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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
the requirement for the degree of Doctor of Philosophy 

ABSTRACT 

MECHANICAL PROPERTIES OF FIBRE METAL LAMINATES 
REINFORCED WITH CARBON, FLAX AND SUGAR PALM FIBRE-BASED 

COMPOSITES  

By

CHANDRASEKAR MUTHUKUMAR 

March 2019 

Chair: Mohamad Ridzwan Bin Ishak, PhD  
Faculty: Engineering 

Fibre metal laminate (FML) consists of sheet metal and fibre prepreg stacked 
alternatively in 2/1 or 3/2 lay-up and cured to form the laminate. The commercially 
available FML such as CARALL (Carbon fibre reinforced aluminum metal laminate),
GLARE (Glass laminate aluminum reinforced epoxy) and ARALL (Aramid fibre 
reinforced aluminum metal laminate) based on the synthetic fibres have limitations like 
difficulties in recycling, degradability and disposal problems. These factors push the 
need for environment friendly material. From the literature review, it has been identified 
that the studies on the natural fibre reinforced FML and the metal surface treatments 
other than the standard chromic acid anodizing are limited. Also, the impact of aging 
effects on the mechanical properties of natural fibre reinforced FML has never been 
studied. In this research, a new class of FML reinforced with the carbon fibres and 
natural fibres like flax and sugar palm has been fabricated using the hand lay-up and hot 
press technique. Their mechanical properties under various loads with respect to the 
metal surface treatment, fibre stacking sequence, hygrothermal and sub-zero aging 
effects were studied. Based on the results from the experiments, it could be seen that 
sanding followed by silane treatment could be used as a metal surface treatment for 
FML, as it provides superior properties over the FML with sanded metal surface. Among 
the studied configurations, FML with the pure flax fibres exhibited the highest strength, 
stiffness and fatigue life. Hybridization of flax with sugar palm also has led to significant 
improvement in the properties compared to the FML with sugar palm fibres. On the other 
hand, FML specimens exposed to the aging under the moisture/temperature, failed at 
lower loads, possessed lower strength and stiffness than the unexposed or dry specimens. 
The degradation in properties was more severe in case of hygrothermal conditioning than 
the sub-zero exposure. This is because hygrothermal conditioning resulted in 6-8% 
increase in thickness swelling due to the moisture absorption by natural fibres in the 
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laminate, weakening of the interfacial bonding strength and degradation of the natural 
fibre reinforced composite ply as evident from the presence of multiple cracks in the 
microstructure of the hygrothermally aged FML specimens. To summarize, FML with 
the pure flax fibres has shown better mechanical properties; longer fatigue life and fibre 
bridging effect which is critical to sustain larger number of cycles before the failure. The 
degradation in mechanical properties and physical changes in the FML due to the aging 
indicates the need to evaluate their behavior if they are required to use in the structures 
operating under such environmental conditions.     
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

ABSTRAK 

SIFAT MEKANIKAL BAHAN BERLAMINA GENTIAN LOGAM 
BERTETULANG GENTIAN KARBON, FLAKS DAN ENAU BERASASKAN 

KOMPOSIT  

Oleh 

CHANDRASEKAR MUTHUKUMAR 

Mac 2019 

Pengerusi: Mohamad Ridzwan Bin Ishak, PhD  
Fakulti: Kejuruteraan  

Lapisan logam bergentian (FML) terdiri daripada lapisan logam dan gentian dalam 
bentuk prepreg yang disusun secara selang-seli dalam susunan 2/1 atau 3/2 telah 
difabrikasi bagi membentuk susunan lamina. Secara komersialnya, FML sedia ada 
seperti CARALL (Carbon fibre reinforced aluminum metal laminate), GLARE (Glass 
laminate aluminum reinforced epoxy) and ARALL (Aramid fibre reinforced aluminum 
metal laminate) yang terdiri daripada gentian sintetik mempunyai masalah seperti sukar 
untuk dikitar semula dan diurai bagi tujuan pelupusan. Berdasarkan faktor-faktor ini, ia 
mendorong kepada keperluan untuk membangunkan bahan mesra alam. Berdasarkan 
kajian literatur, kajian dan ilmu berkenaan gentian semula jadi FML dan rawatan 
permukaan logam termasuklah anodizing asid kromik adalah sangat terhad. Selain itu, 
kesan-kesan penuaan pada sifat mekanik untuk gentian semulajadi dalam FML masih 
belum dikaji sepenuhnya. Dalam kajian ini, FML yang diperkuat dengan gentian karbon 
dan gentian semulajadi seperti flaks dan enau telah dihasilkan menggunakan teknik 
belangai tangan dan teknik tekan panas. Ciri-ciri mekanik di bawah pelbagai beban telah 
dikaji dengan rawatan permukaan logam, susunan gentian, kesan hygrothermal dan sub-
sifar. Berdasarkan keputusan daripada eksperimen, ianya boleh dilihat bahawa  
pengasaran permukaan logam dan diikuti dengan rawatan silane boleh digunakan sebagai 
rawatan permukaan logam untuk FML, kerana ia memberikan sifat yang lebih baik untuk 
FML dengan permukaan logam yang telah dirawat. Berdasarkan konfigurasi di atas, 
FML dengan gentian flaks tulen menunjukkan sifat kekuatan, kekakuan dan keletihan 
yang tertinggi. Hibridisasi gentian flaks dengan enau menyebabkan peningkatan yang 
ketara dalam sifat-sifat berbanding dengan FML dengan gentian enau. Sebaliknya, 
spesimen FML yang terdedah kepada penuaan di bawah pelbagai kelembapan/suhu 
menunjukkan ianya gagal pada beban yang lebih rendah dan juga menghasilkan sifat 
kekuatan dan kekakuan yang lebih rendah daripada spesimen yang tidak terdedah kepada 
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pelbagai kelembapan/suhu.  Degradasi dalam sifat ini akan bertambah sekiranya keadaan 
hygrothermal terdedah pada keadaan sub-sifar. Ini akan menyebabkan keadaan 
hygrothermal menghasilkan kenaikan ketebalan terhadap pembengkakan spesimen 
sebanyak 6-8 % yang disebabkan oleh penyerapan kelembapan oleh gentian semulajadi 
dalam lamina. Hasilnya, ia melemahkan kekuatan ikatan antara muka dan kemerosotan 
pada komposit gentian semulajadi yang dibuktikan dengan penghasilan retak yang 
banyak dalam struktur mikro spesimen FML secara hygrothermal. Sebagai ringkasanya, 
FML dengan gentian flaks tulen menunjukkan sifat mekanikal yang lebih baik; jangka 
hayat kelesuan yang lebih panjang dan memberi kesan yang sangat penting terhadap 
penyambungan gentian untuk mengekalkan jangka hayat bahan sebelum gagal. Input 
daripada kerosakan dalam sifat-sifat mekanikal dan perubahan fizikal dalam FML yang 
disebabkan oleh penuaan ini akan menentukan keperluan-keperluan penyelidikan dan 
pembangunan FML bergentian semula jadi pada masa akan datang bagi menilai sifat-
sifatnya di bawah aplikasi persekitaran hygrotermal dan sub-sifar. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Fibre metal laminate (FML) is an advanced hybrid material that consist of thin sheets 
of high strength Aluminium alloy (Al) alternatively bonded with the fibre reinforced 
composite prepregs as shown in Figure 1.1 (Asundi & Choi, 1997). A fibre prepreg is 
made up of a fibres or fibre fabric impregnated with liquid polymer resin (Saunders, 
Dickson, Singh, Carmichael, & Lopata, 1988). The prepregs used in aircrafts are made 
up of epoxy resin and is normally stored in a freezer below 0 °C.  Prior to the 
fabrication, it should be allowed to reach room temperature which in turn gives a sticky 
texture. 

Figure 1.1: 3/2 layup of FML (Lopes, Remmers, & Gürdal, 2008)

FML was invented in the Delft University of Technology, Netherlands and patented by 
Schijve, Vogelesang and Marissen. The first successfully produced FML was based on 
the aramid fibre prepreg named as ARALL by the Faculty of Aerospace Engineering 
Delft University of Technology. ARALL was then commercialized by ALCOA in 
1984. FML has been widely used in aircraft structures due to their advantages like 
excellent damage tolerant characteristics such as the longer fatigue life, impact 
resistance, high strength to weight ratio along with the reduced moisture absorption 
compared to the composites (Sinmazçelik, Avcu, Bora, & Çoban, 2011). In the initial 
stages of development, ARALL found applications in the wing structure of F-27 and 
Fokker 50 and in the C-17 cargo door (Vlot & Gunnink, 2011). Other commercially 
available FML materials such as CARALL and GLARE  are made up of carbon (C) 
and glass (G) fiber based prepreg sandwiched between Al sheets (Muthukumar 
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Chandrasekar et al., 2018). Over the years, ARALL has been replaced by GLARE in 
the wing structures and it was also used in the fuselage, passenger floors and cargo 
barriers of the aircraft (Vlot & Gunnink, 2011). Applications for CARALL include 
helicopter struts and aircraft seats (Sinmazçelik et al., 2011). The general production 
process of FML involves stacking of the metal and prepregs together and curing under 
the vacuum and high temperature using an autoclave. The combined effect of 
temperature and pressure allows the excess resin to flow out and consolidates the plies 
to obtain FML with least amount of voids (Romli et al., 2017). The mechanical 
properties of FML highly depend on the constituent’s individual properties. Variants of 
FML can be obtained by the use of different alloy grades and various fibre 
architectures according to the strength requirements of an application. The most 
commonly used aerospace grade Al alloy in FML include 2024-T3, 7075-T6 and 6061-
T6 sheets of thickness 0.2 - 0.5mm.   

The interfacial bonding characteristic between the metal/composite plies is one of the 
main factors influencing the mechanical properties and failure behavior of FML. The
smooth surface of Al substrate results in poor interfacial adhesion with the composite 
plies. Thus, surface treatment of Al prior to the fabrication of FML has been 
performed. Al substrate to be bonded with composite ply is surface treated by various 
techniques such as mechanical abrasion, coupling agents, electrochemical and dry 
surface treatments which ensure good interfacial adhesion.  

The aircraft structures are subjected to the static loads like tensile, flexural, 
compressive, impact and fatigue loading during its lifetime (Almeida, Damato, 
Botelho, Pardini, & Rezende, 2008). The aircraft also operates in different weather 
conditions and altitudes with a varying temperature range between -55°C and 70°C.
The environmental factors such as temperature, humidity and radiation could also 
affect the material properties (Ypma & Borgonje, 2013).  

Vast amount of research works on CARALL, GLARE and ARALL could be found in 
the literature (Afaghi-Khatibi, Lawcock, Ye, & Mai, 2000; Fan, Guan, & Cantwell, 
2011; Kawai, Hachinohe, Takumida, & Kawase, 2001; Khan, Alderliesten, & 
Benedictus, 2009; GD Lawcock, Ye, Mai, & Sun, 1998; Linde, Pleitner, de Boer, & 
Carmone, 2004; Mahesh & Senthil Kumar, 2013; Ritchie, Yu, & Bucci, 1989; Rodi & 
Benedictus, 2010; Schijve, 1993; Shim, Alderliesten, Spearing, & Burianek, 2003; 
Takamatsu, Matsumura, Ogura, Shimokawa, & Kakuta, 1999; Vašek, Polak, & Kozak, 
1997; C. A. J. R. Vermeeren, 1990; G. Wu & Yang, 2005). The factors governing the 
mechanical properties and failure behavior of FML has been well documented till date. 
In the past few years, natural fibre reinforced FML has been emerging as a new class of 
material with the research works on FML has been focused on the use of natural fibres 
like kenaf (Mohammed et al., 2018; L. F. Ng, Sivakumar, Zakaria, Bapokutty, & 
Sivaraos, 2017; Lin Feng Ng, Sivakumar, Zakaria, & Selamat, 2017; Sivakumar, Ng, & 
Selamat, 2017), oil palm (Dhar Malingam, Selamat, Said, & Subramonian, 2016), flax 
(Afaghi Khatibi, Kandare, & Yoo, 2016; Kandare, Yoo, & Afaghi Khatibi, 2016), sisal 
(Vieira, dos Santos, Panzera, Rubio, & Scarpa, 2017), jute (Vasumathi & Murali, 
2016a), etc.    
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1.2 Problem statement 

GLARE, CARALL and ARALL are synthetic fibre based thermoset materials. These 
synthetic thermoset based materials have limitations due to environmental impacts such 
as difficulties in recycling, lower degradability, disposal requirements and emission of 
greenhouse gases associated with the production of synthetic fibres (Pervaiz & Sain, 
2003; Ribeiro et al., 2016; Roberts, 2011). Also, widespread application of synthetic 
fibre reinforced composites in various industrial applications like construction, 
automobile, wind energy, etc. has led to increase in demand for the synthetic fibres 
(Beauson, Lilholt, & Brøndsted, 2014; Zaman, Gutub, & Wafa, 2013). These aspects 
have urged the researchers and manufacturers to focus on the environmentally friendly 
and cost effective materials which could substitute the synthetic materials. Use of 
natural fibres in FML could be a promising solution. The research on pure natural fibre 
based FML and natural/synthetic fibre based FML has been gaining increased attention 
among the researchers as mentioned in section 1.1. However, till date, the literature on 
natural fibre based FML is very limited.  

Natural fibres have advantages like low density, biodegradability and they are 
abundantly available (Muralidhar, 2013; J. Sahari, S. Sapuan, E. Zainudin, & M. A. 
Maleque, 2013; Yan, Chouw, & Jayaraman, 2014). However, the natural fibre and their 
composites have inferior strength compared to the synthetic fibre and their composites 
(Begum & Islam, 2013). So, one way to eliminate this limitation is to hybridize with 
other fibres (Gupta & Srivastava, 2016). Hybrid composites based on the 
synthetic/natural fibres possess good mechanical properties and they could be 
implemented in the high performance applications (Jawaid & Khalil, 2011). In this 
research, flax and sugar palm fibres have been chosen as reinforcements. Among the 
natural fibres, flax has superior strength and modulus equivalent to E-glass fibres 
(Célino, Fréour, Jacquemin, & Casari, 2013; Kabir, Wang, Lau, & Cardona, 2012; 
Phillips, Baets, Lessard, Hubert, & Verpoest, 2013). This makes them a potential 
candidate for the high performance applications. On the other hand, sugar palm fibres 
have lower density and are suitable for reinforcement in the composite materials. Since 
sugar palm is a native crop of Malaysia, their use as reinforcement in composites and 
FML could be of benefit to the financial point of view in generating income, business 
opportunities and various products. The fibres can also be extracted without cutting the 
tree, thereby no damage to the environment (Ishak et al., 2013). To date, sugar palm 
fibres were not used as reinforcements in FML and their mechanical properties remain 
unexplored. In order to determine their response to various mechanical loads and their 
failure behavior under such loads, it is necessary to assess their mechanical 
performance under various loads. 

Interfacial bonding between the metal alloy and the composite ply is crucial for the 
overall performance of the material. Lack of sufficient bonding between the metal and 
the composite layers can lead to the delamination and pre-mature failure. Ostapiuk et al 
fabricated CARALL without any metal surface treatment and found that there was no 
bonding between the metal layer and the prepregs after curing as shown in Figure 1.2 
(Ostapiuk, Surowska, & Bieniaś, 2014). Similar observation on GLARE was reported 
by Benedict in his thesis work. GLARE coupons manufactured without any surface 
preparation displayed delamination post curing while a simple sandblasting of Al 
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helped in bonding (Benedict, 2012). This implies that smooth surface of Al cannot 
ensure good bonding with the prepreg.  

Figure 1.2: Delamination between the metal/prepreg in FML with smooth metal 
surface without any treatment (Ostapiuk et al., 2014)

Thus, surface preparation of Al before the fabrication process is an important pre-
requisite. Various metal surface treatment techniques have been used by the researchers 
and aircraft manufacturers to achieve good interfacial bonding. Those include 
mechanical abrasion, chemical etching, electrochemical treatment and use of coupling 
agents (Sinmazçelik et al., 2011). 

FML has superior resistance to the combined effect of moisture/temperature due to the 
presence of Al on the top and bottom surface and it acts as a barrier. The moisture can 
seep through these damages, micro-cracks, holes, gaps and free edges and this could 
lead to deteriorating effect on the mechanical properties of FML. A number of research 
works on the effect of combined moisture/temperature on mechanical properties of the 
synthetic fibre reinforced FML could be found in the literature. In most of the studies, 
GLARE and CARALL has been exposed to the freezing temperature (below 0 °C to 
cryogenic temperature) and hygrothermal conditions (70 °C - 80 °C). Both GLARE 
and CARALL displayed marginal decrease in the mechanical properties due to these 
conditions. However, hygrothermal conditioning could have much higher impact on the 
performance of natural fibre based FML. This is because of the hydrophilic nature of 
the natural fibres which are susceptible to degradation under hygrothermal conditions 
(Scida, Assarar, Poilâne, & Ayad, 2013). As per the researcher’s knowledge, none of 
the studies exist on the degradation effects of natural fibre based FML exposed to the 
freezing temperature and hygrothermal conditions. Hence, it is necessary to understand 
the impact of such factors on the mechanical properties of the natural fibre based FML. 

1.3 Research objectives 

The general aim of this research is to fabricate and evaluate the mechanical properties 
of FML with carbon prepreg, flax and sugar palm fibres under various conditions. The 
study involves the following objectives:  
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1. To investigate the influence of surface treatments of Al and natural fibre
stacking sequence on the mechanical properties of FML.

2. To study the influence of hygrothermal conditions on the physical/mechanical
properties and failure behavior of the fabricated FML.

3. To determine the effect of sub-zero temperature on the physical/mechanical
properties and failure behavior of the fabricated FML.

4. To study the fatigue properties of unexposed, hygrothermal and sub-zero
conditioned FML.

1.4  Scope and Limitations of the study 

The main novelty of the study is credited to the fabrication and characterization of 
FML with flax and sugar palm fibres through the experimental approach. Variants in 
FML with pure flax, pure sugar palm, and hybrid combination with flax/sugar palm in 
the outer layer/core and vice-versa are fabricated by the hand layup and hot press 
technique. The metal surface has been prepared by sanding as a stand-alone process 
and sanding & silane surface treatments. Their mechanical properties such as tensile, 
flexural, compressive, inter-laminar shear and fatigue properties are determined before 
and after the exposure to the hygrothermal and sub-zero conditions. Hygrothermal 
conditioning is performed in a water bath at 80 °C for 120 h and sub-zero conditioning 
was carried out in a freezer at -40 °C for 72 h. The failure behavior is discussed with 
visual images and scanning electron microscope (SEM) images to understand the 
failure behavior and changes to microstructure due to the conditioning.  

In this research, flax and sugar palm fibre reinforcements are used in FML. Flax fibres 
are readily available in long fibres, mat and chopped form for reinforcement in the 
composites as well as in prepreg form impregnated with the epoxy resin from 
LineoTM,France (Lineo). However, the price range for the material is between 1000 
EUR – 2000 EUR for 30 - 60 m2 roll excluding the excise duty and equivalent to the 
price of synthetic fibres. Despite of their higher cost, the superior strength and modulus 
offered by the flax fibres is the driving factor for their use in this research.  Thus, with 
the availability of natural fibre based prepregs at low cost, this limitation could be 
addressed. Due to the unavailability of sugar palm fibre based prepreg, flax and sugar 
palm reinforced epoxy composite plies are used for the purpose of consistency and 
comparison. The objective of the research work is to develop an environment friendly 
FML without compromising the strength requirements.

1.5  Thesis layout 

Chapter 1 presents the concept of FML, historical development and their current 
applications. The problems associated with the present material, current research focus, 
objectives and scope of the study are further discussed.  

Chapter 2 provides a detailed literature and critical review on the factors influencing 
the mechanical properties of FML within the scope of the study. The response of FML 
to various loads and its failure behaviour under the various conditions are explained. 
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Chapter 3 covers the details on materials and methodology followed in the fabrication 
and testing. Material specifications, fabrication procedure, metal surface treatment 
techniques, exposure conditions, parameters such as dimensions, cross head speed and 
properties assessed in each testing method has been provided. 

Chapter 4 contains the results, observations and discussions from the study. A 
comparison of the obtained material properties and failure behaviour with the existing 
literature on the natural fibre reinforced FML and synthetic fibre based FML are made.  

Chapter 5 concludes the study with research findings and recommendations for the 
future research.

1.6 Contribution of the Thesis 

The research contributions from the present study are as follows: 

 Use of flax and sugar palm fibres in combination with the Al/adhesive 
layer/carbon to fabricate hybrid FML. 

 Fabrication of the 2/1 lay-up hybrid FML with hand lay-up and hot press 
technique. 

 Examine the effect of fibre stacking sequence and metal surface treatment on 
the mechanical properties of hybrid FML. 

 Identify the extent of degradation effects on physical and mechanical 
properties of hybrid FML due to the hygrothermal conditioning and sub-zero 
exposure.  

 Determine the possibility of using hybrid FML with the natural/synthetic in 
structural applications of the aircraft. 
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