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Abstract 

Sound waves propagate well underwater making it useful for target locating and communication. Underwater acoustic noise (UWAN) 
affects the reliability in applications where the noise comes from multiple sources. In this paper, a novel signal de-noising technique is 
proposed using S-transform. From the time–frequency representation, de-noising is performed using soft thresholding with universal threshold 
estimation which is then reconstructed. The UWAN used for the validation is sea truth data collected at Desaru beach on the eastern shore 
of Johor in Malaysia with the use of broadband hydrophones. The comparison is made with the more conventionally used wavelet transform 

de-noising method. Two types of signals are evaluated: fixed frequency signals and time-varying signals. The results demonstrate that the 
proposed method shows better signal to noise ratio (SNR) by 4 dB and lower root mean square error (RMSE) by 3 dB achieved at the Nyquist 
sampling frequency compared to the previously proposed de-noising method like wavelet transform. 
© 2017 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

The capability to efficiently communicate and perform tar- 
get locating underwater is important in various applications, 
including oceanographic studies, offshore oil prospecting, and 

defense operation [1] . Electromagnetic waves attenuate seri- 
ously in water; thus, sound waves are more suitable solu- 
tion for underwater communication and target locating [1,2] . 
Underwater acoustic noise (UWAN) mainly comes from two 

sources: manmade (shipping, aircraft over the sea, and ma- 
chinery sounds on the ship) and natural sources (rain, wind, 
marine lifeforms, and seismic). Considering that UWAN 

downgrades the acoustic signal quality [2,3] , de-noising has 
to be implemented to improve signal quality [4] . 

∗ Corresponding author. 
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Signal de-noising is important if the signal of interest is 
corrupted with noise, resulting in difficulty in recovering the 
information carried by the signal with minimum error. Noise 
is modeled as additive white Gaussian noise (AWGN) wherein 

the frequency components are distributed over all frequency 

range while the signal of interest lies within a specific range 
in frequency [5] . Different techniques for de-noising were re- 
ported, such as mean filtering [6] , median filtering [7] , Wiener 
filtering [8] , and singular value decomposition (SVD) [9] . 
Wiener filter can be used to reduce the noise wherein the 
signal-to-noise ratio (SNR) is sufficiently high (usually higher 
than 4 dB) [8] . An SVD technique [9] represents a new time 
domain noise reduction approach. Recently, wavelet trans- 
form has emerged as a popular method in signal de-noising. 
Some of the methods proposed are wavelet correlation method 

[10] , adaptive wavelet shrinkage [11] , and dual-tree complex 

wavelet coefficient method [12] . The essence of these meth- 
ods is the nonlinear processing on the wavelet coefficients and 

using the processed coefficients to reconstruct signals. Among 
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these methods, wavelet threshold method is widely used be- 
cause of its suitability for many applications [13–15] . Given 

that UWAN is colored noise, two general methodologies can 

be used to de-noise a known signal. The first methodology 

performs pre-whitening of the signal before the de-noising op- 
eration is implemented using the same methods use for white 
noise [5] . Otherwise, the de-noising operation can be per- 
formed without using a pre-whitening filter but instead using 

a level-dependent threshold method [16] . 
In this study, a novel de-noising method based on time–

frequency analysis is proposed using S-transform as an al- 
ternative to the wavelet transform [17] . The S-transform per- 
forms spectral localization derived in [18] and is closely re- 
lated to the wavelet transform and short-time Fourier trans- 
form (STFT). Successful applications of the S-transform in- 
clude the fields of geophysics [19] , power quality analysis 
[20] , and medicine [21] . A new filtering method uses the 
S-transform applied to the multichannel seismic data to selec- 
tively remove noise by applying an adaptive, time-dependent 
filter [22] . The results show that this technique is particu- 
larly effective to determine residual static corrections for data 
with a low SNR. A novel ECG signal de-noising technique 
is proposed using S-transform [23] . The experimental results 
demonstrate that the proposed method shows better SNR per- 
formance of 2 dB than the generally used ECG de-noising 

method. As its key feature, S-transform uniquely combines 
a frequency-dependent resolution and the localization of the 
real and imaginary spectra [24] . Furthermore, the S-transform 

uses time–frequency axis rather than the time-scale axis, re- 
sulting in the ease of directly interpreting the time-varying 

frequency characteristics of the signal. 
The rest of this paper is organized as follows. Section 2 de- 

fines the signal de-noising problem. Section 3 describes 
the theoretical background of wavelet and S-transform. The 
methodologies of de-noising using discrete wavelet transform 

(DWT) and the proposed method using S-transform are also 

explained in this section. The results and discussion are dis- 
cussed in Section 4 . Finally, the conclusion of the paper is 
elaborated in Section 5 . 

2. Signal de-noising problem 

The problem of interference because of noise is common 

in communication, radar, and sonar systems. In this section, 
the model for UWAN, which is colored noise, is presented 

for the signal de-noising in an additive noise channel. 

2.1. Signal model 

The signals used are single-frequency sinusoidal signal and 

linear frequency modulated (LFM) signal. They are used to 

represent fixed-frequency signals and time-varying signals that 
can be encountered in practical situations. An arbitrary sinu- 
soidal signal can be defined as: 

s ( n ) = A cos ( φ( n ) ) 0 ≤ n ≤ N − 1 

= 0 elsewhere (1) 

where N is the signal duration in samples, A is the signal 
amplitude, and φ( n ) is the instantaneous phase. For a fixed- 
frequency signal, the instantaneous phase is defined as: 

φ( n ) = 2π f m 

n T s (2) 

where f m 

is signal frequency and T s is the sampling period. 
The instantaneous phase for LFM signal is 

φ( n ) = 2π
(

f m 

+ 

∝ 

2 

n T s 
)

n T s (3) 

where α is the frequency that is defined as ∝ = f BW 

/N T s , 
and f BW 

is the bandwidth of the signal. 
For band-limited signals of finite energy that has no com- 

ponents higher than W Hz, the sampling frequency f s must 
be equal or higher than 2 W [25] . The sampling rate of 2 W 

samples per second is known as the Nyquist rate. The un- 
derwater acoustic signals are mostly in the 0–2500 Hz fre- 
quency band, and the sampling frequency f s = 2 W is the 
minimum requirement for digital sonar system [26] . In prac- 
tice, the sampling frequency should be at least equal to 2.66 W 

[26,27] . Therefore, the sampling frequency used in this work 

is 8000 Hz. 
Given the combined impacts of the internal measurement 

system and the external environmental factors, measured sig- 
nals are often contaminated by noise. Thus, the received sig- 
nal can be defined as 

x ( n ) = s ( n ) + v ( n ) (4) 

where s ( n ) is the signal of interest and v ( n ) is the UWAN. The 
assumptions of Gaussian distribution for UWAN are described 

in [28] . However, recent work suggested that the UWAN 

follows t -distribution [29] and stable alpha distribution [30] . 
Therefore, the purpose of de-noising is to reduce the degree 
of corruption to s ( n ) by v ( n ). 

2.2. Characteristics of UWAN 

Given that UWAN is frequency dependent [1,3] , the as- 
sumption of additive white Gaussian noise (AWGN) is invalid 

and is appropriately modeled as colored noise [31–33] . The 
power spectrum of the colored noise is defined as [5,34] 

S V V 
(
e j2π f 

) = 

1 

f β
β > 0, 

− f s 
2 

≤ f ≤ f s 
2 

(5) 

The autocorrelation function for AWGN is characterized 

by the delta function means, and the adjacent samples are 
independent identically distributed. However, the autocorrela- 
tion function of the 1 

f β noise is no longer a delta function but 
rather takes the form of a sinc () function [25,34] . Contrary to 

AWGN, the noise samples are correlated [5] . 
Field trials were conducted at Tanjung Balau, Jo- 

hor, Malaysia (latitude of 1 °35.169 

′ N and longitude of 
104 °16.027 

′ E) on November 5, 2013 to collect signal samples 
and investigate the statistical properties of UWAN ( Fig. 1 ). 
The signals were received at a frequency range of 7–22 KHz 
through a broadband hydrophone (Dolphin EAR 100 Series) 
located approximately 5 km offshore. The measurements were 
collected at depths from 1 m to 9 m with a sea floor at a depth 
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Fig. 1. Field trials conducted at Tanjung Balau, Johor, Malaysia on November 5, 2013. 

Fig. 2. Time representation and autocorrelation function of the UWAN for depths of 5 and 9 m. 

of 10 m. The wind speed was nearly 7 knots, and the surface 
was at approximately 27 °C [ 35 ]. 

The UWANs were measured to determine the statistical 
properties such as the power spectral density (PSD), autocor- 
relation function, and probability density function (pdf). The 
sampling frequency used in this determination is 8000 Hz. 
Fig. 2 shows the time representation and the autocorrela- 
tion function at the depth of 5 and 9 m. The biased auto- 
correlation function is not an impulse function, indicating 

that the noise samples are correlated. The power spectrum 

is estimated using Welch’s modified periodogram technique 
[36] . The settings for the power spectrum estimation are 
as follows: window type = Hanning, N −-point fast Fourier 
transform (FFT) = 2048, FFT window size = 256, and over- 
lapping = 50%. Fig. 3 shows the PSD estimate at different 
depths. Clearly, the UWAN exhibited a decaying PSD with 

rates between (1/ f 2 ) and (1/ f 3 ). Therefore, the field trials con- 
firm that UWAN is colored noise. 

3. De-noising of signal in UWAN 

3.1. De-noising process flow 

Since the UWAN is colored noise, there are two general 
approaches as shown in Fig. 4 to de-noise a known signal. 
The first approach shown in Fig. 4 (a) performs pre-whitening 

of the signal before the de-noising operation is implemented 

[5,25] . Alternatively, the de-noising operation can perform 

without using a pre-whitening filter but instead using the spec- 
trum characteristic of the colored noise as shown in Fig. 4 (b) 
[16] . This method minimizes the processing with the exclu- 
sion of the pre-whitening filter. 

3.2. Whitening process and inverse whitening filter 

The colored noise can be transformed into white noise by 

passing it into LTI whitening filter [25,37] . The prediction 

error filter (PEF) with transfer function H p ( z ) is used for this 
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Fig. 3. Welch PSD estimate for the UWAN for depths of 1, 3, 5, 7, and 9 m. 

(a) De-noising using a pre-whitening filter.

(b) Direct de-noising method.

Fig. 4. De-noising methods. [Whitening filter: prediction error filter (PEF), signal transformation: wavelet transform or S-transform, de-noising: single-level or 
multi-level threshold estimation and soft thresholding, inverse signal transformation: inverse wavelet transform or inverse S-transform and inverse whitening 
filter: inverse PEF]. 

purpose [5] . The output of the PEF is used as the difference 
between the estimate of the linear predictor and the actual 
sequence. The transfer function of the PEF can be expressed 

as 

H p ( z ) = 1 + a 1 z 
−1 + a 2 z 

−2 + . . . + a p z 
−p (5) 

where p is the length of the forward predictor filter, and 

a p ( n ) is the filter coefficients and depends on the UWAN data 
recording. If the order p of the PEF is sufficiently large, then 

the forward prediction error is orthogonal with constant vari- 
ance; hence, the output of filter is similar to AWGN [5] . 

The output of the PEF is referred to as x w 

( n ) and repre- 
sents the convolution process between the input noisy signal 
x ( n ) and the impulse response of the whitening filter h w 

( n ). 
Thus, the resulting PEF is the transform of the signal with 

the AWGN: 

x w 

( n ) = x ( n ) ∗ h w 

( n ) = s ( n ) ∗ h w 

( n ) + v ( n ) ∗ h w 

( n ) (6) 

After the filter coefficients are determined, the de-noising 

process minimizes the noise term v ( n ) ∗h w 

( n ) to produce a 
clean estimate of the transform signal: 

ˆ s w 

( n ) = s ( n ) ∗ h w 

( n ) (7) 

The original signal s ( n ) can be recovered with an in- 
verse whitening filter [38] with impulse response h IWF ( n ) and 

transfer function 1/ H p ( z ). The estimate of the original signal 
is 

ˆ s ( n ) = ˆ s w 

( n ) ∗ h IW F ( n ) = s ( n ) ∗ h w 

( n ) ∗ h IW F ( n ) (8) 
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In the z -domain, the estimation of the original signal can 

be express as 

ˆ S ( z ) = S ( z ) . H P ( z ) . 
1 

H P ( z ) 
= S ( z ) (9) 

3.3. Signal transformation 

Signal transformation is used in the de-noising process. 
The two adopted methods are wavelet transform and S- 
transform. 

3.3.1. Wavelet transform 

The wavelet transform is a linear time–frequency distri- 
bution that decomposes the signal into a family of functions 
localize in time and frequency. The continuous wavelet trans- 
form can be expressed as 

X ( t, a ) = 

1 √ 

a 

∫ ∞ 

−∞ 

x ( τ ) h 

(
τ − t 

a 

)
dτ (10) 

where t is the time shift, a is the scale (known as dilation) fac- 
tor, and h ( t ) is the basis function (known as mother wavelet). 
The choice of basis function is signal dependent, and exam- 
ples of basis functions are Debauchies, Coiflet, Symlet, and 

Biorthogonal. To find a suitable basis function, cross corre- 
lation is performed between the original signal s ( n ), and the 
signal after the reverse wavelet transformation is applied. The 
highest cross correlation is then used to select the suitable ba- 
sis function [39] . 

The signal is processed in discrete time. Thus, using the 
DWT is more appropriate. The DWT is defined as 

X ( n, k ) = 

1 √ 

k 

N−1 ∑ 

m=0 

x ( m ) h 

(
m − n 

k 

)
(11) 

where n is the time shift and k is the scale factor. The DWT 

is computed by passing the time domain signal x ( n ) succes- 
sively through L level of high pass and low pass filters with 

decimation by 2. The procedure formed from hierarchical set 
of approximation and detail analysis is known as multiresolu- 
tion analysis, which can be implemented using computation- 
ally efficient algorithms [40] . 

3.3.2. S-transform 

The S-transform is a special case of the STFT by replac- 
ing the window function with a frequency-dependent Gaus- 
sian window [18,41] . The Gaussian window width is inversely 

proportional to the frequency, and its height is scaled linearly 

to the frequency. Given the behavior of the window scal- 
ing, the S-transform possesses good time resolution for high- 
frequency components and good frequency resolution for low- 
frequency components. The S-transform can be expressed as 
[18] 

X ( t, f ) = 

∫ ∞ 

−∞ 

x ( τ ) g ( τ − t, f ) e − j2π f τ dτ (12) 

where x ( t ) is the signal and g ( t, f ) is the frequency-dependent 
Gaussian window. The window is given as [18] 

g ( t, f ) = 

| f | √ 

2π
e ( 

−t 2 f 2 

2 ) (13) 

The presence of the variable f makes the window spread 

frequency dependent. Given that X ( t, f ) is complex valued, 
the modulus | X ( t, f )| is usually plotted in practice to derive 
the time–frequency representation. The S-transform represents 
the local spectrum; thus, averaging of the local spectrum over 
time produces the Fourier spectrum that can be expressed as 
[18] ∫ ∞ 

−∞ 

X ( t, f ) dt = X ( f ) (14) 

The signal in time representation x ( t ) is exactly recoverable 
from X ( t, f ) based on the following expression [18,42] : 

x ( t ) = 

∫ ∞ 

−∞ 

{∫ ∞ 

−∞ 

X ( t, f ) dt 

}
e j2π f t df (15) 

In this study, the de-noising is performed in the time–
frequency representation and the signal is recovered from 

noise using Eq. (15 ). 
The discrete S-transform is used in this study to al- 

low processing in the continuous S-transform. x(n) , n = 

0, 1 , . . . ( N − 1 ) denotes a discrete time series corresponding 

to x ( t ) with a time sampling interval of T s . The S-transform 

of the discrete time series x ( n ) is given by 

X ( n, k ) = 

N−1 ∑ 

m=0 

x ( m − n ) e 
−2 π2 m 2 

k 2 e 
− j2πmk 

N (16) 

The inverse of the discrete S-transform is given by [43] : 

x ( n ) = 

1 

N 

N−1 ∑ 

k=0 

{ 

N−1 ∑ 

n=0 

X ( n, k ) 

} 

e 
j2πnk 

N (17) 

3.4. De-noising process 

The de-noising methodology using wavelet transform and 

S-transform based on the block diagram in Fig. 4 is discussed 

in this section. 

3.4.1. Wavelet-based method 

In wavelet de-noising, the algorithm to de-noise a signal 
s ( n ) corrupted by a noise signal v ( n ) can be summarized by 

the following three steps [44,45] : 

(1) Decomposition: Choose a wavelet and a decomposi- 
tion level L. Compute the wavelet decomposition of the 
noisy signal at level L . 

(2) Threshold detailed coefficient: For each level from 1 

to L , select a threshold value and apply hard or soft 
thresholding on the detailed noisy coefficients. 

(3) Reconstruction: Compute wavelet reconstruction using 

the original approximation coefficient of level L and 

modified detailed coefficient of levels 1 to L . 
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The de-noising method that applies thresholding in wavelet 
domain was proposed by [46] . The threshold value applied 

to the wavelet coefficients estimated at the k th decomposi- 
tion level using adaptive universal threshold estimation [46] is 
given by 

γk = c. σv,k 

√ 

2 log ( N ) (18) 

where N is signal length at each level, σ v, k is the k th noise 
standard deviation, and c is adaptive universal threshold factor 
0 < c < 1 . The k th noise standard deviation is expressed as 

σv,k = 

median ( | X D 

( n, k ) | ) 
0. 6745 

(19) 

where X D 

( n, k ) represents all the wavelet detail coefficients 
in level k [16] . For white noise, the estimation of the stan- 
dard deviation from the median absolute value of the detail 
coefficients estimated for the first level alone is sufficient and 

can be used for the other levels. The reason is that the magni- 
tude of the noise is the same for all frequencies. However, the 
noise standard deviation for colored noise has to be calculated 

for all levels [44] . 
Threshold value γ k is used to remove noise and recover 

the original signal efficiently. The adaptive threshold factor c 
is introduced to further improve the de-noising performance 
[47] . The value of c is determined by gradually changing its 
value for each level with steps of 0.1. Through this procedure, 
the best results are found at the highest SNR at the output of 
de-noising process. 

Thresholding is then applied on the coefficients X D 

( n, k ) 
using the threshold value γ k to separate the signal from the 
noise. Hard thresholding is the simplest, and the thresholded 

values of the detail coefficients, X D, γ ( n, k ), are obtained ac- 
cording to the following: 

X D,γ ( n, k ) = 

{
X D 

( n, k ) if | X D 

( n, k ) | > γk 

0 if | X D 

( n, k ) | ≤ γk 
(20) 

Hard thresholding zeroes out all the signal values smaller 
than γ k . Alternatively, soft thresholding can be used and the 
signal after thresholding is expressed as 

X D,γ ( n, k ) 

= 

{
sgn ( X D 

( n, k ) ) ( | X D 

( n, k ) | − γk ) if | X D 

( n, k ) | > γk 

0 if | X D 

( n, k ) | ≤ γk 
(21) 

In soft thresholding, all the coefficients with magnitudes 
smaller than the threshold value γ k are set to zero; all the 
remaining coefficients are also reduced in magnitude by the 
amount of the threshold value [46] . Contrary to hard thresh- 
olding, soft thresholding causes no discontinuities in the de- 
noise signal. 

To obtain the de-noised signal, the new threshold detail 
coefficients X D, γ ( n, k ) and original approximation coefficient 
of level L, X A, L ( n, k ), are used for the signal reconstruction 

process as in Eq. (22 ) and this process consists of up-sampling 

by 2 and filtering. 

x ( n ) = A L ( n, k ) + 

L ∑ 

	 =1 

D 	 ( n, k ) (22) 

3.4.2. S-transform-based method 

If the received signal is AWGN, then it can be consid- 
ered a combination of narrow-band Gaussian random pro- 
cesses wherein each process is centered at a frequency f l . If 
the random process is stationary, then the narrow-band Gaus- 
sian random process can be expressed as [5,48] 

x ( n ) = v I cos ( 2π f l n ) − v Q 

sin ( 2π f l n ) (23) 

where v I is the in-phase component and v Q 

is the quadra- 
ture component. v I and v Q 

are independent Gaussian random 

processes with zero mean and variance σ 2 
v . Combining all 

the narrow-band noise components in Eq. (23 ) results in the 
AWGN that is defined as 

x ( n ) = 

∞ ∑ 

	 = −∞ 

v I,	 cos ( 2π f 	 n ) − v Q,	 sin ( 2π f 	 n ) (24) 

By limiting the signal duration within 0 ≤ n ≤ N − 1 , the 
frequency representation obtained from the discrete Fourier 
transform (DFT) of x ( n ) is: 

X ( k ) = 

∞ ∑ 

	 = −∞ 

v I,	 DFT 

[
cos ( 2π f 	 n ) 

] − v Q,	 DFT 

[
sin ( 2π f 	 n ) 

]

= 

∞ ∑ 

	 = −∞ 

v I,	 X I,	 ( k ) − v Q,	 X Q,	 ( k ) (25) 

Segregating the X ( k ) into real and imaginary part results 
in: 

X ( k ) = 

∞ ∑ 

	 = −∞ 

(
v I,	 r e 

{
X I,	 ( k ) 

} − v Q,	 r e 
{
X Q,	 ( k ) 

})
+ j 

(
v I,	 i m 

{
X I,	 ( k ) 

} − v Q,	 i m 

{
X Q,	 ( k ) 

})
= X re ( k ) + j X im 

( k ) (26) 

For the, 	 th terms in X re ( k ) and X img ( k ), the magnitude is 
a linear combination of v I , 	 and v Q , 	 . Since both the pdf 
of v I , 	 and V Q , 	 are independent Gaussian random process, 
than the resulting magnitude pdf is a convolution of their two 

pdfs which result in a Gaussian pdf [5] . Similarly, a colored 

noise where the power spectrum decays at the rate of 1/f , the 
frequency representations becomes: 

X ( k ) = 

1 

f 1 / 2 	 

{ ∞ ∑ 

	 = −∞ 

(
v I,	 r e 

{
X I,	 ( k ) 

} − v Q,	 r e 
{
X Q,	 ( k ) 

})

+ j 
(
v I,	 i m 

{
X I,	 ( k ) 

} − v Q,	 i m 

{
X Q,	 ( k ) 

})}
(27) 

By using the properties of the discrete Fourier trans- 
form (DFT) and the convolution theorem, the S-transform 

in Eq. (12 ) can be considered as a convolution process in 

the frequency domain between the signal X ( k ) and the scal- 
able localizing Gaussian window ( k ). The S-transform can be 
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expressed as: 

X ( n, k ) = 

N−1 ∑ 

m=0 

x ( m − n ) e 
−2 π2 m 2 

k 2 e 
− j2πmk 

N 

= 

N−1 ∑ 

m=0 

x ( m − n ) w ( m ) e 
− j2πmk 

N 

= X ( k ) ∗
( k ) 

W ( k ) e − j 2πnk 
N (28) 

By considering the signal in terms of the real and imagi- 
nary parts, Eq. (28) can be written as: 

X ( n, k ) = 

[
X re ( k ) + j X im 

( k ) 
]∗
( k ) 

W ( k ) e − j 2πnk 
N 

= 

⎡ 

⎣ X re ( k ) ∗
( k ) 

W ( k ) e − j 2πnk 
N + j X im 

( k ) ∗
( k ) 

W ( k ) e − j 2πnk 
N 

⎤ 

⎦ 

(29) 

The complex exponential denoted by ( e − j 2πnk 
N ) represents 

the shift of the window in time domain. 
From Eq. (29 ), the de-noising process in frequency do- 

main requires thresholding in the real and imaginary parts of 
the spectrum. Thus, the adaptive universal threshold estima- 
tion described in Eq. (18 ) has to include real and imaginary 

components. The threshold value is given by 

γk,re = c. σv,k,re 

√ 

2 log ( N ) 

γk,im 

= c. σv,k,im 

√ 

2 log ( N ) 
(30) 

where σ v, k, re and σ v, k, im 

are the noise standard deviations 
for the real and imaginary parts, respectively. The k th noise 
standard deviations are calculated as 

σv,k,re = 

median ( | X re ( n, k ) | ) 
0. 6745 

σv,k,im 

= 

median ( | X im 

( n, k ) | ) 
0. 6745 

(31) 

The median for AWGN and colored noise is calculated in 

the same way as explained in Section 3.4.1 . 
After determining the threshold values for real and imag- 

inary parts γ k, re and γ k, im 

, the time–frequency representa- 
tions of the real and imaginary parts after hard thresholding 

are 

X γ ,re ( n, k ) = 

{
X re ( n, k ) if | X re ( n, k ) | > γk,re 

0 if | X re ( n, k ) | ≤ γk,re 

X γ ,im 

( n, k ) = 

{
X im 

( n, k ) if | X im 

( n, k ) | > γk,im 

0 if | X im 

( n, k ) | ≤ γk,im 

(32) 

Alternatively, the time–frequency representations of the 
real and imaginary parts after soft thresholding are 

X γ ,re ( n, k ) 

= 

{
sgn ( X re ( n, k ) ) 

(| X re ( n, k ) | − γk,re 
)

if | X re ( n, k ) | > γk,re 

0 if | X re ( n, k ) | ≤ γk,re 

X γ ,im 

( n, k ) 

= 

{
sgn ( X im 

( n, k ) ) 
(| X im 

( n, k ) | − γk,im 

)
if | X im 

( n, k ) | > γk,im 

0 if | X im 

( n, k ) | ≤ γk,im 

(33) 

The time–frequency representation obtained by combining 

real and imaginary parts is 

X γ ( n, k ) = X γ ,re ( n, k ) + j X γ ,im 

( n, k ) (34) 

The de-noised signal x ( n ) in time representation can be re- 
covered using the inverse discrete S-transform in Eq. (17 ). 

3.5. Performance measures 

Many quantitative parameters can be used to evaluate the 
performance of the de-noising procedure for reconstructing 

signal quality. The two most widely used performance mea- 
sures are [23,44] SNR and root mean square error (RMSE). 
The SNR is defined as 

SNR = 10 log 

[ ∑ N 
n=1 [ s(n) ] 2 ∑ N 

n=1 [ ̂  s (n) − s(n) ] 2 

] 

(35) 

where s ( n ) is the original signal, ˆ s (n) is the de-noised signal, 
and N is the length of the signal. The de-noising is successful 
if post SNR is higher than pre SNR. 

The RMSE between the original signal s ( n ) and the de- 
noise signal ˆ s (n) is defined as 

RMSE = 

√ √ √ √ 

1 

N 

N ∑ 

n=1 

[ ˆ s ( n ) − s ( n ) 
]2 

(36) 

The RMSE gives a measure of how well the de-noised 

signal is similar to the original signal. The performance of the 
various methods in de-noising the signals can be compared 

using a suitable criterion, that is, identifying the technique that 
results in the highest SNR with the lowest possible RMSE. 

4. Results and discussion 

The different de-noising methods are tested for signals in 

UWAN. The UWAN used for the validation is sea truth data 
collected at Tanjung Balau, Johor, Malaysia using broad band 

hydrophones. The signals are defined in Eqs. (1) –( 4 ) for fixed- 
frequency signal as well as time-varying signal. The charac- 
teristics of these signals are as follows: 

(1) Single-tone signal with frequency of 400 Hz and length 

of 1000 samples. 
(2) Single-tone signal with frequency of 1500 Hz and length 

of 1000 samples. 
(3) LFM signal with initial frequency of 400 Hz and final 

frequency of 1500 Hz. 

All these signals have sampling frequency of 8000 Hz. 
The simulations were performed at SNR from −6 dB to 

8 dB by varying the signal power while keeping the noise 
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Fig. 5. Time representation of (a) original signal, (b) noisy signal with SNR of 6 dB, (c) de-noised signal using S-transform method, and (d) de-noised signal 
using wavelet method. 

power constant with variance equals one. The de-noising us- 
ing Daubechies wavelet of order 9 with soft thresholding 

[49] is used and compared with the proposed S-transform 

de-noising method. The pre-whitening filter of order 10 was 
used [24] . The different de-noising methods are referred to as 
follows: 

1. S-transform direct method without a pre-whitening fil- 
ter and multi-level noise standard deviation estimation, as 
shown in Fig. 4 (b). 

2. S-transform method with pre-whitening filter and single- 
level noise standard deviation estimation, as shown in 

Fig. 4 (a). 
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Fig. 6. Time–frequency representation of noisy signal and de-noised signal using S-transform direct method [the SNR of the signal is 6 dB]. 

3. Wavelet direct method without a pre-whitening filter and 

multi-level noise standard deviation estimation, as shown 

in Fig. 4 (b). 
4. Wavelet with pre-whitening filter and single-level noise 

standard deviation estimation, as shown in Fig. 4 (a). 

The time representation of original, noisy, and de-noised 

signals using S-transform direct method and wavelet trans- 
form direct method is shown in Fig. 5 . The difference between 

the results produced by wavelet de-noising and S-transform 

de-noising can be easily compared with the help of this figure. 
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Fig. 7. Time–frequency representation for noisy signal and de-noised signal using S-transform method with pre-whitening filter [the SNR of the signal is 
6 dB]. 

Fig. 6 shows the time–frequency representation for the 
noisy and de-noised signals using the S-transform direct 
method. Given that UWAN is colored noise, the power 
concentration for all signals is in the low frequency re- 
gion ( f < 0.25 Hz) rather than in the high frequency region 

( f > 0.25 Hz). Thus, the noise standard deviation at each level 
in frequency axis needs to be estimated before calculating the 

threshold value and applying the soft thresholding. Clearly, 
significant differences exist between the noisy signal and the 
de-noised signal. 

Fig. 7 shows the time–frequency representation for the 
noisy and de-noised signals using the S-transform method 

with pre-whitening filter. The pre-whitening filter transforms 
the colored noise in the noisy signal to white noise. Given that 



182 Y.Y. Al-Aboosi, A.Z. Sha’ameri / Journal of Ocean Engineering and Science 2 (2017) 172–185 

Fig. 8. Comparison of the output SNR obtained using DWT methods and the proposed S-transform de-noising methods. 

the power concentration is equally distributed in frequency, 
the noise standard deviation can be estimated at fixed fre- 
quency level to calculate the threshold value and then apply 

the soft thresholding. After de-noising, the inverse whitening 

filter is applied to the recovered original signal. The difference 
between the noisy signal and the de-noised signal is observed 

in this figure. 
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Fig. 9. Comparison of the RMSE obtained using DWT and the proposed S-transform de-noising methods. 

Fig. 8 shows the output SNR of the proposed S-transform 

de-noising methods with wavelet de-noising methods for in- 
put SNR from −6 dB to 8 dB. The de-noising is successful 
if output SNR has the highest possible value. In all cases 
shown in this figure, the output SNR using S-transform de- 
noising methods performs better than using the wavelet de- 
noising methods. No significant difference is found if the pre- 
whitening filter is used or not between either the S-transform 

de-noising methods or wavelet de-noising methods. However, 
the difference in the output SNR of approximately 3 dB is 

observed between the S-transform de-noising methods and 

wavelet de-noising methods in case of a single-tone signal 
with frequency of 400 Hz, nearly 4 dB difference in the case 
of a single-tone signal with frequency of 1500 Hz, and around 

6 dB difference in the case of LFM signal. 
The RMSE values of all methods when input SNR ranges 

from −6 dB to 6.25 dB are compared, as shown in Fig. 9 . 
In all cases, the output RMSE using the S-transform de- 
noising methods exhibits lower error compared with using 

the wavelet de-noising methods. Similar to the output SNR, 
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Table 1 
Output SNR and RMSE of the various de-noising methods and the input SNR of 3 dB and input 1/RMSE of 15 dB. 

Performance measure S-transform direct 
method 

S-transform with 
pre-whitening filter 

Wavelet direct method Wavelet with 
pre-whitening filter 

Single tone signal with frequency 400 Hz 
Output SNR (dB) 6.8 7.2 3.31 3.28 
1/RMSE (dB) 16.77 17.1 15.2 15.25 

Single tone signal with frequency 1500 Hz 
Output SNR (dB) 4.9 5.1 0.6 0.71 
1/RMSE (dB) 15.52 15.13 13.44 13.24 

LFM signal 
Output SNR (dB) 6.84 7.15 0.1 1.65 
1/RMSE (dB) 16.51 16.65 14.4 13.82 

the pre-whitening filter does not affect the performance of 
both de-noising methods. Between the two de-noising meth- 
ods, a difference of 2 dB is observed for single-tone signals 
with frequencies of 400 and 1500 Hz and around 3 dB differ- 
ence in the case of LFM signal. The output SNR and RMSE 

for the various de-noising methods for a given input SNR of 
3 dB and input 1/RMSE of 15 dB are summarized in Table 1 . 

5. Conclusion 

This study focuses on the de-noising of acoustic signals in 

colored noise, specifically UWAN. From the time–frequency 

representation generated by the S-transform, de-noising is per- 
formed using soft thresholding with universal threshold esti- 
mation. The proposed method is compared with the more con- 
ventionally used wavelet transform de-noising method. The 
de-noising methods are applied to simulated and real fixed- 
frequency signal and time-varying signal. The S-transform- 
based de-noising method showed better performance than the 
wavelet-based de-noising method in terms of the SNR and 

RMSE at 4 and 3 dB, respectively. The S-transform can re- 
solve frequency components better than the wavelet transform. 
The S-transform is also useful to analyze unknown signals 
before performing de-noising to recover the signal. 
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