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Abstract: The mismatch between freshwater demand and its availability is a major problem that
causes global water scarcity. The exploration and utilization of rainwater seem to be viable options
for minimizing the aforementioned issue. This manuscript reviews the prospects and challenges
of the rainwater harvesting system (RWHS) in Malaysia. Malaysia can be categorized as a country
that has high annual rainfall, as well as high domestic water consumption. Thus, Malaysia is well
positioned to harvest rainwater for both potable and non-potable uses. Although the RWH guidelines
were issued in Malaysia in 1999, the implementation of RWHS as an alternative water resource is still
very limited due to its long return on investment and poor public acceptance. Major future challenges
on the implementation of RWHS in Malaysia are to achieve competitive cost, the wide application
of commercial buildings, a cost effective treatment system, effective policy implementation, the
application of green materials, public perception improvement, and reliable first flush technology.
Some recommendations such as providing appropriate subsidies and limiting the use of piped water
are necessary for implementing RWHS at wider scales.
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1. Introduction

In the new global development, freshwater scarcity has become a central issue in sustainable
development. It is obvious that this issue is becoming a threat, as well as the largest global risk in
terms of its potential impact. The main driving forces for the rising global demand for freshwater are
the increasing world population, improving living standards, changing consumption patterns, and the
expansion of irrigated agriculture [1–3]. In addition, the mismatch between freshwater demand and
availability is the essence of global water scarcity. Therefore, several studies have been carried out to
assess global water scarcity in terms of physical, social, and economical aspects [1,4–6].

In order to reduce and minimize water scarcity consequences, the use of rainwater has been widely
accepted as a reliable alternative. Studies on the rainwater harvesting system (RWHS), particularly
on the techniques and treatment system, have increased significantly in recent years [7–14]. RWHS
can be defined as the collection and storage of rainwater for use rather than to waste it as runoff.
In general, RWHS techniques can be categorized into two types, namely surface runoff and roof
top RWHS. The advantages of RWHS include potable water savings, the mitigation of flooding in
urban catchments, and the reduction of nutrient loads to waterways. In addition, RWHS has other
advantages in terms of a lower carbon footprint compared to other water supply systems and more
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efficient energy use because less pumping is required from source to consumer [11,15]. Moreover,
RWHS has the potential to simultaneously address water scarcity problem and reduce dependency on
domestic water supply [16].

The selected strategies on the benefit of RWHS are listed in Table 1. It is noted that RWHS have
many benefits related to the economy, the environment, technology, and society. For economic benefits,
annual domestic cost savings of up to $240 per house can be obtained when implementing the system [17].
In addition, RWHS was expected to be more economical for a higher water tariff [18]. In terms of the
environmental benefits, a study in South Korea found that RWHS can reduce up to 10% of flood [19].
This is in line with another study that recommends that RWHS is less economical for water supply
alone, unless it is also considered as flood control technology [20]. There is also the potential to
delay the development of a new storage infrastructure, because RWHS can reduce domestic water
demand [21]. For technology and social benefits, RWHS provides as an alternative water resource and
reduces water-related health risks [22–24].

It is well established that RWHS is capable of reducing peak water demands on the urban water
supply [25]. The implementation of RWHS in several areas in New South Wales, Australia has resulted
in considerable savings of water from the main supply, even in relatively low rainfall areas [25].
The benefits of reduced volume and peak demand can be translated in terms of smaller infrastructure
size and savings of operation and maintenance costs [26–29]. For instance, in a suburban area of
Melbourne, the use of rainwater tanks can reduce up to 18% and 53% of the network pipe sizes and
operational costs [27]. Moreover, a considerable reduction in operating costs and greenhouse gas
emissions of regional water supply systems can also be obtained by implementing RWHS [25].

Table 1. Selected strategies on the benefit of RWHS.

Categories Finding Location Reference

Economy

RWHS in a dry and highly populated urban
area is less attractive under the present low
water tariff scenario but it becomes more
promising with increasing tariff.

Barcelona, Spain Farreny et al. [18]

Annual domestic cost saving up to $240 per
year per house.

Seven major cities in
Australia including Gold
Coast, Brisbane, Melbourne,
Sydney, Adelaide, Perth, and
Canberra

Tam et al. [17]

The benefit of RWHS for water supply
alone is less economical unless other
benefits such as for flood control are
considered.

United Kingdom Fewkes [20]

Environment

RWHS is predicted to reduce flooding
by 10%. Korea Kim and Yoo [19]

Prolong the water storage to be used
during dry periods.

Abeokuta, Southwestern
part of Nigeria Aladenola and Adeboye [30]

RWHS is utilised widely in areas with poor
water supplies.

North of Carolina,
United States Jones and Hunt [31]

Reduce dependency on piped water and
delay the development of new storage
infrastructure.

The Lower Hunter and
Central Coast region of
New South Wales, Australia

Coombes et al. [21]

Large scale rainwater tank can reduce peak
flow in sewer system. Belgium Vaes and Berlamont [32]

Meet up to 34% of domestic water use and
10% reduction in peak discharge if all
houses in the residential area are installed
with RWHS.

Malaysia Shaaban and Appan [33]

Technology and Social

Effective control of stormwater and water
conservation, as well as an alternative
water resource.

Canada Farahbakhsh et al. [22]

Improve household water management in
rural area and reduce water-related
health risks.

Uganda Baguma et al. [23]

Supplement the existing groundwater and
surface water resources. RW is cleaner than
the existing supply.

Jordan Abdulla and Al-shareef [24]
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Since RWHS could potentially reduce dependency on the domestic water supply, this system has been
implemented in various areas such as agricultural [34–36], residential [37–47], and commercial [7,16,48–51],
as presented in Table 2. For residential buildings, high percentage reliability above 95% can be
achieved by implementing RWHS for several counties such as Australia [52], USA [53], and Iran [54].
When RWHS is implemented for large roof and high water consumption such as commercial buildings,
up to 37% reliability can be obtained [51]. For agricultural fields, the implementation of new techniques
with rainwater involvement can improve the yields compared to conventional technique [35].

Also, various methods have been implemented to optimize RWHS [12,13,55]. Hudzori [56]
proposed a mathematical model for optimizing water storage tank and water utility supply for RWHS
using daily rainfall data in Nusajaya, Johor Bahru. According to Chiu et al. [57], optimum tank size
and energy consumption are indicators of the reliability of the system and become economically
feasible when both energy and water savings are addressed together. In addition, designing RWHS
under different climatic regimes in Italy was also conducted [58]. Their study reported that the
performance of RWHS can also be analyzed using demand fraction and the modified storage fraction.
Various investigations that aim to implement RWHS in UK have also been conducted such as technical
framework [59,60] and socio-technical practices [61,62]. Therefore, several innovations of RWHS by
implementing gravity or non-gravity have been established in UK [60].

Table 2. Example of implementation of RWHS.

Location Application of RWH Findings Reference

Australia Residential buildings Up to 99% reliability can be achieved by
implementing RWHS for non-potable use Rahman et al. [52]

Australia Residential buildings
RWHS can meet 96% to 99% and 69% to 99% of the
water demand in wettest and driest years,
respectively.

Hajani and Rahman [63]

New York Residential buildings RWHS can meet 7 to 95% of the water demands. Basinger et al. [53]

Iran Residential buildings

RWHS reliability ranges from 1.6–58.3%,
11.9–98.9%, and 0.9–31.6% for Mediterranean
(rainfall 288 mm/year), humid (rainfall 1355
mm/year), and arid climates (rainfall 150
mm/year), respectively

Rashidi Mehrabadi et al. [54]

Portugal Commercial buildings RWHS is very reliable for pavement washing and
garden irrigation Matos et al. [7]

Australia Commercial buildings RWHS reliability can reach 37% of the
water demands Cook et al. [51]

To encourage implementation of RWHS, several countries have issued legislations as presented
in Table 3. For instance, the Japanese government offers subsidy and low interest loan to premises
for RWHS installation [64]. Alternatively, rebates and tax exemptions are also provided to encourage
the implementation of RWHS [65,66]. The Spainish and Belgian governments have mandated the
implementation of RWHS for new buildings with a certain roof area [65]. The aforementioned facts
reveal that the countries have paid attention to water management practices and serious sought to
find an alternative water resource.
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Table 3. Legislation and incentive to encourage the use of RWHS in the world.

Country Legislation and Application Reference

Japan Subsidy and low interest loan are provided by the
government to premises for RWHS installation. Furumai et al. [64]

Australia The government offers up to $500 rebates to houses that
install a RWHS. Rahman et al. [67]

Taiwan
A new guideline for RWHS as new water conservation
alternative for domestic water use is issued for
national buildings.

Cheng et al. [68]

Uganda The government provides subsidies to RWHS construction
materials in rural areas. Baguma and Loiskandl [69]

Jordan The government has incorporated RWHS in the water
demand management policy. Abdel Khaleq and Dziegielewski [70]

Spain The government has made it mandatory for new buildings
with a certain garden area to install RWHS. Domènech and Saurí [65]

Brazil The government has promoted a programme that aims to
install one million cisterns in semi-arid areas. Domènech and Saurí [65]

Belgium The government has mandated for new buildings with a
roof area greater than 100 m2 to install RWHS. Domènech and Saurí [65]

USA (Texas) The government provides rebates and tax exemptions to
foster rainwater use. Domènech and Saurí [65]

Germany Premises with RWHS are exempted from stormwater taxes. Herrmann and Schmida [66]

Malaysia is a tropical country that is relatively rich in water resources with an average annual
rainfall of 2400 mm [71]. Although Malaysia has never experienced any serious water crisis in the
past few decades, uneven distribution of rainfall over space and time has led to some areas suffering
from dry spells, while others have been affected by major flooding. The aforementioned facts revealed
that the use of rainwater for alternative water resources and flash flood reduction is crucial and has a
high potential.

2. Water Issues in Malaysia

The future rainfall in several states in Malaysia is predicted to decrease due to climate change
effects [72]. The predicted change in the rainfall regime would have serious water supply repercussions
in highly populated urban areas [73]. In general, annual rainfall map in Malaysia is shown in Figure 1.
For comprehensive knowledge, the frequent rain event in Malaysia ranges from 132 to 181 days/year
as presented in Table 5. In addition, Figure 2a shows average annual non-revenue water levels over
Malaysia from 2010 to 2016 with an average of 36% [74]. For various states in Malaysia, the lowest and
highest non-revenue water levels are P. Pinang (19%) and Pahang (50%), respectively.Water 2018, 10, x FOR PEER REVIEW  5 of 21 
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Figure 1. Annual rainfall intensity map over Malaysia [75].



Water 2018, 10, 506 5 of 21

Water 2018, 10, x FOR PEER REVIEW  5 of 21 

 

 

 

Figure 1. Annual rainfall intensity map over Malaysia [75]. 

  
(a) (b) 

 
(c) 

Figure 2. (a) Non-revenue water, (b) domestic water consumption, and (c) water tariff for Johor, 

Malaysia. RM1 is equal to 0.28USD obtained from an average currency data from 01/2008 to 01/2018. 

Moreover, Malaysia can be categorized as one of the countries that has high domestic water 

consumption, which ranges from 209 to 228 liters per capita per day (lcd) as shown in Figure 2b. The 

consumption is still above the recommended target by the World Health Organisation (WHO), 

which is 165 lcd [74]. In this context, Penang records the highest water domestic consumption, while 

Sabah is the lowest. Moreover, Malaysians use much more water than their neighbors, 

Singaporeans, which is only 143 lcd in 2017 [76]. Therefore, Malaysia may undergo a water shortage 

crisis in the foreseeable future if water consumption is not improved. 

2010 2011 2012 2013 2014 2015 2016
0

5

10

15

20

25

30

35

40

Time (Year)

N
o

n
-r

ev
en

u
e 

w
a

te
r 

(%
)

2009 2010 2011 2012 2013 2014 2015 2016
0

50

100

150

200

250

300

Time (Year)

D
o

m
es

ti
c 

co
n

su
m

p
ti

o
n

 (
lc

d
)

 

 

Malaysian water consumption

Allowable limit by WHO

1960 1970 1980 1990 2000 2010 2020
0

0.5

1

1.5

2

2.5

3

3.5

Time (Year)

W
a

te
r 

ta
ri

ff
 (

R
M

/m
3 )

Figure 2. (a) Non-revenue water, (b) domestic water consumption, and (c) water tariff for Johor,
Malaysia. RM1 is equal to 0.28USD obtained from an average currency data from 01/2008 to 01/2018.

Moreover, Malaysia can be categorized as one of the countries that has high domestic water
consumption, which ranges from 209 to 228 liters per capita per day (lcd) as shown in Figure 2b.
The consumption is still above the recommended target by the World Health Organisation (WHO),
which is 165 lcd [74]. In this context, Penang records the highest water domestic consumption, while
Sabah is the lowest. Moreover, Malaysians use much more water than their neighbors, Singaporeans,
which is only 143 lcd in 2017 [76]. Therefore, Malaysia may undergo a water shortage crisis in the
foreseeable future if water consumption is not improved.

Although, in general, the water tariff in Malaysia is still low compared developed countries
(see Table 4), the tariff shows increasing trend for all states. For instance, in Johor, the commercial
water tariff has been increasing from RM0.37/m3 in 1965 to RM3.0 m3 in 2015 and is still predicted to
increase further as presented in Figure 2c [77]. This situation might become problematic for developing
countries including Malaysia, particularly for the poor who have to allocate a greater proportion of
their income to getting clean water.
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Table 4. Current water tariff in Malaysia [77].

State Domestic Non-Domestic

Johor 3.00 3.30
Kedah 1.30 1.80

Kelantan 1.42 1.80
Labuan 2.00 2.28
Melaka 1.45 2.05

N. Sembilan 1.40 2.70
P. Pinang 1.30 1.45
Pahang 0.99 0.99
Perak 1.03 1.40
Perlis 1.10 1.30

Selangor 2.00 2.28
Terengganu 1.00 1.15

The above water tariff is presented in RM/m3.

Table 5. Mean annual rainfall and number of rain-days for selected towns [78].

Name of Town Period of Record Number of Rain-Day/Year

Alor Star 1948–2007 147
Ipoh 1972–2008 181

Klang 1953–2008 132
Kuala Lumpur 1953–2008 177

Seremban 1959–2008 141
Melaka 1954–1998 179
Kluang 1948–2006 163

Johor Bahru 1948–2007 158
Kota Bharu 1981–2008 138

Kuala Terengganu 1954–2008 161
Kuantan 1948–2008 136

Kota Kinabalu 1985–2009 177

The water demand in Malaysia is observed to increase from 10.4 billion m3/year in 1998 to
12.1 billion m3/year in 2010 and is projected to increase further to 17.7 billion m3/year in 2050 [79]. It is
well known that 97% of water supply in Malaysia is abstracted from surface water sources, primarily
rivers [80]. Malaysia has 189 river basins (89 in Peninsular Malaysia, 78 in Sabah, and 22 in Sarawak).
However, in some highly developed and populated areas such as in Selangor, Putrajaya, and Federal
Territory of Kuala Lumpur, the river resources have been fully exploited [81]. Therefore, an alternative
water resource should be introduced to reduce over dependence on river water and helping the poor
to reduce the water bill.

3. Global Perspective of RWHS

RWHS can be defined as direct collection of rainwater from roof and other purpose-built
catchments and the collection of sheet runoff from man-made ground or natural surface catchment
and rock catchment for potable and non-potable uses. Studies on RWHS have been intensively carried
out, since this system has several advantages for the environment and community [82–91]. Over the
past four decades, the number of studies related to RWHS has increased exponentially as shown in
Figure 3 based on a keyword ‘RWHS’ in Scopus database. At the time of this research, total publication
related to the topic identified via keywords “rainwater harvesting” is 2000.
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RWHS provides high quality water, reduces reliance on the piped water, and generally is cost
effective. The RWHS can range in size from simple to large scale systems. An approach of RWHS
collected from the roof of a building provides the practical and effective utilization of rainwater. RWHS
can be applied for both small and large-scale premises, but certain criteria need to be satisfied before
implementing the system.

4. RWHS in Malaysia

4.1. Policy

The severe drought in 1998, especially in Klang Valley, has triggered the Malaysian government
to embark RWHS. Following this water crisis, the Ministry of Housing and Local Government has
promoted houses to install rainwater collector. Therefore, the government has issued a guideline on
installing a rainwater collection and utilization system in 1999. Following this, various initiatives in
the form of policies and guidelines have been formulated by various agencies (Table 6). This is to
facilitate the implementation of RWHS for residential and government buildings.

To support the program, several projects have been carried out by the Malaysian government
(see Table 7). In addition, it can be seen from Table 7 that various RWHS projects such as underground
and aboveground tanks have been implemented. Most RWHS projects in Malaysia use high-density
polyethylene (HDPE) for the aboveground tanks. Total costs to install RWHS range from RM 20,000 to
RM 350,000 depending on the size and type of building. The Malaysian government pays attention to
RWHS as an alternative resource to reduce over dependence on river and other surface waters.
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Table 6. Policies and guidelines related to RWHS under Malaysian government [93].

Guidelines Department/Agency Year

Guidelines for installing a Rainwater Collection
and Utilization System Ministry of Housing and Local Government 1999

RWHS: Guidebook on Planning and Design Department of Irrigation and Drainage Malaysia (DID
Malaysia) 2009

Guideline on Eco-Efficiency in Water
Infrastructure for public Buildings in Malaysia National Hydraulic Research Institute of Malaysia 2011

Urban Stormwater Management Manual for
Malaysia, MSMA 2nd Edition DID Malaysia 2012

Panduan Pelaksanaan Inisiatif Pembangunan
Kejiranan Hijau—Sistem Pengumpulan dan
Penggunaan Semula Air Hujan

Federal Town and Country Planning Department 2012

Garis Panduan Perancangan Kejiranan Hijau Federal Town and Country Planning Department 2012

Garis Panduan Sistem Pengumpulan dan
Penggunaan Air Hujan

Federal Town and Country Planning Department, Ministry
of Urban Wellbeing, Housing and Local Government 2013

Urban Stormwater Management—Part 6: RWHS,
MS2526-6:2014 Department of Standards Malaysia 2014

Table 7. Selected RWHS implemented by DID Malaysia [94].

Location Tank Category Cost (RM)

DID Office, HQ KL Underground Tank 200,000
DID District Office, Bera, Pahang Underground Pipe Package 48,000
DID District Office, Raub, Pahang Underground Pipe Package 185,000

DID District Office, Balik Pulau, P. Pinang Underground Pipe Package 48,000
DID District Office, Seberang Perai, P. Pinang Underground Tank 180,000

DID District Office, Langkawi, Kedah Above ground HDPE Tank 200,000
DID District Office, Pasir Putih, Kelantan Above ground HDPE Tank 200,000

DID District Office, Kuala Berang, Tere ngganu Above ground HDPE Tank 200,000
DID District Office, Miri, Sarawak Underground Pipe Package 145,000

DID Mechanical Office, Ipoh, Perak Above ground HDPE Tank 200,000
University Tun Hussein Onn Hostel Underground Tank 350,000

MARDI Office, Cameron Highlands, Pahang Above ground HDPE Tank 40,000
State Mosque, P. Pinang Underground Tank 125,000

Bukit Indah Mosque, Ampang, Selangor Underground Tank 200,000
Building Complex, Tioman, Pahang Above ground HDPE Tank 200,000

Buffalo Park, Langkawi, Kedah Above ground HDPE Tank 100,000
Bungalow House, Bangi, Selangor Underground Pipe Package 20,000
Terrace House, Gombak, Selangor Above ground HDPE Tank 20,000

National Zoo, Ampang, Selangor Above ground Concrete Tank &
Underground HDPE Tank 400,000

4.2. Study Trend

Since the launching of RWHS program in Malaysia, several studies have been carried out to
support this initiative [55,95–101]. Until today, total publication related to the topic identified via
keywords “RWHS” is 47 as presented in Table 8 [92]. Universiti Putra Malaysia, Universiti Kebangsaan
Malaysia, University of Malaya, Universiti Teknologi MARA, and Universiti Teknologi Malaysia are
the top five institutions publishing RWHS topic as listed in Table 9.

Sultana et al. [98] evaluated the effects of green roof on rainwater quality. In general, the quality
of roof water is good and requires minimal treatment for dissolved oxygen (DO) and pH. Alternatively,
Abdul Ghani et al. [97] analyzed rainfall to determine the potential of RWHS site in Kuantan, Pahang.
The highest amount of rainfall was in December and the lowest in February. Moreover, Hamid and
Nordin [102] observed the reliability of RWHS installation system at a university hostel in Shah Alam,
Malaysia. It was estimated that the installation of RWHS would reduce usage of treated water by
about 6500 m3 per year and save up to RM 10,460 per year.

Hashim et al. [55] proposed a simulation-based program for optimization of large-scale RWHS.
Specifically, this study investigated the suitability of RWHS for a community of 200 houses with an
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average total daily water consumption of 160 m3. Their study found that the optimal size storage tank
for a 20,000 m2 roof area is 160 m3 with 60% reliability. In addition, their study also confirmed that
a significant water saving of up to 58% can be achieved using their proposed model. The estimated
total cost for the system is USD 443,861 and expected life-span of 25 years. Shaheed and Mohtar [101]
investigated suitability of the rainwater quality as alternative drinking water source in Selangor,
Malaysia. Their study confirmed that the physio-chemical quality parameters such as pH, DO, TSS,
COD, and NH3-N adhered to the drinking water standards permitted by the Malaysian authorities.

The above-mentioned works confirm that there is a need to promote RWHS at the biggest scale.
In this context, the National Hydraulic Research Institute of Malaysia (NAHRIM) has collaborated
with other government agencies such as DID, Department of Local Government, Universiti Teknologi
Malaysia, Universiti Sains Malaysia, and Universiti Malaya to conduct research on RWHS. Presently,
NAHRIM pursues research and development (R&D) of RWHS focusing on hydrologic and hydraulic
design, system design and performance, installation and operational costs, and water quality aspects.

Table 8. Total publication identified via keywords “rainwater harvesting” in Malaysia [92].

Year Number of Scientific Paper

2018 3
2017 10
2016 10
2015 7
2014 1
2013 6
2012 3
2011 3
2009 3
1989 1

Table 9. Top five institutions publishing RWHS topic [92].

Institution Number of Scientific Paper

Universiti Kebangsaan Malaysia 12
Universiti Putra Malaysia 10

University of Malaya 7
Universiti Teknologi MARA 5

Universiti Teknologi Malaysia 5

4.3. Benefit of RWHS

In general, the benefit of RWHS can be divided into two categories, namely, environmental and
economic [31]. For environmental benefit, it can be used as alternative water supply to supplement
piped water. When used at large scale, RWHS can help to reduce flash flood in urban area and
minimize soil erosion, as well as to prevent pollutant from entering water bodies [52].

Specifically, the economic benefit of RWHS has been examined by several researchers as
listed in Table 10. Since RWHS is very useful for non-potable water use, it has the potential to
reduce bills. Financial viability analysis of the RWHS was assessed for single and multi-family
buildings [65]. Their study found that the payback period of the RWHS investment was between
33 and 43 years, and 61 years for a 20 m3 tank for single and multi-family buildings, respectively.
Rashidi Mehrabadi et al. [54] found that it was possible to supply about 75% of non-potable water
demand by storing rainwater from larger roof areas in Iran. Since the benefit of RWHS is highly
dependent on water usage, system design, rainfall, and other uncertainty variables, its evaluation
of long-term performance is needed to better understand the effects of each variable on its benefits.
This is very useful as a basis for designing the future RWHS.
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Table 10. The economic feasibility of RWHS.

Location (Average
Rain, mm/Year) Approach of the Research r (%) t (Years) Finding Reference

Melbourne (650)

Water balance model for
the performance
analysis and design
of rainwater tanks

- 15 to 21

The construction cost can
be recovered within 15 to
21 years depending on the
considered variables.

Imteaz et al. [103]

West Yorkshire, UK
(∼700)

Life cycle costs analysis
(LCCA) of RWH 3.5 to 15 -

The domestic RWHS
generally resulted in
financial losses
approximately equal to
their capital costs.

Roebuck et al.
[104]

7 cities in Australia
(520 to 1597)

Costs of RWH compared
to other water
supply alternatives

3 6

Implementation of RWHS
is an economical option for
households compared to
others.

Tam et al. [17]

4 cities in Australia
(800 to 1600)

Feasibility of RWH in
high-rise buildings
(payback period)

6.5 8 to 23

City having the highest
rainfall provides the
shortest payback period in
implementing RWHS.

Zhang et al. [105]

Five towns in Brazil
(1483 to 2002)

Investment feasibility
analysis of RWHS - 1 to 30

The higher rainwater
demand provides more
economic feasibility.

Ghisi and
Schondermark

[106]

Three towns in
Melbourne

(454 to 1054)

Investment evaluation
of RWHS 5 to 10 30 to 46

Payback period is
comparatively low for a
large tank.

Khastagir and
Jayasuriya [107]

A commercial building
in Portugal

Economic Assessment of
the RWH 5 and 10 2 to 6

The lower discount rate
offers the reduction of the
payback periods.

Matos et al. [108]

Sydney metropolitan
area (675 to 1160) 2.4 8 to 90

Payback periods from 20
to 90 years can be achieved
without government
rebate. However, the
payback periods can be
brought down to 8 years
when a government rebate
is implemented.

Imteaz and
Moniruzzaman

[109]

r = discount rate and t = payback period.

4.4. RWHS Type

In Malaysia, several types of RWHS have been implemented, namely, backyard system, frontage
system, and underground system as shown in Figure 4 [110]. Backyard and frontage systems are also
established as ‘collection systems only’, because they have no distribution system. Backyard system
is the most popular, because it is cheap and easy to install compared to other systems that require
plumbing system. In this system, there are two approaches to locate the storage tank, either on the
ground or elevated. Ground tank is widely-established for RWHS development in various countries
such as Brazil [111], Australia [63], and Portugal [112], and continents such as Africa [113], while
the elevated tank commonly consists of three levels of tank, namely, top, middle, and lower levels.
The top-level tank is usually employed for water supply, while the middle and lower level tanks are
used for storing the collected rainwater. For this system, metal and polyethylene tanks are normally
used for elevated and ground tank, respectively.

For the frontage system, it adopts the same installation concept with backyard system. A modification
is usually done by replacing the polyethylene tank using the reinforced concrete tank to facilitate the
maintenance work. It is known that the concrete tank is more durable compared to polyethylene tank;
thus, it makes it more economical over the long-term [110]. It is also noted that the use of concrete
tank is relatively cheaper (up to 38% compared to polyethylene tanks [114]). As for the underground
system, the cost, which includes a pump, was about RM1700 for small scale systems such as home
consumption [110].
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Figure 4. Typical RWHS designs of (a) backyard system, (b) frontage system, and (c) underground
system implemented in Malaysia.

4.5. RWHS Software

Since a proper design of RWHS involves a lot of data and analysis, it is useful to use software
to expedite the process. Therefore, several computer-based models have been developed and
implemented such as the SimTanka2, Warwick calculator, and the Jomo Kenyatta University of
Agriculture and Technology’s RWHS (JKUAT-RWH) calculator [115]. The SimTanka2 and Warwick
calculator are developed to evaluate the optimal tank size of RWHS, whereas JKUAT-RWH calculator
is used to estimate the reliability of the system by performing a long-term time series of daily rainfall.
Alternatively, Yield After Spillage (YAS) software was designed to estimate the actual rainwater
availability and storage conditions [116].

In Malaysia, the software development has been tackled by NAHRIM. Tanki Nahrim is a famous
software for calculating the aforementioned analysis [117]. Hamid and Nordin [102] confirmed that
software is reliable for evaluating the reliability of a RWHS in a university hostel in Shah Alam,
Malaysia. This software was also used to estimate an optimum tank size of the RWHS in another
nearby college [118]. However, this software has limitations such as the absence of an economic
evaluation [55]. Therefore, a more complete RWHS software that integrates the physical design
and economic benefits is crucially needed. This is highly beneficial for providing comprehensive
knowledge and convenience to public in order to encourage the implementation of RWHS.

5. Future Challenges

5.1. Cost

The cost is still a problematic issue when applying RWHS for several areas. Initial cost and
maintenance are still debatable with regards to how this system can be affordable for all societies,
especially for people in the low income category. This limitation is associated with national income and
the low awareness of the community. Although water tariff in Malaysia is deemed as one of the lowest
compared to neighboring countries such as Singapore (2.39 USD/m3) and Indonesia (0.51 USD/m3),
the cost to install the RWHS is estimated between USD 400 and USD 3000 [93].

In order to maximize the benefits, an optimum RWHS design is highly crucial. In addition, the
material selection can also reduce the initial cost. Designing RWHS using gravity has the potential
to reduce the operation and maintenance cost compared to that system with pumping operation.
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Moreover, the government may provide subsidies to encourage the public to install the system. Also,
training and awareness campaigns are highly beneficial for enhancing the interest of the community.

5.2. Application

Currently, the application of RWHS in Malaysia is still limited to government buildings.
The exploration of other potential buildings such as commercial buildings is interesting, since they
usually has larger rooftop catchment area. For instance, total catchment area of 10,000 m2 can provide
a potential rainwater collection of 23,000 m3 annually. Since rainwater quality is almost free from
major contaminant [119], only minimum treatment is needed if it is to be used for domestic or
cooling purposes.

Therefore, the savings from implementing RWHS in commercial buildings are more rewarding
compared to small installations in houses, because the commercial water tariff is higher, and the water
consumption is bigger. The benefits of installing RWHS are more attractive when it is implemented
early during the design and construction phase as opposed to during the retrofitting of the existing
building. Therefore, implementation of RWHS in the foreseeable future should be more intensively
applied for large buildings.

5.3. Treatment System

Most of the existing RWHS is for non-potable uses, in which the water is used directly from
the collection tank. Although rainwater in Malaysia is relatively clean from major contaminants,
minimum treatment is still needed before it can be utilized for potable uses. Table 11 lists the roof
rainwater quality in Malaysia [120]. It is obvious that some parameters such as turbidity, lead, fecal
coliforms, and total coliforms are present above limit regulated by World Health Organization (WHO).
The aforementioned facts reveal that a simple treatment still needs to be done before the rainwater can
be widely used for potable uses.

Table 11. Summary of roof rainwater quality for different roof types in Malaysia.

Parameter Galvanized Iron Roof Concrete Roof WHO Standardization

pH 6.6 to 6.4 6.8 to 6.9 6.5 to 8.5
Turbidity (NTU) 10 to 22 25 to 25 5

Total solids (mg/L) 64 to 119 116 to 204 -
Suspended solid (mg/L) 52 to 91 95 to 153 -
Dissolved solid (mg/L) 13 to 28 23 to 47 -

Zinc (mg/L) 2.94 to 4.97 0.05 to 1.93 5
Lead (mg/L) 1.45 to 2.54 1.02 to 2.71 0.05

Fecal coliforms (MPN/100 Ml) 0 to 8 0 to 13 0
Total coliforms (MPN/100 mL) 25 to 63 41 to 75 0

Therefore, it is worthwhile incorporating a simple treatment system in order to maximize the
economic benefit of RWHS. Although many methods such as disinfection [121], slow sand filtration [9],
membrane filtration [122], pasteurization [9], ozonation [123], and adsorption [124,125] are possible,
their cost and suitability are important to be consider. In order to maximize the investment benefits, a
clear goal of constructing RWHS should be considered prior to installation.

The selection of rainwater treatment method has implications for the installation and maintenance
costs. For instance, non-potable uses of harvested rainwater such as toilet flushing, landscape irrigation,
and car washing do not require treatment. Conversely, the use of harvested rainwater for potable
uses such as drinking, cooking, shower, and cloth washing needs a cost-effective treatment method.
Treatment is also necessary when the harvested rainwater is used for chiller system. Therefore, it is
crucial to provide a cheap treatment method to maximize its economic benefit. In addition, a simple
treatment system with less maintenance has additional benefits for installation in rural areas. In this
regard, filtration with pH adjustment (to ±pH 7) would be sufficient for treating rainwater for chiller
system, whereas for domestic uses, additional treatment trough disinfection is necessary.
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5.4. Rainfall Characteristics

The success of RWHS is greatly dependent on the quantity and temporal pattern of the rainfall.
It was estimated that the percentage of reliability of RWHS for toilet flushing, laundry, and irrigation
use increased from 40% to 71% for study locations having an average annual rainfall ranging from
743 mm to 1325 mm in Australia [63]. As listed in Table 5, average annual rainfall in Malaysia varies
according to the region. For instance, Seremban and Kuantan have the lowest and the largest annual
rainfall, which are 1901 mm and 2881 mm, respectively.

To maximize its benefit, the development of RHWS in Malaysia should consider their rainfall
quantity. For a similar roof area and water consumption rate, the higher rainfall depth would be more
reliable. Moreover, being located in the humid tropic region, the number of rainy days in Malaysia is
high (138 days to 181 days/year). Thus, the use of RWHS should be maximized in order to have the
biggest water savings in the reservoir that is to be used during dry period. Considering the spatial
variation of rainfall in Malaysia, it is crucial to assess RWHS potential for various rainfall regions.

5.5. Policy

Although the Malaysian government has launched RWHS policy, the implementation has been
mostly confined to public buildings, and bungalows and semi-detached houses. The DID Malaysia
has been promoting RWHS projects for various types of buildings as listed in Table 7. For each project,
either above or underground RWHS tanks were installed. Most of the projects installed HDPE tank
except for National Zoo project, which used concrete tank. Depending on the tank size and category,
the installation cost ranges from RM 20,000 to RM 400,000.

For future, the RWHS policy should be extended to all buildings with large roof area such as
commercial buildings, which are expected to have a larger economic benefit. Unfortunately, the
existing policy is still quite loose [93]. There is no mention of the minimum requirement of tank size in
relation to roof area. In addition, commercial buildings are still not subjected to this policy. Therefore,
a comprehensive study considering an optimum tank size according to the various roof sizes and
climatic conditions in Malaysia should be carried out for foreseeable future as a scientific judgement
before issuing a legal policy.

5.6. Material

Rainwater is relatively clean but can be contaminated by the roof materials and deposition on the
roof surfaces. In older systems, the commonly used roof materials were steel, copper, aluminium, zinc,
or tin. Overtime, the roof materials become rusty and were subjected to leaching by rainwater, which
is normally quite acidic (about 5.6) [126]. Thus, it became a source of contaminant in the collected
rainwater. In addition, application of paint, tar, glue, sealant, and other protective materials in order to
lengthen the roof life span may contribute additional forms of contaminant. Moreover, there are various
types of tanks depending on the materials being used such as polyethylene, concrete, galvanized steel,
fiberglass, and stainless steel, which tend to rust overtime and could release certain chemicals.

These shortcomings could be overcome by introducing more inert and environmentally friendly
materials. For this purpose, natural resources such as rattan, bamboo, and oil palm in the form
of fibers or particles can be used as composite materials. Natural materials have been proven to
have physical and mechanical properties that are comparable to synthetic materials [127]. Therefore,
a comprehensive study by applying natural materials is needed crucially in Malaysia. This knowledge
is useful to inform the public that better collected rainwater quality can be obtained using inert and
environmentally friendly materials.

5.7. Public Perception

Despite various initiatives by the government to promote RWHS, acceptance among Malaysians
is still unsatisfactory. One of the main reasons for the poor acceptance is because of low water tariff.
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At the moment, Malaysians are paying between RM 0.96 and RM 3.05 depending on the water supply
service provider [77]. In addition, the average water tariff in Malaysia is among the lowest in the
world (0.20 USD/m3) compared to neighboring country of Singapore (2.39 USD/m3) and developed
countries such as Tokyo (2.0 USD/m3), Dubai (2.4 USD/m3), New York (3.1 USD/m3), Amsterdam
(5.2 USD/m3), and Copenhagen (7.3 USD/m3) [128].

Malaysia is also blessed with abundant rainfall with rare occurrences of significant drought.
This makes the general public feel that there is no necessity to explore other alternative water resources.
It is evident from the high rate of domestic water consumption, ranging from 209 to 228 lcd as
depicted in Figure 2b compared to best practice of 165 lcd as benchmarked by WHO [74]. Finally,
the public is inadequately educated on the importance of rainwater utilization within the context of
water demand management. Both strategies in terms of penalty and incentive are crucial for ensuring
fuller implementation of rainwater harvesting at residential, commercial, and industrial premises.
For instance, Singapore imposes penalty in the form of much higher tariff when a factory exceeds
certain limit of water usage from public supply [129]. On the other hand, Malaysian government
can offer incentive by providing rebate to premises owner who installs RWHS. In addition, a proper
awareness program is necessary to educate the public on how RWHS can be implemented to reduce
the dependency on domestic water supply.

5.8. First Flush Technology

One of challenges in using rainwater is to minimize pollution associated with the first flush.
The source of contamination may come from leach out of roof materials, dry deposition, and bird
droppings. Traditionally, this can be carried out by manually diverting the first flush from entering
into the collection tank. However, this requires the personnel to be on standby. Figure 5 shows typical
design of first flush device of RWHS. The existing flush systems still have weaknesses, because the
first flush collector has to be emptied manually. In view of the frequent rain event in Malaysia ranging
from 132 to 181 days/year as presented in Table 5, this manual removal is not practical, and the
collected rainwater is exposed to contamination when the first flush collector is not emptied prior to
the next storm event. Therefore, it is possible to automize the first flush by using floating system or
mechanical devices.

In Malaysia, the rainfall duration is usually between 0.5 h to 3 h with averages dry period
between rainfall ranging from 2.0 to 2.8 days [130]. However, rainfall duration during monsoon period
(November to early January) in the east coast region of Peninsular Malaysia may prolong to several
days. Automatic emptying of first flush collector is recommended when labor and investment costs are
not an issue and high quality roof water is required. Nevertheless, manual emptying is more practical
for small scale RWHS in order to minimize the investment cost. In this case, it is necessary to educate
the public on the need to consistently empty the first flush collector to avoid possible contamination.
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6. Recommendations to Encourage RWHS in Malaysia

6.1. Subsidies

It is noticed that rainwater harvesting scheme is less attractive in many developing countries.
This is because of the high installation and maintenance cost, as well as low water tariff, which result in
a long payback period. On the other hand, the success of RWHS in developed countries is contributed
to by the support from the government, especially during the initial stages of implementation.

Several countries have introduced subsidies for the premise owner who installed RWHS.
For instance in Spain, there are subsidies of up to €1200 for each house owner who has installed
RWHS on their own initiative [65]. Australian government has also launched the Home Water Wise
Rebate scheme, which provides subsidies to residents who have implemented RWHS for non-potable
domestics uses [131]. In Germany, the government supported the installation of RWHS in new or
existing households by subsidizing 1/3 of the total costs or up to €2000 [132]. Other countries such as
Japan, Uganda, USA, and Germany have also paid attention to encourage RWHS implementation by
providing subsidy and low interest, subsidy for construction materials, rebates and tax exemptions,
and exemptions from stormwater taxes, respectively. Therefore, similar subsidy scheme can be adopted
to boost the implementation of RWHS in Malaysia.

6.2. Regulate Piped Water Use

Another instrument that could be adopted by the Malaysian government to encourage RWHS
is by restricting the use of piped water, especially during critical periods. Such measure has
been implemented in Australia by restricting the use of water for non-essential purposes such as
watering lawns and washing cars at individual premises for certain states particularly during drought
seasons [133]. In Singapore, an additional fee of 3.69 S$/m3, which is increased more than the normal
tariff (2.74 S$/m3), is collected when the amount of water used exceeds 40 m3 [134]. Similarly, the local
water and sewage utility in Brazil imposes a much higher tariff (5.66 R$/m3) when the consumption is
higher than 10 m3/month compared to the normal rate (3.43 R$/m3) [135].

Malaysia could emulate such strategy by first educating the public using formal and informal
platforms, especially among school children. This should be strengthened by regulations and
guidelines. The benefit could be highlighted by providing appropriate tools such as rainwater
harvesting software, which includes system design and economic assessment. Moreover, the present
water tariff structures in Malaysia seem to be less effective at encouraging the public to save water.
A higher water tariff that could change water use behavior might be necessary. Alternatively, more
stringent regulation could be introduced for non-essential purposes, particularly for states that
experience long dry period and have limited water resources.

7. Conclusions

This paper evaluated the progress of rainwater harvesting implementation globally with a focus on
making possible improvements in Malaysia. The implementation of RWHS in Malaysia is very timely
because of several water issues such as increasing water demand, high rainfall, and over-dependent on
surface water. It is proven that RWHS could offer various socio-economic and environmental benefits.
The benefits are bill saving, flash flood reduction, and delaying the need for constructing new water
supply infrastructure. Malaysian government has long implemented RWHS, especially in government
and public buildings. However, overall the success is still inadequate mainly due to the relatively high
investment, low water tariff, lack of incentive from the authorities, low public awareness, and poor
enforcement. RWHS is more profitable when implemented on a large scale such as in commercial
buildings compared to small scale systems in a residential area. This is because of the large roof area
that provides enough volume for high consumption in addition to a higher water tariff compared to a
domestic tariff. Several improvements on policy implementation are necessary in order to gain wider
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acceptance of RWHS, which includes providing an appropriate incentive and regulating the excessive
use of piped water.
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85. Almazroui, M.; Islam, M.N.; Balkhair, K.S.; Şen, Z.; Masood, A. Rainwater harvesting possibility under

climate change: A basin-scale case study over western province of Saudi Arabia. Atmos. Res. 2017, 189,
11–23. [CrossRef]

86. Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.;
Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future
perspectives. Water Res. 2017, 115, 195–209. [CrossRef] [PubMed]

87. Mwamila, T.B.; Han, M.Y.; Ndomba, P.M.; Katambara, Z. Performance evaluation of rainwater harvesting
system and strategy for dry season challenge. Water Pract. Technol. 2016, 11, 829–837. [CrossRef]

88. Asadieh, B.; Krakauer, N.Y. Impacts of changes in precipitation amount and distribution on water resources
studied using a model rainwater harvesting system. J. Am. Water Resour. Assoc. 2016, 52, 1450–1471.
[CrossRef]

89. Assefa, S.; Biazin, B.; Muluneh, A.; Yimer, F.; Haileslassie, A. Rainwater harvesting for supplemental
irrigation of onions in the southern dry lands of Ethiopia. Agric. Water Manag. 2016, 178, 325–334. [CrossRef]

90. Haque, M.M.; Rahman, A.; Samali, B. Evaluation of climate change impacts on rainwater harvesting.
J. Clean. Prod. 2016, 137, 60–69. [CrossRef]

91. Leong, J.Y.C.; Chong, M.N.; Poh, P.E.; Hermawan, A.; Talei, A. Longitudinal assessment of rainwater quality
under tropical climatic conditions in enabling effective rainwater harvesting and reuse schemes. J. Clean. Prod.
2017, 143, 64–75. [CrossRef]

92. Scopus. Available online: https://www.scopus.com (accessed on 1 February 2018).
93. Lee, K.E.; Mokhtar, M.; Mohd Hanafiah, M.; Abdul Halim, A.; Badusah, J. Rainwater harvesting as an alternative

water resource in Malaysia: Potential, policies and development. J. Clean. Prod. 2016, 126, 218–222. [CrossRef]
94. Implementation of Rainwater Harvesting in Malaysia. Available online: http://www.eng.warwick.ac.uk

(accessed on 10 November 2017).

http://dx.doi.org/10.1191/0143624406bse162oa
http://dx.doi.org/10.1007/s11027-010-9223-4
http://dx.doi.org/10.1108/14777830610650528
http://dx.doi.org/10.1007/s12665-014-3392-5
http://www.awer.org.my
http://dx.doi.org/10.3390/rs70201504
https://www.pub.gov.sg
http://www.span.gov.my
http://www.jkt.kpkt.gov.my
http://slideplayer.com/slide/5175607/
http://slideplayer.com/slide/5175607/
http://www.wwf.org.my
http://www.mwa.org.my
http://dx.doi.org/10.1016/j.resconrec.2014.11.004
http://dx.doi.org/10.3992/1552-6100.12.1.1
http://dx.doi.org/10.1080/1573062X.2015.1049280
http://dx.doi.org/10.1016/j.atmosres.2017.01.004
http://dx.doi.org/10.1016/j.watres.2017.02.056
http://www.ncbi.nlm.nih.gov/pubmed/28279940
http://dx.doi.org/10.2166/wpt.2016.090
http://dx.doi.org/10.1111/1752-1688.12472
http://dx.doi.org/10.1016/j.agwat.2016.10.012
http://dx.doi.org/10.1016/j.jclepro.2016.07.038
http://dx.doi.org/10.1016/j.jclepro.2016.12.149
https://www.scopus.com
http://dx.doi.org/10.1016/j.jclepro.2016.03.060
http://www.eng.warwick.ac.uk


Water 2018, 10, 506 20 of 21

95. Tesfuhuney, W.A.; Walker, S.; Van Rensburg, L.D.; Steyn, A.S. Micrometeorological measurements and
vapour pressure deficit relations under in-field rainwater harvesting. Phys. Chem. Earth 2016, 94, 196–206.
[CrossRef]

96. Kasmin, H.; Bakar, N.H.; Zubir, M.M. Monitoring on the quality and quantity of DIY rainwater harvesting
system. IOP Conf. Ser. Mater. Sci. Eng. 2016, 136, 1–8. [CrossRef]

97. Abdul Ghani, N.A.A.; Mohamad, N.A.; Hui, T.W. Rainfall analysis to determine the potential of rainwater
harvesting site in Kuantan, Pahang. ARPN J. Eng. Appl. Sci. 2016, 11, 7264–7268.

98. Sultana, N.; Akib, S.; Aqeel Ashraf, M.; Roseli Zainal Abidin, M. Quality assessment of harvested rainwater
from green roofs under tropical climate. Desalination Water Treat. 2016, 57, 75–82. [CrossRef]

99. Nasif, M.S.; Roslan, R. Effect of varying roof run-off coefficient values and tank size on rainwater harvesting
system’s water savings in Malaysia. ARPN J. Eng. Appl. Sci. 2016, 11, 12937–12941.

100. Rahman, S.A.; Othman, M.S.H.; Khalid, R.M.; Shawahid, F.M. Legal implications of compulsory rainwater
harvesting in Malaysia. J. Food Agric. Env. 2013, 11, 2077–2079.

101. Shaheed, R.; Mohtar, W.H.M.W. Potential of using rainwater for potable purpose in Malaysia with varying
antecedent dry intervals. Jurnal Teknologi 2015, 72, 57–61. [CrossRef]

102. Hamid, T.A.; Nordin, B. Green campus initiative: Introducing RWH system in Kolej Perindu 3 UiTM Malaysia.
In Proceedings of the 3rd International Symposium & Exhibition in Sustainable Energy & Environment,
Melaka, Malaysia, 1–3 June 2011.

103. Imteaz, M.A.; Shanableh, A.; Rahman, A.; Ahsan, A. Optimisation of rainwater tank design from large roofs:
A case study in Melbourne, Australia. Resour. Conserv. Recycl. 2011, 55, 1022–1029. [CrossRef]

104. Roebuck, R.M.; Oltean-Dumbrava, C.; Tait, S. Whole life cost performance of domestic rainwater harvesting
systems in the United Kingdom. Water Environ. J. 2011, 25, 355–365. [CrossRef]

105. Zhang, Y.; Chen, D.; Chen, L.; Ashbolt, S. Potential for rainwater use in high-rise buildings in Australian
cities. J. Environ. Manag. 2009, 91, 222–226. [CrossRef] [PubMed]

106. Ghisi, E.; Schondermark, P.N. Investment feasibility analysis of rainwater use in residences. Water Resour. Manag.
2013, 27, 2555–2576. [CrossRef]

107. Khastagir, A.; Jayasuriya, N. Investment evaluation of rainwater tanks. Water Resour. Manag. 2011, 25, 3769–3784.
[CrossRef]

108. Matos, C.; Bentes, I.; Santos, C.; Imteaz, M.; Pereira, S. Economic analysis of a rainwater harvesting system in
a commercial building. Water Resour. Manag. 2015, 29, 3971–3986. [CrossRef]

109. Imteaz, M.A.; Moniruzzaman, M. Spatial variability of reasonable government rebates for rainwater tank
installations: A case study for Sydney. Resour. Conserv. Recycl. 2018, 133, 112–119. [CrossRef]

110. Shaari, N.; Che-Ani, A.I.; Nasir, N.; Tawil, N.M.; Jamil, M. Implementation of rainwater harvesting in
Sandakan: Evolution of sustainable architecture in Malaysia. In Proceedings of the Regional Engineering
Postgraduate Conference, Kuantan, Malaysia, 20–21 October 2009.

111. Ghisi, E.; Ferreira, D.F. Potential for potable water savings by using rainwater and greywater in a multi-storey
residential building in southern Brazil. Build. Environ. 2007, 42, 2512–2522. [CrossRef]

112. Sanches Fernandes, L.F.; Terêncio, D.P.S.; Pacheco, F.A.L. Rainwater harvesting systems for low demanding
applications. Sci. Total Environ. 2015, 529, 91–100. [CrossRef] [PubMed]

113. Mwenge Kahinda, J.; Taigbenu, A.E.; Boroto, R.J. Domestic rainwater harvesting as an adaptation measure
to climate change in South Africa. Phys. Chem. Earth 2010, 35, 742–751. [CrossRef]

114. Kihila, J. Rainwater harvesting using Ferro cement tanks an appropriate and affordable technology for small
rural Institutions in Tanzania. Int. J. Civ. Struct. Eng. 2014, 4, 332–341.

115. Gathenya, J.; Kinyari, P.; Home, P. Domestic roof rainwater harvesting tank sizing calculator and nomograph.
J. Agric. Sci. Technol. 2011, 12, 115–125.

116. Khan, S.T.; Baksh, A.A.; Papon, M.T.I.; Ali, M.A. Rainwater harvesting system: An approach for optimum
tank size design and assessment of efficiency. Int. J. Environ. Sci. Dev. 2017, 8, 37–43. [CrossRef]

117. Perisian Tangki NAHRIM. Available online: https://www.nahrim.gov.my (accessed on 20 November 2017).
118. Al-Saffar, F.N.; Abood, M.M.; Haron, N.A. Harvested rainwater volume estimation using tangki nahrim

software: Calculation of the optimum tank size in terms of water security. Aust. J. Basic Appl. Sci. 2016, 10,
40–48.

119. Holt, M.S. Sources of chemical contaminants and routes into the freshwater environment. Food Chem. Toxicol.
2000, 38, S21–S27. [CrossRef]

http://dx.doi.org/10.1016/j.pce.2016.03.001
http://dx.doi.org/10.1088/1757-899X/136/1/012067
http://dx.doi.org/10.1080/19443994.2015.1015307
http://dx.doi.org/10.11113/jt.v72.3156
http://dx.doi.org/10.1016/j.resconrec.2011.05.013
http://dx.doi.org/10.1111/j.1747-6593.2010.00230.x
http://dx.doi.org/10.1016/j.jenvman.2009.08.008
http://www.ncbi.nlm.nih.gov/pubmed/19744767
http://dx.doi.org/10.1007/s11269-013-0303-6
http://dx.doi.org/10.1007/s11269-011-9883-1
http://dx.doi.org/10.1007/s11269-015-1040-9
http://dx.doi.org/10.1016/j.resconrec.2018.02.010
http://dx.doi.org/10.1016/j.buildenv.2006.07.019
http://dx.doi.org/10.1016/j.scitotenv.2015.05.061
http://www.ncbi.nlm.nih.gov/pubmed/26005753
http://dx.doi.org/10.1016/j.pce.2010.07.004
http://dx.doi.org/10.18178/ijesd.2017.8.1.917
https://www.nahrim.gov.my
http://dx.doi.org/10.1016/S0278-6915(99)00136-2


Water 2018, 10, 506 21 of 21

120. Appan, A. Roof water collection systems in some Southeast Asian countries: Status and water quality levels.
J. R. Soc. Health 1997, 117, 319–323. [CrossRef] [PubMed]

121. Sazakli, E.; Alexopoulos, A.; Leotsinidis, M. Rainwater harvesting, quality assessment and utilization in
Kefalonia Island, Greece. Water Res. 2007, 41, 2039–2047. [CrossRef] [PubMed]

122. Kim, R.-H.; Lee, S.; Kim, J.-O. Application of a metal membrane for rainwater utilization: Filtration
characteristics and membrane fouling. Desalination 2005, 177, 121–132. [CrossRef]

123. Buntat, Z.; Iqbal, S.M.Z.; Saburi, W.M.F.A.; Adzis, Z.; Sohaili, J.; Smith, I.R. Development of an Integrated
System for Ozone Treated Harvested Rainwater in Perspective of Green Building Scenario of Malaysia.
J. Environ. Earth Sci. 2015, 5, 51–60.

124. Omar, K.; Aziz, N.; Amr, S.; Palaniandy, P. Removal of lindane and Escherichia coli (E. coli) from rainwater
using photocatalytic and adsorption treatment processes. Glob. Nest J. 2017, 19, 191–198.

125. Shaheed, R.; Wan Mohtar, W.H.M.; El-Shafie, A. Ensuring water security by utilizing roof-harvested rainwater
and lake water treated with a low-cost integrated adsorption-filtration system. Water Sci. Eng. 2017, 10,
115–124. [CrossRef]

126. Möller, D.; Zierath, R. On the composition of precipitation water and its acidity. Tellus B Chem. Phys. Meteorol.
1986, 38, 44–50. [CrossRef]

127. Nikmatin, S.; Syafiuddin, A.; Hong Kueh, A.B.; Maddu, A. Physical, thermal, and mechanical properties of
polypropylene composites filled with rattan nanoparticles. J. App. Res. Technol. 2017, 15, 386–395. [CrossRef]

128. The Aging Water Infrastructure: Out of Sight, out of Mind? Available online: https://www2.deloitte.com
(accessed on 10 November 2017).

129. Water Price Revision. Available online: https://www.pub.gov.sg (accessed on 1 February 2018).
130. Chin, R.J.; Lai, S.H.; Chang, K.B.; Othman, F.; Jaafar, W.Z.W. Analysis of rainfall events over Peninsular

Malaysia. Weather 2016, 71, 118–123. [CrossRef]
131. Ahmed, W.; Gardner, T.; Toze, S. Microbiological quality of roof-harvested rainwater and health risks:

A review. J. Environ. Qual. 2011, 40, 13–21. [CrossRef] [PubMed]
132. Schuetze, T. Rainwater harvesting and management—Policy and regulations in Germany. Water Sci. Technol.

2013, 13, 376–385. [CrossRef]
133. Dolnicar, S.; Hurlimann, A.; Grün, B. Water conservation behavior in Australia. J. Environ. Manag. 2012, 105,

44–52. [CrossRef] [PubMed]
134. Dealing with Water Scarcity in Singapore: Institutions, Strategies, and Enforcement. Available online:

http://www.siteresources.worldbank.org (accessed on 10 November 2017).
135. Ghisi, E.; Tavares, D.D.F.; Rocha, V.L. Rainwater harvesting in petrol stations in Brasília: Potential for potable

water savings and investment feasibility analysis. Resour. Conserv. Recycl. 2009, 54, 79–85. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/146642409711700510
http://www.ncbi.nlm.nih.gov/pubmed/9519665
http://dx.doi.org/10.1016/j.watres.2007.01.037
http://www.ncbi.nlm.nih.gov/pubmed/17363028
http://dx.doi.org/10.1016/j.desal.2004.12.004
http://dx.doi.org/10.1016/j.wse.2017.05.002
http://dx.doi.org/10.3402/tellusb.v38i1.15067
http://dx.doi.org/10.1016/j.jart.2017.03.008
https://www2.deloitte.com
https://www.pub.gov.sg
http://dx.doi.org/10.1002/wea.2723
http://dx.doi.org/10.2134/jeq2010.0345
http://www.ncbi.nlm.nih.gov/pubmed/21488488
http://dx.doi.org/10.2166/ws.2013.035
http://dx.doi.org/10.1016/j.jenvman.2012.03.042
http://www.ncbi.nlm.nih.gov/pubmed/22522412
http://www.siteresources.worldbank.org
http://dx.doi.org/10.1016/j.resconrec.2009.06.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Water Issues in Malaysia 
	Global Perspective of RWHS 
	RWHS in Malaysia 
	Policy 
	Study Trend 
	Benefit of RWHS 
	RWHS Type 
	RWHS Software 

	Future Challenges 
	Cost 
	Application 
	Treatment System 
	Rainfall Characteristics 
	Policy 
	Material 
	Public Perception 
	First Flush Technology 

	Recommendations to Encourage RWHS in Malaysia 
	Subsidies 
	Regulate Piped Water Use 

	Conclusions 
	References

