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Abstract 
 
Poly(lactic acid) (PLA)/polybutylene adipate co-terephthalate (PBAT) blends were prepared by melt 
blending and compatibilized by glycidyl methacrylate (GMA). The effect of graphene nanoplatelets 
(GNP) on these compatibilized blends were investigated by incorporating GNP at different content. 
The formulated blend and nanocomposites were characterized for mechanical, morphological, 
thermal and flammability properties by using universal testing machine, impact tester, field emission 
scanning electron microscope (FESEM), x-ray diffraction (XRD), Fourier transform infrared 
spectroscopy (FTIR), thermogravimetric analysis (TGA), limiting oxygen index (LOI) and UL-94 
respectively. The incorporation of 8 phr GMA into PLA/PBAT (75:25) blend as a compatibilizer results 
in a significant increase in impact strength (more than 14 times higher) compared to the 
uncompatibilized blend. Young's modulus and tensile strength of compatibilized PLA/PBAT 
nanocomposites increased upon addition of GNP and reached maximum values at 4 phr before 
decreasing slightly. However, impact strength decreased with increasing GNP contents. The thermal 
stability and the flame retardancy of the GNP reinforced blend nanocomposites were also improved 
with an increase in nanofiller content and the maximum values for the nanocomposites were achieved 
at 6 phr. Interestingly, the nanocomposites samples showed a UL-94 rating of V0 at 4 and 6 phr of 
GNP. Morphological studies using FESEM showed the GNP were evenly distributed and dispersed 
in the PLA/PBAT nanocomposites. The current methodology to prepare PLA/PBAT blend 
nanocomposite is an economical way to produce high strength biodegradable polymer which also has 
good flame retardancy. 
 
Keywords: PLA/PBAT blend, nanocomposites, graphene nanoplatelets, flammability, mechanical 
properties  
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INTRODUCTION 
 

Poly (lactic acid) (PLA) is a bio-based and a biodegradable polymer 

which has attracted interest from academics and industrialist. In recent 

years, polymers from renewable resources have received much 

attention due to two major reasons; environmental concerns and the 

realization of limited petroleum resources. PLA has good mechanical 

properties and optical clarity. However, PLA is brittle in nature with a 

low elongation at break, poor melt strength, and low thermal stability 

[1, 2]. Many studies have been reported to overcome the brittleness of 

PLA [2, 3]. One of the ways to improve the ductility of PLA is through 

the incorporation of other polymers such as poly (butylene adipate-co-

terephthalate) (PBAT) [4, 5]. PBAT is a biodegradable aliphatic-

aromatic polyester but not a bio-based polymer with the advantage of 

higher toughness and flexibility compared to PLA [6, 7].  

In view of PBAT’s high toughness and biodegradability, it is a 

promising candidate for toughening of PLA. Jiang et al. reported that 

the impact strength of PLA/PBAT blends dramatically increased from 

2.6 for neat PLA to 4.4 kJ/m2 for PLA/PBAT (80:20) blend [8]. 

Compatibilizers are an important additive to enhance the compatibility 

of the blend. The blending of PLA/PBAT with compatibilizer is of 

significant interest since it could lead to the development of a new range 

of biodegradable polymeric materials with enhanced mechanical 

properties [9]. In one study, PLA/PBAT blend was applied in blown 

film extrusion in which a biodegradable polymer, poly(butylene-

succinate-co-adipate)(PBSA) was used as the compatibilizer [9]. The 

maximum tensile strength and impact strength of PLA/PBAT blend 

was achieved for the blend with 20 wt.% of PBAT. In another report by 

the same researchers, PLA/PBAT blends were prepared by using three 

different types of biopolymer as compatibilizers. They used a 70/30 

ratio of PLA/PBAT blend and found maximum impact strength to be at 

1% poly(hydroxybutylate-co-valerate) (PHBV) as compatibilizer [10].  

Glycidyl methacrylate (GMA) grafted polymers are often used as 

reactive compatibilizers in polyester blends. The epoxy groups of GMA 

can react with carboxyl or hydroxyl groups of polyester and greatly 

increased the toughness without a severe loss of tensile strength [11].  

Kumar et al. used GMA as a compatibilizer to prepare PLA/PBAT 

blend [12]. The optimum blend ratio of PLA/PBAT was found to be 

75:25 with 51% improvement in impact strength by using 5% GMA as 

a compatibilizer. 

To meet industrial application requirements, further enhancement 

of mechanical and thermal properties of the polymer is required. One 

way of achieving it is by incorporation of nanofillers [13, 14]. Polymer 

nanocomposites are a widely studied field of polymer technology. 

Nanocomposites are a group of composite material in which 

nanomaterials were used for reinforcing the matrix. Nanocomposites 

have been gaining increasing attention since the late 1990s as they offer 

an opportunity to explore new behaviors and functionalities beyond that 
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of conventional materials. Many nanomaterials like carbon nanotube 

(CNT), graphene and nanoclay and so on have a unique set of properties 

such as extremely high strength and surface area. These make it an ideal 

material for reinforcing the polymer materials. Recently, many 

researchers focused on the application of graphene nanoplatelets (GNP) 

as nanofillers in the nanocomposite. GNP is a 2D nanomaterial which 

consists few layers of graphene. This can be synthesized by directly 

from graphite powder at very low cost. GNPs are not only low cost but 

also have high stiffness and thermal stability. Many previous studies 

have reported the effectiveness of GNP as an ideal reinforcing filler for 

biopolymer like PLA [3].  Chieng et al. studied the mechanical 

properties of PLA/epoxidized palm oil nanocomposites reinforced by 

GNP as novel filler [15]. The results showed that nanocomposites 

exhibited a 26.5% increment in tensile strength with 0.3% GNP 

loading. 

The main objective of this study is to determine the effect of GNP 

content on mechanical and flammability properties of GMA 

compatibilized PLA/PBAT blends. There are very few reports available 

which explain the potential of GNP as a reinforcing and flame retardant 

filler. In this work, the graphene reinforced PLA/PBAT 

nanocomposites could find potential applications in automotive 

applications. 

EXPERIMENTAL 

Materials 
Poly (lactic acid) (Nature Works TM PLA 3001D) in granules form 

was obtained from Nature Works LLC. It has a specific gravity of 1.24 

and melts flow index 22 g/10min (230°C/2.16 kg). Poly(butylene 

adipate-co-terephthalate) (PBAT, Ecoflex C1200) was purchased from 

Zhejiang Golden Suntown Chemical Limited in granules form with a 

density of 1.26 kg/m3 and melt flow index of 3.8 g/10min (190 °C/2.16 

kg). It is a biodegradable aliphatic-aromatic copolyester based on the 

monomers 1,4-butanediol, adipic acid and terephthalic acid in the 

polymer chain. Glycidyl methacrylate (GMA) was obtained from Dow 

Chemicals LTD. Graphene nanoplatelets (GNP), GNP-M-5 grade (99.5 

% carbon), of average diameter 5 mm and an average thickness of less 

than 10 nm were purchased as a dry powder from XG Sciences (East 

Lansing, MI, USA).   

Blend Preparation   
The PLA and PBAT granules were separately dried overnight at 60 

°C under vacuum before compounding to remove moisture. 

PLA/PBAT, PLA/PBAT/GMA and PLA/PBAT/GMA/GNP 

composites as listed in Table-1 were compounded in a twin screw 

extruder at 50 rpm at 170-180 °C temperature range. The compounded 

materials were pelletized then injection molded at 180 °C into test 

specimens as per ASTM standard.   

Table 1 Compounding formulations PLA/PBAT/GMA/GNP 
nanocomposites. 

Mechanical Properties  
The test specimen of blend nanocomposites were dried in vacuum 

at 50 °C and kept in sealed desiccators for 24 hours prior to testing. At 

least five specimens were subjected to mechanical testing for each 

formulation and their average was reported.  

The Izod impact test was conducted according to ASTM D256 by 

using CEAST 9050 impact tester. For Izod impact test, the specimen's 

with the dimension of 64 x 12.7 x 3 mm a V notch angle of 45° and a 

depth of 2.54 mm was made with CEAST AN50 notching machine. 

The tensile modulus, tensile strength, and elongation at break of the 

nanocomposites blends were determined under ambient conditions 

according to ASTM D638. Tensile properties were conducted by using 

Universal Testing Machine with a crosshead speed of 5 mm/min. 

Thermogravimetric Analysis  
The thermal stability of polymer blends and nanocomposites were 

characterized using a thermogravimetric analyzer (Perkin-Elmer modal 

TGA 7). The 10-12 mg samples of polymer blends and nanocomposites 

were heated from room temperature to 600 °C at a heating rate of 20 

°C/min in the nitrogen atmosphere (50 mm/min). Data on weight loss 

vs. temperature, final degradation temperature and percentage of 

residue were recorded. 

Fourier Transformation Infrared Spectroscopy  
To study the interaction between GMA/matrix and GNP/matrix 

ATR-FTIR spectroscopy (Perkin Elmer 1600 infrared spectrometer) 

was used. Analyses were done in a moisture free atmosphere at 32 scans 

with a resolution of 4 cm-1 and within the wave number range of 400 to 

4000 cm-1. 

Morphology Analysis 
Dispersion of the GNP was observed using field emission scanning 

microscopy (FESEM). FESEM micrographs of the fractured surface of 

PLA/PBAT/GMA blend and PLA/PBAT/GMA/GNP nanocomposites 

were obtained by using JEOL JSM 7600F. The samples were platinum 

coated for avoiding charging by using JFC 1600 coater.  

X-ray Diffraction  
X-ray diffraction patterns were collected using X-ray 

diffractometer (modal Bruker D8 and Ni-filtered Cu Kα radiation) at an 

angular incidence of 10° - 80°. XRD scan of the GNP powder along 

with the composites samples was collected at 40 kV and 50 mA with 

scan rate 5 °/min.  

Limiting Oxygen Index  
The minimum concentration of oxygen in which a polymer sample 

burn over a distance of 50 mm or burn for three minutes is known as 

limiting oxygen index. The high value of LOI shows low flammability 

of the material. Specimen dimension for the test is 125 x 10 x 4 mm. 

This test was carried out according to ASTM D2863.  

UL-94 Test 
According to UL-94 flammability test, PLA/PBAT blend, GMA 

compatibilized blend and GNP reinforced nanocomposites with the 

dimensions of 127 x 12 x 3 mm were subjected to a vertical rate of 

burning. The rate of burning was determined from the average of three 

samples for each test. The char was collected after the test. 

RESULTS AND DISCUSSION 

Mechanical Properties 

In this study all PLA/PBAT blends were prepared at a fixed ratio 

of 75:25 w/w respectively, based on the optimum composition 

determined by Kumar et al. [12]. Then the varying amount of GMA as 

a reactive compatibilizer was added in PLA/PBAT blends. The Izod 

impact test was carried out to evaluate the toughness of PLA/PBAT 

and PLA/PBAT blends with different GMA content and the results are 

shown in Figure 1. It reveals that impact strength of blends increased 

from 47.1 for the uncompatibilized blend to 72.1 and 84 J/m, 

respectively for 3 and 5 phr GMA content blend. This could be due to 

the improved interfacial adhesion between PLA and PBAT in the 

presence of GMA compatibilizer. A similar trend was reported by 

Teamsinsungvon et al. where they compatibilized PLA/PBAT blend by 

Formulation PLA 
(%) 

PBAT 
(%) 

GMA 
(phr) 

GNP 
(phr) 

Designation 

F1 75.00 25.00 - - LA/PB 

F2 75.00 25.00 3 - LA/PB/3G 

F3 75.00 25.00 5 - LA/PB/5G 

F4 75.00 25.00 8 - LA/PB/8G 

F5 75.00 25.00 8 2 LA/PB/8G-
2GP 

F6 75.00 25.00 8 4 LA/PB/8G-
4GP 

F7 75.00 25.00 8 6 LA/PB/8G-
6GP 
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PLA-graft-maleic anhydride (PLA-g-MA) [16]. With a further increase 

to 8 phr GMA, an enormous increase in impact strength was observed. 

This remarkable enhancement in the impact strength is due to the 

toughening effect of the compatibilizer that has caused a brittle-ductile 

transition in the PLA/PBAT system [17]. GMA can also act as a 

reactive compatibilizer due to the presence of epoxy groups which may 

react with the hydroxyl and carboxyl groups in the PLA and PBAT. 

This occurs due to reactions involving the epoxy group ring opening 

and the creation of covalent bonds with hydroxyl formation [18]. A 

random terpolymer of ethylene acrylic ester (T-GMA) was formed as 

shown in Figure 2, whereby TGMA reacted with PLA and PBAT to 

form an ester linkage which can be connected to both polymers. Due to 

the significant enhancement of PLA/PBAT with 8 phr, the formulation 

was selected for further investigation. 

Fig. 1 Effect of GMA content on impact strength of PLA/PBAT blend. 

Fig. 2 Predicted reaction between PLA, PBAT, and GMA. 

The tensile properties of PLA/PBAT blend prepared at a ratio of 

75:25 with GMA at various contents are represented in Figure 3. GMA 

at various contents was added to enhance the interfacial compatibility 

of PLA/PBAT blend. However, from Figure 3a it can be observed that 

with an increase in GMA content, the tensile modulus and tensile 

strength of PLA/PBAT blends decreased. As the incorporation of 3, 5 

and 8 phr GMA into PLA/PBAT blends, the tensile modulus reduced 

by 3.6, 7.2 and 28.6 % respectively, while the tensile strength decreased 

by 7.7, 7.5 and 44.1 % respectively, compared with un-compatibilized 

PLA/PBAT blend. The elongation at break (shown in Figure 3b) 

increased consistently with the addition of GMA and a remarkable 

improvement of the elongation at break was observed at 8 phr GMA 

content, which was associated with the elastomeric nature of PBAT. 

It is observed from the result that impact strength of PLA/PBAT 

blends increased with increase in GMA content with a concomitant 

decrease in tensile strength. The results show, for PLA/PBAT blend 

with 8 phr GMA content the impact strength is highest but tensile 

strength and modulus was lowest. In order to improve the tensile 

strength and modulus without affecting the impact strength, GNPs was 

incorporated as fillers to PLA/PBAT/8GMA blend.  Figure 4a shows 

the influence of different GNP contents on tensile strength and tensile 

modulus of PLA/PBAT/8GMA blend nanocomposites. The effect of 

GNP content on the tensile modulus and tensile strength of 

compatibilized blends showed a steadily increasing trend compared to 

the blend without GNP (as shown in Figure 4a). The tensile modulus 

increased from 636 MPa to 1039 MPa at 0 to 6 phr GNP content (i.e., 

about 63 % increment). These observations are attributed to high 

stiffness of GNP that reinforce into the blend matrix. The increase in 

tensile modulus is also due to high dispersion of GNP as evidenced by 

morphological studies shown in Figure 6. 

Fig. 3 The comparison of (a) The tensile modulus and tensile strength 
(b) elongation at break of PLA/PBAT blend and PLA/PBAT blend with 
different GMA content. 

However, the percentage of elongation at break decreased with the 

addition of GNP as shown in Figure 4b. A significant drop in elongation 

at break was observed at 2 phr GNP content which is attributed to the 

high stiffness of GNP that compensated the elastomeric property of 

compatibilized PLA/PBAT blend. The elongation at break further 

decreased consistently with the increase in GNP content to 4 phr and 6 

phr. 

http://www.foxitsoftware.com/shopping
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Fig. 4 The effect on (a) The tensile modulus and tensile strength (b) 
elongation at break of, LA/PB/8G blend and its nanocomposites with 
GNP contents. 
 

Figure 5 shows the effect of GNP contents on impact strength of 

GMA compatibilized blends. It was observed that impact strength 

decreased sharply from 697 J/m to 132.6 J/m with the incorporation of 

2 phr GNP. The impact strength of GMA compatibilized blends 

decreased further to 54.2 J/m and 46.3 J/m with higher GNP contents, 

4 phr, and 6 phr respectively. The decreased trend behavior is mainly 

due to incompatibility between the matrix and filler and also the 

heterogeneous nature of GNP nanocomposites [19]. The addition of 

GNP increased the brittleness in the GMA compatibilized blends and 

thus resulted in a reduction of impact strength. 

 
Fig. 5 Effect of GNP content on impact strength of LA/PB/8G blends. 

 
Morphological  analysis   

Morphology of the blend shows the dispersion level and interaction 

between polymer and nanofiller. Figure 6 (a-e) shows the FESEM 

micrographs of the impact fracture surface of PLA/PBAT blend, 8 phr 

GMA compatibilized blend and variation of GNP content PLA/PBAT 

blend.  Figure 6 (a and b) represent the PLA/PBAT blend without GMA 

and with 8phr GMA, respectively. It is evident from Figure 6a that 

without GMA, PLA/PBAT shows an immiscible two-phase structure 

with PBAT phases distributed and dispersed uniformly in the PLA 

matrix. As compared to PLA/PBAT blend the PLA/PBAT 8phr GMA 

(Figure 6b) blend shows better miscibility and more shear yielding 

when it was fractured. The micrographs of impact fractured surface of 

this blend show a ductile fracture. 

Figure 6 (c-e) shows the impact fractured surface nanocomposites 

for 2, 4 and 6 phr GNP respectively. The GNPs are distributed evenly 

in the matrix which might be contributing to the enhanced tensile 

strength of the GNP reinforced nanocomposites. From the Figure 6 (c-

e), it can easily be seen that GNP is pulled out and projected over the 

fractured surfaces. It is a clear indication of lack of interaction between 

filler and matrix. A deep analysis of Figure 6(c-e) it can be observed 

that a small gap between GNP and polymer matrix is present (shown 

by arrows), which is due to the absence of physical or chemical bonding 

between nanoparticles and polymer. Morphology study suggests, that 

even though GNP have good distribution all over the matrix but the 

absence of bonding between GNP and matrix polymer have resulted in 

below expected mechanical properties. The lack of interaction could be 

because to either of the two possible reasons, firstly less dispersion and 

individualization of GNP and secondly no interaction between GNP 

and polymer matrix. To investigate the dispersion level of GNP, XRD 

was carried out.

 

 
 

Fig. 6 SEM images of PLA/PBAT blend at 5.0kX (a) LA/PB (b) LA/PB/8G and at 2.0kX (c) LA/PB/8G-2GP (d) LA/PB/8G-4GP (e) LA/PB/8G-6GP 
nanocomposites.
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X-ray Diffraction  
The X-ray diffractogram of GNP powder, PLA/PBAT blend, GMA 

compatibilized blend and GNP reinforced nanocomposites are shown 

in Figure 7. A broad amorphous peak from the PLA/PBAT blend was 

observed at around 17.5°. This confirms the PLA/PBAT has an 

amorphous microstructure. In the case of graphene powder, the 

spectrum showed a sharp intense peak at 2θ = 26.5° (d = 3.37 Å) and a 

small diffraction peak at 54.6° (d = 1.68 Å) which confirm the 

crystallinity of GNP. 

The diffraction pattern for GMA compatibilized blend shows a 

small peak at 2θ = 16.5° (d = 5.36 Å) which could presumably be 

attributed to the formation of random terpolymer due to the reaction of 

GMA and PLA/PBAT blend. This assertion was predicted by Kumar et 

al., [12]. However, this peak which was assigned to the formation of 

random terpolymer decreased with increasing GNP content due to the 

heterogeneous nucleation effect of the GNP. The characteristic GNP 

peak remains visible in all nanocomposites formulations which show 

that the occurrence of exfoliation of the GNP in the matrix did not 

occur. This might be the plausible reason for the marginal increase in 

the tensile properties as discussed earlier. 

 

 
 
Fig. 7 X-ray diffractogram of the (a) LA/PB (b) LA/PB/8G (c) LA/PB/8G-
2GP (d) LA/PB/8G-4GP (e) LA/PB/8G-6GP (f) GNP powder. 
 

Fourier Transform Infrared Spectroscopy (FTIR) 
The chemical interaction between GNP and polymer was evaluated 

by FTIR analysis. Figure 8 shows the FTIR spectra of GNP powder, 

8phr GMA compatibilized blend and GNP reinforced PLA/GNP 

nanocomposites. It can be seen that no visible peaks were observed in 

the spectrum of GNP powder because GNP can absorb almost all IR 

spectrum which is tested in this study. Geng et al. prepared GNP from 

natural graphite flakes and find similar FTIR pattern in their study for 

GNPs [20].  Moreover, the results confirming the purity of graphene 

sheets used in this study as there are no graphite oxide peaks in the GNP 

powder [21, 22].  The characteristic peaks of graphite oxide appeared 

at 3400 cm-1 (O-H stretching vibration), 1720 cm-1 (C=O stretching 

vibration), 1220 cm-1 (C-OH stretching), and 1060 cm-1 (C-O 

stretching) [19].     

In the case of GMA compatibilized blend, it can be seen that the 

peak at 1750 cm-1 which was due to the carbonyl stretching (C=O) in 

the ester linkage. According to Kumar et al. [12], the bending peak of 

substituted benzene was located at 872 cm-1 in both GMA 

compatibilized blend and GNP reinforced nanocomposites. In the case 

of the GMA compatibilized blend, peaks at 814 cm-1 and 910 cm-1 

representing epoxide group of GMA.  Also, very broad hydroxyl (-OH) 

band of the ring opening reaction of the epoxide group in GMA near 

3600 cm-1 was observed [23]. 

In the presence of GMA in the PLA/PBAT blend, the pattern of 

decomposition also showed a two-step process. Evidence from DTG 

curves showed that with the presence of GMA, both peaks came closer 

to each other compared with PLA/PBAT blend. This indicated that 

there was an improvement in compatibility between PLA and PBAT. 

As suggested by Kumar et al [12] this could be due to dehydration from 

the hydroxyl group of PLA and carboxylic group of PBAT units and 

thermal cleavage of ester linkage by hydrolysis and scission of C–O 

and C–C bonds [12]. 

 
Fig. 8  FTIR spectra of GNP powder, LA/PB/8G and LA/PB/8G-6GP. 

 

Overall, it was observed that there is no significant change in 

peaks position of GNP reinforced nanocomposites which indicate that 

there was no chemical interaction occurred between GNP and the blend 

matrix. Hence, it is suggested that only the physical interaction possible 

between GNP and the polymer matrix. A similar observation was made 

by Inuwa et al. in their study on GNP reinforced polyethylene 

terephthalate/polypropylene nanocomposites [19]. 

 

Thermogravimetric Analysis  
The TGA thermograms of PLA, PLA/PBAT blend, PLA/PBAT 

blend with a variation of GMA and the blend nanocomposites are 

represented in Table 2 and Figures 9 and 10. It was observed that the 

thermal degradation of virgin PLA started at 340 °C and the maximum 

decomposition temperature was noticed at 367.8 °C as shown in Table 

2. Based on the derivative thermogram (DTG), in virgin PLA, a single 

step decomposition process was observed whereas PLA/PBAT blend 

demonstrated two steps decomposition. 

 
Table 2 : Degradation temperature of PLA, PLA/PBAT blend, GMA 
compatibilized blends and GNP nanocomposites. 

 

Sample T10 (°C) T50 (°C) Tmax(°C) Char (%) 

LA 340.0 361.7 367.8 0.0 

LA/PB 331.8 361.5 362.1 1.3 

LA/PB/3G 319.7 360.8 363.0 1.5 

LA/PB/5G 306.7 355.6 359.2 1.6 

LA/PB/8G 309.7 357.8 362.6 1.6 

LA/PB/8G-2GP 321.5 358.2 360.4 1.3 

LA/PB/8G-4GP 335.7 364.1 363.7 5.0 

LA/PB/8G-6GP 339.6 367.1 364.9 5.6 

T10: 10 % weight loss decomposition temperature considered as initial 
decomposition temperature; T50: 50 % weight loss decomposition 
temperature; Tmax: maximum decomposition temperature. 
 

It shows that the initial thermal degradation of 8 phr GMA in 

PLA/PBAT blend was about 15 °C lower than PLA/PBAT blend with 

char residue of 1.59 %. Similarly, GNP nanocomposites also exhibit 

two steps decomposition process. The thermal stability of GNP 

reinforced GMA compatibilized blend increased with increasing GNP 
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content as indicated by the T10 and Tmax values. The thermal stability 

enhancement was attributed due to the high aspect ratio and higher 

thermal stability of GNP which acts as a barrier and prevented the 

emission of gaseous molecules during thermal degradation [19, 24]. It 

was seen that the char residue increased significantly when the GNP 

content was increased from 2 to 4 phr content. 

Fig 9 TGA (a) and DTG (b) of LA, LA/PB, LA/PB/3G, LA/PB/5G, 
LA/PB/8G.  

Fig. 10 TGA (a) and DTG (b) of LA/PB/8G, LA/PB/8G-2GP, LA/PB/8G-
4GP, LA/PB/8G-6GP.  

Flammability 
LOI and UL-94 test were done to observe the effects of 

compatibilizer and GNP in the PLA/PBAT blend and nanocomposites 

respectively. Table 3 reports the results of LOI and UL-94 test of 

PLA/PBAT blend, GMA compatibilized blends and GNP reinforced 

blend nanocomposites. The PLA/PBAT blend without GMA shows the 

highest LOI value of 24% and classified as V-2 ranking due to the 

burning drops has ignited the cotton. Incorporation of 3, 5 and 8 phr 

GMA compatibilizer into PLA/PBAT blend reduced the LOI values but 

the UL-94 test remained same which is V-2 rating. For PLA/PBAT 

containing 3 and 6 phr GMA, lower drips were observed and for a 

sample containing 8 phr GMA, moderate drips were observed. This 

could be due to the decreased in melt viscosity of the blend with a high 

content of compatibilizer that caused the material to drip slower. 

Table 3: LOI and UL-94 ratings PLA/PBAT blend, GMA compatibilized 
blends and GNP nanocomposites. 

Sample LOI % UL-94 Ratings 

LA/PB 24 V-2 Moderate dripping 

LA/PB/3G 23 V-2 Low dripping  

LA/PB/5G 22 V-2 Low dripping  

LA/PB/8G 21 V-2 Moderate dripping 

LA/PB/8G-2GP 20 V-2 Low dripping  

LA/PB/8G-4GP 21 V-0 No dripping  

LA/PB/8G-6GP 22 V-0 No dripping  

Nanocomposite sample of PLA/PBAT/8GMA with 2 phr GNP 

shows the lowest LOI value among all the samples. However, the 

addition of 4 and 6 phr GNP in 8 phr GMA compatibilized blends 

showed a positive effect on both LOI values and UL-94 rating. The UL-

94 test of 4 and 6 phr GNP containing nanocomposite showed no 

dripping thus improving the rating from V-2 to V-0. The higher amount 

of GNP increased melt viscosity of the nanocomposites preventing the 

material from dripping. Besides that, the higher content of GNP also 

produced char that prevented the materials from burning and dripping. 

This observation can be correlated to the higher thermal stability 

observed in TGA analysis. 

CONCLUSION 

The effects of GMA as a compatibilizer and GNP as a 

reinforcement in PLA/PBAT blends and nanocomposites respectively 

have been investigated. The main conclusions that can be derived are 

as follows: 

1. The incorporation of 8 phr GMA into PLA/PBAT (75/25) 

blend as a compatibilizer resulted in a significant increase in 

impact strength (more than 14 times higher) compared to the 

uncompatibilized PLA/PBAT nanocomposites. 

2. Young's modulus and tensile strength of compatibilized 

PLA/PBAT nanocomposites increased upon addition of GNP 

and reached maximum values at 4 phr before decreasing 

slightly. However, the impact strength of the nanocomposite 

was observed to decrease. The improvement of the stiffness 

and tensile strength were attributed to high stiffness and 

reasonable dispersion of GNP in the blend matrix as observed 

using FESEM. 

3. The thermal stability and the flame retardancy of the GNP 

reinforced blend nanocomposite were also improved with an 

increase in the GNP content.  Interestingly, the 

nanocomposite sample showed a UL-94 rating of V0 at 4 and 

6 phr of GNP. TGA results also showed that GNPs have 

enhanced the thermal stability of GMA compatibilized blend 

as indicated by the increase in T10, Tmax and char residue. 
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4. FTIR spectroscopy did not show any significant changes in 

peak positions of GNP reinforced blend nanocomposites 

compared to GMA compatibilized blends. This reveals that 

no chemical interaction between GNP and the blend matrix 

occurred. 
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