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ABSTRACT 
Multiple-imputation (MI) is a method for treating the problem of missing data. There are 

various competing computational algorithms available in the R environment to address missing 

data problems of categorical and continuous variables. In the case of a high amount of missing 

information, large sample sizes and complex dependency structures among categorical variables, 

the utility of the provided R packages is somewhat limited. A computationally expedient, fully 

Bayesian, joint modeling (JM) approach known as “Dirichlet process mixtures of multinomial 

distributions” (DPMD), automatically models complex dependencies among variables. But this 

approach is limited to categorical variables only. We propose a simple and easy to implement 

combining algorithm which imputes continuous variables using various algorithms and uses the 

JM approach to detect complex dependency structures among categorical variables. We review, 

describe and evaluate software packages commonly available in R and compare the results with 

the proposed MI method by using as example an artificial data set. The results suggest that the 

MI approach which combines the JM approach and various algorithms based on generalized 

linear models dominates various algorithms when applied solely. 

Keywords: Survey data; Multiple Imputation; Complex dependencies; Hybrid; Dirichlet 

process prior distributions, R - project. 

 

1. INTRODUCTION 
 

Item non response is a main problem in large scale surveys. Such surveys usually have a 

large number of categorical variables as compared to the number of continuous variables. Using 

only the available data results in decreased efficiency and possibly biased inference. Rubin 

(1987) has proposed multiple-imputation (MI), a method for handling missing data, more than 40 

years ago. For more details, see Rubin (1987) and Schafer (1997).  

MI requires random draws from the posterior distribution of the missing data given the 

observed data. Although this method is conceptually simple but can lead to potentially unsound 

imputations when there are mixed type variables (i.e. continuous and categorical variables with 

many categories). There exist various competing computational algorithms to impute data. There 

is a need to investigate which of these algorithms outperform the others with respect to MI in the 

presence of complex dependencies among categorical variables in large scale surveys. A fully 

Bayesian, joint modeling approach called “Dirichlet process mixtures of multinomial 

distributions” (DPMD) for multiple imputation (MI) for categorical data (Si and Reiter, 2013) in 

large scale surveys automatically models complex dependencies while being computationally 

efficient at the same time. Akande et al. (2017) have compared repeated sampling properties of 

various MI methods for categorical data. They found that chained equations using Classification 

and Regression Trees (CART), and a fully Bayesian approach based on Dirichlet Process 
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mixture models dominate the default chained equations approaches based on Generalized Linear 

Models (GLM‟s). The DPMD MI approach is limited to categorical variables; but it is possible 

to impute categorical variables with complex dependencies and high dimensions using DPMD 

and continuous variables with existing MI methods by combining two approaches.  In this paper 

we propose a hybrid MI (HMI) approach which combines DPMD and existing MI approaches by 

imputing categorical variables with DPMD and use various imputation techniques to impute the 

continuous variables. In this paper, we compare the performance of existing and proposed MI 

methods in the presence of complex dependency structures among categorical variables. The 

judgment about the performance will be based on various dimensions, such as accuracy in 

comparison with the true values, point estimates and standard errors for the fitted GLM‟s and 

coverage rates of 95% confidence intervals. 

2 NOTATIONS AND ASSUMPTIONS FOR THE MISSING 

MECHANISMS 

 
Let D denote the incomplete data with sample size n  and p variables. The distribution of 

D is an arbitrary multivariate distribution. 

Also assume i and j refer to observations where i=1,…,n and variables j=1,…,p, respectively. 

There are two components of the data set D= {D
obs

, D 
miss

}. A response indictor matrix with same 

dimensions as D is  

    {
                     

                      
 

Note that we use R in atelic for the R environment in this article. Missing Completely At 

Random (MCAR) is one possible assumption where    (            )=   ( ). The second 

possible assumption is Missing At Random (MAR) where   (            )=   (      ). 

Missing Not At Random (MNAR) is another possible assumption where   (            )   

  (      ) and depends on      . The third assumption is also called non-ignorable (NI) (Little 

and Rubin, 2002) and not further used in the paper. 

 

3 IMPUTATION SOFTWARE 
 

Various imputation algorithms are implemented in a variety of statistical packages to handle 

missing data and to perform MI. Many standard statistical packages i.e., R, S-Plus, SAS, SPSS, 

and STATA not only implement standard algorithms but also offer user-written programs to 

facilitate a variety of more elaborated methods to handle missing data. Readers who are 

interested in the comparison of the performances of these packages are suggested to read Yu et 

al. (2007) or Horton and Kleiman (2007). We take R under consideration in this paper due to its 

open source character and its popularity. NA‟s are used to indicate missing values in R. There are 

various statistical packages that use R environment to impute missing data. For example “Amelia 

II” implements MI by bootstrapping and Expectation Maximization (EM) algorithm, “Hmisc” 

implements MI using additive regression and bootstrapping, R package “mi” offers various 

features (e.g. choice of predictors, models, and transformations for chained imputation models 

etc.) for imputations, “mice” algorithm can impute mixed type data and offer various diagnostic 

functions to inspect the quality of the imputations,“yaImpute” performs nearest neighbor-based 

imputation, “mix” performs MI for mixed categorical and continuous data, “NPBayesImpute” 
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impute categorical data by using Dirichlet process mixtures of multinomial distributions, “norm” 

uses multivariate normal model for imputations,  “pan” is a MI technique for multivariate  panel 

or clustered data. The “mitools” is a useful package to combine the results from MI whereas the 

package “VIM” can be utilized for exploring data and the pattern of missing values. We use 

“Amelia II”, “Hmisc”, “mice” and "NPBayesImpute” in our examples.  

 

4 REVIEW OF EXISTING APPROACHES 

 
There is a wide range of imputation models available which are based on the missingness 

patterns. These approaches can be categorized according to the data types. In case of a monotone 

missing pattern, simple methods, i.e. “propensity” (Rosenbaum and Rubin, 1983) or “Predictive 

Mean Matching” (PMM) (Little, 1988), are used for continuous variables.  Markov Chain Monte 

Carlo (MCMC) approaches use Markov chains to generate random draws from multidimensional 

probability distributions. One can obtain a sample of the desired distribution by recording states 

from the chain (Gilks, 1995). MCMC approaches are suggested for complicated missingness 

patterns. The MCMC approach has few downsides; it is complicated and usually requires more 

time. Statistical packages “SAS”, “S-Plus” and “R” etc. use the MCMC approach.  Multivariate 

normality assumptions apply to both the predictive mean matching and MCMC approaches 

(Horton and Lipsitz, 2001). According to Schafer (1997), inferences based on this normality 

assumption can be robust for minor departures. 

Discriminant analysis or logistic regression are preferred for discrete variables for 

monotone missing pattern.  There are a variety of imputation methods for categorical data in high 

dimensions. For details, see Vermunt et al. (2008). Log-linear models may be the preferred 

method for discrete variables, since arbitrary complex dependency structures can be modeled. 

But the implementation of this approach becomes difficult or impossible in high dimensions 

(Erosheva, et al., 2002). Naturally, there are a large number of possible models in high 

dimensions which makes model selection very challenging and makes it also impossible to select 

a model from all possible log-linear models as well. In this situation, implementation of 

automated model selection procedures becomes unavoidable. Moreover, model selection 

procedures become more complicated with missing data. Maximum likelihood estimates of the 

log-linear model coefficients can be biased in high dimensions (Bishop et al., 1975).  

Imputation methods like fully normal (FN) imputation (Rubin and Schenker, 1986) 

convert categorical data to multivariate normal or continuous by applying rounding techniques. 

But there are evidences that the performance of these methods is limited. For example, an 

imputed value when made “plausible” using rounding, can tend to generate a bias and the 

method can fail even in low dimensions (Ake, 2005; Allison, 2000; Bernaards et al., 2007; Finch, 

2010; Graham and Schafer, 1999; Horton et al., 2003; Yucel et al., 2011). Below we discuss in 

detail the MI algorithms we used for comparison purposes.  Advantages and disadvantages of the 

algorithms are discussed as well. 

 

4.1 EXPECTATION-MAXIMIZATION WITH BOOTSTRAPPING (EMB) USED BY 

AMELIA II 

R package called „Amelia II‟ by Honaker et al. (2011) implements imputation method. 

Amelia assumes that all variables in data set are distributed multivariate normally. „Amelia II‟ 

combines the bootstrap (Efron, 1979) with the EM algorithm (Dempster, Laird, and Rubin, 

1977). The combination of the expectation-maximization algorithm and bootstrapping is called 
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the Expectation-Maximization with Bootstrapping (EMB) algorithm.  The bootstrapping method 

works by utilizing the observed sample as the pseudo-population and randomly drawing a 

subsample of size n with replacement from this observed sample.  The EMB algorithm consists 

of the following steps: First: assuming a data set with q observed and n - q missing values, 

bootstrap samples of size n are drawn from incomplete data M times by applying bootstrapping 

method. Second: M point estimates of µ and Ʃ are calculated by applying the EM algorithm to 

each of these M bootstrap samples. Maximization steps are iterated until estimates converge. 

Finally, M multiply-imputed data sets are constructed by repeating this process M times 

(Wooldridge, 2002). For more details on the expectation maximization with bootstrapping 

(EMB) algorithm see (Schafer, 1997; Watanabe and Yamaguchi, 2000; Little and Rubin, 2002). 

Although EMB is computationally more efficient as compared to MCMC methods but is only an 

approximate Bayesian procedure (Lin, 2008).  

 

4.2 MIXTURE MODELS FOR MULTIPLE IMPUTATION 

 

 To impute high-dimensional categorical data with significant item non-response, one has 

to face the challenges of model selection and estimation of log-linear models. Moreover, log-

linear models and sequential regression techniques become computationally inefficient and 

potentially biased when the number of possible models becomes very large. Therefore, a MI 

technique is preferred that not only addresses these difficulties but also has a theoretical 

grounding as a coherent Bayesian joint model and tackles all sources of uncertainty, including 

parameter estimation and inference, see Rubin (1987). According to Si and Reiter (2013), 

Bayesian models incorporate such uncertainty automatically. They propose to use the fully 

Bayesian, joint modeling (JM) approach known as “Dirichlet process mixtures of products of 

multinomial distributions model” (DPMPM) which was originally proposed by Dunson and Xing 

(2009). DPMPM is a nonparametric Bayesian model for multivariate unordered categorical data.  

Below we describe categorical data imputation using DPMPM. A brief description is given how 

this approach can be combined with existing approaches through a flexible and easy to 

implement architecture. 

Assume, we have item non-response in n individuals with p variables     i.e. (value of 

variable j for individual i, where each i belongs to exactly one of K <   latent classes). Further 

assume for i = 1,…, N, we have the class    of individual i  i.e.       *     + with probability    

=Pr (    ). Let     = {        } be the same for all individuals. We suppose that within any 

class, each of the p variables independently follows a class-specific multinomial distribution. For 

any value        {      }   let     
( )

   (           )  We can express the finite mixture 

model mathematically as               i  ̃              .    
( )
        

( )
/  for all i and j and         

              (         ) for all i. For prior distributions on   and   , we have    
   ( ∏        ) for k =1,…,   and           (1,  ) for k=1,…,        . Finally we have  

    Gamma (    ,    ) and   .   
( )
       

( )
/  Dirichlet  (             ). In order to get complete 

data sets, first the latent class indicator for each individual is drawn from the full conditional and 

then, second, each missing     is drawn from class-specific, independent categorical 

distributions. 
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This approach is consistent (i.e. any multivariate categorical data distribution can be 

approximated by DPMPM for a sufficiently large number of mixture (Dunson and Xing, 2009)), 

is computationally efficient and easy to code. The R package, “NPBayesImpute” by Manrique-

Vallier et al. (2014) implements this approach. Shortcoming of this package is that it only takes 

categorical variables into account.  

4.3 FULLY CONDITIONAL SPECIFICATION (FCS): CHAINED EQUATIONS 

The FCS approach is another approach to multiple imputation. Multivariate missing data is 

imputed on a variable-by-variable basis. We specify a multivariate distribution Pr(D, R│ ) 

using a series of conditional densities Pr(  │        ) where λ is the unknown parameter of the 

imputation model. An imputation model is specified for each variable, depending on the 

observed values in the dataset and the response mechanism, i.e   (           )               .   

A simple draw is made using the marginal distributions first. Then imputation is repeated over 

the conditionally specified imputation models (van Buuren, 2012). Imputations are created for 

each variable iteratively. Multivariate Imputation by Chained Equations (MICE) is a prominent 

conditionally specified imputation model.  MICE works as follows.  

1 Specify an imputation model for each variable    

Pr(       │            ). 

2 Let     ̃ be the starting imputation for each variable j. This value is e.g. obtained by 

making random draws from the observed values       . 
3 Repeat this process for t=1,…,T and j=1,…,p  as well. 

4 Draw     ̃   (                 ̃  ). 
5 At the end draw imputations 

    ̃   (                    ̃       ̃). 
MICE uses logistic or multinomial logistic regression models for categorical variables. 

Similar to log-linear models, these conditional models suffer from model selection and 

estimation problems in high dimensions. Moreover, it is very time consuming to specify many 

conditional models when the number of variables is large. This can result in biased estimates if 

default settings are used for chained equations, i.e. when we are ignoring interaction effects in 

the conditional models and hence fail to capture complex dependencies (Vermunt et al., 2008). 

The R Package, “mice” 2.13 (van Buuren and Groothuis-Oudshoorn, 2011) implements the FCS 

algorithm. 

4.4 ADDITIVE REGRESSIONS, BOOTSTRAPPING AND PREDICTIVE MEAN 

MATCHING TECHNIQUES 
Additive regressions, bootstrapping and predictive mean matching techniques for MI are 

implemented in the “Hmisc” package using “aregImpute” functions. A brief summary of the 

steps used by the “aregImpute” algorithm is as follow: 

Consider p variables containing m missing observations (NAs) 

1 Initial values are assigned to the NAs by drawing a random sample of size m from 

observed values. Random samples are drawn with replacement if there exist a 

sufficient number of NAs. 

2 The observations from the variable already imputed, i.e. having no missings, are used 

to draw a sample with replacement for a variable containing any missing value.  

3 After transforming the variable, a flexible additive model is fitted to predict this target 

variable. 
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4 This semi-parametric fitted model is used to predict the target variable in all of the 

original observations.  

5 The target variable can be imputed either by using the observed value whose 

predicted transformed value is closest to the predicted transformed value of the 

missing value or a drawn from a multinomial distribution with probabilities derived 

from distance weights. 

6 Repeat this process whenever predicting other missing variables with current target 

variable by using random draws from imputations obtained. 

This approach has few downsides. Many of the multiple imputations for an observation 

will be identical when the predicted transformed value is closest to the predicted transformed 

value of the missing value. This happens when less than three variables are used to predict 

the target variable and implementation of PMM fails. Moreover, PMM and Bayesian 

predicted values will always match to same donor observation when only monotonic 

transformations of left and right-side variables are allowed e.g., every bootstrap resample 

will give predicted values of the target variable that are monotonically related to predicted 

values from every other bootstrap resample. 

 

5 MI METHOD FOR COMBINING ESTIMATES 
 

 For   = 1,…, M, assume q and u are complete-data estimates θ and its covariance matrix 

Σ. Let  ( ) and  ( ) be respectively the point estimates of quantity of interest, Q and variance 

estimates of  ( ). Valid inferences for scalar Q by combining the  ( ) and  ( )    by Rubin 

(1987) are as follow. 

                             
 

 =∑
 ( )

 
 
     ,                

                      =∑
( ( )   )

 

   
 
    ,        

 

                     =∑
 ( )

 
 
   ,     

 where  
 

 can be used to estimate Q and variance of  
 

 can be estimated by 

    .  
 

 
/       ,  

with degrees of freedom    (   )(   ), where    
(      )  

  
 represents the relative 

increase in the conditional variance due to the missing data (see Rubin, 1987). Confidence 

intervals can be constructed using standard multiple imputation confidence interval construction 

rules, possibly based on a t-distribution. For more details see Rubin (1996), Barnard and Meng 

(1999). 

 

6 HYBRID MI (HMI) APPROACH 
 

Implementations of fully conditional MI methods to tackle missing data can become problematic 

for high missing rates or when there exist complex dependencies structures among variables. For 
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example, implementation of MICE MI become challenging when incompatibility issue arises due 

to high dimensions in large scale complex data (White et al., 2011; Razzak and Heumann, 2019). 

Such complex structures are common in high dimension household surveys where categorical 

variables have lots of categories i.e. District, Country etc. Moreover these methods are 

computationally expensive and, in some cases, less accurate as compared to full Bayesian joint 

models for MI (Si and Reiter, 2013). Many MI algorithms are specific for categorical variables, 

only, and cannot be implemented with continuous variables or require transformations (other 

tricks) for continuous variables (Si and Reiter, 2013). Murray and Reiter (2016) implement 

Bayesian mixture models with local dependence to impute both categorical and continuous 

values. However, combining the Dirichlet process for multinomial (discrete) mixes with the ones 

for multivariate (continuous) normal mixes involves knowledge of complicated models to create 

the dependence structure between the continuous and the categorical variables. These limitations 

create serious problems for researchers to obtain complete datasets with mixed type variables. 

We propose an easy to implement hybrid MI (HMI) approach to handle incomplete complex 

datasets with mixed type variables. HMI combines full Bayesian joint models (JM) MI for 

categorical data with various MI algorithms commonly implemented in the R environment.  

The proposed method consists of three stages: Firstly, data instances are separated into 

two different groups i.e. Gcat and Gnum. All categorical variables are assigned to Gcat and numeric 

ones to Gnum. Both groups may have missing information. We impute Gcat using the DPMPM MI 

method implemented in R package, “NPBayesImpute” (Manrique-Vallier et al., 2014) in the 

second stage. Then, we combine Gcat  and Gnum again but this time we have missing information 

in Gnum, only. Lastly, we apply different algorithms to impute Gnum based on values already 

imputed by DPMPM. We investigate the ability of various approaches to detect complex 

dependency structures in high dimensions using the HMI approach. Algorithm 1 explains HMI in 

detail. To assess the efficiency, we applied three well known MI methods (R-packages: “mice”, 

“Amelia” and “Hmisc”) to both groups and contrast the results with our HMI methods 

(“H.Amelia”, “H.MICE”, “H.Hmics”). Details of all methods are already provided in section 4 

of this article. However, short descriptions of existing and hybrid methods can be seen in Table 1 

and Table 2 respectively.  

Table 1. Basic information: Multiple Imputation in R 

Source:  Based on Manuals available on http://www.r-project.org/ 

 

 

 

 

 

 

 

#Method   Acronym Description 

1 

2 

3 

 

 

4 

  
  
  
  
  
  

Amelia II 
Hmisc 
NPBayesImpute 
 

mice 

Uses a bootstrap + EM algorithm  
Uses Additive Regression, Bootstrapping and PMM algorithms 
Uses a fully Bayesian, joint modeling approach to multiple 

imputations for categorical data based on latent class models 

with structural zeros. 

MI using FCP 
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Table 2 .Basic information: Hybrid Multiple Imputation (HMI) in R 

 
                                                  

 

 
 
 
 

Source: Self-prepared. 

 

 

 

 
                                                           
1  ̅ 

   are pooled point estimates
 
over M imputed datasets across z simulations.  

2
   
   are pooled variances

 
over M  imputed datasets across z simulations. 

3  ̅ is an average of pooled point estimates ( ̅ 
   ) 

across z simulations.  
4
  ̅ is an average of pooled variances (  

 ) across z simulations. 

#Method Acronym   Description 

1 
2 
3 

H.Amelia 

H.Hmisc 
H.MICE 

  
  
  

Amelia+NPBayesImpute 

Hmisc+NPBayesImpute 

Mice+NPBayesImpute 

Algorithm 1:  Hybrid MI  

Require:  n x p matrix with incomplete data. 

1. Gcat ,Gnum ← Initial division of p variables into two factor and numeric groups 

2.      for z= 1, … ,Z do 

3.              for m= 1, … ,M do   
4.      

 ← Imputation using  NPBayesImpute. 

5.       
       

 ← Combining      
  imputed and      

  missing to generate partially 

imputed        dataset.   

6.   
 ← Imputing      

 missing using mice        Hmisc i.e.      

 (      
              

        )     

7.   
  ← Final imputed data set. 

8.  ̅ 
 ← ∑

 ( )

 
 
        Pooled point estimates

1
.   

9.   
  ∑

( ( )   )
 

   
 
          

10.  ̅ 
   ∑

 ( )

 
 
             

11.   
    .  

 

 
/   

   ̅ 
       Pooled variances

2
. 

12.                  end  for 

13.  ̅← ∑
 ̅ 
 

 
 
        Average of pooled point estimate

3
.      

14.  ̅    ∑
  
 

 
 
        Average of pooled variance

4
. 

      end for   
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7 SIMULATION STUDIES 
 

The simulation studies are inspired by Si and Reiter (2013). The data consists of N = 1000 

observations. First, five binary variables (X1, X2, X3, X4, and X5) are generated from a 

multivariate normal (MVN) distribution, followed by a categorization. The marginal 

distributions of X1,  X2, X3, X4, X5    are  normal and we set the mean of each variable at 0 and  the 

variance of each variable at 0.5. The correlation structure is given as:  

                                               H = (
   
   
   

) 

Where   = 0.5. Random variates are transformed into binary values using the following 

threshold: 
  

                                                                       =     {
                      

                                 
 

 

Here i=1, 2, 3,4,5.  

We than define    = 5 X1- 3X2+ 5X3 -4 X4+ X5 and    = -2+   . Outcomes for two continuous   

covariates are generated from a normal distribution (ND) as described below: 

X6         N (  ; √ ), 

X7           N (  ; √ ). 

We generate X8 from Bernoulli distributions with probabilities governed by the logistic 

regression with  

 

logit Pr (X8) =-1 - 1.5X1 -1.15X2+1.25X3+1.6X4 + 2.88X5 +1.11X6 - 1.5 X7 -1.9 X2X3 + 2.3X1X3  -

1.5X2X6  -2X5X6 X7  +1.21 X1X5 -2.7X1X2 +1.2X1X2 X3 +3X6X7. 

 

We then define a co-variate dependent binary response generated from Bernoulli 

distributions with probabilities governed by the logistic regression as follow: 

 

logit Pr (y)  = 0.5 - 0.1X1 - 0.1 X2 -0.1X3 + 0.9X4  - 0.5X5 + 0.2 X6  - 0.1 X7 -  0.5 X8  and ϕ= βtrue = 

(0.5;-0.1;-0.1;-0.1;0.9;-0.5;0.2;-0.1;-0.5). We suppose that values in all covariates are MAR 

with the following probability 

p = 1   -   
 (          )

(     (          ))
  

 

This provides around 10% of the observations in Xi to be missing (at random). Since Si 

and Reiter (2013) did not observe noticeable differences in the posterior distributions of θ for 

higher values of prior specifications, we set relatively small prior specification values i.e. (  = 

0.05,   = 0.01) in R package “NPBayesImpute” version 0.6 (Manrique-Vallier et al., 2014). 

Akande et al. (2017) suggest that the latent classes (k) less than 40 can appear sufficiently large 

based on tuning with initial runs. However, we follow Dunson and Xing (2009) who suggest that 

large enough k can make the latent class model consistent for any joint probability distribution in 

case of dependencies among variable. Therefore, we set the sufficiently large number of latent 

classes (k) 80 and run each MCMC chain for 1000 iterations using the first 200 as burn-in. We 
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implement a default version of chained equations using the “mice” software package in R version 

2.12 (van Buuren and Oudshoorn, 1999). We implement bootstrap and PMM MI methods using 

13 iterations (for convenience) with the “aregImpute” function in the “Hmisc” software package 

in R version 4.1 (Harrell, 2010). We also use the R package “Amelia II” version 1.6.1 (Honaker 

et al., 2011) with defaults as basic command. Various imputations are generated for each MI 

method. Five thousand sampling simulations are run. 

 Pooled point estimates and standard errors for the fitted GLM‟s with binary response 

are  presented in figures 1, 2 ,3 and 4 for 10 and 20  imputed data sets, respectively. In order to 

get insight into the performance of the imputation algorithms, we make comparisons of different 

imputation methods using the root mean square error (RMSE) and empirical standard errors 

(ESE) indices, which are calculated using the following formulas: 

        =√
∑ ( ̅ 

     )
  

   

 
, 

 

                                                                  =√
∑ ( ̅ 

    ̅ )
  

   

 
 

where  
 

 and   denote the estimated parameter pooled over M imputed data sets and original 

parameters, respectively. The average values of the pooled estimated parameters over the 5000 

simulations are presented by  ̅. The coverage rates of at least 95% are calculated as:  

 

                                                                         = 
∑    ,       ( ̅ 

    
 )-  

   

 
 ,                                      

 

where   ,       ( ̅ 
    

 )- is an indicator function whose value is equal to one when the 

confidence interval based on   ̅ 
   and   

  contains   and equal to zero otherwise. 

 

 

8 SIMULATION RESULTS 

 
 As discussed, we used three software package in R i.e. (“Amelia”,“MICE” and 

“Hmisc”) for comparison with our proposed HMI methods, i.e. (“H.Amelia”,“H.MICE” and 

“H.Hmisc”). We limited the simulation study to low missingness rates and consider 10% of 

values MAR, only. We also increased the number of imputations from M=10 to M=20 for 

eventually better estimates. Table 3 shows the performance of various MI methods based on 

estimated means RMSEs, ESEs (top) and coverage rates of 95% confidence intervals (bottom) 

over 5000 simulation runs. The estimated amount of bias and between imputations variation can 

be assesed by RMSEs and ESEs respectively. Overall, “MICE” tends to result in the most mean 

coverage rates concentrated around 95% and fewest high rates. The mean coverage rates for 

“H.MICE” tend to be larger than the mean coverage rates for “MICE”, although both tend to be 

close to 95%. Standard “Amelia” results in coverage rates above 95% for most of the covariates. 

Sometimes it reaches very high rates for categorical covariates (i.e. M = 10: ß2 and ß3= 98) 

except one binary covariate where it reaches very low rates (i.e. M = 10, 20: ß4 = 92). “H. 

Amelia” results in mean coverage rates for all covariates that are concentrated slightly above 
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95%, but its lower and upper tails are comparable to that of “Amelia”. “Hmisc” results in the 

mean coverage rates for most of the covariates that are concentrated very above 95%, it has the 

longest upper tail, sometimes reaching very high rates (i.e. M = 20: ß2 = 98). Across the 

simulations, the mean coverage rates for “H.Hmisc” tend to be similar to the mean coverage 

rates for “Hmisc” but its upper tail is comparable to that of “Hmisc” (i.e. M = 20: ß2 = 97 ). We 

observe that the estimated mean ESEs for “H.MICE” MI method are smaller for all types of 

covariates as compared to “MICE”, whereas “H.Hmisc” shows similar or smaller mean ESEs as 

compared to “Hmisc” and “H. Amelia” shows similar or slightly higher mean ESEs as compared 

to “Amelia” for most of the covariates. The estimated mean RMSEs for “H.MICE” MI method 

are smaller for most of the covariates as compared to “MICE”, whereas “H.Hmisc” have similar 

or slightly higher mean RMSEs as compared to “Hmisc” and Amelia” have the similar or smaller 

mean RMSEs as compared to Amelia” for most of the covariates. There seem to be similarities 

in structure among all MI methods i.e. all methods are slightly upward biased for most of the 

binary covariates e.g. ß1, ß2, ß3, ß5, ß8 and downward biased for continues covariates and one 

binary covariates e.g. ß4. The point estimates based on “MICE” and “H.MICE” methods are 

closer to the corresponding true values as compared to other methods (see Figures 1-2). Hybrid 

MI methods (i.e. “H.MICE”, “H.Hmisc”, “H. Amelia”) tend to have smaller standard errors as 

compared to their counterparts (i.e. “MICE”, “Hmisc”, “Amelia”) for most of the covariates 

except three binary covariates i.e. ß2, ß5, ß8 where “H.Amelia” shows similar or slightly higher 

standard errors as compared to “Amelia” (see Figures 3-4). 
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Table 3. The performance of methods for MI 
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Figure 1. Boxplots for the point estimates across 5000 simulations and 10 imputations by various 

imputation methods.  
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Figure 2. Boxplots for the point estimates across 5000 simulations and 20 imputations by various 

imputation methods. 
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Figure 3. Boxplots for the standard errors across 5000 simulations and 10 imputations by various 

imputation methods. 
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Figure 4. Boxplots for the standard errors across 5000 simulations and 20 imputations by various 

imputation methods.  



 

17 
 

9  CONCLUDING REMARKS 

Based on results obtained by simulations, we can make several general conclusions about various 

MI procedures. First, the default application of “MICE”, appears to be inferior to “H.MICE”, 

overall. “H.MICE” utilizes the JM approach to identify complex dependency structures among 

categorical variables where missing continuous variables are imputed using the PMM technique. 

Of course, one could use various applications offered by MICE, (e.g. CART). Second, analysts 

may prefer “H.Amelia” for high coverage rates for most estimands with slight bias and due to its 

fastness5. Third, identification of a clear winner between “Hmisc” and “H.Hmisc” is little 

difficult.  “H.Hmisc” tends to result in slightly higher mean RMSEs than “Hmisc” does, but its 

coverage rates are comparable that of “Hmisc”. Based on results obtained by simulations, we can 

also make some general conclusions about three HMI procedures. Analysts concerned with 

getting at least nominal coverage rates for most estimands at the expense of some high mean 

RMSEs and ESEs, may prefer “H.MICE” over “H.Hmisc” and “H.Amelia”. Simulation studies 

indicate that “H.Hmisc” and “H.Amelia” tend to perform in most cases. Further evaluations with 

diversity of experimental settings will undoubtedly be needed to account for this behavior. 

Increasing the number of imputed data sets improves results by reducing RMSEs. Since now, we 

have considered small numbers of prior specifications (    ,   ) and mixture components (k) in 

simulations, extensive comparisons are required for increased levels of    ,    and k. We 

considered only binary response with binary and continuous covariables. Of course, statistical 

properties of the HMI approach can be studied for continuous response with mixed type 

covariates, also. Additionally, data with ordinal nature and more categories can be included for 

further comparisons. Real data applications can prove to be useful to see potential of proposed 

methods.  
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