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Abstract 

The skyrocketing demand for olefins especially propylene, have necessitated continuous efforts in finding alternate route for 

olefins production. Hence, methanol to olefins (MTO) was recognized as a feasible process since methanol could simply be 

mass produced from any gasifiable carbon-based feedstock, such as natural gas, coal, and biomass. Essentially, obtaining a 

more stable catalyst would improve economy of the MTO process. Acidity of catalyst has major influence in MTO, thus it is 

an indispensable parameter for conversion of methanol into value-added products. The present paper discusses the reactions 

involved in MTO process and the effect of acidity in enhancement of light olefin selectivity and catalytic stability. The paper 

also captured perspectives of crucial research and future direction for catalysts development and technologies that can 

potentiallly boost olefin production and make it competitive with the conventional olefin production processes. 
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1.0 INTRODUCTION 

Despite commercial production of olefins from crude oil resources via fluid and steam cracking processes, forecasted scarcity 

of petroleum resources and skyrocketing demand for olefins (especially propylene and ethylene) have necessitated continuous 

efforts in finding an alternate route for olefin production [1]. Hence, methanol to olefins (MTO) conversion is recognised as a 

feasible process since methanol could simply be mass produced from any gasifiable carbon-based feedstock, such as natural 

gas, coal, and biomass [2,3]. Acidity can be categorised into Bronsted acid sites (BAS) and Lewis acid sites (LAS). Generally, 

except for weak BAS, other types of acid sites are all from aluminium (Al) species, particularly strong acid sites that are 

produced by isomorphous substitution of Al for silicon (Si) atom.  

Essentially, the core interest in MTO process is to increase light olefin production due to forecasted scarcity of petroleum 

resources and skyrocketing demand for olefin selectivity. In turn, the ethylene to propylene ratio could be tuned by varying the 

acidity of zeolite and/or operating conditions among others. Solid acid catalysts such as zeolite and zeotype have been shown 

to play a crucial role in the conversion of methanol to olefins. ZSM-5 catalyst tends to have desirable physicochemical 

properties such as strong BAS, tunable acidity, and good thermal stability, which are all essential for the production of 

hydrocarbons [4,5].  

Intrinsically, BAS are the active sites for MTO reaction. Strong acidic sites favour the formation of undesired products 

(aromatics and alkanes) and lead to deactivation [5]. Therefore, the reduction of acid strength from strong to moderate/low 

BAS improves the formation of light olefins and reduces the rate of coke formation. In recent times, many researchers have 

devoted efforts to improve propylene selectivity and limit deactivation caused by coke deposition due to strong acidity of 

conventional ZSM-5 catalysts [6]. Nevertheless, some techniques have been adapted to adjust the acidity of ZSM-5 including 

post-synthesis treatment such as dealumination [7], altering Si/Al ratio [8], the use of surfactants, and the addition of promoters 
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[9].  

Dealumination method entails the removal of aluminium atom from zeolite framework, thereby tuning the acidity. Feng et al. 

adapted dealumination process to fabricate ZSM-5 zeolite. The decreased concentration of surface aluminium atoms in 

modified ZSM-5 eventually improved propylene selectivity and catalyst lifetime in MTO reaction [10]. Therefore, through 

surface dealumination, the acidity decreases and limits pore blockage within ZSM-5 crystals. The present contribution studies 

the effect of acidity of ZSM‐5 catalyst in the enhancement of MTO process. This present study covers published articles within 

the past five years, reporting strategies for enhancing propylene selectivity and catalytic stability in MTO reaction over ZSM-

5 catalyst. 

 

2.0 MTO REACTION NETWORK 

The technology of MTO is versatile, with the properties of catalyst and process conditions play a greater role on the nature of 

products formed. Numerous products are formed through different reactions such as methylation, cracking, oligomerisation, 

and cyclisation. Catalytic conversion of methanol progresses in two phases. Firstly, methanol is converted to an equilibrium 

mixture of dimethyl ether (DME), methanol, and water. In the second phase, the equilibrium mixture is converted to olefins 

and other products [11].  

Figure 1 summarises the MTO reaction network routes. The reaction is initiated by the interaction of methanol with acid sites. 

The equilibrium mixture of methanol and DME undergoes methylation reaction, thereby producing olefin species. The 

produced olefins are converted to alkenes, alkanes, and aromatics through reactions such as methylation, cracking, and 

hydrogen transfer among others. MTO reaction proceeds via aromatics and alkenes routes over ZSM-5 zeolite, which are the 

widely accepted route for olefin generation from methanol.  

The aromatic route generates higher polymethylbenzenes (higher polyMBs) molecules, which are regarded as the paramount 

hydrocarbon pool species (HCP). Eventually, higher fraction of aromatics products with traces of ethylene are produced 

through oligomerisation and elimination reactions. The alkene route on the other hand, is characterised by successive 

methylation and cracking reactions, with a large fraction of propylene and slight fractions of ethylene and alkanes are produced 

[12, 13].  

 

 

Figure 1. Methanol to olefins reaction network. 

 

3.0 RELATION OF ZSM-5 ACIDITY TO PERFORMANCE 

The acidity of ZSM-5 is an indispensable parameter for the generation of value- added products such as light olefins from 

methanol. ZSM-5 encompasses both BAS and LAS, which act as proton donors and electron-pair acceptors, respectively. BAS 

is generated by means of ion exchange with NH4+ and consequent thermal decomposition of ammonium ions to produce 

protons that counter balance the negative charge of the framework. Likewise, the chemical nature of LAS is comparable to that 

of BAS due to the extra framework of Al species and Al atoms located in the zeolite framework [14].  

Generally, acid sites are located within channels or on the surface of zeolites and the sites promote acid-catalysed 

transformation, which MTO is inclusive. However, the strong BAS acceleration rate of coke precursor formation has the 

tendency to be adsorbed on the sites and lead to the blockage of pore openings and accelerate deactivation. Therefore, the 

acidity of catalyst must be adjusted [15]. Substantiated findings have shown that the reduction of ZSM‐5 catalyst acidic strength 

improves stability and lighter olefin selectivity [16-20].  

Furthermore, the existence of strong BAS propagates conspicuous generation of undesired products, such as aromatic species 

that are generated via hydrogen transfer reactions. As discussed in the previous section, the adjustment of ZSM-5 acidity is 

achieved by several techniques. Notably, dealumination method that is attainable by the removal of aluminium from the zeolite 

framework as first reported by Barrer et al. in 1964 [16]. Dealumination technique encompasses the application of chemical 
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agents to remove aluminium from the framework, as well as hydrothermal dealumination [17]. Lago et al. used hydrothermal 

treatment at 540 °C in a gas stream by increasing water vapour partial pressure to achieve dealumination of ZSM‐5 [18].  

Basically, for hydrothermal treatment, the most adapted technique is the steaming process, which produces ZSM‐5 catalysts 

with high stability [19]. The steaming process entails calcination of fresh catalyst in combination with acids over prolonged 

synthesis duration (more than 10 h) and high temperature (400–800 °C) [20]. 

Recently, comprehensive investigations have been conducted on catalytic performance of modified ZSM‐5 catalysts in MTO 

process. For example, Zhang et al. adopted steaming technique at optimum conditions (500 °C and 12 h) to synthesise modified 

ZSM-5 catalyst with improved activity in MTO reaction [21]. Also, Leilei et al. synthesised dealuminated ZSM-5 catalysts 

with the aid of ammonium surfactants. The result shows that deactivation due to coking effect largely depends on BAS 

concentration. ZSM-5 catalyst with moderate acidity (BAS of 0.30 and LAS 0.20 mmol g-1) gave the highest propylene 

selectivity (37%) and less coke content [22]. An outstanding report from Nordvang et al. further revealed that ZSM-5 acidity 

has a great impact on stability. It was shown that materials with high coking tendency such as polyaromatic species were swiftly 

generated on the external catalyst surface, which limited diffusion of reactants and products within the catalyst, and 

consequently led to deactivation [23].  

Astonishingly, Pit et al. passivated ZSM-5 catalysts by chemical dealumination technique using tetraethyl-orthosilicate. The 

passivation was repeated for a second and third time to guarantee complete surface coverage. BAS and LAS were determined 

by pyridine adsorption. Table 1 displays the acidic properties and catalytic performance of the catalysts in MTO process. ZSM-

5NF is the synthesised nano-zeolite, whereas ZSM-5P1, ZSM-5P2, and ZSM-5P3 denote once to thrice passivated samples, 

respectively. The once-passivated catalyst (ZSM-5P1) had moderate acidity in relative to other catalysts and gave the highest 

propylene selectivity of 34% compared to others [24]. In addition, Rey et al. reported that a higher amount of acid sites on 

ZSM-5 accounts for lower catalytic stability because aromatic species have the tendency to arouse coke species [25]. More 

recently, Rui et al. modified ZSM-5 with surface dealumination. Improved light olefin selectivity (63.54%), propylene 

selectivity (40.79%), and catalyst lifetime (24 h) were observed [26].  

 

Table 1. Acidic properties and catalytic performance of the catalysts.  

Zeolite 

 

BAS 

(µmol g-1) 

 

LAS 

(µmol g-1) 

 

Conversion 

(%) 

 

Selectivity (%) 

C2= C3= C4= C5= C6+ 

ZSM-5NF 137 36 98 14 29 11 10 16 

ZSM-5P1 126 38 97 26 34 2 3 19 

ZSM-5P2 132 40 97 27 27 5 6 21 

ZSM-5P3 89 34 90 28 33 5 6 14 

 

4.0 CONCLUSION AND PROSPECTS 

An efficient tool to optimise MTO process is by tuning the acidity of conventional ZSM-5 catalyst. As discussed, strong acid 

sites increase the rate of coke formation through side reactions and reduce the generation of light olefin species. Thus, ZSM-5 

modification process shows a decrease in acid sites strength, which slows down channel blockage, thereby improving catalytic 

performance. Furthermore, modified ZSM-5 with low acidity plays a major role in the network of MTO process by inhibiting 

undesired product formation via aromatics routes and shifting the reaction to alkene route, which favours light olefin 

production. Therefore, the appropriate acid property of ZSM-5 catalyst for enhanced MTO process is a combination of weak 

and/or moderate acid sites. 

MTO is a fascinating and significant reaction for both academic research and industrial applications. Incessant efforts have 

been devoted to improving light olefin production, which include modification of conventional catalysts, use of other reactants, 

and co-feeding methanol with water. The conventional cracking processes are still the cheapest methods to produce propylene 

and the processes account for around 90% of the global propylene supply. However, they do not fully content the rising demand 

for propylene in the petrochemical market. As a result, post-treatment techniques such as elements and composite incorporation 

should be considered. Furthermore, propylene producing technologies such as ethene to propene, olefin cracking, and propane 

dehydrogenation should be adopted. These technologies have the potential to produce a significant amount of propylene and 

are predicted to contribute about 30% of the global propene production [27]. Another viable option is co-feeding methanol 

with water. The existence of water in the feed reduces the rate of coke formation by competing for surface sites with coke 

precursors. Not long ago, an investigation by Parisa et al. showed that using an equivalent quantity of methanol and water in 

the feed boosted the selectivity of propylene [28]. 

Recently, other types of modified zeolite materials are being explored in MTO process. Pablo et al. reported the production of 
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substantial heavier olefin fraction in MTO process over desilicated ZSM-22 catalyst. However, low catalyst stability was 

observed, which would require frequent regeneration in practical industrial application [29]. Also, Xiaojing et al. explored 

modified silicalite-2 zeolite in MTO process. Nearly 100% methanol conversion and 15% propene yield were achieved, and 

significant catalytic stability and increased tolerance for coke deposition were recorded [30]. Sung et al. reported a similar 

trend. Amazingly, the catalytic performance of MTO over ferrierite zeolite was improved by CeO2 coating. A product 

distribution of almost 90% higher olefins and free aromatics was obtained [31]. In the near future, fundamental investigations 

on hierarchical, nano-, and meso-structured materials would further be established, and in-depth understanding of MTO 

mechanisms would be revealed, whereas the projection for further MTO catalyst innovation is expected to be on the rise. 
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