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Computer simulations can help a rapid investigation of various alternative
designs to decrease the required time to improve the system. Because of the
complexity for analyzing complex systems in way of mathematical formulation, a 
simulation optimization has been an interest in analyzing and studying the
behavior of complex systems in the real world of engineering problems. One of
the main difficulties of existing model–based simulation optimization methods is
dealing with large number of required simulation evaluation (also called
simulation experiments or computer experiments) which causes of costly
computational time. In addition, in order to improve the validity of optimal results,
uncertainty as a source of variability in the model’s output(s) need to be
considered while this importance mostly has been ignored in designing of
existing simulation optimization models. Under uncertainty, simulation running
with stochastic output is complex in terms of computational time and/or cost,
therefore the limited number of simulations is desirable. However, the accuracy
of simulation result strongly depends on the reality of computer coding and
discrepancy between simulation model and actual physical system. Most
existing simulation optimization methods need to be improved in such a way to
handle conflicting of multiple responses and constraints. This research generally
aims to develop the black-box simulation optimization technique to be applicable 
in stochastic complex systems under effect of uncertainty with the least
optimization computational burden (number of simulation experiments). This
research develops a new distribution-free method for uncertainty management 
with unknown distribution of uncertainty. This research also aims to show the
applicability and validity of proposed metamodel-based robust simulation
optimization method in practical engineering design problems such as direct 
speed control of DC motor and PID tuning under uncertainty. For this purpose,
metamodeling techniques are used for global approximation of complex
simulation model. The statistical terminology of Taguchi crossed array design is
replaced by global modern metamodels. A distribution-free method is suggested
to tackle the lack of information about possible probability distribution of
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uncertainty scenarios in the model. Results of this research confirmed the validity 
and applicability of the proposed methodology dealing with practical stochastic 
complex engineering design problems in three terms; reducing computational 
time, enhancing flexibility, and improving the applicability. The proposed method 
can reduce the number of function evaluations for PID tuning under uncertainty 
to 50 simulation runs compared to more than 1000 function evaluations in 
common model based method. Compared to classical Ziegler Nichols method, 
the proposed method shows the better performance which is more than 10% for 
PID tuning under uncertainty. The proposed distribution–free method applied in 
economic order quantity problem shows the same accuracy compared to studies 
in literature whereby this study does not need to estimate distribution of 
uncertainty. 
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Disember 2018 

Pengerusi : Siti Azfanizam Ahmad, PhD 

Fakulti  : Kejuruteraan 

Simulasi komputer dapat membantu penyiasatan cepat pelbagai reka bentuk 
alternatif untuk mengurangkan masa yang diperlukan untuk memperbaiki 
sistem. Oleh kerana kerumitan untuk menganalisis sistem kompleks dalam 
bentuk rumusan matematik, simulasi pengoptimuman telah menjadi penting 
dalam menganalisis dan mengkaji tingkah laku sistem kompleks masalah 
kejuruteraan dalam dunia sebenar. Salah satu kesukaran utama kaedah 
simulasi pengoptimuman berasaskan model yang sedia ada adalah berurusan 
dengan sejumlah besar penilaian simulasi yang diperlukan (juga dikenali 
sebagai eksperimen simulasi atau eksperimen komputer) yang menyebabkan 
penggunaan masa pengkomputeran yang mahal. Di samping itu, untuk 
meningkatkan kesahihan keputusan optimum, ketidakpastian sebagai sumber 
kebolehubahan dalam output model perlu dipertimbangkan, walaupun 
kepentingan ini kebanyakannya telah diabaikan dalam mereka bentuk model 
simulasi pengoptimuman yang ada. Di bawah ketidakpastian, simulasi yang 
dijalankan dengan output stokastik adalah mahal dari segi masa dan / atau kos, 
oleh itu jumlah simulasi yang terhad adalah wajar. Walau bagaimanapun, 
ketepatan hasil simulasi sangat bergantung kepada realiti pengekodan komputer 
dan percanggahan antara model simulasi dan sistem fizikal sebenar. 
Kebanyakan kaedah simulasi pengoptimuman yang sedia ada perlu diperbaiki 
sedemikian rupa untuk menangani konflik pelbagai tindak balas dan kekangan. 
Kajian ini bertujuan untuk membangunkan teknik simulasi pengoptimuman kotak 
hitam untuk diterapkan dalam sistem kompleks stokastik di bawah kesan 
ketidakpastian dengan beban pengiraan pengoptimuman paling kurang 
(bilangan eksperimen simulasi). Penyelidikan ini membangunkan kaedah bebas 
pengedaran baharu untuk pengurusan ketidakpastian dengan pengagihan 
ketidakpastian yang tidak diketahui. Kajian ini juga bertujuan untuk menunjukkan 
kebolehgunaan dan kesahihan kaedah pengoptimuman yang berasaskan 
metamodel yang dicadangkan dalam masalah reka bentuk kejuruteraan 
praktikal seperti kawalan kelajuan langsung motor DC dan penalaan PID di 
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bawah ketidakpastian. Untuk tujuan ini, teknik metamodel digunakan untuk 
penganggaran global model simulasi kompleks. Istilah statistik reka bentuk 
crossed array Taguchi digantikan oleh metamodel moden global. Satu kaedah 
pengedaran bebas baharu dicadangkan untuk menangani kekurangan 
maklumat dalam senario ketidakpastian mengenai kemungkinan kebarangkalian 
taburan dalam model. Keputusan yang diperolehi dalam penyelidikan ini 
mengesahkan kesahihan dan kebolehgunaan kaedah yang dicadangkan dalam 
urusan masalah reka bentuk kejuruteraan kompleks stokastik praktikal dalam 
tiga segi; mengurangkan masa pengiraan, meningkatkan fleksibiliti, dan 
meningkatkan kebolehgunaan. Kaedah yang dicadangkan dapat mengurangkan 
bilangan penilaian fungsi untuk penalaan PID di bawah ketidakpastian hingga 
50 larian simulasi dibandingkan dengan lebih daripada 1000 penilaian fungsi 
dalam kaedah berasaskan model biasa. Berbanding kaedah klasik Ziegler 
Nichols, kaedah yang dicadangkan menunjukkan prestasi yang lebih baik iaitu 
lebih daripada 10% untuk penalaan PID di bawah ketidakpastian. Kaedah bebas 
pengagihan yang dicadangkan yang digunakan dalam masalah kuantiti pesanan 
ekonomi menunjukkan ketepatan yang sama berbanding dengan kajian dalam 
literatur di mana kajian ini tidak perlu menganggarkan pengagihan 
ketidakpastian. 
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CHAPTER 1 

 INTRODUCTION 

1.1 Background  

Nowadays, developmental processes in engineering world are strongly 
associated with computer simulations. These computer codes can collect 
appropriate information about characteristics of engineering problems before 
actually running the process. Computer simulations can allow for rapid 
investigation of various alternative designs, so decreasing the required time to 
improve the system. In addition, most numerical analyses of engineering 
problems, makes a well-suited use of mathematical programming. Clearly, due 
to less computation burden, the simulation optimization becomes to find more 
interest and popularity than other real world optimization methods that be 
directed in way of mathematical formulation analyzing (Dellino et al., 2014). The 
main goals of simulation can be defined as first what-if study of model or 
sensitivity analysis and second is optimization and validation of model (van 
Beers & Kleijnen, 2003). The essential benefit of simulation is its ability to cover 
complex processes, either deterministic or random while eliminating 
mathematical sophistication (Figueira & Almada-Lobo, 2014). In practice, the 
simulation optimization problem is desirable to consider the possibility of shifting 
the problem into meaningless due to the existence of even a small uncertainty. 
Furthermore, due to adding uncertainty into the model, the computational 
complexity in design problems has increased. The complex analysis and 
simulation processes are due to the computation burden which caused by the 
physical or computer testing of data. Metamodels (also called surrogate models) 
are often used to address such a challenge. Regarding existing of uncertainty in 
complex and black box simulation models, simulation optimization leads to 
introduce advanced methods as Metamodel-Based Robust Simulation 
optimization (MBRSO).  

1.2 Problem Statement 

Here, four main shortcomings that raised among existing simulation-based 
optimization methods are highlighted. These gaps are considered throughout 
developing of metamodel-based robust simulation optimization methodology in 
this research. 
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i) Stochastic simulation model due to uncertainty (source of variability in 
the model) 

There are different number of methodologies in optimizing of deterministic 
simulation (Amaran et al., 2016; Kleijnen, 2017), but there are few number of 
studies have been done on  stochastic or random simulation optimization 
problems under uncertainty, particularly based on combination of metamodels 
and robust optimization (Simpson et al., 2001). The main gap for such a 
scenarios-based methods is that when uncertainty change in its variation region 
and previous results miss their validation, so the problem needs to be evaluated 
again by designer (Cao et al., 2015). There is still a gap between theory and 
practice in optimization under uncertainty, being evident in the fact that robust 
optimization methods are still not used in many real-world problems (Beyer & 
Sendhoff, 2007a; Dellino, et al., 2015; Gabrel et al., 2014; Geletu & Li, 2014; 
Wang & Shan, 2011). Ben-Tal et al. (2009) have claimed that the data of real 
world optimization problems are uncertain more often and not identified exactly 
when the problem is being solved. In simulation optimization under uncertainty 
usually cannot distinguish the exact (deterministic) solution for the black-box 
system, so the mean and the variance obtained from sampling points (i.e. 
stochastic or random simulation)(Amaran et al., 2016). In deterministic models, 
a response of model lacks random error, or in another mean, repeated runs for 
the same design of input parameters, the same result for the response can be 
gained from the model. On the other hand, the output in stochastic or random 
simulation usually follows some probability distribution that may vary around its 
space. As shown in Figure 1.1, in the stochastic model the running simulation for 
the same input combination gives different outputs.  

Except for PR, other types of metamodels like Kriging can hardly support 
stochastic simulation (Kleijnen, 2017; van Beers & Kleijnen, 2003). In this 
research, the uncertainty is defined as sources of variability on the model’s 
output that causes obtained optimal results turn to be inferior. The reasons for 
uncertainty in data are classified in some parts. The first part is to measurement 
or estimation errors that arise from the impossibility to estimate the exact data 

The Input 

Combination 

(X) 

Stochastic 

Model 

Repeat 

𝑛 times 

 

The Input 

Combination 

(X) 

Different output 

values 

  𝑌 =
 𝑦1 , 𝑦2, … , 𝑦𝑛 𝑇 

Deterministic 

Model 
Repeat  

𝑛 times 

 

Fix output value  

𝑌 = 𝑦1 = 𝑦2 = ⋯
= 𝑦𝑛 

⋮ ⋮ 

Figure 1.1: Deterministic and stochastic simulation models. 
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on characteristics of physical processes. Second, implementation errors arising 
from the impossibility to implement an exact solution as it is estimated before.  

ii) Complexity of simulation models 

Many large scales and detailed simulation models in complex system particularly 
under uncertainty may be complex to run in terms of time-consuming, 
computational cost, and resources (Li et al., 2010; Wang & Shan, 2007). Hence, 
metamodel-based optimization of complex systems is a growing area (Bhosekar 
& Ierapetritou, 2018; Garud et al., 2017). In this research, complex systems are 
defined as simulation models with a large computational time or costly running 
of simulations. In existing model-based methods in the literature, the simulation 
running (also called simulation experiments or computer experiments) are not 
time consuming, so a true model (i.e. original simulation model) can be used 
directly in optimization.  

iii) Applicability of metamodel based robust simulation optimization  

The robust metamodeling techniques in the framework of engineering design 
have been used for academically usage more than for practical problems in the 
real world. Except for inventory management (Jalali & Van Nieuwenhuyse, 
2015), the lack of enough research is completely sensible which apply robust 
metamodeling techniques into different engineering design problems or 
management science (Barton, 1992; Carson & Maria, 1997; Li et al., 2010; 
Simpson et al., 2001). Most methods which mentioned in literature just have 
been tested in theoretical settings of problems, so applying these methods in 
practical problems and in-depth comparing of their performance can be an 
interesting area for additional research (Dellino et al., 2009; Jalali & Van 
Nieuwenhuyse, 2015). There is still a gap between theory and practice in 
optimization, being evident in the fact that optimization methods are still not used 
in many real-world problems (Ehrgott et al., 2014). Kleijnen (2009) has 
emphasized on applying metamodels particularly Kriging in practical random 
simulation models, which are more complicated than the academic models. 
Moreover, in simulation optimization methods, the most important parameters of 
problems such as multi-response (Kleijnen, 2009b; Simpson et al., 2001; Teleb 
& Azadivar, 1994), constrained system (Fu et al., 2015), different stochastic 
distribution for uncertain variables (Kleijnen, 2015) need to be attended to be 
more applicable for practical problems. Different circumstances of real problems 
in simulation models have been studied  by Beyer & Sendhoff (2007a), Gabrel 
et al. (2014), Geletu & Li (2014), and Wang & Shan (2011). Most methods which 
mentioned in simulation optimization area, just have been tested in theoretical 
settings of problems. Thus, applying these methods in practical problems and 
in-depth comparing of their performance need to be considered (Dellino, 2009; 
Jalali & Van Nieuwenhuyse, 2015). Kleijnen (2009) has emphasized on applying 
metamodels particularly Kriging in practical random simulation models, which 
are more complicated than the academic. 
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iv) Conflicting multiple objectives and constraints  

Another shortcoming is raised when most simulation optimization methods use 
single variable output, whereas in practice, simulation models may have 
conflicted multivariable outputs (Kleijnen, 2009b; Simpson et al., 2001; Teleb & 
Azadivar, 1994). In the real world, a given simulation model has multiple outputs 
that also called responses or performance criteria (Kleijnen & Mehdad, 2014). 
Many of proposed approaches in simulation optimization are being developed 
for application of single objective optimization, while much of engineering design 
has been structured via multi-objective pattern. In most cases, some or all 
objectives and constraints are absolute functions of input variables that can be 
evaluated just by way of computer simulation (Teleb & Azadivar, 1994). Modern 
simulation optimization models allow for multiple simulation outputs, while 
choose one output as a goal and keep other remaining outputs as constraints 
and try to satisfy them (Kleijnen, 2010). Investigating all Pareto optimal solutions 
is computationally complex and time consuming, because in most cases, Pareto 
optimal solutions are usually exponentially large (Chinchuluun & Pardalos, 
2007). In practice, difficulties arise because of different units of measurement, 
criteria, and levels of importance among the multiple responses or quality 
measurements. Moreover, some different methods have been presented which 
try to tackle the problem of optimizing multiple responses simultaneously (Marler 
& Arora, 2004; Miettinen, 2012). Chang et al. (2013) have criticized two common 
methodologies in multi-objective problems. They are combining all individual 
objective functions into single function by weighted sum method. This cause 
difficulty to select appropriate and accurate weights in practice. Secondly, all 
objectives are moved except one into constraint set that need to establish 
constraint values and increase problem complexity.  

1.3 Research Objectives 

The main goal of this thesis is to develop metamodel-based robust simulation 
optimization methodology in three aspects including i) improving flexibility of 
models, ii) enhancing applicability, iii) reducing computational complexity. The 
developed methodology has three main advantages, i) robust against 
uncertainty and source of variability, ii) simplicity and less computationally cost 
iii) ease to be applied in practice. Moreover, objectives of this research can be 
outlined systematically as: 

First objective: To develop a distribution-free method applicable in metamodel-
based robust simulation optimization. 

Second objective: To verify the validity and applicability of metamodel-based 
robust simulation optimization (one-layer metamodeling). 
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Third objective: To verify the validity and applicability of metamodel-based 
robust simulation optimization (two-layer metamodeling).    

Fourth objective: To compare the robustness and accuracy of different 
combination of metamodels and sampling design methods.  

Fifth objective: To develop mathematical multi-objective and constrained 
metamodel-based robust simulation optimization models. 

1.4 Scope of the Study 

Throughout this study, all numerical test problems and case studies are selected 
to be small (i.e. one or two decision variables with one or two uncertain variables) 
or medium in dimension (i.e. three decision variables and two uncertain 
variables). Considering large dimension of problems (i.e. more than three 
decision variables or uncertain variables) is out of scope of this research.  All 
problems are complex (i.e. computationally time consuming) so limited number 
of simulation evaluation is preferred. In addition, considering some subsidiary 
methods such as adaptive sampling design methods and sequential expected 
improvement are out of scope of this work. Due to existence of uncertainty (also 
called noise factors) in the model, deterministic optimization methods such as 
Genetic Algorithm (GA), Partial Swarm Optimization (PSO), Ant Colony 
Optimization (ACO) are not involved in optimization procedures. Moreover, due 
to stochastic framework of simulation optimization in this research, robust design 
terminology is used in order to minimize the sensitivity of optimization results 
against sources of variability. Methodologies that are developed in this study can 
be applied in the class of black-box problems, since it does not need to identify 
expression or internal structure of the system, but only analyzing output with 
given list of inputs. As shown in Figure 1.2, this research is considering general 
framework of black-box simulation model with three types of variables including 
decision variables (i.e. design variables or input factors), uncertain variables (i.e. 
noise or environmental factors), and response variables (i.e. output factors).  

Therefore, any types of process under effect of uncertainty can apply the 
proposed methodology (i.e. multi-disciplinary application). This research is not 
limited to specific time or location. Any disciplines of engineering design 

Output Variables (𝑌) Black-box 

Simulation 

Model 

Input Variables 

𝑋

Uncertain Variables (𝑍) 

Figure 1.2: A black-box simulation model under uncertainty. 
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problems can apply the proposed methods for designing and optimizing of 
relevant processes such as manufacturing, commercial, management, and 
different industries like electronic, telecommunication, oil, software, production, 
and construction.  

1.5 Thesis Organization 

This thesis is organized based on the style 2 (chapter 2, pages 10-11) of Guide 
to Thesis Preparation 2013, School of Graduate Studies, Universiti Putra 
Malaysia. The contents of this thesis are organized in the seven chapters. Thesis 
objectives and chapters crossing with general methodology of MBRSO is 
illustrated in Figure 1.3.  

This thesis is arranged as followings. 

Chapter 2: The main goal of this chapter is to represent a systematic reviewing 
of literature over subject of study. This chapter also includes discussions about 
recent development on comprehensive robust design optimization methods and 
metamodel based simulation optimization. In addition, the systematic review has 
been conducted among various types of optimization methods for black-box and 
complex simulation models under uncertainty.    

Chapter 3: Throughout this chapter, the sequence steps of one-layer 
metamodeling technique on MBRSO methodology are explained. This chapter 
also proposing a novel method for simulation optimization when the probability 
distribution of uncertain variables is unknown. The proposed method uses the 
Taguchi robust terminology and the crossed array design when its statistical 
techniques are replaced by design and analysis of computer experiments and 
Kriging. At the end, two different case studies are provided to show the 
applicability and validity of MBRSO methodology with one layer-metamodeling 
technique with known and unknown probability distribution of uncertainty.  

Chapter 4:  This chapter aims to show the applicability and validity of MBRSO 
according two-layer metamodeling technique to reduce the computational 
complexity of robust tuning and analyzing the sensitivity of PID controller under 
uncertainty in physical load parameters. In this study, two-layer Kriging 
metamodeling technique is combined with Taguchi viewpoint on robust design 
to construct robust optimization model in the class of dual response. 
Randomness in uncertainty to design simulation experiments is analyzed 
through bootstrapped Kriging metamodels by computing confidence regions. 
Results confirm better performance in terms of expected Integral Squared Error 
(ISE) and robustness against both environmental disturbances and uncertainty 
in load parameters compared to traditional Ziegler-Nichols method and Grey 
Relational Analysis (GRA).  
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Figure 1.3: Research objectives and general procedure of MBRSO. 
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Chapter 5: In this chapter, a systematic comparative study is implemented to 
evaluate the performance of three common metamodels namely PR, Kriging, 
and RBF. The required experiments are designed by different space-filling 
methods including the Orthogonal Array (OA) design and three forms of Latin 
Hypercube Sampling (LHS) such as randomized, maximin, and correlation 
approaches. Although, the impact of sample size on the performance of 
metamodels in robust optimization results are investigated. All methods are 
analyzed using five two-dimensional test problems and one engineering problem 
while all of them are considered in two forms that are complex (with a small 
sample size) and semi-complex (with a large sample size). Uncertainty is in all 
problems as a source of variability, so all test problems are conducted in the 
format of robust optimization in the class of dual response surface in order to 
estimate robust Pareto frontier. The performances of methods are studied in two 
terms of accuracy and robustness.  

Chapter 6: In this chapter, a novel multi-objective robust optimization model is 
introduced to investigate the best levels of design variables. The primary 
objective is to minimize the production cost while increasing robustness and 
performance. The response surface methodology is utilized as a common 
approximation model to fit the relationship between responses and design 
variables in the worst-case scenario of uncertainty. The target mean ratio 𝛼 is 
applied to ensure the quality of the process by providing the robustness for all 
types of quality characteristics and with a trade-off between variability and 
deviance from the ideal point. The Lp metric method is used to integrate all 
objectives in one overall function. In order to estimate target value of the quality 
loss by considering production tolerances, the process capability ratio (𝐶𝑝𝑚) is 
applied. At the end, a numerical chemical mixture problem is served to show the 
applicability of the proposed method. 

Chapter 7: This thesis is concluded in Chapter 7, while main trends and gaps of 
proposed approaches are discussed. In this chapter, the important points of the 
study are highlighted and different suggestions for future research are directed.  
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