. km. 

Almost 60% is made up of East Malaysia and the remaining 40% is occupied by the 

Peninsular Malaysia. About 76% of the total population is concentrated in Peninsular 

Malaysia (Ong et al., 2011; Shafie et al., 2011; Mekhilef et al., 2012). In 2009, the 

population of Malaysia was 25.4 million, by 2020 the population is expected to be 

almost double with reference to 1980. The percentage of population growth is less 

than 3% annually (Shafie et al., 2011). Malaysia has a population of  27.73 million 

based on the census in 2008 (Ong et al., 2011). The national population was 29.6 

million in 2012 (Akrami et al., 2013). 

Malaysia‘s location ensures that the country has a fairly abundant amount of 

water resources. On average, monthly rainfall in the country varies from 190mm to 

as high as 450mm in some states during the heavy rainy season, and the estimated 

annual rainfall volume is about 990 km³, of which 36 % (or 360 km³) are lost to 

evapotranspiration. Water resources are fairly equally distributed across the different 

states in the country (Lee, 2007).  

Water services in Malaysia cover both water supply and sewerage services. 

Water supply services comprise three categories: (i) the abstraction of water from 

dams and rivers or aquifer, (ii) the treatment of water extracted to make it usable and 

(iii) the distribution of treated water from the water treatment plants to the consumer. 

In 2000, the Malaysian Water Association (MWA) took the initiative of collecting 

the data and information statistics of the performance indicators of water utilities and 

publishing them in the annual Malaysia Water Industry Guide. The performance 

indicators include physical, operational, service and financial performance indicators. 
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(Munisamy, 2009). The water supply services are managed and operated by both 

state authority and concession companies. In Perak, water supply services are 

managed by the Perak Water Board (Lembaga Air Perak, LAP) which is owned by 

the state government (Lee, 2005; Lee, 2007; Ong et al., 2007). 

About 97% of Malaysia‘s water supply comes from rivers (Chan, 2012). The 

method of direct extraction from rivers is the main source of raw water, accounting 

for two third of raw water supply in the country, followed by storage dams and 

groundwater (Lee, 2007). The total production of raw water resources in 2009 and 

2010 were 14,671 Million Litres per Day (MLD) and 15,098 MLD, respectively, 

excluding raw water from treated water supply from private operators (MWIG, 

2011). In 2011, the total production of raw water resources was 15,509 MLD 

(MWIG, 2012). The water supply design capacity and production has increased 

rapidly for the past 20 years. During the period 1981-2002, the design capacity raised 

at an average rate of 7.9 % per annum while production raised at a rate of 7.6 % per 

annum (Lee, 2005). In 2009, the treatment plants‘ design capacity and production 

were 16,403 MLD and 13,495 MLD, respectively, accounting the production reverse 

margin as 17.7%. By 2010, the treatment plants‘ design capacity and production 

reached 16,771 MLD and 14,065 MLD, respectively, creating the production reverse 

margin to be 16.1% (MWIG, 2011). According to MWIG (2012), the treatment 

plants‘ design capacity and production in 2011 were 17,421 MLD and 14,564 MLD, 

respectively, generating the production reverse margin to be 16.4%.  

In the Eighth Malaysia Plan, the government‘s development expenditure for 

the infrastructure sector was about RM39.7 billion. Of these, 12.1 % was allocated to 

water supply, mainly for capital expenditures such as the construction of dams, new 

treatment plants, the rehabilitation and upgrading of treatment plants as well as 
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distribution systems (Lee, 2007). The importance of conservation of water in 

distribution systems has been practiced since 1980s (Adlan et al., 2009). Controlling 

and reducing NRW are on high priority in the agenda of the Malaysian Government 

(Ku-Mahamud et al., 2005). Hence, a total of RM640 million was expended in the 

Eighth Malaysia Plan to reduce the NRW and RM 1,088.3 millions was budgeted in 

the Ninth Malaysia Plan, to reduce the NRW from 38% (2007) to 30% (2011)  (Ku-

Mahamud et al., 2007b). In 2010, the average percentage of NRW for Malaysia was 

36.4%. In 2011, the state of Pulau Pinang was considered to be the lowest level of 

NRW with 18.4% and the state of Perlis was the highest levels of NRW with 59.8% 

(MWIG, 2012). However, SPAN is still standing on the proposed target of 25% 

national NRW level by 2020 (AWER, 2012). 

 

2.3.3.3 State of Perak-District of Kinta 

The study area is situated in the Kinta district which is one of the 10 

administrative districts of the state of Perak. Perak is one of the 14 states of Malaysia 

(Gazzaz et al., 2012b). Perak is considered as the second largest state in Peninsular 

Malaysia in terms of land area (21,006 km
2
). It is surrounded by Kedah and the Thai 

state of Yala from the north, Penang from the northwest, Malacca Strait from the 

west, Selangor from the south, and Kelantan and Pahang from the east. The 

population of Perak was about 2.249 million in 2010 and is projected by the 

Structure Plan of Perak State to become 2.676 million in the year 2020. Ipoh city is 

the capital of Perak which is in Kinta District (Gazzaz et al., 2012a); Figure 2.1 

shows the state of Perak and District of Kinta. 

Ipoh (4.57°N, 101.1°E) is the fourth largest city in Malaysia with a 

population of 702,464 (2009) and ranking in 2007 as sixth most populous urban 

http://en.wikipedia.org/wiki/Perak
http://en.wikipedia.org/wiki/Perak
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centre in Malaysia (Ishak et al., 2011). In Ipoh, Kinta River is the most important 

water resource for drinking and irrigation and the second main water resource in 

Perak. It is the major stream of Perak River, which is the fundamental source of 

drinking and irrigation water in Perak (Gazzaz et al., 2012a; Gazzaz et al., 2012b). 

Direct extraction from rivers is the main source of raw water (Lee, 2007). In 2010, 

the MWIG (2011) reported that 884 MLD of total 1,331 MLD was directly extracted 

from Perak River, followed by storage dams (447 MLD). The treatment plants‘ 

design capacity and production were 1,726 MLD and 1,080 MLD, respectively, 

amounting production reverse margin 37.4%. By 2011, about 878 MLD of total 

1,354 MLD was directly extracted from Perak River, followed by storage dams (476 

MLD). The treatment plants‘ design capacity and production were 1,740 MLD and 

1,109 MLD, respectively, making production reverse margin 36.3% (MWIG, 2012). 

 

 

Figure ‎2.1: Kinta district, Perak 

 

In 2010, the MWIG (2011) stated that about 99.2 % of the Perak‘s population 

has access to water supply, including urban area (100%) and rural area (98.0%). The 

total water consumption was 762 MLD, consisting of domestic consumption (72.4%) 

and non-domestic consumption (27.6%). Domestic consumption per capita was 228 

http://www.mindat.org/loc-194107.html
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litre/cap/day, ranking No. 6 of 14 States, after Pulau Pinang (291 L/cap/d), Perlis 

(257 L/cap/d), Selangor (239 L/cap/d), Kedah (235 L/cap/d) and Melaka (231 

L/cap/d). The number of connections was 665,674 (88.3% domestic and 11.7% non-

domestic). In May 2011, the average domestic tariff rate for the first 20 m
3
 was about 

RM (Ringgit Malaysia) 0.50 /m
3
 and for the first 35 m

3
 about RM 0.73/m

3
 (last tariff 

2006). The average water tariff rate for the first 80 m
3
 of industrial consumption was 

RM 1.60/m
3
 (last tariff 2006).  

The total length of pipes in 2009 and 2010, including different types, were 

approximately 10,659 and 10,792 km with 25.9% and 22.7% asbestos cement (AC) 

pipe, respectively. The domestic population served per km of pipe line was 224 and 

the domestic connection per km pipe line was 54; hence, the population 

served/domestic connection was 4.12 (MWIG, 2011). In 2011, the total length of 

pipes including different types was 10,972 km with 22.1% AC pipe. The domestic 

population served per km of pipe line was 221 and the domestic connection density 

was 54 connections per km pipe line; hence, the population served/domestic 

connection was 4.05  (MWIG, 2012). 

In Malaysia, most states experience high NRW (Lee, 2005; Lee, 2007; 

Munisamy, 2009). According to MWIG (2012), the NRW percentage for Perak in 

2011 was ranking No. 5 of the 14 states after Pulau Pinang (18.4%), Labuan (21.9%), 

Melaka (25.1%) and Johor (29.2%). International Water Association (IWA) and 

other international organizations recommend the use of the key indicators: NRW, 

physical losses, and commercial losses, all measured in L/connection/day; as for 

physical losses alone, IWA recommends the use of m
3
/km of pipeline/day 

(McKenzie and Seago, 2005; Liemberger et al., 2007; Wyatt, 2010; Kanakoudis and 
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Tsitsifli, 2010a). Consequently, the NRW for Perak in 2011 was 500 

L/connection/day and 31 m
3
/km of pipe/day (MWIG, 2012).  

 

2.3.3.4 NRW in Malaysia and Perak 

Table 2.1 summarises the available data on the percentages of NRW for 

Malaysia in general, and Perak in particular (ADB, 2001; Ku-Mahamud et al., 2005; 

Lee, 2005; Lee, 2007; Ong et al., 2007; Ku-Mahamud et al., 2007a; Abidin, 2009; 

Adlan et al., 2009; Toriman et al., 2009; MWIG, 2011; MWIG, 2012). Beginning 

from the Sixth Malaysia Plan, NRW control has been a high priority issue by the 

Malaysian Government. For example, in the Seventh Malaysia Plan, the government 

spent more than RM500 million for the rehabilitation of water supply systems. In the 

Eighth Malaysia Plan, a total of RM640 million was allocated to reduce the NRW; 

the activities involved the replacement of old pipes and old water meters, reduction 

of water pilferages, and the rehabilitation and upgrading of WDSs. From Table 2.1, it 

is evident that NRW of Malaysia had decreased from 43% in 1987 to 36.7% in 2011 

and for the state of Perak from 48.2% in 2001 to 30.4% in 2011. 
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Table ‎2.1: The average percentages of NRW in Malaysia and Perak 

Year %NRW, 

Malaysia 

Reference % NRW, 

Perak 

Reference 

1987 43% Abidin (2009)   

1992   48.2% ADB (2001) 

1995 38% Toriman et al. (2009) 42.6% ADB (2001) 

1998   42.4% ADB (2001) 

2000 28% Toriman et al. (2009) 40.4% ADB (2001) 

2001 36.4% Ku-Mahamud et al. (2005) 37.2% Adlan et al. (2009) 

2002 40.6% Lee (2005) 30.2% Lee (2005) 

2003 40.6% Lee (2007) 30.2% Lee (2007) 

2004   31.7% Adlan et al. (2009) 

2005   30.6% Adlan et al. (2009) 

2006   30.7% Adlan et al. (2009) 

2007 38% Ku-Mahamud et al. (2007a)   

2008 37% Abidin (2009)   

2009 36.6% MWIG (2011) 30.7% MWIG (2011) 

2010 36.4% MWIG (2011) 29.4% MWIG (2011) 

2011 36.7% MWIG (2012) 30.4% MWIG (2012) 

 

 

2.4  The impact of water loss 

2.4.1  The negative impact of high level of water loss 

The quantity of water lost and the level of NRW are good indicators of the 

performance of a water utility system. High levels of NRW typically indicate a 

poorly managed water utility system (Frauendorfer et al., 2010; Mutikanga et al., 

2012). Water losses in many countries around the world can be as high as 70% of the 

water input to the system (Babovic et al., 2002; Palau et al., 2012) meaning that 

significant amounts of water and revenue are being lost, forcing water utilities to 

develop effective water loss and NRW reduction strategies (Kanakoudis and Tsitsifli, 

2010a; Boulos and AbouJaoude, 2011).   

For example, in developing countries such as Brazil, the average rate of water 

losses has been registered, in 2007, equal to 39.1% which is similar to almost five 
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billons m
3
 of supplied water per year (Cheung et al., 2010). In Turkey, the average 

water loss rate was found to be 51% in Turkish cities for the year 2003 and total 

water loss amount for all provincial centres was 1.5 billion m
3
/year (Öztürk et al., 

2007). In an Iranian town, the level of NRW was about 1.00 million m
3
 or 41% of 

total water supplied. The average pressure exceeded the 50 m maximum standard 

design value.  In addition, more than 120 reported bursts were recorded during the 

study period of six months (Tabesh et al., 2009). In Malaysia, the NRW percentage 

shows a drop from 36.6% in the year 2009 to 36.4% in the year 2010 (MWIG, 2011). 

However, the total volume of treated water loss was recorded an increase from 1.8 

billion m
3
 in 2009 to 1.87 billion m

3
 in 2010 or equivalent to 3.5% increase. Hence, 

the estimated loss of revenue due to NRW in 2010 was RM 1.74 billion (AWER, 

2012). Using acoustic leakage monitoring and to minimise water loss, after 12 

months the Las Vegas District Water District identified 540 points of leaks on fire 

hydrants, water meters, valves and pipeline networks for a total savings of  about 

93.312 million gal per month. The cost of the water loss is about US $2.25 million 

with treatment and transporting cost (Morgan, 2006). More recently, the US 

Environmental Protection Agency estimates that water utilities in the United States 

will need to spend at least US $6 billion per year over the next 20 years to 

rehabilitate failing water distribution pipes (Boulos and AbouJaoude, 2011). 

Today, water – energy nexus is one of the very hot issues, because the rise of 

the price of the fossil fuels and the environmental concerns as well (Pardo et al., 

2012). The energy consumption is the second most important expense in the water 

utilities after the staff costs (Muñoz-Trochez et al., 2010). For example, the water-

related energy consumption in California, USA consumes 19 % of the state‘s 

electricity and 32 % of the state‘s natural gas due to transportation of water for great 
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distance  (AWWA, 2009). In Malaysia, the energy costs in 2010 and 2011 were 

about 29% of the total operating expenditure (MWIG, 2012). Worldwide, the amount 

of energy consumed in water supply is roughly equivalent to the amount of energy 

used by Japan and Taiwan together, about 7% of the total energy consumption  

(Muñoz-Trochez et al., 2010). When worldwide water loss average is estimated to be 

30%, the same portion of energy is lost and leakage levels are responsible for more 

than 25% of total energy used (Feldman, 2009; Kanakoudis et al., 2011a; 

Kanakoudis et al., 2012).  

Also, pipe burst could lead to large direct and indirect economic, social and 

environmental costs, such as water and energy loss, repair costs, traffic delays and 

factory production loss caused by inadequate water or service interruptions (Berardi 

et al., 2008; Puust et al., 2010; Xu et al., 2011; Nazif et al., 2013).  Another 

important aspect of leaks is their influence on water quality by allowing intrusion of 

polluted groundwater (Clark and Goodrich, 1989; Colombo and Karney, 2002; 

Boulos and AbouJaoude, 2011; Mutikanga and Sharma, 2012; Mutikanga et al., 

2012).  Intrusion of contaminants through water mains may occur during 

maintenance and repair events and through broken pipes (Sadiq et al., 2008).  

 

2.4.2 Benefits of reducing water loss 

Financial, environmental, and social benefits may be acquired by improving 

management of WDSs, especially in reducing leakage (water loss) which results in 

reducing NRW (Hoye, 1980; McIntosh, 2003; Uyak et al., 2007; Frauendorfer et al., 

2010; Wyatt, 2010; Kanakoudis et al., 2011b; Yang et al., 2013).  In the developing 

world, about 16.1 billion m
3 

are lost every year through water leakage in the 

distribution networks, sufficient to serve nearly 200 million people. If NRW levels 
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are reduced by 50% only in the developing countries this would mean that every year 

more than 8 billion m
3
 of treated water would be accessible to people suffering from 

water shortages and potentially, an additional 90 million people would access to 

fresh water resources (Kanakoudis and Tsitsifli, 2012). As a result, this reduction 

could generate an estimated additional US $2.9 billion in cash every year for the 

water sector (from both increased revenues and reduced costs) and save an estimated 

US$1.6 billion per year in production and pumping costs for public utilities 

(Kingdom et al., 2006).  

The benefits of reducing water loss can include: (i) need for less water to be 

produced, treated, and pumped, which translates into cost savings on operation and 

maintenance because of savings in energy and treatment costs; (ii) reduction in real 

losses, which results in more water being billed and revenue for utilities; (iii) 

sufficient understanding of consumption patterns, which allows utilities to optimise 

distribution systems; (iv) better knowledge of real consumption, which improves 

demand predictions; and (v) decreased sewage flows and pollution; undetected leaks 

can sometimes be quite large and can run directly into a sewer or a drain (McIntosh, 

2003; Hunaidi et al., 2004; Öztürk et al., 2007; Frauendorfer et al., 2010). 

For instance, a study was conducted to assess water and energy savings in 

networks divided into pressure management areas (PMAs). It is known that WDS are 

very high energy consuming, and leaks results in an important amount of energy 

losses. Due to the installation of a pressure reducing valve (PRV) in a PMA, water 

savings was quantified as 0.15 cubic hectometers per year (Hm
3
/year) and energy 

savings was 28.29 MWh/year, and economic savings in one year was € 35079  

(Pardo et al., 2012).   


