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Abstract 
 

Spiking Neural Network (SNN) uses individual spikes in time field to perform as well as to communicate computation in such a way as 

the actual neurons act. SNN was not studied earlier as it was considered too complicated and too hard to examine. Several limitations 

concerning the characteristics of SNN which were not researched earlier are now resolved since the introduction of SpikeProp in 2000 by 

Sander Bothe as a supervised SNN learning model. This paper defines the research developments of the enhancement Spikeprop learning 

using K-fold cross validation for datasets classification. Hence, this paper introduces acceleration factors of SpikeProp using Radius Ini-

tial Weight and Differential Evolution (DE) Initialization weights as proposed methods. In addition, training and testing using K-fold 

cross validation properties of the new proposed method were investigated using datasets obtained from Machine Learning Benchmark 

Repository as an improved Bohte’s algorithm. A comparison of the performance was made between the proposed method and Backprop-

agation (BP) together with the Standard SpikeProp. The findings also reveal that the proposed method has better performance when 

compared to Standard SpikeProp as well as the BP for all datasets performed by K-fold cross validation for classification datasets. 

 
Keywords: SpikeProp, K-fold cross validation, reduce time error measurement, Spiking Neural Network and Backpropagation (BP). 

 

1. Introduction 

Discriminate analysis, a traditional statistical classification proce-

dure is built on the Bayesian decision theory of Backpropagation 

(BP). In these procedures, a fundamental probability model must 

be assumed in order to compute the posterior prospect upon which 

the judgment was decided. Various assumptions and conditions 

will be applied under, which the models are wisely developed and 

examined for effectiveness and perfection. Anyway, before the 

models can be successfully function, users must have a good 

knowledge and skills of both data properties and model capabili-

ties. As neural networks do not mainly relay on prior knowledge 

of the data statistics, they have appeared as an important tool for 

classification. Differential Evolution (DE) is one of the standard 

evolutionary algorithms (EA) which works through repeated com-

putational steps. D.E. is considered a stochastic powerful search 

algorithm introduced by [42]. 

Integrate-and-fire model was the first model to be applied in 

spikes over time to transfer information [2]. As the input spikes 

reach in time, the inner potential of the neuron will depend on the 

weights (postsynaptic potential, PSP) at the point of the input. The 

connections are excitatory and the incoming stimulus works to 

subsequently increase the PSP when the weights are positive. On 

the other hand, the inhibitory as a stimulus going through them 

will act to decrease the PSP with negative weights. An output 

spike is released when the postsynaptic potential reaches a thresh-

old. As shown in Figure 1, the PSP is reset to its resting potential 

in the point of an output spike. 

 
Fig. 1: Integrate-and-fire neuron [3] 

 

The performance of SpikeProp is determined by the learning pa-

rameters of the BP network. Hence, it is necessary for this study to 

focus on finding ways to enhance the performance of SpikeProp 

by optimizing the back propagation initializing weights and the 

architectures of SNNs. Differential Evolution (DE) is one tech-

nique which can be used for this purpose. 

2. Related Work 

Some forms of optimization are required in the learning process 

for the purpose of the ANN interconnector’s weights updating, 

inspired by how the biological swarm of animals acts in order to 

obtain a desirable goal for the group. One useful optimization 

technique is uses DE [4]. DE has been broadly applied to solve 

several world problems [5, 6], in addition to the introduction of 

the binary version of DE. There have been several advances and 
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enhancements in this area [7-9]. DE has been used to derive uni-

versal function approximations for any analog function with ran-

dom updating of weights [42].  

For the first generations of ANN, the neurons are restricted to 

binary inputs and outputs. These binary impulses have a definite 

width, phase and time. These types could be considered driven by 

stabilized frequencies of the neuron. However, it has been discov-

ered recently that neurons communicate by firing short electrical 

pulses which operate in a mode referred to as rate coding. Higher 

output signal can be achieved by firing at higher rate. Communi-

cation is performed using real spikes with two exclusive instants 

known as spiking time or no spiking time [37, 38]. The value of 

output of a neuron can be computed and the response of the net-

work to the values of input is known or identified only after all the 

neurons have been fired with a communication window of this 

type. Each neuron can be modeled as it has a basic firing-rate and 

a continuously constant activation function. Spiking Neural Net-

works (SNN) as a model is considered to constitute the third gen-

eration of ANNs [10, 39, 40]. The output signals on the other hand 

can be continuously altered by variation in synaptic plasticity for 

all the three generations of neural networks. The basis for learning 

in all ANN is Synaptic plasticity, unless there is a non-variant 

activation function and accurate classification based on a certain 

vector input values which can be implemented with the help of a 

BP learning algorithm like gradient-descent [11, 12]. Spiking Neu-

ral Network (SNN) employs single spikes in time domain in order 

to communicate and to perform computation in a manner just as 

the real neurons react [13, 14].  

This method of sending and receiving individual pulses is called 

pulse coding, where the transmitted information is carried by the 

pulse rate. Hence, this type of  coding allows multiplexing of data 

[15]. For example, analysis of visual input in humans requires not 

more than 100ms for facial recognition. However, in [16] per-

formed facial recognition using SNN with a minimum of 10 syn-

aptic steps on the retina at the temporal lobe that allows nearly 

10ms of the neurons to be performed. The processing time is short, 

yet, it is adequate to permit an averaging procedure that is required 

by pulse coding [3, 15, 16]. In fact, when computation speed is a 

problem, pulse coding technique is preferred [16]. 

3. Methodology  

This experimental section can be divided into subsections, the 

contents of which vary according to the subject matter of the arti-

cle. It must contain all the information about the experimental 

procedure and materials used to carry out experiments. 

3.1. Initialization weights Defined by Differential Evolu-

tion (DE)  

This segment discusses the creation of initialization weights per-

forming D.E. strategies (Figure 2). D.E. operates on two sets of N 

operator vectors each of dimension D to form 2 N x D matrices. 

The first set is the hidden Weights, while the second set is the 

output weights. Spikeprop initial weights population were stored 

in each element of the two matrices. The operator vector weights 

may be composed of heterogeneous dataset from various observa-

tions, as in this study, where nine different standard datasets were 

applied. The first matrix make up the SpikeProp hidden weights 

(HiddnW), whereas the second matrix contains the SpikeProp 

output weights, (OutoutW) [21]. Initially, the D.E. starts by filling 

up the row matrices with vector weights and randomly generating 

operator values. Each vector weight (Wi) in both matrixes are 

randomly generated and sequentially treated for operation. Fur-

thermore, the vector weight has three other vector weights which 

are Wc1, Wc2 and Wc3 that are randomly selected from the re-

maining vector weights of the same matrix of Wi. Yet, a new trial 

of vector weight generation is required to achieve a mutation steps. 

Eventually, these stages implement the D.E. for generating the 

initial weights iteratively in an optimum random manner. 

 

 
Fig. 2: Flowchart for the Differential Evolution created Initialization 

weights and Encoding Input Datasets Variables 

 

In SpikeProp, an encoding process for dataset needs to be imple-

mented to get an efficient encoding and cluster capacity expansion. 

The aim of this encoding method is to increase the distance cross 

the input patterns, which are related with respective input data. It 

has been observed that the synapses have a resolution delay of 

about 1ms. Therefore, the perceptive power of SpikeProp learning 

is limited to roughly this resolution. These encoding increases the 

temporal distance cross the data points and separates cluster wide-

ly [21]. As the aim of data input encoding, multifarious local re-

ceptive sets are used to distribute the input variable value over 

multiple input neurons [22-26]. The population code where the 

input variables are encoded with layered overlapping activation 

functions are studied in depth for applying real valued parameters. 

The firing time of an input neuron is calculated using the intersec-

tion of Gaussian function as defined in (1). The Gaussian mean 

μiis calculated in (2) and its width is computed in (3) with the 

input variable interval of .  

define the minimum and maximum input values. The parameter 

controls the width of each Gaussian receptive field where 1 ≤ β ≤ 

2. 

 

                                              (1) (1) 

                                           (2) (2) 

 

And width 
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.                                                                 (3) (3) 

 

 
Fig. 3: Population Encoding Method [33, 34] 

 

Figure 3 schematically illustrates population Encoding Method. 

This illustration has been redrawn from [34]. For the diagram, (β = 

2) was used and the input interval  was set to [−2.0, 

2.0] as for the neurons input (M = 5) was used. In this example, 

the input value was defined as 0.70ms and five firing times were 

calculated based on the Gaussian intersections. Both spike encod-

ing methods have been tested in several applications such as visual 

recognition [16, 28], audio recognition [27] and speech recogni-

tion [29]. 

3.2. K-Fold Cross Validation  

K-fold cross validation is the validation experiments in which 

training, examination and testing will be applied. In the first ex-

periment, 90% of the random datasets are used for training while 

the remaining 10% will be used for testing. In the second experi-

ment, a completely different 90% of the random datasets is used 

for training while the remaining 10% is used for testing. The ex-

periments are repeated with a completely different 90% of the 

datasets is used for training and the remaining 10% of the datasets 

is used for testing as illustrated in Figure 4, where 10 experiments 

will be performed subsequently. Assuming that the datasets cho-

sen for training and testing are completely random and the process 

of N-fold cross validation is ergodic, the correct output is the av-

erage of the outputs of all experiments [30]. 

Sensitivity of validation process are determined by two main fac-

tors. The first factor is in model selection. That is each experiment 

must select the 90% of the datasets for training in a completely 

random manner. The second factor is in performance evaluation. 

For the creation of N-fold portion from the dataset, it is assumed 

that for a single N experiment, N-1 folds will be utilized for train-

ing and testing (Figure 4). The true error is evaluated as the aver-

age error rate as it is calculated in (4).   

 
Fig. 4: K-fold cross validation [31] 

3.3. K-Fold Cross Validation  

Classification accuracy depends on the datasets used in the testing. 

The datasets used for training and the whole process of training 

and testing (done using random selection of datasets). The accura-

cy vale is calculated as: 

 

                                   (4) 

 

where R is the set of records, is the target output value for 

record r,  is the prediction generated by the network for record r 

and  is the number of records. 

 For multiple outputs models, the accuracy is considered as the 

simple average of the accuracies of individual outputs. 

3.4. Dataset Collection 

Several experiments were conducted on the datasets in order to 

evaluate the performances of all the proposed methods. All da-

tasets were downloaded from the machine learning benchmark 

repository which contains information data relating to several 

complex environmental problems in qualitative analytical chemis-

try. Such a topics have been the major concern in many studies 

related to Artificial Neural Networks (ANNs), Spiking neural 

networks (SNNs), machine learning [32] and Spikeprop imple-

mentation [21]. The datasets used in this study are sourced from 

XOR, breast tumor, BTX, heart functions, hepatitis, Pima Indian 

diabetes, liver care, iris problem databases. It may be possible to 

get good SpikeProp algorithm by hybridizing two good techniques 

models, just the way we could get a good strain and results by 

cross breeding two good genes. Therefore, this paper looks at the 

Hybridization implementation is combination of DE Weights Ini-

tialization and RIW Table 1 shows the dataset collection used in 

this work. 

Table 1: Description of datasets 

Data Set Attributes Classes Samples Input Output Training Testing 

Breast Cancer 9 2 683 9 2 538 145 

BTX 19 3 512 19 7 407 105 

Diabetes 8 2 768 8 2 613 155 

Heart 13 2 297 13 2 240 57 

Hepatitis 19 2 155 19 2 123 32 

Iris 4 3 150 4 3 120 30 

Liver 6 2 345 6 2 276 69 

 

3.5. DE Initialization Weights Enhancement 

For proposed method, initialization weights are decided through 

DE chromosomes (agents) which will give information whether 

they are near or far away from the optimum position. Those DE 

chromosomes (agents), which are near the optimum position are 

chosen and a circle containing these DE chromosomes (agents) are 

crated. For the second iteration, DE chromosomes (agents) are 

distributed in the circle. Again, DE chromosomes (agents) will 

give information whether they are near or far away from the opti-
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mum position. Only those DE chromosomes (agents), which are 

near the optimum position are chosen. 

 

 
Fig. 5: DE Weights Initialization procedure 

 

A smaller circle is then drawn. The procedure is repeated until a 

very small circle (elemental circle), enclosing the optimum posi-

tion is found. This elemental circle is in fact the best initial 

weights for SpikeProp. SpikeProp which uses D.E. initialization 

weights give better result than standard Spikeprop. The process of 

obtaining the output initialization weights using DE for Spikeprop 

is illustrated in Figure 6. The algorithm employed is shown in 

Figure 5, Hybridization of DE and RIW for Spikeprop Learning 

Enhancements 

Cross breeding shown good strain and results by two good genes, 

it is believed that to get good SpikeProp algorithm, the hybridizing 

of two good techniques models have to be used. Therefore, this 

study aims to look at the Hybridization implementation in combi-

nation with the DE initialization weights and RIW. The strength of 

DE is the fact that it can sense the optimum point even though the 

optimum point is far away. When the optimum point is near, this 

optimum point can be identified quickly and accurately by using 

RIW. DE has no active knowledge sharing. In other words, the 

swarm particles do not communicate interactively with one anoth-

er.  

The process can be considered as a cleverly contrived trial and 

error. When implementing DE, the path of Weights Initialization 

will be more direct and more efficient if there is active communi-

cation between one direction and another points; also between the 

optimal point and direction points. DE provides the intelligence 

for Weights Initialization that will behave as a moving DE chro-

mosome. 

In Weights Initialization by DE component will determine the 

initialization weights which are then fine-tuned by using the DE 

component. Improved Spikeprop that uses DE initialization 

weights can rely on RIW to calculate the initial weights, which are 

then stored in the hidden weights matrix and the output weights 

matrix. Since Weights Initialization by DE possesses the good 

traits of RIW and DE, it has better performance than the standard 

SpikeProp. Figure 6 illustrates the process of Hybridization im-

plementation methods. 

 

 
Fig. 6: Flowchart of DE Weights Initialization and RIW 

 

3.6. Proposed Radius Initial Weight (RIW) 

To bring about acceleration in SpikeProp, the actual weights are 

assigned for random initialization values in the range between [-1, 

1]. When the initial weight values are small, the hidden nodes and 

the output nodes will cease to exist, decelerating the learning pro-

cess. Input values within the range [-1,1] should be chosen care-

fully while the activation derivative function is allowed to use 

appropriate small values [36] for BP to converge to its optimum 

solution. Whether be it BP or SpikeProp, it is prudent to use the 

same initialization weight matrices for all layers of the network 

[35]. 

Acceleration can be further improved by reducing the weight val-

ues by an amount equal to the value of an average random initiali-

zation weight in each column on the weight matrices. Therefore, 

this method is believed to be depends on the initial weight values 

of BP algorithm. The following describes the steps for the pro-

posed methods. 

a) 
 oldvij

, 
 oldwij are the small random values between the 

hidden layer and output layer in the range of [-1, 1]. 

b) Calculating the range weight of the two matrices im1
and

jm2
, 

for each column. 
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c) To find the value of new weights vector: 
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The Spiking Neuron Network (SNN) is trained by error backprop-

agation (SpikeProp), as in (5) or in (6). On the other hand, the 

synaptic weights are adjusted accordingly to minimize the network 

error. Therefore, in SpikeProp the actual weights are assigned to 

random initialization values followed the radius rule as depicted in 

(7) and (8). The input values range on the other hand will differ 

from each of dataset used. 

 are the small random values between the hidden 

layer and output layer in the range of [-1,1]. 

 

 
 

where X = Round (input/output). 

The following example rounds X to two values for Input / output 

after the decimal. 

Referring in (9), the selection of the X is carried out in such a 

manner as soon as the input dataset is approximately similar to 

that of output dataset, choose X = 2. But, if the input dataset is 

generally more than twice the output dataset, choose X = 6. Cor-

rect choice of the numbers results in getting the solution in the 

radius point (central arithmetic). 

4. Results and Discussion 

The results of the proposed enhanced Spikeprop algorithm are 

presented. The design of the proposed method is given follows by 

the explanation on the SpikeProp algorithm. The performance 

evaluation and comparisons have been implemented in terms of 

the convergence error, average error, and accuracy. With the in-

tention to investigate the performance of the planned algorithms, 

nine standard datasets are considered in this study. They are real 

world datasets (section 3), which are unlike the respect number of 

available samples (32-484), attributes (3-56) and classes (2-10). 

These standard datasets have been used in the previous studies 

[31]. 

4.1. Analysis of the Standard SpikeProp and the Pro-

posed Method Using K-Fold Cross-Validation 

K-fold cross-validation is away better over hold-out validation in 

all observations used for both training and testing, as every single 

observation used for testing were exactly once [31]. In justifica-

tion of the k-fold cross-validation, the folds are carefully chosen 

so that the mean response value is roughly equal in all the folds. 

However, in the event of a dichotomous classification, every fold 

contains around the exact amounts of the other two kinds of class 

labels. The proposed algorithms are evaluated by 10-fold cross 

validation. Initially, the dataset required to be divided randomly 

into equal size of ten subsets. Every single subset is used as a test-

ing dataset, yet the other nine subsets are used as a training da-

tasets. The training and testing processes are recurrent so that the 

rest of all the subsets are used as a testing dataset. The training set 

on the other hand, is applied to train the network to get the optimal 

solutions, whereas the testing set is used to test the generalization 

performance of the planned methods. However, this was not ob-

served by any individual SpikeProp network when the training 

process. The performance of the algorithms is evaluated by con-

ducting four different error measurements. 

The results of these methods proposed are based on error meas-

urements and these are presented in next. The average of RMSE is 

better than MSE for training the standard SpikeProp in eight da-

tasets as explained in Table 2. It demonstrated that the standard 

SpikeProp has produced the smallest error on BTX, Iris, Heart, 

Diabetes, breast cancer, liver and Hepatitis dataset respectively. 

 
Table 2: Results for Standard Spikeprop for 10-Fold Cross-Validation 

 Training SpikeProp Testing SpikeProp 

MSE RMSE MAPE MAD MSE RMSE MAPE MAD 

Breast Cancer 0.5613 0.5069 44.2247 1.0138 0.5711 0.4984 43.2685 0.9968 

BTX 1.6796 0.2204 35.5672 1.5434 2.1596 0.2659 43.8155 1.8615 

Diabetes 0.4423 0.4007 32.7159 0.8015 0.5045 0.4305 35.2056 0.8610 

Heart 0.4393 0.3719 31.8171 0.7439 0.3874 0.3545 31.4742 0.7091 

Hepatitis 0.7101 0.5665 49.0714 1.1331 0.7250 0.5768 52.1207 1.1536 

Iris 0.7071 0.3339 35.5990 1.0019 0.5947 0.2809 34.9229 0.8427 

Liver 0.6895 0.5296 42.2933 1.0593 0.7143 0.5377 42.7806 1.0754 

 

4.2. Analysis of the DE Initialization Weights Using K-

Fold Cross-Validation  

The result of proposed method (Hybridization of DE initialization 

weights and RIW). In this model, the structure of Model 1 (DE-

SpikeProp) is implemented using DE weights particles initializa-

tion and radius initial weight using K-Fold Cross-Validation. In 

proposed method, we notice that the performance measurement is 

much better than the standard SpikeProp, BP and previous pro-

posed method when the hybridization takes place as shown in 

Table 3. The results in this Model from Table 3, the errors meas-

urement are present as (MSE, RMSE, MAPE and MAD). As 

shows from Table 3, the effectiveness results of this merging 

model in the prediction of 8 datasets within 250 iterations for 

training and testing. The values of errors measurement are com-

pared between merging method, SpikeProp standard and BP. The 

comparison was made, it is gives better results in RMSE better in 

BTX, Iris, Heart, Liver and Hepatitis is being compared. In error 

of MSE is less better of Heart, Iris, Liver, Hepatitis and BTX. 

However, the MSE gives relativity a better than RMSE in Diabe-

tes and Breast Cancer data problems as shown in Table 3 from 

training part. Even though, the MAD is bigger than RMSE for all 

dataset problems.  
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Table 3: Results for Spikeprop based on DE Initialization Weights using for 10-Fold Cross-Validation 

 Training Model 5 Testing Model 5 

MSE RMSE MAPE MAD MSE RMSE MAPE MAD 

Breast Cancer 0.3581 0.3632 35.5693 0.7265 0.3503 0.3559 34.7571 0.7118 

BTX 0.9561 0.1598 26.9413 1.1189 1.5238 0.2167 37.4711 1.5174 

Diabetes 0.2564 0.2613 24.3281 0.5227 0.2881 0.2837 26.5072 0.5675 

Heart 0.3048 0.2967 27.9364 0.5934 0.3055 0.2997 28.2429 0.5995 

Hepatitis 0.5054 0.4650 43.0645 0.9301 0.5096 0.4698 42.4454 0.9396 

Iris 0.3140 0.2279 32.9549 0.6838 0.3010 0.2185 29.9411 0.6555 

Liver 0.3625 0.3416 32.0119 0.6833 0.3766 0.3527 32.9843 0.7054 

 

4.3. Analysis of the Proposed Method Radius Initial 

Weight (RIW) 

The temporal encoded networks of spiking neurons are depends 

on the estimations that every neurons fire minimum one time. 

However, the weight limitation approach introduced in this meth-

od is to guarantee that neurons fire is not later than the maximal 

network delay and initial weights enable networks to converge to 

zero error rapidly. The proposed RIW creates the input neurons 

which are more efficient and results in a lesser number of value 

for first start firing time (this will explain in more details in next 

section). The experiments in Table 4 show the error measurements 

of training and testing (MSE, RMSE MAPE and MAD) datasets. 

The standard SpikeProp algorithm has been significantly enhanced 

not only to become more reliable and efficient, but also in a way 

where the networks can be designed in smaller sizes. This pro-

posed method of RIW gives the input number values for all da-

tasets either 2 or 6; the selective value depends on the testing dur-

ing the implementation. When the number of inputs is near to the 

output number of the same dataset, we can choose the value of 2. 

However, if the input numbers are double of the output numbers, 

the chosen value is 6. This will be illustrated in more details in the 

next sections. From Table 4, RMSE has shown better results for 

error generalization on BTX, Iris, Diabetes and Heart, and less 

competitive in Liver, Breast Cancer, Hepatitis and XOR. In re-

gards to MSE, the results are better for Diabetes, Heart and Breast 

Cancer, and less competitive in Liver, Hepatitis, Iris and BTX but 

XOR still portrait the same values for RMSE. 

 
Table 4: Results of Spikeprop based on Radius Initial Weight (RIW) for 10- Fold Cross-Validation 

 Training Testing 

MSE RMSE MAPE MAD MSE RMSE MAPE MAD 

Breast Cancer 0.4942 0.4619 41.4347 0.9238 0.5110 0.4758 42.4348 0.9517 

BTX 1.6512 0.2065 36.1897 1.4460 1.7368 0.2317 43.9632 1.6223 

Diabetes 0.3523 0.3376 28.7361 0.6753 0.4064 0.3697 30.4818 0.7394 

Heart 0.4247 0.3514 29.2199 0.7029 0.3711 0.3240 31.7256 0.6481 

Hepatitis 0.5443 0.5003 47.3719 1.0006 0.5008 0.4625 53.5463 0.9257 

Iris 0.5865 0.3215 37.3042 0.9645 0.1217 0.2995 18.8008 1.9787 

Liver 0.5258 0.4443 37.9292 0.8886 0.5567 0.4622 37.8640 0.9245 

XOR 4.375 2.489 21.4644 2.4890 4.375 2.4890 21.4644 2.4890 

 

4.4. Result and Analysis Comparison In Terms of Accu-

racy Using K-Fold Cross-Validation  

The experiments are conducted on ten independent runs for train-

ing and testing datasets respectively (refer to Table 2, 3 and 4 and 

Figure 7). As shown in Table 5, for training, the proposed meth-

ods give better results for Breast Cancer datasets with standard 

SpikeProp and other method except for method of RIW. Similarly, 

to the BTX datasets the outcomes are better for standard 

SpikeProp sand other proposed methods except for RIW. 

The accuracy for the DE Initialization weights to enhance 

SpikeProp is better than standard SpikeProp and other method 

except RIW, also in Liver datasets. But, in Hepatitis and Iris da-

tasets, the results are not convincing for RIW and DE Initialization 

weights, so standard is not better SpikeProp and other methods 

except DE Initialization weights in Diabetes and Heart. However, 

RIW is better than standard SpikeProp and other methods. In RIW 

the accuracy is better than standard SpikeProp and BP in all da-

taset. For DE Weights Initialization the accuracy is better than 

standard SpikeProp, RIW and BP in all eight datasets as using the 

K-Fold Cross-Validation. On the other hand, hybridization of DE 

Initialization weights and RIW, is better than DE Initialization 

weights and standard SpikeProp for all eight datasets. Moreover, it 

is also better than Model 1 in Diabetes, Heart, Hepatitis and Iris. 

Finally, Figure 7 shows better accuracy for all the proposed meth-

ods and standard SpikeProp in all datasets. 

 
Table 5: Accuracy for 10- Fold Cross-Validation 

 Testing 

SpikeProp RIW DE Initialization BP ANN 

Breast Cancer 47.55 51.30 57.99 31.42 

BTX 59.65 67.77 70.75 41.57 

Diabetes 56.59 62.83 75.99 26.72 

Heart 55.26 61.85 75.49 26.24 

Hepatitis 40.76 45.90 56.55 14.36 

Iris 25.24 31.20 50.06 14.02 

Liver 6.469 12.84 25.41 2.39 

 

 
Fig. 7: Accuracy of the proposed methods and SpikeProp for testing in K-
Fold Cross-Validation 

5. Conclusion  

The experiments are divided into one evaluation schemes: K-fold 

cross-validation. The development of SpikeProp algorithm was 

done using Spikeprop based on Radius Initial Weight (RIW), 

Spikeprop Learning based on DE Weights by Initialization and 

Hybrid of RIW and DE Weights by Initialization were in addition 

successfully tested on Breast Cancer, BTX, Diabetes, Heart, Hepa-

titis Iris as well as Liver datasets. The empirical analysis was done 
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by comparing the results obtained from all the experiments. In 

addition, the analysis was conducted based on the results achieved 

from each dataset.  

The accuracy of the proposed methods has been formally analyzed 

for classification is K-Fold Cross Validation. This study shows 

that SpikeProp and BP with Proposed methods provide feasible 

results in terms of accuracy. The proposed DE Weights by Initiali-

zation is the best method using hold-out validation for all datasets 

and RIW in k-fold cross-validation in almost datasets. In terms of 

errors in time (ms), the findings show that DE Weights by Initiali-

zation and RIW are better than SpikeProp and also the BP stand-

ard for every dataset. 
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