

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.15) (2018) 130-134

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Preventive Measures for Cross Site Request Forgery Attacks

on Web-based Applications

Emil Semastin
1
, Sami Azam

1
*, Bharanidharan Shanmugam

1
, Krishnan Kannoorpatti

1
, Mirjam Jonokman

1
,

Ganthan Narayana Samy
2
, Sundresan Perumal

3

1 College of Engineering, IT and Environment, Charles Darwin University, Australia

2Advanced Informatics School, Menara Razak, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
3Faculty of Science and Technology, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia

*Corresponding author E-mail: sami.azam@cdu.edu.au

Abstract

Today’s contemporary business world has incorporated Web Services and Web Applications in its core of operating cycle nowadays and
security plays a major role in the amalgamation of such services and applications with the business needs worldwide. OWASP (Open
Web Application Security Project) states that the effectiveness of security mechanisms in a Web Application can be estimated by evalu-

ating the degree of vulnerability against any of the nominated top ten vulnerabilities, nominated by the OWASP. This paper sheds light
on a number of existing tools that can be used to test for the CSRF vulnerability. The main objective of the research is to identify the
available solutions to prevent CSRF attacks. By analyzing the techniques employed in each of the solutions, the optimal tool can be iden-
tified. Tests against the exploitation of the vulnerabilities were conducted after implementing the solutions into the web application to
check the efficacy of each of the solutions. The research also proposes a combined solution that integrates the passing of an unpredictable
token through a hidden field and validating it on the server side with the passing of token through URL.

Keywords: CSRF; CSRF Prevention; CSRF Tester; Hidden Token; Web Application Vulnerabilities

1. Introduction

Securing information is a big challenge in web applications. A
well-secured web application should never allow information to
slip into the hands of an unauthorized user. In this modern era,
information sharing over the Internet is every day’s business.

Keeping the data secure means preventing misuse due to unau-
thorized access. But this task alone is becoming harder to achieve
every day due to the easy transferability of digital information [1].
Since Web Applications are widely used for both business and
personal purposes, the security testing of such applications has a
high importance. The primary benefit of using Web Applications
in day-to-days business is that it makes the transactions considera-
bly faster without disruptions [2]. Unfortunately, no standardized

testing methodologies have been developed yet to test the security
of these applications [3]. The research by White Hat claims that
over sixty percent (60%) of the total web applications are exposed
to multiple vulnerabilities which any attacker can take advantage
of. These statistics are quite worrisome and it goes without saying
that this rate must come down markedly [4]. Suitable and robust
security policies should be implemented during development of
any Web Application. Web Applications require more attention

than normal computer applications because they are much more
sensitive and highly prone to online attacks. A security loophole
or a weakness in a Web Application, which a hacker can misuse to
carry out an attack, is known as vulnerability [5]. Vulnerabilities
are generally classified into two groups: Technical and Logical.
One of the best-known Web Application vulnerabilities is Cross
Site Request Forgery (CSRF). The aim of this research is to ana-
lyze the different available tools for CSRF testing. The following

section highlights the problem statement, followed by a compari-
son of the methods and in-depth analysis of the solutions available.
On the basis of different tests and analysis, the most effective
solution will be identified.

CSRF is an attack that transpires when an attacker forces an au-
thenticated user of a Web Application to execute an unwanted
operation in that application which results in exploiting the trust
relation of a website. These attacks are known by many other
names, such as Confused Deputy, One Click Attack, Sea Surf,
Session Riding and XSRF [6].
Many Web Applications are not fully protected, especially against
the CSRF vulnerability. Cross Site Request Forgery is one of the

top 10 vulnerabilities selected by the OWASP and is ranked in the
third in the sense of severity after SQL Injection and Cross Site
Scripting [7]. Another interesting fact is that these attacks, if they
are executed properly, can be very damaging for the Web Applica-
tions. The State Changing functionality remains the main focus of
the attackers.
These strikes, which are mainly aimed towards the users of a web
application rather than the web application itself, intend to obtain

the sensitive data of the users. They are commonly known as so-
cial engineering attacks [8]. Most developers believe that normal
security measures, such as adding cookies with the requests, can
prevent Web Applications from these attacks. Unfortunately, this
solution is not effective enough because the hacker can get access
to all the sessions related information with the aid of different
technologies currently available. As a result, full protection for
state changing functionalities in Web Applications is not available.

The best solution for each application should be selected accord-
ing to the purpose of the application. This is the focus of this re-
search [9].

International Journal of Engineering & Technology 131

Enterprise applications which allow sharing the real time data over
the internet have been introduced as a new medium to promote the
growth of companies. To increase the security, a number of sub-
systems need to be installed to protect the data across the commu-
nication. Organizations should regularly adopt new technologies
to enhance their data security and protect their highly sensitive
data from unauthorized access.

2. Cross Site Request Forgery Attacks

CSRF is often referred as the “Sleeping Giant” among the critical
vulnerabilities found in Web applications [10]. These attacks can
often cause havoc because the developers and a testing squad of a
website neglect them and fail to put the protective measures
against these attacks in place. The academic and technical discus-

sions on these attacks are relatively limited and they have there-
fore not been a part of the threat classification of web security.
Most web development companies take it for granted that when
there is protection against Cross Site Scripting attacks, CSRFs are
also prevented automatically. Unfortunately, numerous web de-
velopers are totally unaware that CSRF and XSS (Cross-Site
Scripting) attacks are entirely different kinds of threats. Compared
to other major attacks, CSRF is fairly easy to detect, exploit and

prevent. The only requirement is that the developers should know
how and where this attack happens.
The CSRF attack is executed by bypassing a request through the
user’s browser. The attacker misuses the user’s belief in a website.
The policy of the browser which handles the security allows it to
forge a request to any website without problems. This gives the
hacker the opportunity to control the browser according to his or
her wish.

Even if the attacker is not able to send any request to the victim’s
web application, because the attacker is beyond the firewall of the
user, he or she can still make the user send the request from the
user’s browser, which is in the firewall. Since each request carries
the session information of the user, the attack will be successful
even though the user is beyond the firewall [11].
An attacker to perform attacks varying in severity and target can
use CSRF. The most popular type of attack is exploiting the valid
session ID that a user has for a particular web application. Im-

proper protection against CSRF from the web application results
in these types of attacks. Even if the applications of companies of
market moving capacity are protected against CSRF, there are
incidents which indicate the security gaps are still present. Alt-
hough CSRF attacks are popularly used to attack the Web Appli-
cations, hardware devices like printers, routers, switches etc. can
also be compromised [12].
Attackers have exploited the CSRF vulnerability in the recent past.

This happens only because the developers of the Web Applica-
tions are not cautious enough to implement preventive measures
against CSRF when they develop the applications. Attacks, which
occurred in 2016 with the Belkin routers and Agora Wallet, are
examples of such instance [13, 14].

3. Critical Factors for a Successful Attack

The first and foremost condition for a CSRF attack to be success-
ful is that the user should be authenticated to the victim’s website.
The next step is to provoke the client to visit the malicious website.
This can be the attacker’s own website or a website which is under
the control of the attacker [15]. If the server of a website is vulner-
able to CSRF and it accepts the GET request, the attack becomes
much easier. The attacker can use a simple image tag to perform

the operation. In the case of the POST requests, the image tag
would not work but the attack could still be carried out with the
help of a simple code in JavaScript that can be used to submit the
FORM tag automatically [16].

The ranking of CSRF in OWASP top 10 vulnerabilities proves
that the attack is still critical and the need for an effective solution
is still a top priority. The threat classification released by the Web
Application Security Consortium ranks CSRF 9th in the list of
critical vulnerabilities [11].
The authentication methods of the Grid registering stage accept
different security approaches. The general concept of resource
centralization and authorization management does not fit into the

concept of Service Oriented Architectures [11].

4. Comparison of CSRF Testing Tools

This section describes the criteria we use for comparison of the
CSRF testing.

4.1. Creation of CSRF HTML File

For testing, we need to create an HTML file which contains the
CSRF attack code. This HTML file can either be generated manu-
ally by the tester or with the help of a tool.

4.2. Proxy Listening

Proxy listening is the process of recording each and every request
sent by the browser to the web applications. The tester cannot do

this manually and hence requires the help of a tool. There are
tools which can block the request and ask for confirmation from
the tool to forward the request to the web application.

4.3. Auto Submission of Forms

The auto submission of the forms in the POST requests can be
done with the help of JavaScript codes. The tester can create this
code with the help of a tool or can make it manually.

4.4. Creation of Form in the Browser

Some tools create the forms in the POST requests in the browser
during testing. This criteria is to check whether a particular tool
creates the form in the browser. Based on the testing carried out
with the selected tools, we found that the CSRF tester tool devel-
oped by the OWASP is the most effective based on the criteria
described in Table 1.

Table 1: Comparison of Tools for CSRF Testing

Criteria CSRF

HTML file

Listen

Proxy

Auto Submit

Form

Form in the

Browser Tools

OWASP

CSRF Tester
Yes Yes Yes No

Burp Suite Yes Yes No No

OWASP

ZAP
No Yes No Yes

Pinata Yes No Yes No

Pinata and CSRF tester are tools, which can be used for the auto
submission of the forms, but Pinata does not have the proxy listen-

ing functionality. Proxy listening is nearly a deciding factor in the
testing process. The other two tools, Burp Suite and OWASP ZAP,
are good tools, which can test for all vulnerabilities. However,
they are not efficient as a CSRF tester tool because they cannot
submit the forms automatically, even if they can perform the at-
tack by manually submitting the form. Since most of the attacks
are targeted on the POST requests, the submission of the form
should be done automatically in order to test it. Therefore, this is a

big drawback in these two tools. Based on the comparison, it is
evident that the OWASP CSRF tester is more effective than other
tools because, contrary to other tools, it satisfies the three main
criteria (refer to Table 1).

132 International Journal of Engineering & Technology

5. Criteria for Comparison of Solutions

A comparison of CSRF solutions is made based on nine criteria,
which are selected based on the literature. These criteria also de-
pend on the mechanism of different solutions. These criteria are
discussed in detail below.

5.1. Prevention against Get Requests

This criterion checks whether the solution gives protection for
requests, which use the GET method. GET is one of the four types
of methods used in requests. It involves reading data from the
server by sending a request. The comparison table (Table 2),
shows which solutions provide protection against GET requests
and which ones do not.

5.2. Prevention against Post Requests

POST is another of the four main methods used to retrieve data
from the server. In a POST requests a form is submitted to the
server requesting the data. Once the form is filled in and submitted,
the server returns the result. The comparison table shows which
solutions provide protection and which ones do not against POST
requests.

5.3. Prevention against Single Step Transactions

Most sensitive data handling requests these days uses multi re-
quests. However, some web applications used single step or a
single request for this kind of transactions in the past. This criteri-
on tests whether a solution protects a Web Application which uses
a single step for sensitive operations from the CSRF attacks, alt-
hough, the use of single step requests for sensitive transactions is

not recommended.

5.4. Usage of Random Value in the Code

Some of the solutions to prevent CSRF attacks deploy a pseudo
random number for the implementation of the solution. Checking
each solution against this criterion tests whether a particular solu-
tion uses a random number in the code itself or not.

5.5. Usage of Random Value in the URL

Passing the randomly generated token is one of the most effective
solutions to protect a Web Application against CSRF attacks.
Each solution in the comparison table is therefore checked so that
solutions, which pass the pseudo random value through the URL,
can be identified.

5.6. Usage of Random Value in the Cookie

The randomly generated token can also be passed with the cookie

information. By checking each solution against this criterion, we
can identify which solution uses this method. This is a potential
solution even if all the information in the cookie is accessible to
the attackers.

5.7. Random Value Encryption

The random value created using a pseudo random number genera-
tor can be encrypted and used as a preventive mechanism against

the CSRF attacks. The solutions are checked against these criteria
to understand whether they use the above mechanism to activate
the protection. The encryption is normally done to deny the at-
tackers access to the random number.

5.8. Browser Dependency

There are existing ways to prevent CSRF attacks in Web applica-
tions which are dependent on the browser. However, an effective
solution should not depend upon Brower’s capability to enhance

its protection level.

5.9. Domain Dependency

The effective solutions to prevent a web application from the
CSRF attacks should not be dependent on the domain. According
to the literature, there are existing solutions which are dependent
on the domain. This criteria is used to identify which solutions are
dependent on a particular domain.

6. Comparison of Solutions to Prevent CSRF

Attacks

A comparison of the CSRF solutions has been made, based on the
criteria as listed in Table 2. This comparison helps us to under-
stand the efficiency of each solution to prevent the CSRF attacks.
Passing a pseudo random token through the hidden field is consid-
ered the most efficient existing solution to prevent the CSRF at-
tacks in web applications. At the server end, this token is validated

against the token in the session. If both the tokens match, then it is
understood that the request originated from the same origin. By
passing the token through the hidden field, access of the attackers
to the token is denied [17].
In POST requests, along with the normal form, the token is in-
cluded as a hidden field [9]. Single step transactions are also pro-
tected, because the form submission automatically converts single
step transactions into multistep transactions.

Since the pseudo random value is passed through the hidden field,
the token is in the code. The token is not present in the URL or in
the cookie. The token remains unencrypted in this solution. An-
other advantage is that it is not dependent on the browser or on the
domain because the solution is implemented in the Web Applica-
tion itself [11].
The second most effective solution is passing the unpredictable
random token through the URL. This solution is mainly imple-

mented in GET requests but it can also give protection to POST
requests. Even if the token is accessible to the attacker, it is not
useful because the validity of the token expires when the session
expires [11]. A new token is generated at the start of each session.
Single step transactions are also protected because the token is
validated on the server side with each request. The token is not
present in the code and in the cookie but it is available in the URL.
Similar to the solution discussed before, this one is also independ-
ent of the browser and the domain [7, 18]. Of the two methods

discussed above, the former one, passing a pseudo random token
through the hidden field, is more powerful and more widely used.
Besides the above, checking the referrer header of a request is also
a possible solution to prevent CSRF attacks. It helps to identify
the origin of the request [19]. This is independent of the type of
request. However, not all browsers have the option of sending the
referrer header with each request. Even if the browser supports it,
the option to turn off the referrer header is available. This means

that this solution is dependent on the browser as well as the do-
main [20].
Submitting the cookie twice is simply placing the generated token
in the cookie information itself and sending it. Since the cookie
can be accessed by anyone, this solution does not provide proper
protection. On the server side the value in the cookie is validated
against the value in the session. The only advantage is that the
solution is not dependent on the browser and the domain [7].

An effective method is encrypting the token which is generated
randomly and passing it through the session. Rather than checking
the token at the server side, the token is decrypted and compared
with the generated token [21]. This is efficient but harder for the

International Journal of Engineering & Technology 133

developers as it requires coding to encrypt, decrypt and compare
the token. Due to this difficulty, the process is seldom used. The
advantage of only passing the encrypted token is Browser and
Domain independence [7].
Similarly, the origin headers are also dependent on the browsers.
Attaching the origin header with every request is a feature of the

‘Firefox’ browser, which was developed by a research group com-
prising Adam Barth, Collin Jackson and John C. Mitchell [2].
None of the other browsers have this functionality. The process is
therefore dependent on a particular browser. Since there is no
generation of a token, there is no presence of a random value in
the code or URL or the cookie [20].

Table 2: Comparison of the Solutions to Prevent CSRF Threat

Criteria

Protect

GET

requests

Protect

POST

requests

Protect

single step

operations

Token in

the code

Token

in the

URL

Token in

the cookie

Token

Encryption

Depends

Browser

Depends

Domain Solution

1

Pseudorandom value

(synchronizer token

pattern) as a hidden

field in the form

Yes Yes Yes Yes X X X X X

2

Pseudorandom value

(synchronizer token

pattern) disclosed in

the URL

Yes Yes Yes X Yes X X X X

3

Using only post re-

quests in the applica-

tions

Yes X X X X X X X X

4 Multi step transactions Yes X Yes X X X X X X

5
Double submitting

cookies
X Yes Yes X X Yes X X X

6
Encrypted token pat-

tern
Yes Yes Yes X X X Yes X X

7
Checking the referrer

header
Yes Yes Yes X X X X Yes Yes

8
Checking the origin

header
Yes Yes Yes X X X X Yes X

9

Challenge response

(disadvantage: not

user friendly)

Yes Yes Yes X X X X X X

Getting a response from the client by a challenge is one of the best

ways to identify the origin of a request. In fact, it is a double au-
thentication procedure for a request to be processed. It is the only
solution which gives proper protection against CSRF attacks
without the use of pseudo random numbers [22]. However, the
disadvantage is that asking for re-authentication in each and every
request is uncomfortable for the user. User-friendliness is crucial
for any good web application. This Browser independent tech-
nique is only implemented in requests which are highly sensitive,

to give extra security in addition to the token validation [7].

7. Solution and Recommendations

The proposed technique will present an effective solution, which
can offer double-layered protection against CSRF. Figure 1 de-
picts the flowchart which demonstrates the general progression of

the algorithm.
The OWASP CSRF tester is used in this case as well to generating
the html file to execute the attack. The test has been carried out
using our own dedicated private cloud. The file used for attacking
purposes will register a new user to the application from an exter-
nal source. An HTML file for the registration request using the
CSRF tester tool has been generated. After that, the parameters of
the form have been edited to convert it an attack file. The screen-

shot of this file is shown below (Figure 2). To ensure that the to-
ken is passed through both hidden field and the URL, please re-
view the highlighted section. The same token is displayed in the
URL and in the hidden field in the form.
Once the form was created using the tool, the parameters of the
registration fields have been edited. If the attack executes success-
fully, a new user with username ‘34343’ will be created in the
Web Application. To execute the attack, the file is accessed in the
same browser as where a user is logged into the application. The

result for the test is shown below.

Once the attack is executed, the application rejected the request

flagging a token error. This means that the token present in the
attack file did not match the token in the session when the request
was sent. As a result the execution of the attack was not successful
and the user was not registered to the application. This shows that
the solution provides protection to the application against CSRF
attacks. With this suggested solution, even if the attacker gets
access to the token in the URL, the attack will not be executed
successfully because of the double validation (validated with the

token in a hidden field and a token in the URL).
The result will be the same if the attacker obtains the token in the
hidden field. This suggested solution provides more protection for
web applications than the existing solutions.

8. Conclusion

CSRF attacks are riskier than they first appear to be because most
web developers are unaware of CSRF and fail to provide proper
protection. These attacks can be easily executed by the attackers
by using straightforward techniques. A reliable mechanism for
protecting a Web Application against these attacks is absolutely
essential. There are many existing solutions which can be imple-
mented in a Web Application to prevent CSRF attacks. Of these,
passing an unpredictable token through a hidden field and validat-

ing it at the server side is the most effective solution. Passing the
token through the URL is the next best solution. Ongoing research
is currently carried out to develop even more stringent methods to
foil the CSRF attacks. The suggested solution is a combination of
the most effective existing technique and the second best option.
By implementing this, a double validation takes place at the server
side of the web application to ensure the prevention of CSRF at-
tacks.

134 International Journal of Engineering & Technology

Fig. 1: Flowchart of the proposed process

Fig. 2: Screenshot of the attack file created using CSRF Tester [7].

Currently, hackers do not seem to have devised a method to obtain
the unpredictable token in the URL yet. However, if the attackers
find a way to get this token in the future the suggested solution
can be still used to prevent the attacks. Even if the attackers can

get the token in the URL, they will not be aware of the token in
the hidden field. Since the token is validated twice at server side,
the attack request will be rejected. Contrary to other existing solu-
tions, this solution provides protection against both GET requests

and POST requests. The fact that the token passes through the
code and the URL makes it preferable as well. Since the imple-
mentation of the solution is done in the Web Application, it is also
independent of the browser. Considering all these properties, it
would be expected that the suggested solution would be more
effective to protect Web Applications from CSRF attacks than the
existing solutions.

References

[1] Webappsec (2017). Webappsec resources.

https://danielmiessler.com/projects/webappsec_testing_resources

[2] Caviglione, L., Merlo, A., & Migliardi, M. (2012). Green-aware

security: Towards a new research field. Journal of Information

Assurance and Security, 7(6), 338-346.

[3] Vala, R., & Jasek, R. (2011). Security testing of web applica-

tions. Proceedings of the Annals of DAAAM and Proceedings, pp.

1533-1535.

[4] Grossman, J. (2007). Whitehat website security statistics report.

http://hhs.janlo.nl/articles/Whitehatstat.pdf.

[5] Ahmed, N., & Abraham, A. (2013). Modeling security risk factors

in a cloud computing environment. Journal of Information Assur-

ance and Security, 8, 279-289.

[6] Kafer, K. (2008). Cross site request forgery. Technical report,

Hasso-Plattner-Institut.

[7] OWASP. (2017). CSRF prevention cheat sheet.

https://www.owasp.org/index.php/Cross-

Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet.

[8] Akanbi, O., Abunadi, A., & Zainal, A. (2014). Phishing website

classification: A machine learning approach. Journal of Information

Assurance and Security, 9(5), 222-234.

[9] Khurana, P., & Bindal, P. (2014). Vulnerabilities and defensive

mechanism of CSRF. International Journal of Computer Trends and

Technology, 13(4), 2231-2803.

[10] Jovanovic, N., Kirda, E., & Kruegel, C. (2006). Preventing cross

site request forgery attacks. Proceedings of the IEEE Securecomm

and Workshops, 2006, pp. 1-10.

[11] Zeller, W., & Felten, E. W. (2008). Cross-site request forgeries:

Exploitation and prevention. The New York Times, pp. 1-13.

[12] Burns, J. (2005). Cross site request forgery-An introduction to a

common web application weakness. Whitepaper.

[13] DeepDotWeb. (2015). Warning: New malicios JS using CRFST

exploit via PM’s on Agora. https:

//www.deepdotweb.com/2015/06/11 /warning-new-malicious-js-

using-csrf-exploit-via-pms-on-agora/.

[14] stack exchange (2017). astonishing recent belkin router auth bypass

vulnerability: CSRF used to exploit?

https://security.stackexchange.com/questions/100921/astonishing-

recent-belkin-router-auth-bypass-vulnerability-csrf-used-to-exploit.

[15] Mansfield-Devine, S. (2008). Anti-social networking: Exploiting

the trusting environment of Web 2.0. Network Security, 2008(11),

4-7.

[16] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach,

P., & Berners-Lee, T. (1999). Hypertext transfer protocol--

HTTP/1.1 (No. RFC 2616).

[17] Menzel, M., Wolter, C., & Meinel, C. (2007). Access control for

cross-organisational web service composition. Journal of

Information Assurance and Security, 2(3), 155-160.

[18] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P.,

Luotonen, A., & Stewart, L. (1999). HTTP authentication: Basic

and digest access authentication (No. RFC 2617).

[19] Bojinov, H., Bursztein, E., & Boneh, D. (2010). The emergence of

cross channel scripting. Communications of the ACM, 53(8), 105-

113.

[20] Shaikh, R. (2013). Defending cross site reference forgery (CSRF)

attacks on contemporary web applications using a Bayesian

predictive model. https://sci-

hub.tw/https://papers.ssrn.com/sol3/papers.cfm?abstract_id=222695

4.

[21] Barth, A., Jackson, C., & Mitchell, J. C. (2008). Robust defenses

for cross-site request forgery. Proceedings of the ACM 15th ACM

Conference on Computer and Communications Security, pp. 75-88.

[22] Jurcenoks, J. (2013). Owasp to wasc to cwe mapping correlating

different industry taxonomy. Critical Watch, 7-11.

