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Abstract 

The feasibility of Citrobacter freundii A1 and Enterococcus casseliflavus C1 bacterial consortium
under sequential facultative anaerobic-aerobic treatment for complete dye degradation using AR-27 
dyes shows 98% decolourisation and 100% COD removal after 72 hours treatment. Moreover, the 
UV-Vis spectroscopy and Fourier Transform Infrared (FTIR) Spectroscopic analysis confirmed that 
the azo linkage was cleaved after the decolourisation occurred. While, the cyclic voltammetry 
analysis also shows that the decolourisation of AR-27 by C. Freundii A1 and E. Casseliflavus C1 was 
an irreversible reaction and the detection of oxidation reaction under agitation proved the presences 
of AR-27 degradation process. Furthermore, the HPLC analysis has confirmed the AR-27 
degradation through the decrease in catechol concentration. 

Keywords: Bacteria consortia, Azo dye decolourisation, cyclic voltammetry, irreversible reaction, 
Catechol degradation 
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INTRODUCTION 

Azo dyes are characterised as aromatic compound that consists of 

one or more azo linkage (-N=N-) which are commercially used in the 

textile, paper and cosmetic industries (Pandey et al., 2007; Onn et al.,

2017). However, as these dye were released into the water body 

without proper treatment, it creates a serious water pollution. This is 

because dye containing wastewater is toxic and detrimental to the 

environment and human health when being discharged to the water 

body (Verma et al., 2008). Thus, to avoid serious environmental 

pollution and human health hazards, several wastewater treatment 

approached has been implemented such as physical adsorption, 

chemical reduction and biological degradation to overcome such 

issues (Pandey et al., 2007; Onn et al., 2017). Recently, biological 

degradation has gather interests among researcher in treating azo dyes 

due to the versatility of the treatment to remove the pollutant, helped 

in azo dye degradation and mineralisation. Besides the nature of 

biological degradation involved the used of microorganisms such as 

bacteria, fungus and yeasts may produce a treatment that are more 

environmentally friendly and economical.  

In addition, the application microrganisms as pure or consortia for 

azo dyes wastewater treatment has been proven to provide positive 

output especially in term of colour removal (Pearce et al., 2003; 

Saratale et al., 2011). However, the used of azo degrading bacteria in 

a form of consortia for biodecolourisation of azo dyes were described 

as an efficient practice to achieve complete degradation of azo dyes 

compares to the solely used of pure culture bacteria (Yoo et al., 2001; 

Pandey et al., 2007; Saratale et al., 2011; Bay et al., 2015). Therefore, 

in this study, two distinctive strains of azo degrading bacteria were 

tested in the form of consortia to determine the biodecolourisation 

using Acid Red 27 (AR-27) as a dye model. These locally isolated 

bacterial strains was identified as C. freundii A1 and E. casseliflavus

C1 via 16rRNA gene sequence analysis.  

Citrobacter sp. strain A1 was isolated from a sewage oxidation 

pond, which characterised as a Gram-negative enteric coccobacillus, 

facultative aerobe and mesophilic dye-degrading bacterium (Chan et 

al., 2012). This organism degrades azo dyes efficiently via azo 

reduction and desulfonation, followed by the successive 

biotransformation of dye intermediates under an aerobic environment 

(Chan et al., 2012). While, Enterococcus sp. strain C1 is a Gram-

positive facultative anaerobe which was co-isolated with Citrobacter 

sp. strain A1 from a sewage oxidation pond (Chan et al., 2012) and 

could degrade azo dyes very efficiently via azo reduction and 

desulfonation in a microaerophilic environment (Chan et al., 2012).  

Hence, the study of this chapter will focus on the decolourisation 

and degradation of Acid Red 27 (AR-27) by using C. freundii A1 and 

E. casseliflavus C1 baterial consortia based on colour removal 

efficiency (%), dry cell weight (mg/L), pH, DO (mg/L), COD (mg/L), 

DNS(mg/L),TPC(mg/L), cyclic voltammetry and High Performances 

Liquid Chromatography (HPLC) analysis.  

EXPERIMENTAL 

Bacteria culture and media 
The two bacteria strains were obtained from the Microbiology

Laboratory of the Faculty of Biosciences and Medical Engineering,

Universiti Teknologi Malaysia. 

RESEARCH ARTICLE 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/287743949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.foxitsoftware.com/shopping


Sabaruddin et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 14, No. 2 (2018) 202-207  

203 

Initially, the microorganisms were grown on nutrient agar (Merck, 

Germany) at 37 ᵒC. Then, P5 medium containing K2HPO4 (35.3 g /

L), KH2PO4 (20.9 g/ L), NH4Cl (2 g/ L), glucose (10 g/ L), nutrient 

broth (20 g /L) and trace elements was prepared according to the 

procedures described by previous study (Chan et al., 2012). For the 

starter culture, a single bacterial colony of C. freundii strain A1 and 

E. casseliflavus strain C1 was inoculated into a 250-mL conical 

flask containing 50 mL of P5 medium and incubated overnight at 

37 ᵒC with shaking at 200 rpm for 16 hours, respectively. Optical 

density (OD) of each bacterial culture was determined at 600 

nm (GENESYS 10s UV–Vis Spectrophotometer). The inocula were 

ready to be used for both decolourisation efficiency and bioelectricity 

generation when the absorbance reading reached 1.0 ± 0.2 (Chan et 

al., 2011; Chan et al., 2012). 

Decolourisation of azo dye 
Acid Red 27 (AR-27) dye (Sigma Aldrich) (Fig. 1) was used for the 

determination of azo dye decolourisation using the C. freundii A1 and 

E. casseliflavus C1 bacteria consortia. The discoloration was 

measured using a UV-Vis spectrophotometer (GENESYS 10s UV-

Vis). 50 ml of modified P5 medium (0.5 g/L glucose and 1.0 g/L 

nutrient broth) with Amaranth (0.1 g/L) was mixed with 10% v: v of 

pure and mixed culture of C. freundii A1 and E. casseliflavus C1 with 

1:1 ratio in a facultative anaerobic condition. The samples were then 

incubated in an incubator shaker at 29±2ºC with 200 rpm for the 

aerobic treatment. Sampling was performed at a 10 minute interval. 

Each sample was centrifuged and the supernatant were analysed at 

521 nm to determine the level of decolourisation. The decolourisation 

efficiency was determined according to equation (1): 

Decolourisation efficiency (%) = 
(𝐴𝑖−𝐴𝑓)

𝐴𝑖
 𝑥 100%                   

(1) 

Where Ai refers to the initial absorbance of dye prior to operation, Af

refer to the final absorbance at any time. Then, Fourier Transform 

Infrared (FTIR) spectroscopy analysis (Thermo Scientific iD7 ATR) 

was performed to determine the azo bond spectrum before and after 

decolourisation. 

Fig. 1 Amaranth (AR 27) molecular structures. 

Dry cell weight 
Initially, the weight of filter paper is measured with aluminium 

foil and labelled before the housing filter was set up. The sample flask 

was stirred in order to suspend the culture evenly. Then, 1 ml of the 

sample was pipette out into a 2.0 mL micro-centrifuge tube and 

centrifuged at 10000×g for 3 minutes. The supernatant was discarded 

and the bacteria pallet was suspended with 10 mL sterile distilled 

water thrice to remove the excess component of P5 media to the filter 

paper by using the housing filter. The wet weight of the culture was 

immediately measured after the water has been pulled through as the 

first reading. Next, the cell paste was dried in a furnace at 100ºC for 

24 h before the aluminium foil with the filter paper was weighted. The 

weight of the cell is calculated in mg/mL based on the equation (2). 

Dry cell weight = [(Cell dry weight + filter paper weight) –

(filter paper weight)mg] / sample volume (mL) 
(2) 

Determination of Redox Reaction by Cyclic Voltametric 
Analysis 

Cyclic voltametric analysis was conducted to characterise the 

electron transfer synergy between microorganisms, microbial biofilm 

and microbial fuel cell anode (Fricke et al,. 2008). A three electrode 

system was implemented for the chroamperometry and cyclic 

voltametry analysis by using potentotiostat AUTOLAB PGSTST204 

(Metrohm, Herisau, Switzerland). The analysis was performed by 

using glassy carbon electrode (Metrohm, Herisau, Switzerland), 

platinum sheet electrode (Metrohm, Herisau, Switzerland), and 

calomel electrode (HI55412, Hanna Instrument, Rhodes Island, USA) 

as the working electrode, counter electrode and a reference electrode. 

Cyclic voltametry (CV) analysis was conducted to observe the redox 

reaction during the AR-27 treatment The CV was conducted with a 

scan rate (10-100 mV/s) with a voltage range -0.6 to 0.8 V. The 

results were analysed using NOVA 1.1 AUTOLAB software 

(Metrohm, Herisau, Switzerland).  

High Performances Liquid Chromatography Analysis 
The HPLC analysis was conducted based from Anjaneya et al.

(2011) and Bay et al., (2013) with some modifications. Initially, the 

supernatant of AR-27 (90 mL) was collected during facultative 

anaerobic treatment (2 Hours) and aerobic treatment (24 Hours, 48 

Hours and 72 Hours). The supernatant was transferred to a separating 

funnel and extracted with an equal volume of ethyl acetate. The top 

layer solution was collected and evaporated to dryness using a rotary 

evaporator. The residue was dissolved in 2 mL methanol. All samples 

were filtered using 0.2 µm nylon filters before eluting isocratically at 

a flow rate of 0.3 mL/min using LiChroCart, purospher STAR RP –

18, C18 column (5 µM, 4.6 mm × 250 mm). Mixture of methanol and 

nano pure water in the ration of 75:25 (v/v) was used for mobile 

phase. The analysis was conducted using the High Performance 

Liquid Chromatography (HPLC) with Photodiode Array and 

Fluorescence Detector (Agilent Technologies) at wavelength 280 nm. 

RESULTS AND DISCUSSION 

Azo dye decolourisation by C. freundii A1 and E. 
casseliflavus C1 bacteria consortium  

The performances by C. freundii A1 and E. Casseliflavus C1 

consortium for the AR-27 treatment was subjected to sequential 

facultative anaerobic-aerobic using glucose (0.5 g/L) and nutrient 

broth (1.0 g/L) as illustrated in Fig. 2. Based on the figure, 98% 

decolourisation was achieved within 2 h incubation under facultative 

anaerobic condition. The decolourisation of azo dye occurred due to 

the presences of azo reductase enzyme in C. freundii A1 and E. 

casseliflavus C1 that helped in cleaving the azo bond (-N=N-) which 

contributes to the dye colour (Lee, 2001; Chan et al., 2012). Initially, 

slow growth of bacteria was recorded during the early phase of 

facultative anaerobic with initial biomass 0.12 ± 0.02 mg/mL. Then, 

the biomass increased to 0.46 ± 0.02 mg/mL after decolourisation was 

achieved after 2 h incubation. As decolourisation achieved, the 

decolourised solution was introduced into aerobic treatments. After  

24 h, there was an increased in colour intensity of the decolourised 

solution, resulting in the decrease of the decolourisation percentage to 

96%, while the bacteria biomass increased to 0.81 ± 0.07 mg/mL. Fig. 

2 (a) also shows that the bacterial biomass continue to increase to 0.92 

± 0.01 mg/mL (72 h) before decreasing to 0.65 ± 0.02 mg/ml (120 h) 

during the aerobic treatment. Hence, it can be assumed that the 

decreased of bacteria biomass after 72 h incubation was cause by the 

nutrient deficiency and eventually leads the bacteria to enter their 

death phase. 

Prior to the addition of the bacteria culture, the initial Chemical 

Oxygen Demand (COD) recorded in AR-27 solution was 2300 mg/L. 

However, the COD showed a slight decrease to 1900 mg/L (Fig. 2b) 

after decolourisation occurred. After 24 h of agitation, the COD 

reading continue to decrease to 900 mg/L (61 %) and there was a 

formation of the dark coloured observed. These dark coloured 

formation solution were suspected to be the results of auto-oxidation 

reaction occurred to the aromatic amine generated. Then, the COD 
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level of the decolourised AR-27 continued to drop to 100 g/L (95%) 

after 72 h of treatment. 

Fig. 2 Azo dye decolourisation of C. freundii A1 and E. casseliflavus C1 
bacteria consortium. Decolourisation percentages and dry cell weight 
(a). COD removal and dissolved oxygen (b). 

Besides COD removal, Fig. 2(b) also shows that the dissolved 

oxygen (DO) drastically decreased from 4.0 ± 0.2 mg/L to 0.63 ± 0.02 

mg/L after decolourisation occurred. However, the concentration of 

dissolved of oxygen starts to increase to 1.43 ± 0.1 mg/L after 24 h 

aerobic treatments. The dissolved oxygen concentrations continue to 

increase alongside the incubation time under aerobic condition as 

shown in Fig. 2 (b). This was suported by previous literature which 

stated that under low oxygen concentrations, the biocatalyst metabolic 

activities might have initiated towards anaerobic reduction mechanism 

whereby the azo dye were considered as a competent electron 

acceptor along with the oxygen presence inside the bacteria cell 

(Mohan et al., 2013). Moreover, according to Bay et al., (2015), as 

oxygen is introduced after decolourisation occurred, the 

microorganisms will able to further degrade the aromatic amine 

produce during the facultative anaerobic treatment. This aromatic 

amine degradation was called mineralisation process which occurred 

under aerobic condition (Mohan et al., 2013). 

Fig. 3 Reducing sugar and total polyphenol analysis for AR-27 
decolourisation. 

During the AR-27 treatment, the DNS and total polyphenol 

analysis were conducted to determine the reducing sugar and total 

polyphenol concentration as shown in Fig. 3. In this study, the initial 

concentration of glucose supplied for the treatment was 570 ± 10 

mg/L. However, the concentration of glucose decreased to 80 ± 4 

mg/L as decolourisation was achieved after 2 h under anaerobic 

condition and continue to decrease drastically (4 ± 2 mg/L) after 24 h 

aerobic treatment. During decolourisation phase, glucose was utilised 

by bacteria cell metabolisms to generate adenosine triphosphate 

(ATP), hydrogen ion (H+), and electron through glycolysis reaction. 

Due to the electron deficient properties of AR-27, the electron was 

transferred to the also linkage with the help of the electron carrier 

(NADH) and azo-reductase for reduction of the azo dye (Saratale et 

al., 2011). While the bacteria completely utilised the remaining 

glucose for development of bacterial biomass after decolourisation 

was achieved. 

According to previous literature, the degradation of azo dye 

usually will generate phenolic compound (Chengalroyen and Dabbs, 

2013) such as aromatic amines and TPP was one of the analyses used 

to quantitatively determine the phenolic compound concentration 

(Dudonné et al., 2009). Based on Fig. 3, during anaerobic treatment of 

AR-27, there is an increased of polyphenol recorded from 49 ± 1 

mg/L during 0 h treatment to 61± 1 mg/L after 2 h. As decolourisation 

took place, the azo dye reduction by azoreductase enzyme will 

produce aromatic amines and contribute to the increased in the 

polyphenol concentration. However, as the decolourised AR-27 

undergoes aerobic treatment, there was a slight decrease in polyphenol 

concentration recorded after 24 h (53 ±2 mg/L) and continue to 

decrease to 46 ±2 mg/L after 144 h incubation. The reduction of 

polyphenolic compound concentration during aerobic treatment might 

be caused by the mineralization of azo dye whereby the phenolic 

compound undergoes aromatic amine ring cleavage through the 

hydroxylation reaction in the aerobic degradation pathway 

(Hinteregger et al., 1992). 

Fig. 4 Spectrum analysis for AR-27 decolourisation. 

The degradation of AR-27 was foremost observed using UV-Vis 

spectrophotometry and the AR-27 solution showed the maximum 

absorption peak at 521 nm as seen in Fig. 4.. Once the decolourisation 

occurred, the major peak in the visible part of the spectrum had 

diminished. The significant reduction in the absorption peaks at 2h 

(facultative anaerobic condition); 24 h (aerobic condition) and 48h 

(aerobic condition) were compared to 0 h to confirm the degradation 

of AR-27. Although complete decolourisation was achieved, there 

was an increased of absorbances for the decolourised AR-27 during 

aerobic which causing the formation of a yellowish colour solution. 

This yellowish solution was suspected to be the excess colour of 

nutrient broth and product of oxidation reaction during mineralisation 

of decolourised AR-27 under aerobic condition. 

Fourier Transform Infrared (FTIR) spectroscopy was used to 

determine the spectrum of the AR-27 dye before and after 

decolourisation. The FTIR analysis performed for the control and the 

decolourised sample was shown in Fig. 5. Based on Fig. 5, the control 

AR-27 dye displayed a peak at 3,311 cm-1 which corresponds to the 

intermolecular hydrogen bonding aromatic –OH and O–H stretching; 

a peak at 2,125.33 cm-1 for –H stretching of amines; a peak at 

1,507.cm-1 for N=N stretching of azo linkage respectively. 

Then, the decolourised AR-27 solution showed a peak at 3,343cm-

1 for the intermolecular hydrogen bonding aromatic –OH and O-H 

stretching; a peak at 2,127 cm-1 for N-H stretching of amines. 

However, the peak located at 1,507 cm-1 for N=N stretching of azo 

group disappeared after 2 hours treatment. Thus, indicates that the azo 

linkage was cleaved biologically (Khouloud et al., 2012; Singh et al., 
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2015) by C. freundii A1 and E. casseliflavus C1 consortium after the 

decolourisation occurred. 

Fig. 5 FTIR spectra of azo bond reduction before (a) and after 
decolourisation (b). 

Electrochemical analysis for AR-27 decolourisation by C. 
freundii A1 and E. casseliflavus C1 bacteria consortium 

Cyclic-voltammetry (CV) analysis was used to measure the redox 

properties during the facultative anaerobic and aerobic treatment of 

AR-27 solution as shown in Fig. 6. Furthermore, CV analysis was also 

conducted to determine of mineralisation of the decolourised AR-27 

solution. The presences of oxidation and reduction peak during 

aerobic treatment may indicate the mineralisation of the treated AR-

27 solution.  

Fig. 6 Cyclic voltamograms analysis on AR-27 treatment in sequential 
facultative anaerobic (2 hour) and aerobic (24 hour, 48 hour and 72 

hour) treatment. 

Initially, inocula free AR-27 solution was used as a control and 

the result in Fig 6 shows the absence of any oxidation and reduction 

reaction. However, as C. freundii A1 and E. casseliflavus C1 consortia 

was introduced and undergoes facultative anaerobic decolourisation, 

after 2 h there is the presences of high oxidation potential (144 mV) 

and reduction potential (-146 mV). Thus, indicates that a biological 

oxidation and reduction was occurred due to the breaking the azo 

linkage (-N=N-) by C. freundii A1 and E. casseliflavus C1 which 

resulted the decolourisation of AR-27. Moreover, the separation 

between the oxidation and reduction peak was 290 mV indicates the 

decolourisation reaction was irreversible during 2 h facultative 

anaerobic treatment. As oxygen was introduced during aerobic 

treatment of AR-27, the oxidation and reduction peak start to 

decreased and the result was illustrated in Fig. 6.  

After 24 hour aerobic treatment, the oxidation and reduction peak 

recorded were 224 mV and -165 mV respectively. The difference 

between the oxidation and reduction peak was 389 mV during 24 h 

aerobic treatment, thus shows that the reaction was irreversible under 

the presences of oxygen. It is expected that the detection of oxidation 

peak was due to oxidative degradation that occurred during the 

aerobic treatment. This oxidative degradation indicates that the 

presences of aromatic amine degradation during the aerobic treatment 

of the decolourised AR-27 solution. Furthermore, Fig. 6 also shows 

weak oxidation peak and strong reduction peak during 48 h and 72 h 

aerobic treatment of AR-27. After 48 h aerobic treatment, the 

oxidation and reduction peak recorded was 380 mV and -551 mV 

respectively. While the oxidation peak (380 mV) and reduction peak 

(546 mV) was recorded after 72 h aerobic treatment. Hence, the 

different between the oxidation and reduction peak for 48 h and 72 h 

was 931 mV and 926 mV respectively. Thus, shows that the reaction 

was irreversible for the AR-27 treatment during 48 h and 72 h aerobic 

treatment. Previous study by Steter et al., (2014) also reported similar 

findings whereby the peak observe during decolourisation and 

degradation indicates the occurrence of polymerisation of azo 

compound. Hence, proves the abilities of C. freundii A1 and E. 

casseliflavus C1 in decolourisation and degradation of AR-27. 

Fig. 7 Cyclic voltammogram analysis for AR-27 treatment in sequential 
facultative anaerobic-aerobic with differences scan rates (a) 2 h, (b) 24 
h, (c) 48 h and (d) 72 h. 

Further analysis was conducted to further prove the redox reaction 

observed during the AR-27 treatment in facultative anaerobic-aerobic 

condition was irreversible type was shown in Fig. 7. According to 

Brownson and Banks (2014), by applying various scan rates, the 

diffusion layer thickness was dramatically changed by reflecting the 

competition between electrode kinetic and mass transport. Thus, 

differences scan rates starting from 0.01 V/s – 0.1 V/s was applied 

during the AR-27 treatment for the irreversible type reaction 

determination. Based on the Fig. 7, there was a shift of individual 

redox peak magnitude and wide separation between the peaks during 

AR-27 treatment as higher scans rates was applied during the CV 

analysis. The irreversible reaction was observed during the AR-27 

decolourisation by CV analysis was due to the electron transfer rates 

were smaller compared to the mass transport (Brownson and Banks, 

2014). This was vice verse to a reversible type reaction in which the 

electron transfer rates and the peak potential were independent of the 

applied voltametric scan rates (Brownson and Banks, 2014). In 

conclusion, the CV analysis of the AR-27 treatment using C. freundii

A1 and E. casseliflavus C1 under sequential facultative anaerobic-

aerobic condition was an irreversible reaction. 

Determination of catechols degradation by C. freundii A1 
and E. casseliflavus C1 bacteria consortium. 

According to Pandey et al., (2007), aromatic amines formed 

during azo dye reduction, have been reported to be more easily 

degraded under aerobic conditions. Furthermore, the presences of 

phenolic group in these aromatic amines can cause the decolourised 

azo dyes to have high toxicity properties. Hence, in this study, 

catechol was selected as the phenolic compound model for 

degradation as previous studies by Chan et al., (2012) has detected the 

presences of this compound after decolourised AR-27 undergoes 

aerobic treatment through LC-MS analysis. Thus, the determination of 

OH C-N N=N NH

(a)

(b)

  

  

Figure 4.11 Cyclic voltammogram analysis for AR-27 treatment in sequential 

facultative anaerobic-aerobic with differences scan rates (a) 2 hour, (b) 24 hour, (c) 

48 hour and (d) 72 hour. 
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phenolic compound catechol by C. freundii A1 and E. casseliflavus

C1 bacteria consortium was conducted using HPLC analysis.  

In this study, HPLC analysis was conducted for the sample at the 

end of facultative anaerobe treatment (2 h) and throughout the aerobic 

treatment (24 h, 48 h, and 72 h) and the concentration of catechol 

detected during the AR-27 treatment by C. freundii A1 and E. 

casseliflavus C1 wasas shown in Fig 8. The retention time for the 

detection of catechol was estimated at ~4.02 minutes based on 

standard (Fig. 8a).  

Fig. 8 HPLC analysis for AR-27 treatment based on catechol 
degradation (a) Standard catechol, (b) 2 h of facultative anaerobic 
treatment, (c) 24 h aerobic treatment, (d) 48  h aerobic treatment and 
(e) 72 h aerobic treatment. Catechol was detected with the approximate 
retention time of ~4.02 minutes. 

Based on Fig. 8 (b), 4.7 mg/L of catechol was detected after 2 h 

facultative anaerobic treatment. However, after 24 h agitation, the 

aerobic treatment has reduced the catechol to 3.8 mg/L (Fig. 8c). The 

catechol concentration continues to decrease to 1.7 mg/L and 1.6 

mg/L after 48 h (Fig. 8d) and 72 h (Fig. 8e) aerobic treatment, 

respectively. Hence, shows 66% reduction of catechol concentration 

was achieved at the end of AR-27 treatment. This may indicates the 

potential phenolic degradation by C. freundii A1 and E. casseliflavus

C1.  

Lastly, Fig. 9 shows the proposed pathway for AR-27 and 

catechol degradation that was constructed based on Chan et al.,

(2012). According to previous studies, the decolourisation of AR-27 

generates sulfonated aromatic amines, namely 1-aminonaphthalene-4-

sulfonic acid and 1-aminonaphthalene-2-hydroxy-3,6-disulfonic acid 

(Zhee van deer et al., 2005; Chan et al., 2012; Hadibarata et al.,

2014). Initially, AR-27 undergoes a partial cleavage of the azo linkage 

(-N=N-) to produce hydrazo intermediates. This hydrazo 

intermediates were eventually transformed to aromatic amines after 

undergoes symmetric reductive cleavage reaction (Chan et al., 2012; 

Hadibarata and Nor, 2014) in which was the first step of AR-27 

degradation. Furthermore, the C. freundii A1 and E. casseliflavus C1 

consortia used in the AR-27 decolourisation study was previously 

proven to be azo degrading microorganisms. This was supported by 

Lee (2003) who discovered the presences of azo reductase activity in 

the presence of NADH and riboflavin on the crude cell-free extract of 

E. casseliflavus C1. While Wahab (2007) proven that C. freundii

A1has the ability to expressed azo reductase enzyme called flavin 

reductase for reduction of azo dye 

Fig. 9 Proposed AR-27 and Catechol* degradation pathway by C. 
freundii A1 and E. casseliflavus C1 bacteria consortium (Chan et al., 
2012) 

The aromatic amine 1-aminonaphthalene-4-sulfonic acid and 1-

aminonaphthalene-2-hydroxy-3,6-disulfonic acid may undergo rapid 

biodegradation to produce naphthalene via deamination and 

desulfonation reaction (Chan et al., 2012). Under aerobic condition, 

naphthalene will undergo the naphthalene degradation pathway to 

generates naphthalene-1,2-diol before eventually converted to 

salicylate. Then, salicylate undergoes salicylates degradation pathway 

to generates catechol in which eventually mineralised to pyruvate. 

Pyruvate will entered the TCA cycles to generates ATP for the 

bacteria metabolisms. Hence, proving that C. freundii A1 and E. 

casseliflavus C1 consortia has the ability for AR-27 degradation under 

sequential aerobic-anaerobic treatment. 

CONCLUSION 

This study demonstrates the potential of the C. freundii A1 and E. 

Casseliflavus C1 bacterial consortia in Acid Red 27 (AR-27) dye 

decolourisation and removal. The feasibility of sequential facultative 

anaerobic-aerobic treatment for complete dye removal and 

degradation using AR-27 dyes resulted 98% decolourisation removal 

under static condition at 29 ± 2ºC Furthermore, after 72 hours aerobic 

treatment the bacteria consortia able to achieved 100% COD removal 

and 5% total polyphenol content removal. Plus, the cyclic 

voltammetry analysis demonstrates that the decolourisation of AR-27 

by C. freundii A1 and E. Casseliflavus C1 was an irreversible reaction 

and the detection of oxidation reaction under agitation proved the 

presences of decolourised AR-27 mineralisation process. For the AR-

27 degradation determination, it was confirmed by the decrease in 

 

 

 

 

 

Figure 4.12 HPLC analysis for AR-27 treatment based on catechol degradation (a) 

Standard catechol (100 mg/L), (b) 2 hour of facultative anaerobic treatment, (c) 24 

hour aerobic treatment, (d) 48 hour aerobic treatment and (e) 72 hour aerobic 

treatment. Catechol was detected with the approximate retention time of ~4.02 

(a) 

Catechol: 4.7 mg/L (b) 

Catechol: 3.8 mg/L (c) 

Catechol: 1.7 mg/L (d) 

Catechol: 1.6 mg/L (e) 

 

 

Figure 4.13 Proposed AR-27 and Catechol* degradation pathway by C. freundii A1 

and E. casseliflavus C1 bacteria consortium (Chan et al, 2012).  
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catechol concentrations through the High Performance Liquid 

Chromatography (HPLC) peaks detection. 
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