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A B S T R A C T

Aging impacts both visual short-term memory (vSTM) capacity and thalamo-cortical connectivity. According to
the Neural Theory of Visual Attention, vSTM depends on the structural connectivity between posterior thalamus
and visual occipital cortices (PT-OC). We tested whether aging modifies the association between vSTM capacity
and PT-OC structural connectivity. To do so, 66 individuals aged 20–77 years were assessed by diffusion-weighted
imaging used for probabilistic tractography and performed a psychophysical whole-report task of briefly pre-
sented letter arrays, from which vSTM capacity estimates were derived. We found reduced vSTM capacity, and
aberrant PT-OC connection probability in aging. Critically, age modified the relationship between vSTM capacity
and PT-OC connection probability: in younger adults, vSTM capacity was negatively correlated with PT-OC
connection probability while in older adults, this association was positive. Furthermore, age modified the
microstructure of PT-OC tracts suggesting that the inversion of the association between PT-OC connection
probability and vSTM capacity with aging might reflect age-related changes in white-matter properties.
Accordingly, our results demonstrate that age-related differences in vSTM capacity links with the microstructure
and connectivity of PT-OC tracts.
1. Introduction

Our visual system is constantly confronted with more stimuli than it
can process and represent. Indeed, the number of objects that can be
simultaneously perceived and consciously stored in visual short-term
memory (VSTM) is limited (Sperling, 1960; Cowan, 2001). vSTM is the
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active maintenance of visual representations for further ongoing mental
operations as well as voluntary and task-appropriate actions (e.g Luck
and Vogel, 2013). Many studies have shown that the individual vSTM
capacity accounts for substantial amount of variance in performance in
diverse neuropsychological tasks and intellectual capabilities (Cowan,
2010; Fukuda et al., 2010; Johnson et al., 2013; Luck and Vogel, 2013;
; NTVA, neural theory of visual attention; FA, fractional anisotropy; MD, mean
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Nyberg et al., 2012). Therefore, vSTM capacity is regarded as a major
determinant of the maintenance of cognitive capabilities and functional
independence at old age (Cowan, 2010; Salthouse, 1994). While it has
been suggested that age-related decline in vSTM might result from
problems in associative binding of different item characteristics in an
episodic trace (e.g., Chen and Naveh-Benjamin, 2012; Naveh-Benjamin,
2000), or from a decline in the precision of vSTM representations (Noack
et al., 2012; Peich et al., 2013; Pertzov et al., 2015), there are also several
studies showing that the number of items stored itself is reduced (Ver-
haegen et al., 1993; Gazzaley et al., 2005; Jost et al., 2011; Sander et al.,
2011 McAvinue et al., 2012). Some of these studies used the Theory of
Visual Attention (TVA) framework (Bundesen, 1990), which conceives
visual processing as a race among objects of the visual field to be rep-
resented in vSTM, Based on modelling performance in a psychophysical
whole-report task, parametric estimates of vSTM capacity (parameter K),
are retrieved. These estimates of K are typically around 3 to 4 items in
healthy young participants (e.g. Finke et al., 2005), which is in line with
typical estimates of vSTM capacity obtained using alternative paradigms
(Cowan et al., 2001; Luck and Vogel, 1997; Vogel andMechizawa, 2004).
A significant advantage of the TVA-based methodology is that vSTM
capacity estimation is controlled for potential influences of increased
visual threshold and/or visual processing speed (Salthouse, 1996) in
aging individuals by separate and independent estimations of these pa-
rameters (e.g Habekost and Starrfelt, 2009). Importantly, as stated in the
information degradation hypothesis (Monge and Madden, 2016;
Schneider and Pichora-Fuller, 2000) without such control for degraded
perceptual input signals due to age-related neurobiological processes,
perceptual processing deficits might affect the measurement of cognitive
functions, such as vSTM capacity. For example, McAvinue and colleagues
have reported that vSTM capacity, or parameter K in TVA, declined lin-
early with increasing age. The significant reduction of this parameter has
since been replicated in various studies (Wiegand et al., 2014a, 2014b,
2018).

The age-related decline of visual cognitive functions has been sug-
gested to result from neural challenges in form of, for example, cortical
thinning and white matter integrity loss, particularly in posterior areas of
the brain, which might be compensated to some degree by additional
recruitment of frontal areas, as suggested in the “Posterior-Anterior Shift
in Aging”model (PASA model; Davis et al., 2008) or more bilateral brain
areas, as suggested in the Scaffolding Theory of Aging and Cognition
(STAC; Park and Reuter-Lorenz, 2009; Reuter-Lorenz and Park, 2014).
Based on the cognitive specificity of the distinct TVA parameters and on
the neural interpretation of TVA at both the brain’s cellular and systems
level in the neural theory of visual attention (NTVA; Bundesen et al.,
2005), a more specific, hypothesis-driven examination of the underlying
neural mechanisms of age effects particularly on vSTM storage capacity is
possible.

NTVA proposes that ‘visual’ brain regions such as occipital cortices,
thalami as well as white matter (WM) tracts connecting those regions are
of particular relevance for vSTM capacity in healthy individuals. Ac-
cording to TVA, visual processing involves a race among objects to be
represented in vSTM and thus available for conscious report. The win-
ning objects are assumed to be categorized in a vSTM map of locations
positioned in the posterior thalamus and particularly in the thalamic
reticular nucleus. In line with Hebb (1949) for example, the NTVA as-
sumes that the activity of the neurons representing the winner objects in
visual cortices is sustained and reactivated by a feedback loop gated by
the thalamic reticular nucleus (Bundesen et al., 2005). Given the critical
role assigned to posterior thalamus and visual cortices in NTVA, the
structural connectivity between those two regions would be decisive for
vSTM capacity (Bundesen et al., 2005) and any alterations in such con-
nections would affect vSTM capacity. TVA-based evidence for a critical
role of WM connections in vSTM storage comes from a study by Habekost
and Rostrup (2007), who found deficits in vSTM capacity in patients with
lesions to posterior tracts. First empirical support for the suggested
relevance of posterior thalamic tracts comes from two studies by
2

Menegaux and colleagues, who found that vSTM capacity K was associ-
ated with the microstructure of posterior thalamic radiations (Menegaux
et al., 2017) and the structural connectivity of posterior thalamus to
occipital cortices (Menegaux et al., 2019) in healthy young individuals.
Nevertheless, the association between vSTM capacity and posterior
thalamo-cortical connectivity in aging has not yet been investigated
expressly.

Aging-related volumetric changes have been well documented
(Courchesne et al., 2000; Ge et al., 2002; Raz and Rodrigue, 2006).
Indeed, it has been shown that aging is accompanied by widespread re-
ductions of grey-matter (GM) volume and increases in cerebrospinal fluid
(CSF) starting in early adulthood (Salat et al., 2011; Walhovd et al.,
2011). However, age-related changes in WM volume follow a complex
trajectory. Several studies have found an increase in WM volume until
the fourth or fifth decade of life, interpreted as ongoing myelination
(Courchesne et al., 2000; Ge et al., 2002; Bartzokis et al., 2004), followed
by a decrease that accelerates in late adulthood (Courchesne et al., 2000;
Raz et al., 2005). However, volumetric studies do not provide informa-
tion regarding the mechanisms responsible for those age-related WM
changes. Diffusion tensor imaging, by contrast, allows inferences about
WM microstructure by quantifying the magnitude and directionality of
water diffusion in tissues (Pierpaoli and Basser, 1996; Pierpaoli et al.,
1996). By the use of a tensor, a 3 � 3 matrix, diffusion in all three di-
mensions can be quantified and several measures derived. These include
fractional anisotropy (FA), which describes how directional diffusion is
(Basser, 1995), mean diffusivity (MD), radial diffusivity (RD), which
represents the diffusivity perpendicular to fibers, and axial diffusivity
(AD), which represents the diffusion parallel to the fibers. Predominant
findings on age-related WM diffusivity changes have been decreased FA
and increased MD in widespread tracts, including the inferior
fronto-occipital fasciculus, sagittal stratum and posterior thalamic radi-
ations in cross-sectional (Pfefferbaum, 2000; O’Sullivan et al., 2001;
Malloy et al., 2007; Hugenschmidt et al., 2008; Vernooij et al., 2008;
Westlye et al., 2010, Bennett et al., 2010; for review see Wozniak and
Lim, 2006; Fama and Sullivan, 2015) and longitudinal studies (Barrick
et al., 2010; Teipel et al., 2010). Furthermore, while it has been repeat-
edly reported that RD increases with aging (Baghat and Beaulieu, 2004;
Zhang et al., 2010a; Bennett et al., 2010), findings on AD where more
mixed and both increases and decreases have been reported (Zahr et al.,
2009; Bennett et al., 2010; Sullivan et al., 2010a, 2010b; Burzynska et al.,
2010). Interestingly, particularly in posterior thalamic areas, changes in
RD and AD have been reported with aging (Kumar et al., 2013) and al-
terations in thalamo-cortical projections’ volume have been found
(Hughes et al., 2012).

Those changes in WM diffusivity with aging likely reflect micro-
structural alterations such as increase of brain water content, disruption
of axon structure, myelin alterations or rarefaction of fibers (Minati et al.,
2007). Indeed, post-mortem histological studies on human and rhesus
monkeys brains have reported both a loss of myelinated fibers as well as a
decrease in total myelinated fiber length in aging brains (Meier-Ruge
et al., 1992; Marner et al., 2003). Further studies on rhesus monkeys’
brains have reported age-related alterations in myelin sheaths of
myelinated nerve fibers (Peters et al., 2001, 2002). Indeed, they reported
that, although demyelination occurs in aging monkey brains, the overall
myelin thickness is increased due primarily to remyelination processes
and increase in the number of oligodendrocytes (Peters et al., 2009).
However, in the process of remyelination by new oligodendrocytes,
shorter internodal segments are produced, thus leading to a reduction in
conduction velocity of the axons and, thus of changes in the timing in
neuronal circuits Wang et al. (2005); for similar results in mice see
Lasiene et al. (2008). Given the pronounced WM diffusivity changes,
particularly in posterior thalamic areas and the myelin sheath alterations
leading to conduction reductions and changes in timing in neural circuits,
investigating the role of posterior thalamic connections in age-related
vSTM capacity would appear highly relevant. It is known for instance
from Menegaux and colleagues (Menegaux et al., 2017) that when
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changes in white matter occur, the relationship between WM connec-
tivity and VSTM capacity can change. Indeed, in preterm born adults, in
whom thalamo-cortical microstructure and connectivity has been shown
to be impaired compared to term-born individuals, the association be-
tween posterior thalamic radiations microstructure and vSTM capacity
was changed compared to term-born individuals. Similar changes in the
relationship between cognitive functions and WM integrity might also be
found in other conditions affecting WM diffusivity, such as normal aging.
Thus, we investigated whether the association between the structural
connectivity of posterior thalamus to occipital cortices and vSTM ca-
pacity is similar throughout the lifespan or whether it varies as a function
of age.

In order to examine this question, healthy individuals, aged 18–77
years, underwent both diffusion-weighted imaging and a TVA-based
whole-report task of briefly presented letter arrays. Structural connec-
tivity values were obtained by performing probabilistic tractography on
DWI scans from occipital cortices to posterior thalamus, separately for
each hemisphere. Estimates of vSTM capacity parameter K were derived
from verbal letter report of the whole-report task. The relationship be-
tween the structural connectivity of posterior thalamus to occipital
cortices (PT-OC), as defined by the mean PT-OC connection probability
and vSTM capacity was analyzed by means of regression and partial
correlation analyses.

2. Material and methods

2.1. Participants

The present study included 66 healthy adults aged 20–77 years, 32 of
whom were females (mean age: 48.8 � 19.6 years; mean school educa-
tion 12.1� 1.6 years; Table 1). The distribution of participants across age
was as follows: 22 participants below the age of 35 years, 19 participants
between the age of 35 and 60 years and 25 participants above the age of
60 years. 60 participants were right-handed, 4 were left-handed and 2
were ambidextrous according to the Edinburgh Handedness Inventory
(Oldfield, 1971). Written informed consent was obtained from all par-
ticipants and the study was approved by the ethics committees of the
Psychology Department of the Ludwig Maximilians Universit€at München
(LMU Munich) and the Medical Department of the Technische Uni-
versit€at München (TUM). Initially, 108 adults (aged 19–78 years) of the
Munich INDIREA aging cohort were recruited for the study. The Mini
Mental State Examination (MMSE; Folstein et al., 1975) was used as
screening for cognitive impairments in participants aged 60 years and
above (i.e., a MMSE score below 27), and the Beck Depression Inventory
(BDI; Beck et al., 1996) for screening for symptoms of depression in all
participants (i.e., a BDI score above 19). From the original cohort, eleven
participants dropped out before participating in all sessions, three par-
ticipants were excluded because of high BDI test scores, one because of a
low MMSE score, two because of uncorrected visual acuity deficits, five
because of too low accuracy in the whole-report task, ten due to artifacts
in their diffusion-weighted imaging data, two because of incomplete
diffusion-weighted imaging datasets and eight participants for failing to
undergo diffusion-weighted imaging assessment. A description of
Table 1
Sample characteristics.

Variable N ¼ 66

M SD Range

Gender (F/M) 32/34
Handedness (R/L/B) 60/4/2
Education (years) 12.1 1.7 8.5–14.0
Age (years) 48.8 19.6 20–77
K (elements) 3.22 0.39 2.29–3.83
C (elements/s) 23.26 8.41 9.71–47.01
t0 (ms) 12.82 13.93 0.00–67.13
Crystallized IQ 102.1 16.6 72.5–140.0

3

excluded participants can be found in Supplementary Material Table S1.
All of the 66 remaining participants had no previous or current psychi-
atric (e.g., anxiety disorder, schizophrenia) or neurological conditions
(e.g., brain injury, stroke), diabetes, or depression. Diffusion-weighted
imaging was performed during one session at the Department of
Neuroradiology of the TUM Klinikum rechts der Isar. In a separate,
psychophysical-testing session at the Department of Psychology of the
LMU Munich, visual attention functioning was assessed using the
whole-report task. Event-related EEG potentials were also recorded
during the task, but not analyzed for the current study. Additionally,
participants completed the MMSE, and filled out demographic and BDI
questionnaires. The average time between sessions was 2.6 months.

2.2. TVA-based behavioural assessment of vSTM capacity

2.2.1. General assessment procedure
The whole-report task was conducted in a dimly-lit, sound-attenuated

chamber (Industrial Acoustics Company) with simultaneous EEG
recording. Stimuli were presented to participants on a 2400 LED screen
(800 � 600 pixel resolution, 100-Hz refresh rate) at a distance of 65 cm.

Due to the special requirements of event-related components assess-
ment, some of the experimental trials in the whole report task were
repeated more often than others. Furthermore, for the event-related EEG
assessment, it was also necessary to ensure balanced visual stimulation in
both hemifields in the whole-report task. Thus, symbols were presented
in the visual hemifield opposite to the target stimuli. These specific
manipulations, however, do not affect the TVA parameters derived from
fitting report accuracy in the different conditions.

Each participant completed a session of 1.5–2 h in duration, which
included EEG preparation, presentation of written instructions and
stimuli used in the experiment, a procedure for adjustment of the indi-
vidual exposure durations and approximately 45 min of testing
procedure.

At the beginning of each trial, a fixation point (a white circle, 0.9� of
visual angle in diameter with a white dot in the center) was presented in
the center of the display for a duration randomly drawn from 10 to 240
ms. Participants were instructed to fixate this point throughout the whole
trial blocks. Subsequently, red and/or blue letters were briefly presented
on a black background. Letters’ exposure durations were determined
individually for each participant in a preceding short practice session, so
as to ensure a comparable level of task difficulty across participants. The
letters were randomly chosen from the following set {A, B, D, E, F, G, H, J,
K, L, M, N, O, P, R, S, T, V, X, Z} and appeared only once in a given trial.
After stimulus presentation, a white questionmark appeared in the center
of the screen, indicating the start of verbal letter report. Participants
could perform the verbal report of individual letters in arbitrary order
and without stress on response speed. In order to avoid too much
guessing, participants were instructed to report only letters they were
fairly certain they had seen. Following each block, participants received
feedback related to the accuracy of the letters they reported and not
related to the overall performance level reached in the task. The desired
range of 70–90% was indicated by green color coding on a report accu-
racy chart. In order to avoid too liberal or too conservative responding,
participants were instructed by the experimenter to try to refrain from
guessing and report only the letters he/she was relatively sure to have
seen when accuracy dropped below 70%, and to try to name more letters
(i.e., to be less anxious to report wrong letters) when it reached 90%.
During the whole- (and the partial-) report task, the experimenter was
seated behind the participant, entered the letters reported by the
participant on a keyboard and manually started the next trial by a key
press.

2.2.2. Whole-report task
On each trial, four letters were briefly presented on an imaginary

semi-circle with a radius of 5.27� of the visual angle on either the left or
the right of a central fixation point, and participants were instructed to
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report orally as many of them as possible. Four blue symbols (composed
of random letter parts; see Fig. 1) of the same luminance were displayed
on the symmetrical semicircle on the other side of fixation. Diameters of
letters and symbols were 1.3� of visual angle. At the beginning of each
block of trials, a white arrow pointed towards the side on which the
report-relevant stimuli would appear in this block. The target side in the
first block was counterbalanced across participants and then alternated
throughout the experiment. Seven conditions were used. In five condi-
tions, the stimulus array was followed by masks (see Fig. 1), which
consisted of eight red-blue scattered squares (of side length 1.3� of visual
angle) that appeared at each stimulus location for a duration of 900 ms.
In two unmasked conditions, stimuli were followed by a blank screen
with a fixation point shown for 900 ms. The masked letter arrays were
presented for five different, individually adjusted exposure durations. In
addition, as mentioned above, two unmasked conditions were used, one
with the second shortest exposure duration and one with an exposure
duration of 200 ms. In the unmasked conditions, the exposure durations
are effectively prolonged compared to masked conditions due to visual
persistence of the stimulus array (Sperling, 1960). Thus, the five masked
conditions and two unmasked conditions resulted in seven different
effective exposure durations. Different experimental conditions were
equally distributed across blocks of trials and were displayed in ran-
domized order within each block (Fig. 1).

On the top row in the middle, the regions of interest derived from the
NTVA model of Bundesen are shown. Red represents the occipital cortex;
the whole thalamus is shown in blue and the posterior thalamus in green.
In the top left corner, a 3D representation of probabilistic tractography
Fig. 1. Presentation of the model, tas
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between the left occipital cortex and the left thalamus is shown for one
individual. The top right corner shows an example of an individual’s FA
image modulated by his V1 map which is the principal eigenvector of the
tensor. On this modulated FA image, WM tracts with a left-right orien-
tation are shown in red, tracts with an antero-posterior orientation in
green and tracts with an up-down orientation in blue. In the bottom left
corner, an example of the whole-report task is shown. At the beginning of
each trial, a fixation point was presented in the center of the display for a
duration randomly drawn from 10 to 250 ms. Then the letters are pre-
sented in on hemifield for 5 different exposure duration previously
determined during a test phase. Stimuli presentation as either followed
bymasks or blank screen presentation before the participant was asked to
verbally report the letters. In the bottom right corner, a vSTM capacity K
fit is presented for one subject.

The exposure adjustment phase consisted of 48 trials divided into 4
blocks of twelve triples of trials. Each triple consisted of two trials that
were not used for adjustment, but simply for familiarizing the participant
with the task. These were either unmasked trials with an exposure
duration of 200ms, or masked ones with an exposure duration of 250ms.
One trial in each triple was used for adjustment; this was masked and
initially displayed for 80 ms. Each time the participant reported at least
one correct letter in this trial, exposure duration was decreased by 10 ms
until the lowest exposure duration was identified. Based on this value, a
set of 4 additional exposure durations was chosen from the predefined
sets. The testing phase consisted of 10 experimental blocks, each
including 40 trials. There were 30 trials for each exposure duration (with
the exception of the condition with unmasked trials presented for 200
k and methods used in our study.
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ms, for which 220 trials were presented (these trials were critical for ERP
analysis).

2.2.3. Estimation of visual short term memory capacity
Modeling of individual participant’s vSTM capacity was based on the

TVA computational model implemented in the libTVA toolbox for Matlab
(Mads Dyrholm, www.machlea.com/mads/libtva.html). Detailed de-
scriptions of the fitting procedure can be found in Dyrholm et al. (2011).
The TVA-based whole-report fitting procedure models the probability of
correct letter report in terms of an exponential growth function with
increasing (effective) exposure duration. The variation of exposure
duration (7 durations) was intended to generate a broad range of per-
formance which specified the whole probability distribution of the
number of correctly reported elements as a function of the effective
exposure duration. The asymptote of the function represents vSTM ca-
pacity or parameter K, which indicates the maximum number of elements
that can be simultaneously represented in vSTM. Along with parameter
K, three additional parameters which are of no particular interest for the
question at issue in the present study were estimated (estimating these is
part of the fitting procedure): visual processing speed (parameter C), that
is, the rate of visual information uptake (in elements per second) which is
given by the slope of the growth function at its origin; perceptual
threshold (parameter t0) which indicates the visual perceptual threshold,
that is, the longest ineffective exposure duration (in ms) below which
information uptake is effectively zero; and parameter μ, representing the
prolongation of the effective exposure duration (in ms) on unmasked
trials. For participants whose t0 was estimated to be below 0 (9 out of
66), we refitted the data fixing t0 at 0. This new fit did not modify the
mean value of K and C parameters (Supplementary Table S2) nor any
analyses in this study (Supplementary Table S3 and Supplementary
Fig. S1).

2.3. Imaging data acquisition and preprocessing

2.3.1. Imaging data acquisition
Whole brain T1-and diffusion-weighted imaging data were acquired

on a 3T Philips Ingenia scanner with a 32 channel head coil and a SENSE
factor of 2. Diffusion images were acquired using a single-shot spin-echo
echo-planar imaging sequence, resulting in one non-diffusion weighted
image (b¼ 0 s/mm2) and 32 diffusion weighted images (b¼ 800 s/mm2,

32 non-collinear gradient directions) covering whole brain with: echo
time (TE) ¼ 61 ms, repetition time (TR) ¼ 14206.980 ms, flip angle ¼
90�, field of view ¼ 224 � 224 mm2, matrix ¼ 112 � 112, 60 transverse
slices, voxel size ¼ 2 � 2 � 2 mm3. A whole head high-resolution T1-
weighted anatomical volume was acquired using a 3D magnetization
prepared rapid acquisition gradient echo sequence with the following
parameters: repetition time ¼ 9 ms; time to echo ¼ 4 ms; inversion time,
TI ¼ 0 ms; flip angle ¼ 8�; 170 sagittal slices; field of view ¼ 240 � 240
mm2; matrix size ¼ 240 � 240; reconstructed voxel size ¼ 1 � 1 � 1
mm3.

2.3.2. Quality check
All acquired MRI images were visually inspected by two independent

raters (A.M., A.V.) for excessive head motion, and apparent or aberrant
artifacts. In addition to visual inspection of the raw data and pre-
processed data, we also used the fitting residuals (the sum-of-squared-
error maps generated by DTIFIT) to identify data corrupted by arti-
facts. Artifacts include motion-induced artifacts, insufficient fat sup-
pression (ghosting) artifacts, and extreme distortion artifacts, which led
to the exclusion of ten participants overall. Furthermore, Fluid-
attenuated inversion recovery images were acquired as part of the stan-
dard MRI protocol of the Klinikum Rechts der Isar and examined by
experienced radiologists to exclude potential lesions and WM
abnormalities.
5

2.3.3. Preprocessing
Diffusion data preprocessing was performed using FMRIB Diffusion

Toolbox in the FSL software (www.fmrib.ox.ac.uk/fsl; Jenkinson et al.,
2012) after converting data from DICOM to niftii format using micron
dcm2nii (Rorden et al., 2007) as described in previous work (Meng et al.,
2015). All diffusion-weighted images were corrected for eddy current
and head motion by registering all diffusion weighted volumes to theb0
image and skull and non-brain tissue were removed using the Brain
Extraction Tool (BET). The tensor model was then applied voxel by voxel
using the tensor model fit (Smith et al., 2004) in order to obtain voxel-
wise FA andMDmaps. Lambda 1, lambda 2 and lambda 3maps, the three
eigenvalues of the tensor representing the length of the eigenvectors,
were also obtained from the tensor fitting procedure. They were used to
calculate RD and AD maps. RD maps were obtained by averaging lambda
2 and lambda 3 maps and AD by renaming lambda 1 maps.

T1-weighted images were preprocessed using the anatomical pro-
cessing script from FSL, which included reorientation, image cropping,
bias field correction, linear (FLIRT, FMRIB’s Linear Image Registration
Tool) and non-linear (FNIRT, FMRIB’s Non-Linear Image Registration
Tool) registration to the MNI standard space. Non-linear transformation
output included a structural–to-MNI standard space warp field and its
inverse (MNI-to-structural). Preprocessing also included brain extraction
using BET and both tissue type and subcortical structure segmentations
that were used to register diffusion-weighted images to preprocessed
structural T1-weighted images using boundary-based registration for
echo planar imaging data, thus yielding a diffusion-to-structural trans-
formation matrix. In order to register diffusion-weighted data to the MNI
152 template via structural scan, we combined the previously generated
structural-to-MNI non-linear transformation matrix with the diffusion-to-
structural transformation matrix, thus resulting in a diffusion-to-standard
space transformation. This transformation was used in a later step to
transform the individual fdt_paths, the 3D image file containing the
output connectivity distribution to the seed mask, to standard space.

2.3.4. Probabilistic tractography

2.3.4.1. Regions of interest (ROI) generation. We used the MNI 152 2-mm
label atlas combined with the Harvard Oxford 2-mm cortical atlas to
create the cortical occipital masks in standard space. Masks of the right
and left posterior thalamus containing pulvinar nuclei were created from
the Talairach atlas. Whole-brain left and right hemisphere masks were
also created from the MNI 152 2 mm atlas and used as exclusion masks in
the tractography process. All masks were transformed into the partici-
pants’ native space using the reverse non-linear mapping previously
obtained and nearest neighbour interpolation.

2.3.4.2. Estimation of diffusion parameters and probabilistic tractography.-
Using the FDT toolbox from FSL, we first ran the function of Bayesian
estimation of diffusion parameters obtained using sampling techniques
(BedpostX) for each participant. It estimates the individual diffusion
parameters at each voxel while considering the number of crossing fibers
per voxel (Behrens et al., 2003, 2007). We used the default parameters
implemented in FDT: 2 fibers per voxel, weight of 1 and burning period
1000. Using the previously created ROIs (as described above), tractog-
raphy was run for each hemisphere with the occipital ROI as seed and the
posterior thalamus as waypoint target mask using the probtrackx2
function from FSL. We also used an exclusion mask from the opposite
hemisphere in order to ensure the ipsilateral nature of the tractography.
We performed tractography separately from each occipital ROI to the
posterior thalamus. For each participant, 5000 streamlines were initiated
per seed voxel with a path length of 2000 � 0.5 mm steps, a curvature
threshold of 80� and loop checking criteria. The resulting image or
fdt_paths represents the path connecting the seed region to the target,
where the value in each voxel represents the number of streamlines
generated from the seed region that pass through that voxel. Due to the

http://www.machlea.com/mads/
http://www.fmrib.ox.ac.uk/fsl;
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differences in volume of each area across participants, we normalized the
resulting tract estimates (fdt_paths) by dividing them by the waytotal
(total number of streamlines generated from the seed region that reaches
the target region; Rilling et al., 2008), thus resulting in a probability map
of connectivity (Zhang et al., 2010b; Arnold et al., 2012; Behrens et al.,
2007; for review, see Jbabdi et al., 2015). These probability maps were
then transformed back into standard space so they can be used for sta-
tistical analysis (Fig. 1).

2.4. Extraction of FA, MD, AD, and RD maps from path probability maps

Native FA, MD, AD and RD maps were transformed into standard
space using the nonlinear transformation described previously. A mask of
the tracts between posterior thalamus and occipital cortex for the left and
right hemispheres was obtained using the individual fdt_paths maps from
probtrackx transformed to standard space. The average paths of our
cohort for left and right PT-OC tracts were calculated with fslmaths and
thresholded above 0.03. The average left and right tract masks were then
binarized before being used to extract the mean FA MD, RD and AD
values for each participant using the fslmeants command. In a similar
manner, we extracted the mean connectivity value of all the voxels of left
and right tracts (respectively left PT-OC tract mean connectivity and right
PT-OC tract mean connectivity).

2.5. Estimation of tissue type and total intracranial volumes

In order to obtain volumetric measurements for the whole brain, T1
images were segmented into GM, WM and CSF tissue classes and
normalized to theMNI 152mm template using DARTEL (SPM12 software
package, http://www.fil.ion.ucl.ac.uk). The segmented and normalized
images were modulated to account for the structural changes resulting
from the normalization process, thus indicating GM, WM and CSF vol-
ume. Grey- and white-matter images were smoothed with an 8 mm full-
width at half-maximum filter (FWHM). Total intracranial volume was
estimated by first computing and then adding up the totals (in liters) of
the warped, modulated and smoothed GM, WM and CSF segments with
the in-built SPM Tissue Volumes Utility (Malone et al., 2015).

2.6. Statistical analysis

For each individual connection probability map of posterior thalamus
previously normalized and transformed into standard space, the mean
probability of connection was extracted for each hemisphere, thus
yielding the left and right PT-OC connection probabilities. These values
were then used to investigate the role of left and right PT-OC structural
connectivity in the reduction of vSTM capacity with aging, using a
regression model with vSTM capacity as dependent variable and age, PT-
OC connection probability and interaction between both variables as
independent variables. Gender, handedness, CSF and crystallized IQwere
also included as covariates in the model. The effect of age on GM, WM
and CSF volume was analyzed using Pearson correlation. All analyses
were carried out using the SPSS statistics package version 21 (IBM).

2.7. Sliding window analysis

In order to investigate in greater depth the association between vSTM
capacity and left PT-OC connection probability with age, we used a
sliding window approach: Participants were sorted according to age. The
sliding window contained a subgroup of 24 participants: The association
Fig. 2. Aging moderates the association between vSTM capacity and the structural
A illustrates the sliding-window approach used in the current study: participants wer
was shifted consecutively by one participant. In B, three examples of correlations bet
indicated in (A) are shown. The correlation coefficient r is presented in the upper rig
against the mean age of the window group. Significant correlations between K and le
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between vSTM capacity and left PT-OC connection probability was
calculated by Pearson partial correlation in this subgroup, controlling for
age, gender, handedness, IQ and CSF. The window was then consecu-
tively shifted by one participant to get an ‘older’ group of 24 subjects and
the partial correlation repeated for each shift. In Fig. 2, the mean age of
the sliding window subgroup versus the correlation coefficient of the
partial correlation is represented (See Fig. 2A).

In order to test the reliability of the sliding window analysis, we
performed bootstrapping analyses. We repeated the analysis sequentially
by excluding each participant separately once, to test whether outliers
might have influenced the results. We found a very similar pattern,
suggesting that the results were not driven by non-representative outliers
(see Supplementary Material Fig. S2B). We then repeated the sliding
window analysis for different window sizes, varying from 20 to 35 sub-
jects, and found a congruent pattern of results, which suggested that the
results are reliable and do not depend on the selected window size
(Supplementary Material Fig. S2A).
2.8. Control analyses

In order to test the structural specificity of our connectivity results for
the occipital region, we performed tractography from the left and right
motor cortices as control ROIs to the thalamus. We used Brodmann areas
4a, 4p, and B6 from the Jülich atlas, separately for each hemisphere,
combined with the Harvard-Oxford 2-mm cortical atlas to create the
cortical motor masks for the left and the right hemisphere. The Oxford
thalamic 30% 2-mm connectivity atlas was used (Behrens et al., 2003) to
create masks for left and right thalami. For each individual connection
probability map between the left or right motor cortex (MC) and the left
or right thalamus, posterior thalamus masks of each hemisphere were
used to extract the mean probability of connection from these regions. To
investigate the role of left or right PT-MC structural connectivity in the
reduction of vSTM capacity with aging, the same multiple linear
regression model as previously described was used.

Furthermore, in order to test the cognitive specificity of our results for
vSTM capacity K, we analyzed the association between left and right PT-
OC connection probability and the additional TVA parameters that can be
extracted from the whole report task (i.e. processing speed C and
perceptual threshold t0). Both parameters were linked to left or right PT-
OC connection probability via multiple linear regression using the same
model as described above. These latter analyses on parameters of no
particular interest in our study mainly served for the documentation that
potential relations between PT-OC and vSTM capacity do not result from
underlying relationships with parameters of visual threshold or pro-
cessing speed.
2.9. Data availability statement

Participants data used in this study are not publicly available but can
be made available by the corresponding author upon request.

3. Results

3.1. Aging moderates the association between PT-OC structural
connectivity and vSTM capacity

In order to test whether our sample was representative with respect to
brain changes that are normally displayed by aging individuals and in
order to identify variables that needed to be used as control variables in
connectivity (SC) of left posterior thalamus to left occipital cortex.
e ranked by age and the first 24 individuals constituted the first window which
ween vSTM capacity parameter K and left PT-OC SC in different age windows as
ht corner of the individual plots. In C, these correlation coefficients are plotted
ft PT-OC SC are indicated with a red circle, the dotted lines represent linear fits.

http://www.fil.ion.ucl.ac.uk
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the later analyses, we first assessed age-related differences in brain
structure, specifically: on brain volume. Using voxel-based morphom-
etry, we found that WM volume did not significantly vary as a function of
age (r ¼ �0.04; p ¼ .73) while CSF volume was significantly increased (r
¼ 0.79; p < .001) and GM volume significantly reduced (r ¼ �0.57; p <

.001). As this pattern is similar to that observed in previous studies (Salat
et al., 1999, 2011; Walhovd et al., 2011), we can conclude that individual
differences in brain structure in our sample are representative of those
that are to be expected in healthy aging individuals.

In order to investigate the role of PT-OC structural connectivity in
the reduction of vSTM capacity with aging, a regression model with
Age, PT-OC connection probability and interaction between both
variables, Gender, Handedness, IQ and CSF was used. The last four
variables were included in the model in order to control for gender,
handedness, general cognitive performance, and brain volume effects.
We tested the model for left and right PT-OC connectivity separately,
in order to account for potential side effects of age as suggested by
previous studies (Silver et al., 1997; Huster et al., 2009; Johnson et al.,
2014). Concerning right PT-OC connectivity, we found that the model
was not a significant predictor of vSTM capacity F(7.58) ¼ 2.25; p ¼
.087. We therefore did not further examine this model. Concerning left
PT-OC connectivity, we found that the overall model was a significant
predictor of (23.8% of variance in) vSTM capacity, demonstrating the
reliability of this model to explain age-related variance in vSTM ca-
pacity (Table 2). In accordance with previous studies (McAvinue et al.,
2012; Wiegand et al., 2014a, 2014b) we found vSTM storage capacity
K to decline with increasing age in our participant group (β1 ¼
�0.047; p ¼ .001). We then aimed to investigate whether PT-OC
structural connectivity was associated with vSTM, as suggested by
the NTVA and previous findings (Menegaux et al., 2017). We found left
PT-OC connection probability to be significantly associated with vSTM
capacity (β2 ¼ �42.370; p ¼ .032). Finally, we tested whether the
association between PT-OC structural connectivity and vSTM capacity
K varied as a function of age. We found a significant interaction be-
tween Age x left PT-OC connection probability (β3 ¼ 0.952; p ¼ .009),
demonstrating that age modifies the relationship between PT-OC
structural connectivity and vSTM capacity.
3.2. Control analyses

3.2.1. Analysis of cortical specificity: vSTM capacity is not associated with
posterior thalamus-motor cortex structural connectivity

In order to test the cortical specificity of the association between PT-
OC structural connectivity and vSTM capacity, we investigated whether
vSTM storage capacity would also be associated with the structural
connectivity of the posterior thalamus to other cortical ROIs such as the
left and the right motor cortex (MC). Using the same regression model as
Table 2
Regression table Coefficients of multiple linear regression for vSTM capacity and
left PT-OC connection probability.

Independent variables Dependent variable ¼ vSTM capacity

β values P
value

95% CI

Age ¡0.047 .001 [ �0.075,
�0.020 ]

Left PT-OC structural connectivity ¡42.4 .032 [ �81.1, �3.7 ]
Interaction Age x left PT-OC Structural
connectivity

0.95 .009 [ 0.243, 1.661 ]

Gender �0.05 .609 [ �0.261, 0.155
]

Handedness �0.16 .180 [ �0.400, 0.077
]

IQ 0.008 .019 [ 0.001, 0.015 ]
CSF 2.16 .063 [ �0.12, 4.43 ]
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above, we found that neither the left F(7.58) ¼ 2.25; p ¼ .255 nor the
right PT-MC structural connectivity F(7.58) ¼ 2.25; p ¼ .157 were
significantly associated with vSTM capacity (see Supplementary
Tables S4 and S5).

3.2.2. Analyses of functional specificity: PT-OC structural connectivity is not
associated with processing speed or perceptual threshold

In order to test whether the results obtained for vSTM storage ca-
pacity K were cognitively specific, we additionally investigated whether
left- or right-hemisphere PT-OC connection probability predicted other
TVA parameters visual processing speed C and perceptual threshold t0
using the same regression model as previously. We found that neither left
nor right PT-OC structural connectivity were significantly associated
with processing speed (F(7.58)¼ 2.25; p¼ .100; F(7.58)¼ 2.25; p¼ .172
respectively, see Supplementary Tables S6 and S7) nor perceptual
threshold (F(7.58) ¼ 2.25; p ¼ .208; F(7.58) ¼ 2.25; p ¼ .251 respec-
tively, see Supplementary Tables S8 and S9).

3.3. The effect of age on the association between left PT-OC structural
connectivity and vSTM capacity: shift and alteration of microstructure

In order to investigate the association between PT-OC connection
probability and vSTM capacity with increasing age in more depth, we
applied a sliding window approach. This allowed tracking the association
between PT-OC connectivity and vSTM capacity as a pseudo-continuous
function of age. The window was slid until the age of 77 years (the oldest
participant’s age), resulting in the plot presented in Fig. 2C. We found
that the association between vSTM capacity and left PT-OC structural
connectivity was linearly reversing from a negative association in the
youngest groups to a positive association around an age of 50 years. Up
from this age, the positive association remained significant throughout.
As illustrated in Fig. 2B, window number 4, we found that in young in-
dividuals with a mean age of 28 years, vSTM capacity Kwas significantly
negatively correlated with left PT-OC structural connectivity (r ¼ �0.46;
p < .05); by contrast, in individuals with a mean age of 50 years (see
window 14 in Fig. 2), it was significantly positively correlated with left
PT-OC structural connectivity (r ¼ 0.54; p < .05). Similarly, we found
that for individuals with a mean age of 70 years, vSTM capacity was
significantly positively associated with left PT-OC structural connectivity
(r ¼ 0.45; p < .05).

This reverse association between vSTM capacity and left PT-OC
connection probability in younger compared to older individuals was
somewhat surprising. Considering this finding, the well-known effects of
aging on WM microstructure (Pfefferbaum et al., 2000; Hugenschmidt
et al., 2008; Westlye et al., 2010) and previous studies suggesting that
WM microstructure mediates the impact of age on attention functions
(Salami et al., 2012), we conjectured that the reverse association to vSTM
capacity that we found might be caused by changes in WM properties of
left PT-OC tracts. Thus, we first investigated whether the microstructure
of the tracts connecting the left posterior thalamus to the left occipital
cortex was altered with increasing age. We found that the mean FA of
these tracts was significantly reduced with increasing age (r ¼ �0.54; p
< .001) while MD was significantly increased (r ¼ 0.63; p < .001).
Similarly, RD and AD were also significantly increased with age (r ¼
0.60; p < .001; r ¼ 0.36; p ¼ .003 respectively) (see Supplementary
Fig. S3). We then investigated the association between FA/MD from left
PT-OC tract and left PT-OC connection probability and found that neither
FA nor MD values were significantly correlated with left PT-OC
connection probability (r ¼ �0.13; p ¼ .31 and r ¼ �0.06; p ¼ .65
respectively). Then we investigated whether these values might be
indirectly related to each other by extracting the mean connectivity value
of all the voxels of the tract between left occipital cortex and left posterior
thalamus (i.e excluding posterior thalamus). Interestingly, when looking
at the association between left FA and left PT-OC tract mean connectivity
using the sliding window approach, we found that they seemed to be
positively associated in the younger participants and significantly
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negatively associated in older participants (see Supplementary Fig. S4),
while in the whole sample the left PT-OC tract mean connectivity was
positively associated with PT-OC connection probability (r ¼ 0.39; p ¼
.002; see Supplementary Fig. S5). This suggested that the relationship
between microstructure and connectivity of PT-OC tract is complex and
seems to be age dependent.

4. Discussion

Using a whole-report paradigm and TVA -based modeling together
with probabilistic tractography in a group of healthy participants aged
20–77 years, we investigated age-related differences in the association
between the structural connectivity of posterior thalamus to occipital
cortices and vSTM capacity K. We found that the association between left
PT-OC connection probability and vSTM capacity differed throughout
the lifespan. Indeed, in younger individuals at an age below 30 years,
vSTM capacity was significantly negatively associated with left PT-OC
structural connectivity. In older individuals above the age of 50, this
association was reversed, i.e. the higher the connection probability be-
tween left posterior thalamus and left occipital cortex, the higher the
vSTM capacity K. When exploring the microstructural properties of the
left PT-OC tracts, we found that FA was significantly decreased with age
while MD, AD and RDwere significantly increased. This suggests that age
modifies the microstructural properties of the tracts connecting the left
posterior thalamus to the left occipital cortex. Such changes might un-
derlie the altered relationship between thalamo-cortical connectivity and
vSTM capacity K. Altogether, to our knowledge; our findings provide the
first evidence that aging not only impairs vSTM capacity K and the
structural connectivity between posterior thalamus and occipital
cortices, but also modifies the relationship between these measures.

4.1. Aging moderates the association between PT-OC structural
connectivity and vSTM capacity

In order to investigate whether aging modified the association be-
tween vSTM capacity and PT-OC connection probability, we carried out
two different analyses: a multiple regression with vSTM capacity as
dependent variable and age, PT-OC connection probability and interac-
tion between both variables as independent variables, as well as a sliding-
window approach.

We found that left PT-OC connection probability was significantly
associated with vSTM capacity. This is in line with the NTVA assumption
that posterior thalamus and visual cortices are relevant for vSTM ca-
pacity. According to NTVA, the activity of visual neurons coding for
objects that won the race for vSTM representation is assumed to be
sustained and reactivated by a feedback loop gated by the thalamic
reticular nucleus (Bundesen et al., 2005). Our finding of a significant
association between vSTM capacity and PT-OC connection probability
suggests that, independently of age, connections from posterior thalamus
to occipital cortices are relevant for vSTM capacity. This finding com-
plements the one from our previous study in which we used a subsample
of this dataset and slightly different masks for tractography and found
that vSTM capacity was significantly negatively associated with left
PT-OC structural connectivity (Menegaux et al., 2019). Our finding of the
relevance of PT-OC connections for vSTM capacity is also in agreement
with those from Menegaux and colleagues (Menegaux et al., 2017) who
found the microstructure of posterior thalamic radiations, as reflected by
FA, to be significantly associated with vSTM capacity in a group of
healthy young adults aged 26 years. Together, these findings suggest that
tracts connecting posterior thalamus to occipital cortices and their
microstructure are critical for vSTM capacity.

As mentioned in our previous study (Menegaux et al., 2019), the fact
that we found the left and not the right PT-OC connection probability to
be related to vSTM capacity might suggest that the left hemisphere plays
a more important role for vSTM storage of objects than the right one. This
is in agreement with the findings from a positron emission tomography
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study by Smith and colleagues (Smith et al., 1995) on the respective
relevance of both hemispheres in visual-spatial vs. visual-object short--
term storage which suggested the left-hemisphere to be specialized in
object information while the right hemisphere was more relevant for
vSTM spatial information. Moreover, a study from Todd and Marois
(2005) using functional MRI, found that activity along the left intra-
parietal sulcus/intraoccipital sulcus was associated with individual dif-
ferences in vSTM capacity. Finally, findings from a lesion-study by Finke
and colleagues investigating the consequences of unilateral posterior
parietal damage in humans suggested that a left-sided vSTM system
might be specialized for the maintenance of visual object information
(Finke et al., 2006). While, our results together with the findings of the
previously mentioned studies suggest that PT-OC connectivity of the left
hemisphere subserves vSTM capacity, the particular relevance of the left
hemisphere might alternatively be related to the fact that we used letter
stimuli that have to be verbally reported.

The main finding of the current study is the significant interaction
effect between age and left PT-OC structural connectivity on vSTM ca-
pacity, which suggests that age moderates the association between PT-
OC structural connectivity and vSTM capacity (Salthouse, 2011) This
interaction effect remained significant when controlled for the potential
effects of CSF volume and IQ. Modification of the association between
vSTM capacity and a brain correlate, here PT-OC structural connectivity,
with age had previously been suggested by electroencephalographic
findings of a weaker association between vSTM capacity and contralat-
eral delay activity in older compared to younger adults (Wiegand et al.,
2014a; Sander et al., 2011; Duarte et al., 2013). It also fits with previous
findings that, in populations with changes in WM connectivity, the as-
sociation between vSTM capacity and posterior thalamic radiation
microstructure might change compared to young healthy groups. In
particular, these results fit to those from a previous study that used the
same TVA-based methodology in preterm-born adults who are known to
exhibit changes in thalamo-cortical connectivity (Menegaux et al., 2017).
Indeed, Menegaux and colleagues found that the association between FA
in posterior thalamic radiations and vSTM capacity was reversed in
preterm compared to term-born adults (Menegaux et al., 2017). Argu-
ably, modifications of thalamo-cortical tracts microstructure in older
participants might also affect the association between thalamo-cortical
connectivity and vSTM capacity K. However, although the significant
interaction effect between age and left PT-OC connection probability on
vSTM capacity suggests that aging modifies this structure–function as-
sociation, it did not provide information regarding the direction of
change. Thus, in order to investigate the direction of this interaction, we
examined the association between vSTM capacity K and PT-OC connec-
tion probability as a pseudo-continuous function of age using a
sliding-window approach. This yielded intriguing findings, in that it
showed that the association between vSTM capacity K and PT-OC
structural connectivity was continuously reversed from negative to pos-
itive with increasing age.

4.2. The association between vSTM capacity and left PT-OC structural
connectivity is continuously reversed with age: Potentially relevant
microstructural alterations

This continuum across aging suggests that there is a ceaseless process
influencing PT-OC connectivity such that the association with vSTM
capacity K is changed. Interestingly, it is well documented that aging
affects WM microstructure (Pfefferbaum et al., 2000; Hugenschmidt
et al., 2008; Westlye et al., 2010) and that WM microstructure can
mediate the impact of age on attention functions (Salami et al., 2012).
Accordingly, a change in WM microstructure could be the critical
mechanism behind the continuous inversion from negative to positive of
the association between vSTM capacity and left PT-OC structural con-
nectivity. Thus we examined whether age-related microstructural
changes of PT-OC tracts would be evident in our older participants.
Interestingly, we found that FA in left PT-OC tracts was reduced and MD,
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RD and AD increased in older compared to younger participants. These
findings are in line with those of Kumar et al. (2013) who reported
increased AD in bilateral posterior thalamic WM of older participants,
and of Hugenschmidt et al. (2008) and Westlye et al. (2010) who found
reduced FA in posterior thalamic radiations of older compared to
younger adults. A reduced FA value might be interpreted as a decrease in
the organization of WM caused by various processes such as demyelin-
ation, axonal degradation or gliosis (Beaulieu, 2002; Concha et al., 2006;
Lebel et al., 2008; Assaf et al., 2008). The conjunction of decreased FA
with increased MD, RD and AD is in line with findings from Burzynska
et al. (2010) and would preferentially suggest a decrease in fiber orga-
nization which might be caused by axonal loss or gliosis (Beaulieu, 2002;
Concha, 2006; Lebel, 2008 et Assaf, 2008).

In order to bring further answer to this hypothesis, we investigated
whether FA and MDmeasures of left PT-OC tract was associated with left
PT-OC connection probability. We found that these measures were not
directly correlated with each other. However, they were both associated
with the left PT-OC tract mean connectivity of the PT-OC tract.
Furthermore, the association between themean FA and PT-OC tract mean
connectivity of the tract varied with age. Indeed, in young participants,
higher FA was related to higher vSTM capacity, while in older partici-
pants this association was reversed. This illustrates indicates a complex
nature of the relationship between FA and number of streamlines (re-
flected in the PT-OC tract mean connectivity value) which is also docu-
mented in several other studies. Indeed, a study by Khalsa and colleagues
reported no association between FA and the number of streamlines for all
fiber bundles studied but one were the association found was positive
(Khalsa et al., 2014). This suggested that the association between both
variables might be region dependent. Herting et al. (2013) investigated
the association between both white matter microstructure and connec-
tivity as measured using tensor estimation as well as deterministic trac-
tography respectively, with aerobic fitness in male adolescents. They
found that adolescents with high fitness had a higher number of
streamlines compared to adolescents with low fitness but that FA was not
different between groups. Together, these studies seem to suggest that
number of streamlines and FA are not necessarily related to each other
and thus that one cannot assume that higher number of streamlines re-
flects higher FA.

In our study we found that the relationship between connectivity and
microstructure of PT-OC tract seems to vary with age. Indeed, in older
participants, who showed lower FA than younger participants, we found
that lower FA was associated with higher connectivity in the tract.
Furthermore, in older participants, higher mean connectivity in the PT-
OC tract was associated with higher PT-OC connection probability and
higher PT-OC connection probability was associated with better vSTM
capacity. It is important to remember that the number of streamlines
generated by probtrackx does not necessarily reflects the underlying
number of fibers (Jones et al., 2013). Nevertheless, it seems that in
elderly people where the microstructure of PT-OC fibers is altered, the
number of fibers connecting left posterior thalamus to left occipital
cortex is particularly important for vSTM capacity and more fibers seems
to be associated with better vSTM capacity. With respect to microstruc-
ture, a decrease in FA could reflect several processes such as reduction of
fiber density or alterations in myelination as mentioned previously. Thus,
we cannot ascertain that in our sample, a reduction of FA reflects alter-
ations in myelination. Nevertheless, studies in non-human primates
found that aging modified myelin thickness via processes of demyelin-
ation and remyelination by newly formed oligodendrocytes (Peters,
2009). Interestingly, they found that in the process of remyelination,
shorter internodal segments are produced, thus leading to a reduction in
conduction velocity of the axons and, thus of changes in the timing in
neuronal circuits Wang et al. (2005); for similar results in mice see
Lasiene et al. (2008). We therefore propose that the information transfer
in the PT-OC tracts of the older participants is less optimal, probably due
to changes in myelination and timing. Consequently, the conscious
perception and storing of information in vSTM is impaired. Thus, it might
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be the case that particularly in older participants, a substantial number of
fibers is needed, so that good information transfer is guaranteed and
vSTM representations can be kept active in the PT-OC tract.

In younger participants the PT-OC fibers might have a higher con-
duction velocity and might, thus, be more efficient in keeping vSTM
representations active. Therefore, the number of fibers in PT-OC tract
might be less important for vSTM capacity and a lower number of fibers
might even indicate particularly effective recurrent activation of vSTM
representations in the PT-OC tract.

We did not investigate fronto-parietal tracts in our study and thus
cannot contribute to the question of potential compensation via more
frontal structures. However, our combination of findings of reverse as-
sociation between vSTM capacity and PT-OC connectivity in aging
together with the microstructural alterations of PT-OC tract are in
agreement with the PASA theory with respect to the alteration of pos-
terior brain structures. The findings of structural alterations of PT-OC
tracts and reduced vSTM capacity is also in agreement with the STAC
theory suggesting that neural degradation affects cognitive functions in
aging individuals.

Together, these findings suggest that aging modifies the microstruc-
tural properties of the tracts connecting posterior thalamus to occipital
cortices and thus make those tracts an ideal candidate for mediating the
effect of aging on vSTM capacity. This would fit with previous findings on
the mediating role of WM integrity in age–behavior relationships (Raz
et al., 2005; Burgmans et al., 2011; Brickman et al., 2012; Salami et al.,
2012; Samanez-Larkin et al., 2012).

Further studies using magnetization transfer ratio and/or diffusion
MRI methods that can resolve intravoxel structure such as high angular
resolution diffusion imaging (Tuch et al., 2003) could help yield further
information regarding the affected white-matter characteristics.

4.3. Limitations

Our study has several limitations. First, we used a cross-sectional
sample. Thus, although we could examine the effect of age on PT-OC
structural connectivity with vSTM capacity between individuals, we
cannot generalize our findings to intra-individual changes over the life-
span (Salthouse et al., 2011). Moreover, it is difficult to interpret our
results in terms of underlying microscopic changes since the number of
streamlines generated by probtrackx is not a direct measure of anatom-
ical connectivity and their relationship to the underlying anatomy is
rather unclear (Jones, 2010; Jones et al., 2013; Jbabdi and
Johansen-Berg, 2011). Several factors can influence the number of
streamlines, such as the organization of myelin in regions bordering
cortical grey matter (Reveley et al., 2015), fanning fibers and crossing
fibers with fewer crossing fibers leading to increased connectivity values
(Jbabdi and Johansen-Berg, 2011; Thomas et al., 2014; Reveley et al.,
2015; Donahue et al., 2016). Moreover, dense white-matter fiber bundles
at the grey-matter/white-matter boundary would hinder the tractog-
raphy detection of weaker crossing fibers entering or exiting grey matter
in sulcal fundi and thus influence the number of streamlines. Crossing
fibers are also a limitation of the tensor model and thus will also affect
FA, MD, RD and AD values. Finally, in addition to fiber architecture, it
has been shown that FA was influenced by axonal degeneration, changes
in packing density or demyelination (Takahashi et al., 2002). Never-
theless, without additional analysis at a higher resolution, we cannot
disentangle which mechanism underlie a change in diffusivity indices so
our use of the word “microstructural changes” should be considered with
care. In general, the neuroanatomical study of postmortem tissue at
higher resolution or the use of more advanced and specialized biophys-
ical models and sequences such as NODDI, CHARMED or myelin water
imaging could help identify which actual mechanisms are responsible.

5. Conclusion

We investigated whether age-related differences exist in the
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association between vSTM capacity and the structural connectivity of
posterior thalamus to visual cortices. In addition to a reduced vSTM ca-
pacity and aberrant PT-OC connection probability, we found that the
relationship between vSTM capacity K and PT-OC connection probability
was significantly modified by age. In young adults, vSTM capacity K was
significantly negatively associated with PT-OC connection probability,
whereas in older adults, this association was positive. Interestingly, we
also found reduced fractional anisotropy and increased mean diffusivity
in PT-OC tracts with aging, which suggests that the inversion of the as-
sociation between PT-OC connection probability and vSTM capacity K
with aging might reflect age-related differences in white-matter proper-
ties. Accordingly, we propose that age-related differences in vSTM ca-
pacity might be modulated by the microstructure and connectivity of WM
between posterior thalamus and occipital cortices.
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