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Graphical abstract 
 

 

Abstract 
 

Thin walled titanium alloys are mostly applied in the aerospace industry 

owing to their favorable characteristic such as high strength-to-weight ratio. 

Besides vibration, the friction at the cutting zone in milling of thin-walled 

Ti6Al4V will create inconsistencies in the cutting force and increase the 

surface roughness. Previous researchers reported the use of vegetable oils in 

machining metal as an effort towards green machining in reducing the 

undesirable cutting friction. Machining experiments were conducted under 

Minimum Quantity Lubrication (MQL) using coconut oil as cutting fluid, which 

has better oxidative stability than other vegetable oil. Uncoated carbide 

tools were used in this milling experiment. The influence of cutting speed, 

feed and depth of cut on cutting force and surface roughness were 

modeled using response surface methodology (RSM) and artificial neural 

network (ANN). Experimental machining results indicated that ANN model 

prediction was more accurate compared to the RSM model. The maximum 

cutting force and surface roughness values recorded are 14.89 N, and 0.161 

µm under machining conditions of 125 m/min cutting speed, 0.04 mm/tooth 

feed, 0.25 mm radial depth of cut (DOC) and 5 mm axial DOC. 

 

Keywords: Optimization, green machining, thin-walled Ti6Al4V, RSM, ANN, 

cutting force, surface roughness 

 

Abstrak 
 

Kebanyakan aplikasi aloi titanium berketebalan nipis dalam industri 

aeroangkasa adalah disebabkan kelebihan ciri seperti nisbah kekuatan-

terhadap-berat yang tinggi. Di samping getaran, geseran pada zon 

pemotongan semasa mengisar aloi titanium berketebalan nipis akan 

menghasilkan ketakkonsistenan/ketaktekalan daya pemotongan dan 

meningkatkan kekasaran permukaan. Penyelidik terdahulu melaporkan 

bahawa penggunaan minyak sayuran di dalam pemesinan logam adalah 

sebagai usaha menuju pemesinan hijau bagi mengurangkan geseran yang 

tidak diingini. Ujian pemesinan telah dijalankan menggunakan Kuantiti 

Pelinciran Minimum (MQL) dengan minyak kelapa sebagai cecair pelincir, 

yang mempunyai lebih kesetabilan oksidatif berbanding dengan minyak 

sayuran yang lain. Mataalat karbida tanpa salutan telah digunakan dalam 

ujian pemesinan. Pengaruh halaju pemotongan, uluran dan kedalaman 
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1.0  INTRODUCTION 
 

Thin-walled parts are considerably used in many fields 

of component products such as aerospace, marine, 

and power industry [1]. Titanium alloys thin-walled in 

many directions are applied in the aerospace industry 

owing to their excellent property in the aerospace 

environment such as light weight, superior resistance 

to oxidation, lower density, fracture, and fatigue [2], 

[3]. Ti6Al4V is often used among all titanium alloys 

because of its high strength, good toughness, and 

superior resistance to corrosion [2]. 

During the milling of thin-walled parts, the thin part 

tends to deform under the action of cutting force [4]. 

The serrated chips at thin walled caused by elevated 

cutting zone temperature can significantly promote 

the formations of built-up edge (BUE) on the tooltip. 

The presence of BUE will create inconsistent in the 

cutting force and make surface quality worse [2], [5], 

[6]. A complex structure of thin-walled and inferior 

processing technology conduce surface quality 

challenging to control and give rise to the machining 

accuracy cannot be guaranteed [4]. 

The surface roughness mechanism depends on the 

machining process. The decreased cutting force, 

which caused the reduced cutting temperature, was 

generated by the decline of feed rate and cutting 

speed [7]. Conversely, the decrease in cutting speed 

improves a surface, not productivity [8]. The 

combination between restrict the cutting speed and 

high-efficiency machining should improve the cutting 

efficiency of machining titanium alloy. Therefore to 

manage the cutting load is essential to work [2]. 

Proper comprehensive methods in using cutting 

fluid may significantly reduce the temperature in 

machining, and thus, the surface roughness would be 

better [9]. International Agency for Research on 

Cancer (IARC) reported that petroleum-based 

cutting fluids which contain heterocyclic and 

polyaromatic rings are carcinogenic and could result 

in occupational skin cancer [8]. It has been reported 

during the year 1993 that around 16% of industrial 

diseases in Finland were caused by cutting fluids. 

These diseases are connected to the skin and 

musculoskeletal [10].  

Many industries start to concern a cleaner production 

on their machining process [8]. The objectives in the 

ISO 14000 family is to preserve the environment in 

balance with socioeconomic [11]. These requirements 

have led to scientific research toward green 

machining, such as the use of vegetable oil as cutting 

fluid [8]. Coconut oil has oxidative stability higher than 

that of other vegetable oils in machining industries 

[12]. The performance of coconut oil on turning of AISI 

304 showed superior surface roughness than soluble oil 

and straight cutting oil [8]. A study reported sesame 

and coconut oil with additives in machining AISI 1040 

steel, which coconut oil reduced the cutting force by 

20% compared to other considered fluids [6]. 

The industry is prospecting methods for reducing 

consumption of cutting fluid during metal cutting 

operation because of the ecological requirement if 

using petroleum cutting fluid and economic reason. 

The high consumption of cutting fluid also results in 

huge expenses [9]. It is measurable that almost 20-30% 

of total industrial costs are related to the using of 

cutting fluid during hard machining. Minimum quantity 

lubrication (MQL) apply less cutting fluid, which flows 

rates ranging from 2 to 14 ml/h [10]. The increase in 

MQL flow rate up to a certain point reduce cutting 

force. The use of high air pressure in MQL generated 

the oil droplets which penetrate the cutting zone and 

decrease cutting energy and friction [5]. 

Boswell (2017) reviewed many studies about MQL, 

some of the studies reported about milling of titanium 

aluminides intermetallic alloy and turning which MQL 

could lower the surface roughness and cutting force if 

compared to dry and flood strategy. Muhammed 

(2016), in his review, recorded that MQL is 

comparatively superior to dry and flood at higher 

cutting speed in machining titanium alloy. The study 

was written by Vishal (2015) also informed that the 

influence of MQL conduced reduction in cutting force 

and surface roughness significantly in milling Ti6Al4V. 

Drilling Ti6Al4V under MQL using palm oil generated 

the surface roughness seems to be smoother than that 

for the MQL synthetic ester during increasing in cutting 

speed 100 m/min. However, the increasing feed rate 

levels bring out to an increase in the surface roughness 

[13]. Ti6Al4V would harden during milling under MQL 

pemotongan ke atas daya pemotongan dan kekasaran permukaan telah 

dimodelkan menggunakan RSM dan ANN. Keputusan ujikaji pemesinan 

menunjukkan ramalan model ANN memberi ketepatan yang lebih baik 

berbanding dengan model RSM. Daya pemotongan yang maksimum dan 

nilai kekasaran permukaan yang direkodkan, masing-masing adalah 14.89 

N dan 0.161 µm di bawah keadaan pemesinan 125 m/min halaju 

pemotongan, 0.04 mm/uluran, 0.25 mm kedalaman pemotongang radial 

dan 5 mm kedalaman pemotongan aksial. 

 

Kata kunci: Pengoptimuman, pemesinan hijau, Ti-6Al4V berketebalan nipis, 

RSM, ANN, daya pemotongan, kekasaran permukaan 
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commercial vegetable oil if cryogenic were applied. 

Hence the cutting force increased but cutting force 

decrease if the flow rate of cutting fluid increases [5]. 

This research intended to investigate the influence of 

cutting speed, feed rate, and depth of cut on the 

cutting force and surface roughness in the milling 

process. The carried out process was milling the thin-

walled Ti6Al4V under MQL using uncoated carbide 

tools. The uncoated WC-Co insert tools are 

recommended for machining Ti6Al4V [14]. There was 

research about machining Ti6Al4V by MQL, dry, and 

flood to analyzed cutting force and surface 

roughness, which used uncoated carbide insert [11]. 

Uncoated carbide tools also used in drilling Ti6Al4V 

under MQL [10]. Gururaj (2017) recorded the using of 

uncoated carbide tools in the milling of aerospace 

titanium alloy Ti-6242S under dry cutting condition. 

Even, uncoated carbide cutting tools used in turning 

Ti6Al4V under a dry cutting condition at a cutting 

speed of 150 m/min [15]. 

The influence of cutting load as variable 

machining of the milling system is uncertain not only 

came from the use or not use of cutting fluid, but the 

system is nonlinear behavior [7]. Other problems are 

conducting experiments time-consuming and prone 

to error [16]. Therefore, recently, many investigations 

have focused on the modeled prediction, such as 

surface topography to optimization machining [3]. 

RSM, as the mathematical and statistical approach, 

applies to optimization variables. The coupling 

method of response surface used in the optimization 

of cutting force and surface roughness in machining 

Ti6Al4V under MQL using vegetable oil [11]. ANN 

methods recorded has been used in the optimization 

of surface roughness in machining Ti6Al4V under EDM 

process [17]. This research applied RSM in predicting 

and optimization of cutting force and surface 

roughness. RSM methods compared with an artificial 

neural network (ANN) to investigate the closeness to 

experiment data. 

 

 

2.0  METHODOLOGY 
 

2.1  Tool and Material 

 

The thin wall milling using WC Co uncoated end mill 

with 10 mm, 4 flute and the helical angle is 47 

(produced by HPMT). The workpiece material used in 

this experiment was Ti6Al4V grade-5. This material is an 

aerospace grade commercial titanium alloy. These 

workpieces were prepared by EDM-Wire Cut and 

dimension thin wall 3  20  100 mm. Figure 1, as shown 

workpiece mounted at dynamometer by the specific 

fixture. Mechanical and chemical properties of the 

Ti6Al4V is given in Table 1. 
 

 
 

Figure 1 Thin wall fixed on a dynamometer 

 
Table 1 Chemical and mechanic properties of Ti6Al4V 

 

Chemical Composition (wt %) 

Ti Al V C Fe N O H 

Balance 6.39 4.15 0.01 0.21 0.1 0.17 0.001 

Mechanical Properties 

Tensile Strength          (MPa) : 940 

Yield Strength 0.2%    (MPa) : 865 

Elongation                     ( % ) : 15.6 

Reduction of Area       ( % ) : 38 

 

 

2.2  Cutting Fluid 

 

The milling experiments used coconut oil as cutting 

fluids. The cutting fluid was obtained from a local 

market and locally produced. Cutting fluids as 

environmentally friendly was operated using the 

Minimum Quantity Lubrication (MQL) system with a 

capacity of 40 ml/hour. The specification of the 

cutting fluid is shown in Table 2. 
 

Table 2 Specifications of coconut oils 
 

Parameters, Unit Value 

1.  Density @ 150C, kg/m3 925.8 

2.  Flash Point, 0C 286.0 

3.  Kinematic Viscosity @1000C, cSt 6.069 

 

 

2.3  Experimental Setup 

 

All experiments were performed on a MAHO DMC 835 

V CNC 3 axis VMC with Fanuc Controller model, 

maximum spindle 14000 rpm and power 15 kW. The 

Kistler dynamometer (model 9265B) was used for 

measuring the resultant force (F). During the 

experiment test, the radial force (x-direction), 

tangential force (y-direction) and axial force (z-

direction) were recorded simultaneously. The 

analyzed cutting force (Fc) was the tangential force 

according to the reference system of metal cutting. 

The resulted surface roughness (Ra) was measured 

using a surface roughness tester Accretech Handysurf 
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type E-35 A/E. The parameters of measurement are 0.8 

mm and 4.0 mm for cut off (CO) and length of cut 

(LoC), respectively.  

 

2.4  Design of Experiments (DOE) 

 

In this study, the Rotatable Central Composite Design 

(RCCD) was used. As the independent variables, the 

cutting speed (Vc), feed rate (fz), radial DOC (ar), and 

axial DOC (ax) were applied. Whereas, the Ra and the 

Fc are chosen as dependent variables. The RCCD 

used consists of the 2k factorial design, which is 

augmented with a star point for each axial 

coordinate. The distance  between the star and 

center points is equal to 2 [18]. The coded values of 

every level obtained from Equation 1. 

 

n n0

n1 n0

lnx - lnx
x =

lnx - ln
 (1) 

 

where xn is the value of any factor corresponding to its 

natural value, moreover, xn1 is the value of factor at 

the level +1, while the xn0 is the natural value of the 

factor corresponding to the base or level zero. The 

values in each level were listed in Table 3. 

 
Table 3 The level and coding of independent variables 

 

Independent 

Variable 

Levels 

-2 -1 0 +1 +2 

Vc (m/min) 64.00 80 100 125 156.25 

fz (mm/tooth) 0.025 0.04 0.063 0.1 0.158 

ar (mm) 0.200 0.25 0.32 0.4 0.51 

ax (mm) 3.536 5 7.07 10 14.17 

 

 

Data analysis were carried out using RSM and ANN. 

Many researchers reported that both methods are 

capable of finding the optimum result [19], [20], [21].  

 

2.5  Response Surface Methodology (RSM) 

 

RSM is a statistical procedure, and mathematical 

modeling used for developing, improving, and 

optimizing of process. In this experiment, a prediction 

model for dependent variables can be expressed in 

Equation 2, and Equation 3. 

 
nk l m

c 1 c z r a 1F = C V f a a ε  (2) 

 
o p q r

a 2 c z r a 2R = C V f a a ε  (3) 

 

where Ra is the surface roughness, Fc is the cutting 

force, Vc is the cutting speed, fz is the feed rate, ar and 

ax are the radials and axial depth of cut, ε is the 

experimental errors, and C, k, l, m, n are the constant 

of Ra and Fc. The constants of Equation 2 and Equation 

3, were determined by conversion a linear form with a 

logarithmic transformation, as shown in Equation 4 

and Equation 5: 

c 1 c z r

a 1

lnF = lnC + k lnV + l lnf + m lna +

n lna + lnε

 (4) 

 

2

2

a c z r

a

lnR = lnC + o lnV + p lnf + q lna +

r lna + lnε

 (5) 

 

The linear model of Equation 5 and Equation 6 are 

described as Equation 6 below: 

 

0 1 1 2 2 3 3 4 4y = β + β x + β x + β x + β x  (6) 

 

where y is the Ra or Fc response on a logarithmic scale, 

x1 to x4 is the logarithmic transformation of 

independent variables, and β0 to β4 are the regression 

coefficients to be estimated. Equation 6 can be 

rewritten as Equation 7:  

 

ŷ 0 1 1 2 2 3 3 4 4= y - ε = b + b x + b x + b x + b x  (7) 

 

where, ŷ1 is the determined response, ε is the 

experiment error, b1 to b4 are the estimated value of 

β0 to β4. The quadratic model ŷ2 can be extended as 

Equation 8:  

 

0 1 1 2 2 3 3 4 4

12 1 2 13 1 3 14 1 4 23 2 3
2 2

24 2 4 34 3 4 11 1 22 2
2 2

33 3 44 4

y = y - ε = b + b x + b x + b x + b x +

b x x + b x x + b x x + b x x

+ b x x + b x x + b x + b x

+ b x + b x

 

(8

) 

To determine the linear quadratic and relationship 

component of the response using an analysis of 

variance (ANOVA) method. 

 

2.6  Artificial Neural Networks (ANN) 

 

An ANN is a model for predicting response parameters 

(dependent variable) using the same principles as 

biological neural systems. It's one of the most proper 

analyses in artificial intelligence (AI). ANN can be 

effectively used to determine the input‐output 

relationship of a complicated process and is 

considered as a tool in nonlinear statistical data 

modeling. The ANN structure is built with several 

neurons on the input layer, hidden layer, and output 

layer. 

The information has processed the neuron and is 

propagated to other neurons through the synaptic 

weight of the links connecting the neuron (wi). 

Summation the weight input to neurons and including 

bias is given in Equation 9 [20], [19]. 

 

 
n

i=0
i iy = f w x + θ  (9) 

where, xi is the input data, and θ is the bias of the 

hidden layer. The weighted output is passed-through-



55                                         Mohruni, et al. / Jurnal Teknologi (Sciences & Engineering) 81:6 (2019) 51–60 

 

 

activation-function. The activation functions are used 

in the hidden and output layer to choose the best 

activation function that gives the minimum error at 

output layers during training and testing data. The 

activation functions are using tansig, logsig, or purelin. 

The optimal network configuration during training 

and testing are found through the calculation of 

statistical error and commonly are used a function 

such as Mean Square Error (MSE) and Mean Absolute 

Percentage Error (MAPE), etc. The error functions are 

defined by Equation 10 and Equation 11. 

 
 
 
 

N

i
N=1

2

i

1
MSE = t - o

N
 (10) 

 


 
 
 

N

N=1

i i

i

t - o1
MAPE =

N o
 (11) 

 

where t is the target value, o is the output value, and 

N is the number of experiments. 

 

 

3.0  RESULTS AND DISCUSSION 
 

Surface roughness and cutting force (Fc) results are 

shown in Table 4. The prediction model using RSM by 

utilizing the Design Expert 10.0 and ANN by Matlab 14a 

software. 
 

Table 4 Independent variable and experiment results 

 

Std. 
Order 

Type 

Levels of input factor 

(coded) 

Cutting 

 Force 

Surface 

Roughness 

Vc fz ar ax Fc (N) Ra (µm) 

1 

F
a

c
to

ri
a

l 

-1 -1 -1 -1 20.689 0.223 

2  1 -1 -1 -1 13.983 0.187 

3 -1  1 -1 -1 20.614 0.283 

4  1  1  1 -1 25.616 0.183 

5 -1 -1  1 -1 25.085 0.190 

6  1 -1  1 -1 22.916 0.176 

7 -1  1  1 -1 36.112 0.255 

8  1  1  1 -1 39.173 0.270 

9 -1 -1 -1  1 29.798 0.187 

10 1 -1 -1  1 31.244 0.190 

11 -1  1 -1  1 46.511 0.297 

12  1  1 -1  1 51.180 0.260 

13 -1 -1  1  1 48.152 0.220 

14  1 -1  1  1 41.959 0.220 

15 -1  1  1  1 61.658 0.238 

16  1  1  1  1 71.003 0.307 

17 

A
x
ia

l 

-2 0 0 0 34.918 0.282 

18  2 0 0 0 34.050 0.223 

19  0  -2 0 0 20.478 0.120 

20  0 2 0 0 54.520 0.288 

21  0 0  -2 0 24.415 0.195 

22  0 0 2 0 53.338 0.275 

23  0 0 0  -2 17.439 0.235 

24  0 0 0 2 66.817 0.253 

        

25 

C
e

n
te

r 

 0 0 0 0 33.707 0.220 

26  0 0 0 0 29.288 0.238 

27  0 0 0 0 31.062 0.212 

28  0 0 0 0 31.204 0.256 

29  0 0 0 0 30.240 0.273 

30  0 0 0 0 31.762 0.228 

The machining force used for analysis is Fc (mean 

cutting force) that is perpendicular to the thin wall 

surface. The average arithmetic surface roughness 

(Ra) is used to measure surface quality, and 

measurements are made at three times at the end of 

each workpiece.  

  

3.1  Modelling by RSM 

 

Analysis of variance (ANOVA) is used to analyze the 

effect of each parameter of Surface roughness and 

cutting force. The study was set at a significance level 

as 5% and a confidence level at 95%. Table 5 and 

Table 6 give the ANOVA result on cutting force and 

surface roughness of the first order. 

 
Table 5 ANOVA for response surface linear model on cutting 

force 
 

Source 
Sum of 

Squares 
  df 

Mean 

Square 
F-Value 

P-value 

Prob>F 
Remarks 

 Model     4.51   4    1.13 126.96 < 0.0001     significant 

  A-Vc 0.0003   1 0.0003 0.0359   0.8512  

  B-fz     1.11   1 1.11 125.67 < 0.0001  

  C-DOC  

  Rad 
0.8890   1 0.8890 100.20 < 0.0001  

  D-DOC  

  Ax 
    2.50   1 

    

2.50 
281.93 < 0.0001  

 Residual 0.2218   25 0.0089    

  Lack of Fit 0.2105   20 0.0105    4.66   0.0477           significant 

  Pure Error 0.0113   5 0.0023    

 Cor Total    4.73   29     

 
Table 6 ANOVA for response surface linear model on surface 

roughness 
 

Source 
Sum of 

Squares 
  df 

Mean 

Square 
F-Value 

P-value 

Prob>F 
Remarks 

 Model 0.7351   4 0.1838 10.65 < 0.0001     significant 

  A-Vc 0.0387   1 0.0387   2.24   0.1468  

  B-fz 0.6266   1 0.6266 36.32 < 0.0001  

  C-DOC    

  Rad 
0.0421   1 0.0421   2.44   0.1307  

  D-DOC  

  Ax 
0.0278   1 0.0278   1.61   0.2163  

 Residual 0.4313   25 0.0173    

  Lack of Fit 0.3858   20 0.0193   2.12   0.2066 
not 

significant 

  Pure Error 0.0454   5 0.0091    

 Cor Total    1.17   29     

 

 

The first order model in term of coded factors, as 

follows in Equation 12 and Equation 13:  

 

c 1 2

3 4

lnF = 3.5 - 0.0036x + 0.2155x +

0.1925x + 0.3228x
 (12) 

 

a 1 2

3 4

lnR = -1.44 - 0.0401x + 0.1616x +

0.0419x + 0.034x
 (13) 
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By substituting Equation 12 and Equation 13 to 

Equation 1, the transformed equation of Ra and Fc 

prediction is given Equation 14 and Equation 15. 

 
-0.0161 0.4665 0.8627 0.9311

a c z r aF = 56.023V f a a  (14) 

 
-0.1797 0.3498 0.1878 0.0981

a c z r aR =1.4003V f a a  (15) 

 

From Table 5 and Table 6, it is evident that Lack of 

Fit (LoF) for Ra was not significant, but LoF the Fc was 

contrary. Therefore, only the Ra was well modeled to 

first order model. In this study, the second order model 

was used to developed and nonlinear prediction 

curve. The adequacy and fitness of the model for the 

second order are shown in Table 7 and Table 8. 

 
Table 7 ANOVA for response surface quadratic model on 

cutting force 
 

Source 
Sum of 

Squares 
  df 

Mean 

Square 
F-Value 

P-value 

   Prob>F 
Remarks 

 Model     4.64   14 0.3311  54.04 < 0.0001     significant 

  A-Vc 0.0003   1 0.0003 0.0520    0.8227  

  B-fz     1.11   1     1.11   181.98 < 0.0001  

  C-DOC  

  Rad 
0.8890   1 0.8890  45.11 < 0.0001  

  D-DOC  

  Ax 
    2.50   1     2.50   408.26 < 0.0001  

  AB 0.0767   1 0.0767 12.52    0.0030  

  AC 0.0000   1 0.0000   0.0068    0.9353  

  AD 0.0068   1 0.0068    1.11    0.3084  

  BC 0.0011   1 0.0011   0.1812    0.6764  

  BD 0.0028   1 0.0028   0.4490    0.5130  

  CD 0.0052   1 0.0052   0.8462    0.3722  

  A2 0.0108   1 0.0108       1.76    0.2043  

  B2 0.0039   1 0.0039   0.6415    0.4357  

  C2 0.0267   1 0.0267       4.36    0.0542  

  D2 0.0082   1 0.0082       1.34    0.2648  

 Residual 0.0919   15 0.0061    

  Lack of Fit 0.0806   10 0.0081       3.57    0.0863           
not 

significant 

  Pure Error 0.0113   5 0.0023    

 Cor Total    4.73   29     

 
Table 8 ANOVA for response surface quadratic model on 

surface roughness 
 

Source 
Sum of 

Squares 
  df 

Mean 

Square 
F-Value 

P-value 

   Prob>F 
Remarks 

 Model   0.9578   14 0.0684    4.92   0.0020     significant 

  A-Vc 0.0387   1 0.0387    2.78    0.1161  

  B-fz 0.6266   1 0.6266  45.07 < 0.0001  

  C-DOC 

  Rad 
0.0421   1 0.0421    3.03    01023  

  D-DOC  

  Ax 
0.0278   1 0.0278    2.00    0.1781  

  AB 0.0000   1 0.0000 0.0019    0.9658  

  AC 0.0581   1 0.0581    4.18    0.0589  

  AD 0.0369   1 0.0369    2.66    0.1239  

Source 
Sum of 

Squares 
  df 

Mean 

Square 
F-Value 

P-value 

   Prob>F 
Remarks 

  BC 0.0012   1 0.0012   0.0895    0.7689  

  BD 0.0039   1 0.0039   0.2794    0.6048  

  CD 0.0023   1 0.0023   0.1620    0.6930  

  A2 0.0056   1 0.0056   0.4005    0.5364  

  B2 0.1007   1 0.1007    7.24    0.0168  

  C2 0.0009   1 0.0009   0.0633    0.8047  

  D2 0.0014   1 0.0014   0.1033    0.7524  

 Residual 0.2086   15 0.0139    

  Lack of Fit 0.1631   10 0.0163    1.80    0.2690           
not 

significant 

  Pure Error 0.0454   5 0.0091    

 Cor Total    1.17   29     

 

 

From the ANOVA analysis, the model F-value of the 

Fc was 54.04, and Ra was 4.92. It was implied that the 

model was significant. The LoF value of 3.57 and 1.8 

indicated that LoF was not significant. Therefore, the 

second order model was chosen to develop the 

models. And equation in term of coded factors as 

follows in Equation 16 and Equation 17. 

 

c 1 2

3 4 1 2

1 3 1 4 2 3
2

2 4 3 4 1
2 2 2

2 3 4

ln F = 3.5 - 0.0036x + 0.2155x +

0.1925x + 0.3228x + 0.0692x x +

0.0016x x + 0.0206x x + 0.0083x x +

0.0131x x - 0.0180x x + 0.0198x +

0.0120x + 0.312x + 0.0173x

 (16) 

 

a 1 2

3 4 1 2

1 3 1 4 2 3
2

2 4 3 4 1
2 2 2

2 3 4

ln R = -1.44 - 0.0401x + 0.1616x +

0.0419x + 0.034x - 0.0013x x +

0.0603x x + 0.0481x x + 0.0088x x +

0.0156x x + 0.0119x x + 0.0142x -

0.0606x - 0.0057x + 0.0072x

 (17) 

 

Based on the second order Ra and Fc model, the 

optimization condition was to be investigated. The 

optimization was determined on the minimum value 

of Fc and Ra. RSM optimization results are shown in 

Table 9 and Table 10. Optimum cutting parameter 

were Vc = 125 m/min, fz = 0.04 mm/tooth, ar = 0.25 mm 

and aa = 5 mm. Optimum parameters resulted in Ra 

and Fc were 14.89 N and 0.161 µm, respectively. 

 
Table 9 Optimum machining parameters for cutting force 

 

Num 

ber 
Vc fz 

DOC 

Rad 

DOC 

Ax 
Fc Desirability  

1 125.00 0.040 0.25 5.0 14.89 0.984 Selected 

2 124.49 0.040 0.25 5.0 14.93 0.983  

3 124.10 0.040 0.25 5.0 14.93 0.983  

… … … … …    … …  

 

 

 

 

 



57                                         Mohruni, et al. / Jurnal Teknologi (Sciences & Engineering) 81:6 (2019) 51–60 

 

 

Table 10 Optimum machining parameters for surface 

roughness 
 

Num 

ber 
Vc fz 

DOC 

Rad 

DOC 

Ax 
Ra Desirability  

1 125.00 0.040 0.25 5.00 0.161 0.781 Selected 

2 124.99 0.040 0.25 5.03 0.161 0.779  

3 124.99 0.040 0.25 5.00 0.161 0.779  

… … … … …    … …  

 

 

3.2  Modelling by ANN 

 

In this research, ANN analysis using Feedforward Back 

Propagation (BP). The ANN model optimization is 

based on (a) the best training algorithm criteria and 

(b) the number of neurons in the hidden layer. Before 

train and testing networks, the normalization of input 

and target data is in the range of -1 and +1, with 

Equation 18. 

i i min

max min

2
x = (d - d )-1

(d - d )

 (18) 

 

where, 
maxd  and 

mind are the maximum and minimum 

values of the row data respectively, while 
id  is the 

input and output data set. 

The best training algorithm criteria are determined 

based on the type of BP algorithm in the matlab 

toolbox. Training runs on the default parameters value, 

and some inputs were specified as follows: 10 neurons 

in the hidden layer, type of learning were learngd, 

tansig in hidden and output layer as activation 

function, the epoch was 1000 and performance goal 

was MSE/MAPE. 

Data for training was selected data-1 to data-28 

(87.5%) in Table 4 and testing using data-29, data-30, 

and data in Table 11 (12.5%). 

 
Table 11 Data for testing  

 

No. 

Independent Variables Cutting 

 Force 
Surface 

Roughness Vc fz ar ax 

m/min mm/th mm mm Fc (N) Ra (µm) 

1 100 0.025 0.4 10 69.26 0.210 

2 100 0.063 0.4 10 57.66 0.231 

 

 

The results of training and testing on different BP 

algorithms that produce the best MSE/MAPE values for 

both Fc and Ra are Levenberg-Marquardt, such as 

shown in Table 11 and Table 12. Therefore, this 

algorithm was considered as training and testing. 
 

 

 

 

 

 

 

 

 

Table 11 The result of training and testing for cutting force 
 

BP Algorithm        MSE MAPE R2 

Scaled conjugate 

gradient 

 a 0.355 0.5961 0.9992 

 b 203.618 17.3214 0.9016 

Resilient 
 a 0.463 1.0515 0.9990 

 b 170.973 15.4157 0.9994 

Random Weight/Bias 

Rule 

 a 2.610 4.3523 0.9943 

 b 184.544 16.6667 0.9988 

Levenberg-Marquardt 
 a 1.678 2.7984 0.9962 

 b 11.428 5.3469 0.9926 

One-step secant 
 a 2.014 3.6307 0.9955 

 b 159.848 15.9503 0.9986 

Grad. descent with 

momentum and 

adapt. learning rate 

 a 2.045 3.6969 0.9955 

 b 35.227 8.9013 0.9953 

gradient descent 
 a 6.477 6.9838 0.9855 

 b 274.566 17.6718 0.7096 

Gradient descent with 

adapting. learning rate 

 a 5.758 5.3274 0.9870 

 b 138.283 13.6154 0.9578 

Gradient descent 
 a 75.515 16.6541 0.8134 

 b 166.656 14.6502 0.9484 

Conjugate grad. with 

Polak-Ribiére updates 

 a 0.392 1.0125 0.9991 

 b 301.184 20.1655 0.9981 

Conjugate grad. with 

Fletc.-Reeves updates 

 a 1.136 2.2566 0.9975 

 b 177.759 16.9857 0.9922 

Conjugate grad. with 

Powell-Beale restarts 

 a 0.431 1.2819 0.9990 

 b 106.568 9.3596 0.8819 

Bayesian regularization 
 a 7.734 6.8469 0.9831 

 b 172.866 13.2503 0.8120 

BFGS quasi-Newton 
 a 0.354 05651 0.9992 

 b 134.421 14.2471 0.9153 
a= Training and b = Testing 

 
Table 12 The result of training and testing for surface 

roughness 
 

BP Algorithm      MSE MAPE R2 

Scaled conjugate 

gradient 

 a 0.0000609 2.0812 0.9834 

 b 0.0013506 14.1182 0.7226 

Resilient 
 a 0.0000661 2.0962 0.9821 

 b 0.0005122 6.4321 0.7036 

Random Weight/Bias 

Rule 

 a 0.0007217 8.4768 0.8234 

 b 0.0008084 11.5665 0.6962 

Levenberg-Marquardt 
 a 0.0000413 0.9546 0.9888 

 b 0.0004729 6.1752 0.9540 

One-step secant 
 a 0.0000817 1.9537 0.9777 

 b 0.0003162 5.4309 0.7232 

Grad. descent with 

momentum and 

adapt. learning rate 

 a 0.0001728 4.0410 0.9522 

 b 0.0004718 8.0641 0.7086 

gradient descent 
 a 0.0005176 8.3846 0.8518 

 b 0.0008365 11.3186 0.7177 

Gradient descent with 

adapting. learning rate 

 a 0.0002130 4.9519 0.9416 

 b 0.0005819 9.1811 0.7204 

Gradient descent 
 a 0.0008101 10.2770 0.7502 

 b 0.0005217 8.7780 0.7210 

Conjugate grad. with 

Polak-Ribiére updates 

 a 0.0000811 2.0652 0.9779 

 b 0.0003176 5.3768 0.7263 

Conjugate grad. with 

Fletc.-Reeves updates 

 a 0.0000667 2.0333 0.9818 

 b 0.0004213  5.2342 0.7225 

Conjugate grad. with 

Powell-Beale restarts 

 a 0.0002056 5.0740 0.9431 

 b 0.0011474 13.3064 0.7230 

Bayesian regularization 
 a 0.0000806 2.8561 0.9805 

 b 0.0004590 4.6738 0.5773 

BFGS quasi-Newton 
 a 0.0000413 0.9547 0.9888 

 b 0.0024770 15.8320 0.6591 

a= Training and b = Testing 
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The optimum number of neurons in the hidden layer is 

determined based on the MSE/MAPE after training 

and testing. There is no standard rule about the 

number of hidden layers, and it depends on the 

specifications and complexity of the experimental 

data. Many researchers only use a hidden layer to 

obtain optimal conditions [22], [23], [19]. 

The ANN structure chosen in this study was 4-n-1, 

where n is the number of neurons in the hidden layer, 

as shown in Figure 2. The results of training to obtain 

the best network performance for the number of 

neurons 1 to 20 are shown in Figure 3 and Figure 4. 

 

Fc  

Ra

Vc

Bias (1,1)

fz

ar

ax

Bias (1,2)

Input Layer Hidden Layer Output Layer

Act. Function Act. Function

 
 

Figure 2 ANN with architecture 4-n-1 (n is the sum of neuron in 

the hidden layer 

 

 
 

Figure 3 The network's performance in the hidden layer for 

cutting force 

Experimental results and prediction with RSM and ANN 

are presented in Table 13 and Table 14. It was 

observed that the range of error percentage RSM is -

15.09 to 18.307 % at Fc and -35.62 to 22.84 % at Ra. Error 

percentage between experiment result and ANN is -

6.922 to 7.096 % at Fc and -9.198 to 15.202 % at Ra. From 

the prediction results between these two models, the 

percentage error ANN models are significantly better 

than the RSM model. The developed ANN model can 

be effectively utilized for prediction of Fc and Ra. 
 

 

 
Figure 4 The network's performance in the hidden layer for 

surface roughness 

 

Table 13 The value of experiment and prediction Fc 
 

N 

o 
Average  

Fc Exp. (N) 

RSM ANN 

Predicted % Error Predicted % Error 

1 20.689 17.936 13.30 20.689 0.000004 

2 13.983 14.805 -5.88 13.984 -0.008784 

3 20.614 23.024 -11.69 20.614 -0.000001 

4 25.616 25.069 2.14 25.616 -0.000040 

5 25.085 26.786 -6.78 25.085 0.000003 

6 22.916 22.253 2.89 22.916 0.000000 

7 36.112 35.548 1.56 36.112 0.000000 

8 39.173 38.956 0.55 39.173 0.000000 

9 29.798 33.151 -11.25 29.798 0.000001 

10 31.244 29.719 4.88 31.244 0.000011 

11 46.511 44.846 3.58 46.511 0.000000 

12 51.180 53.033 -3.62 51.18 0.000000 

13 48.152 46.068 4.33 48.152 0.000002 

14 41.959 41.566 0.94 41.959 0.000000 

15 61.658 64.430 -4.50 61.658 -0.000001 

16 71.003 76.686 -8.00 71.002 0.000898 

17 34.918 30.326 13.15 34.918 0.000002 



59                                         Mohruni, et al. / Jurnal Teknologi (Sciences & Engineering) 81:6 (2019) 51–60 

 

 

N 

o 
Average  

Fc Exp. (N) 

RSM ANN 

Predicted % Error Predicted % Error 

18 34.050 29.064 14.64 34.05 -0.000002 

19 20.478 21.837 -6.64 20.478 0.000000 

20 54.520 58.332 -6.99 54.52 -0.000003 

21 24.415 22.200 9.07 24.415 0.000000 

22 53.338 53.906 -1.06 53.338 -0.000001 

23 17.439 18.307 -4.98 17.439 0.000000 

24 66.817 76.901 -15.09 66.817 0.000001 

25 33.707 27.562 18.23 31.315 7.095716 

26 29.288 27.562 5.89 31.315 -6.921767 

27 31.062 27.562 11.27 31.315 -0.815296 

28 31.204 27.562 11.67 31.315 -0.356516 

29 30.240 27.562 8.85 31.315 -3.555711 

30 31.762 27.562 13.22 31.315 1.406564 

 
Table 14 The value of experiment and prediction Ra 

 

N 

o 
Average  

Ra Exp. (N) 

RSM ANN 

Predicted % Error Predicted % Error 

1 0.223 0.214 3.85 0.223 -0.000001 

2 0.187 0.160 14.69 0.187 -0.000003 

3 0.283 0.283 0.06 0.283 0.000000 

4 0.183 0.209 -14.40 0.183 0.000000 

5 0.190 0.198 -4.37 0.190 0.000001 

6 0.176 0.188 -6.68 0.176 0.000001 

7 0.255 0.271 -6.27 0.255 0.000003 

8 0.270 0.255 5.46 0.270 0.000003 

9 0.187 0.197 -5.53 0.187 -0.000003 

10 0.190 0.178 6.36 0.190 -0.000001 

11 0.297 0.277 6.72 0.297 0.000000 

12 0.260 0.248 4.43 0.260 0.000000 

13 0.220 0.191 13.01 0.220 0.000005 

14 0.220 0.220 0.19 0.220 0.000011 

15 0.238 0.278 -16.94 0.238 0.000000 

16 0.307 0.318 -3.49 0.307 0.001234 

17 0.282 0.258 8.40 0.282 0.000001 

18 0.223 0.214 4.17 0.223 0.000001 

19 0.120 0.163 -35.62 0.120 -0.003927 

20 0.288 0.222 22.84 0.288 0.000002 

21 0.195 0.212 -8.87 0.195 -0.000002 

22 0.275 0.237 13.70 0.275 0.000003 

23 0.235 0.223 5.03 0.235 0.000000 

24 0.253 0.255 -0.81 0.253 0.000001 

25 0.220 0.227 -3.03 0.231 -5.227273 

26 0.238 0.227 4.76 0.231 2.731093 

27 0.212 0.227 -6.92 0.231 -9.198113 

28 0.256 0.227 11.46 0.231 9.570313 

29 0.273 0.227 16.97 0.231 15.20147 

30 0.228 0.227 0.58 0.231 -1.535088 

 

 

3.3 The Effect of Independent Variables Toward 

Dependent Variables 

 

Figure 5 shows the perturbation plot between 

Independent and dependent variables for cutting 

force and surface roughness. It was clear that with the 

increase of feed (B), DOC radial (C) and DOC axial 

(C), dependent variables increased due to an 

increase in the cross-sectional area of the chip. The 

opposite phenomenon, an increase of cutting speed 

(A) resulted in a decrease of dependent variables (Fc 

and Ra). Usually, the cutting temperature increases 

with increasing cutting speed and causes a decrease 

in hardness in the tool contact area of the workpiece, 

thereby reducing cutting energy. This effect causes a 

reduction in the cutting force and surface of the 

workpiece to be smooth [24]. The impact of B, C, D on 

cutting force was more significant than surface 

roughness. 
 

 

 
 

Figure 5 Perturbations plot for cutting force and surface 

roughness 

 

 

4.0  CONCLUSION 
 

The application of the RSM and the ANN for optimum 

performance on end milling thin walled Ti6Al4V has 

been presented in this paper. The result of the analysis 

has shown that the second order RSM models and 

Levenberg-Marquardt algorithm in the ANN network 

were developed to predict the Fc and Ra values from 

experimental data. The prediction data by RSM and 

ANN are very close to the data obtained from the 

experimental results. The training and testing results of 

network structure 4-10-1 for Fc and 4-13-1 for Ra shows 

better accuracy than RSM predictions. 

From the development of the model shows that 

the fz cause the most significant effect on Fc and Ra, 

followed by ax and ar. And contrary to the influence 

of the Vc where the increase of the Vc reduced Fc and 

Ra. The optimum condition was determined based on 

the minimum value of Fc and Ra on the independent 
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variable range. Optimum condition at Vc = 125 m/min, 

fz = 0.04 mm/tooth, ar = 0.25 mm and aa = 5 mm which 

resulted Fc and Ra were 14.89 N and 0.161 µm, 

respectively. 
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