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Topological charge pumping in the interacting bosonic Rice-Mele model
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We investigate topological charge pumping in a system of interacting bosons in the tight-binding limit,
described by the Rice-Mele model. An appropriate topological invariant for the many-body case is the change
of polarization per pump cycle, which we compute for various interaction strengths from infinite-size matrix-
product-state simulations. We verify that the charge pumping remains quantized as long as the pump cycle
avoids the superfluid phase. In the limit of hardcore bosons, the quantized pumped charge can be understood
from single-particle properties such as the integrated Berry curvature constructed from Bloch states, while this
picture breaks down at finite interaction strengths. These two properties—robust quantized charge transport in
an interacting system of bosons and the breakdown of a single-particle invariant—could both be measured with
ultracold quantum gases extending a previous experiment [Lohse et al., Nat. Phys. 12, 350 (2016)]. Furthermore,
we investigate the entanglement spectrum of the Rice-Mele model and argue that the quantized charge pumping
is encoded in a winding of the spectral flow in the entanglement spectrum over a pump cycle.
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I. INTRODUCTION

The experimental and theoretical investigation of topo-
logical states of matter is a key topic in condensed matter
physics [1–3], ultracold quantum gases [4–6], and photonics
[7,8]. While the theoretical classification of noninteracting
symmetry-protected topological states is complete [9,10], the
investigation of topology beyond noninteracting particles,
zero temperature, and closed quantum systems is an active
field of research. In recent years, different characterizations
have been developed, showing that only certain aspects of
topology can survive in mixed states (see, e.g., Refs. [11–16])
or nonequilibrium situations [17–23]. However, for interact-
ing systems at zero temperature, generalizations of topologi-
cal invariants have been identified [11,14,24–30], and it was
shown that for many examples, such as Chern insulators, the
topology is preserved for sufficiently small interactions (see,
e.g., Refs. [26,31–35]).

Experiments with ultracold atomic gases are now able to
explore aspects of topological physics providing direct access
to nontrivial quantities such as Chern numbers [36–39], Berry
phases, Berry curvatures [39–42], the dynamics of edge states
[43–45], or the topological properties of one-dimensional
(1D) symmetry-protected topological phases such as the Su-
Schrieffer-Heeger model (SSH) [46–48]. Moreover, some of
the most paradigmatic two-dimensional (2D) lattice models
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with topological band structures were implemented, including
the Hofstadter model [49–51] and variants [43–45,52,53]
and the Haldane model [38,40]. Most of these experiments,
however, focused on noninteracting systems and there is a
strong ambition to go beyond single-particle dynamics and
to investigate topological phenomena in genuine many-body
systems.

Here, we consider the effects of interactions in a topolog-
ical charge-pumping setup that is realizable in quantum-gas
experiments. Topological charge pumps were introduced in
the seminal work by Thouless [54]. In the noninteracting
case, it is well known that an adiabatic cyclic evolution in the
space of Hamiltonian parameters leads to a quantized charge
transport per cycle. In fact, this quantization is intimately
related to the quantized Hall conductivity of a (2D) Chern
insulator, in the sense that the cyclic parameter of the 1D
Hamiltonian (that describes the charge pump) corresponds to
a quasimomentum in the 2D model [32,54]. Experiments on
topological Thouless pumping were performed with ultracold
atoms [55–58] and photons [59,60] and have recently been
extended to higher dimensions [61,62].

Interacting charge pumps have been studied theoretically,
both for fermions [63,64] and bosons [65–67]. Originally,
it was shown by Thouless that quantization is unaffected
by weak interactions under fairly broad assumptions [32].
However, numerical simulations have shown that strong in-
teractions can lead to a breakdown of the quantized pumping
by closing the many-body gap [64]. Moreover, charge pumps
are convenient tools to characterize the topology of interact-
ing many-body systems in numerical simulations (see, e.g.,
Refs. [68–70]).

In the limit of hardcore bosons, the interacting 1D charge
pump, as reported in the experimental work Ref. [55], has a
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simple interpretation. The model can be mapped onto non-
interacting spinless fermions. For a completely filled band
of fermions, all quasimomentum components are homoge-
neously populated and the total amount of charge transported
per cycle is determined by the sum of the Berry curvature
over all quasimomenta. In this paper, we are interested in
the regime of finite interaction strengths, where this mapping
is no longer valid. Finite interaction strengths result in an
inhomogeneous momentum distribution and a many-body
characterization of the transport via the polarization needs to
be used.

Let us give a more formal account of the relevant topolog-
ical invariants. To quantify a charge pump, one can consider
the evolution of the many-body polarization P (t ) of a state
|�(t )〉 over the course of the adiabatic driving of a time-
dependent Hamiltonian H (t ).

The modern theory of polarization associates P with the
mean position of the charge distribution per unit cell in the
case of translationally invariant states [71]. For a system
of length La with periodic boundary conditions, one can
define the polarization for a many-body wave function |�(t )〉
via [72]

P (t ) = qa

2π
Im ln〈�(t )|e i2π

La
X̂|�(t )〉 (mod qa), (1)

where X̂ = ∑B×L
i xi n̂i is the position operator, n̂i and xi are,

respectively, the density operator and position of site i, q is
the charge per particle, a is the length of the unit cell, L is the
number of unit cells, and B is the number of sites per unit cell.
Importantly, P is only defined modulo qa and it has the units
of a dipole moment. We keep q in the equations for clarity, yet
for our case of neutral atoms, q = 1.

In general, the total transported charge �Q(t1; t2) between
times t1 and t2 can be related to the polarization via

�Q =
∫ t2

t1

dtJ (t ) = 1

a

∫ t2

t1

dt ∂tP (t ), (2)

where J (t ) is the current density of the system.
Now we consider the case of charge pumps which are

described by time-periodic Hamiltonians, such that H (t +
T ) = H (t ), with T the period of the pump cycle. Assuming
perfect adiabaticity, the polarization is cyclic in T as well,
with P (T ) mod qa = P (0). The final expression in Eq. (2)
with �t = T is the winding number of the polarization, which
implies the quantization of the pumped charge for each cycle.

The expression for the many-body polarization reduces to
the usual form for noninteracting fermions for a filled band
[71,73,74]:

PNI(t ) = −iq

2π

∫ π/a

−π/a

dk〈u(k, t )|∂k|u(k, t )〉, (3)

where |u(k, t )〉 are single-particle momentum-eigenstates of
the system and k ∈ [−π/a, π/a) is the quasimomentum. In
this case, the polarization is proportional to the Zak phase as-
sociated with a filled band, which is defined modulo 2π [75].
The charge pumped per cycle (�Q) can then be expressed as

�Q = q

2π

∫ π/a

−π/a

dk

∫ T

0
dt �(t, k) = qν , (4)
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FIG. 1. Schematic of the Rice-Mele model and of exemplary
pump cycles: (a) A bichromatic optical potential created from two
optical standing waves with wavelength λl = 2λs can be described
by a tight-binding lattice model, the Rice-Mele model, with stag-
gered potential � and alternating tunneling strength Ji = J (1 +
(−1)iδ), where i = {1, 2}. δ is the dimensionless dimerization pa-
rameter [Eq. (7)] and a = λl/2 is the length of the unit cell. (b) These
parameters can be tuned by changing the lattice potentials Vl,s , and
the relative phase φ of the two optical potentials [Eq. (6)]. Periodic
tuning of these parameters defines a pump path. The pumped charge
�Q of a pump path can be either �Q = 1 (solid line) or �Q = 0
(dashed line) depending on whether the pump cycle encloses the
degeneracy point at δ = � = 0 or not.

where ν is the Chern number associated with the Berry
curvature of the pump cycle:

�(k, t ) = i〈∂ku(k, t )|∂tu(k, t )〉 − c.c. , (5)

defined on a torus of dimension T × 2π/a. If Eq. (4), with a
suitable choice of states |u(k, t )〉, yields the actual quantized
charge in a many-body system, then we say that a single-
particle description applies.

In this paper, we investigate interacting bosonic charge
pumps in the tight-binding Rice-Mele model [76], which
consists of alternating hopping-matrix elements and alter-
nating onsite potentials [see Fig. 1(a)]. To model a charge
pump, both parameters are varied periodically [see Fig. 1(b)].
We pursue two main goals: First, we reveal the breakdown
of the single-particle interpretation in a parameter regime,
where the charge pump remains topologically protected away
from the limit of hardcore bosons. Measuring both the quasi-
momentum distribution function and the center-of-mass mo-
tion of the cloud as a measure of the quantization of charge
pumping are sufficient to demonstrate this breakdown in an
experiment. Both observables are readily available in ex-
isting cold-atom experiments. Realizing this regime would
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constitute a nontrivial way of observing topologically pro-
tected charge pumping in an interacting system and may be
an important step toward experimental studies of topological
effects in many-body systems. Second, we investigate en-
tanglement properties and observe that the quantized charge
pump is reflected in a winding of the spectral flow in the
entanglement spectrum.

We use matrix-product-state (MPS) methods in an infinite-
system size formulation (iDMRG) [77–79] to establish that
the interacting topological charge pump remains quantized as
long as the many-body gap does not close along the cycle for
sufficiently strongly interacting bosons. As the system enters
the superfluid region, correlations in the system diverge, and
the transported charge is no longer quantized. Therefore,
we focus on the Mott-insulating phase, where we explicitly
demonstrate that there exists a parameter regime, in which
an interpretation in terms of single-particle states results in
a nonquantized transport, while the true transported charge
actually remains protected and quantized.

We further relate the quantized charge pumping to the
entanglement spectrum of the reduced density matrix in spa-
tial bipartitions. The relationship between the entanglement
spectrum, edge modes, and topological properties is well
documented (see, e.g., Refs. [80–83]). In particular, Li and
Haldane were able to show the correspondence between
the low-energy structure of the entanglement spectrum of
fractional quantum Hall states and their topology [80]. In
1D systems, symmetry-protected topological states [84,85]
imply an exact degeneracy in the entanglement spectrum [86].
Indeed, we show that charge pumping is encoded in a parity
protection which appears for strong interactions. This results
in a winding of the spectral flow over the pump cycle.

The paper is organized as follows. We introduce the in-
teracting bosonic Rice-Mele model and its phase diagram
in Sec. II, where we also present the infinite-system size
density matrix renormalization group (iDMRG) method. In
Sec. III, we introduce the pump cycles studied in this paper
and show how charge pumping remains quantized in the
presence of interactions via the winding of polarization. In
Sec. IV, we discuss the one-body correlation functions and
their associated quasimomentum distributions as possible ex-
perimental observables, and demonstrate the breakdown of
a single-particle interpretation of quantized charge pumping
away from the limit of hardcore bosons. Aspects relevant for
experimental realizations are discussed in Sec. V. In Sec. VI,
we relate the quantized pumping to the spectral flow in the
entanglement spectrum. We conclude with a summary and an
outlook in Sec. VII.

II. INTERACTING RICE-MELE MODEL

A. Realization and Hamiltonian

The Rice-Mele model [76] is a 1D tight-binding lattice
model with alternating nearest-neighbor hopping-matrix el-
ements Ji = J (1 + (−1)iδ), δ ∈ [−1, 1], and a staggered
onsite potential with strength �. In typical cold-atom exper-
iments [55,56], it can be realized with a bichromatic optical
lattice, which consists of two optical lattices with wavelength
λs and λl = 2λs as illustrated in Fig. 1(a). The corresponding

optical potential is of the form

V (x) = Vl sin2

(
πx

λl

− φ

2

)
+ Vs sin2

(
πx

λs

+ π

2

)
, (6)

where Vs,l are the respective potential depths and φ is the
relative phase between the two potentials. For sufficiently
deep lattices, the physics can be described by the Rice-Mele
tight-binding lattice model, which for bosonic atoms with
local onsite interactions U can be written as

H =
∑

i

[
−J (1 + (−1)iδ) â

†
i âi+1 + H.c.

+ (−1)i
�

2
n̂i + U

2
n̂i (n̂i − 1)

]
. (7)

The operator â
†
i creates a boson on site i and n̂i = â

†
i âi . Con-

veniently, the model can be expressed in the dimensionless
quantities U/J , δ and �/J . In the following sections, we
study pump cycles which are closed cycles in the δ and �/J

parameter space, illustrated in Fig. 1(b).
In the absence of interactions U = 0, the Rice-Mele

Hamiltonian is a two-band model with the dispersion relation

εk = ±J
√

(�/2J )2 + 4[1 − (1 − δ2) cos(ka)], (8)

which has a degeneracy point at δ = � = 0. This degeneracy
determines the topology of the pump cycle. If the pump path
encloses the degeneracy point, the corresponding pumped
charge number is �Q = 1, while otherwise it is �Q = 0
[Fig. 1(b)].

B. Phase diagram of the interacting Rice-Mele model

1. Hardcore-boson limit

In the limit of hardcore interactions, U/J = ∞, and an
average density per site of n̄ = N/(2L) = 1/2, with N the
number of bosons, the bosonic Rice-Mele model exhibits a
Mott-insulating phase, except for δ = � = 0. This can be
understood by mapping the hardcore bosons to a system of
free spinless fermions via the Jordan-Wigner transformation
[87]. At n̄ = 1/2, the fermions completely fill the lowest band,
except at δ = � = 0, where the system reduces to the uniform
tight-binding chain with equal tunneling rates and the two
bands merge into a single one. In the bosonic picture, this is
the point where the system becomes superfluid. Away from
n̄ = 1/2, the system is always in a superfluid phase. Because
of this, we will restrict our discussion to the average density
n̄ = 1/2 for the following sections.

2. iDMRG calculations for finite U/J

The 1D Bose-Hubbard model at integer filling has a gapped
Mott-insulating state at large U/J and a gapless superfluid
state with algebraically decaying correlations for sufficiently
low U/J [88]. Similar physics applies to the bosonic in-
teracting Rice-Mele model at filling n̄ = 1/2 (see, for in-
stance, Refs. [89,90]), which also exhibits a superfluid-to-
Mott-insulator transition. A Mott insulator with a noninteger
site occupancy is sometimes referred to as a fractional Mott
insulator [91].
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FIG. 2. Phase diagram of the interacting bosonic Rice-Mele
model: Upper bound of the critical interaction strength Uc/J as
a function of the dimensionless parameters δ (dimerization in
the hopping-matrix elements) and �/J (staggered potential). The
hatched region close to the origin has not been computed. The lines
show the paths of the pump cycles studied in this paper as defined
in Eq. (10): dotted, path I: Rδ = 0.25, R� = 1.0; dashed, path II:
Rδ = 0.5, R� = 2.3; dash-dotted, path III: Rδ = 0.75, R� = 4.5.

To study the phase diagram of the interacting Rice-Mele
model, we use iDMRG simulations [77] and compute infinite-
system-size matrix-product-states (iMPS) approximating the
ground state. This allows us to avoid edge effects and to treat
the problem directly in the thermodynamic limit. For Hamil-
tonians with a gapped ground state, an iMPS approximates
the ground state very accurately. However, as the correlation
length diverges upon approaching a critical phase, the finite
bond dimension used in the simulations imposes an effective
length scale. To understand the physics independently of this
effective length scale—this is especially important in the
superfluid phase—we employ a scaling analysis in the bond
dimension to elucidate the ground-state physics. All compu-
tations are performed with a U (1) symmetry preserving code
with a bond dimension χ of up to a maximum of χ = 2000 us-
ing the tensor library developed in Ref. [92]. Furthermore, the
local bosonic basis must be truncated in DMRG calculations
to a maximum number of bosons per site. We found that for
all of the calculations in this paper, a maximum of six bosons
per site is sufficient. For the parameters considered, we never
find the occupation of the local state with six bosons to rise
above 10−10.

In Fig. 2, we show a phase diagram for the bosonic
Rice-Mele model. We obtain the critical interaction strength
Uc/J separating the superfluid (U/J < Uc/J ) from the Mott
insulator (U/J > Uc/J ) as a function of the parameters δ

and �. This diagram was computed via a scaling analysis of
the correlation length ξ with respect to the onsite interaction
strength. The superfluid-to-Mott-insulator transition at con-
stant density is in the universality class of O(d + 1), with d

the dimension of the system. In our case with d = 1, the tran-
sition is expected to be in the same class as the Berezinskii-
Kosterlitz-Thouless transition [93], which is the underlying
assumption in our numerical analysis. Such transitions are

notoriously difficult to pin down precisely, as correlations in
the system scale as ξ ∝ exp(const/

√
J/Uc − J/U ) [94], and

not as a power law like in higher dimensions. However, data
from iDMRG calculations can provide an upper bound on
Uc/J , which is sufficient for our purposes.

The correlation lengths are extracted by taking the second-
largest eigenvalue of the transfer matrix [95]. We converge
the DMRG algorithm with a maximum bond dimension of
χ = 2000. In practice, we enforce a discarded weight of
10−14 for each DMRG truncation step, which can be achieved
with a bond dimension less than the maximum value. If the
desired bound on the discarded weight cannot be achieved,
we consider the state to be unconverged and discard this
point. We find poor convergence of the DMRG calculations in
the vicinity of the central degeneracy (�/J = δ = 0), as the
correlation length here diverges even in the hardcore-boson
limit. We therefore exclude a small area around the origin,
indicated by the hatched region in Fig. 2. Note that results
for the phase diagram along the special lines � = 0 [90] and
δ = 0 [89] of the phase diagram were previously obtained and
agree well with our own calculations.

For large but finite U/J , the system remains gapped. One
can see this by finding the effective Hamiltonian in the single-
occupancy manifold. Tracing out multiple occupancies results
in an effective interaction:

H eff
int = −

∑
i

4J 2
i

(
1

U + �
+ 1

U − �

)
n̂i n̂i+1 + O

(
J 3

U 2

)
.

(9)

Here, we interpret n̂i = b̂
†
i b̂i as a hardcore-boson occupation

operator [with (b†i )2 = 0] and Ji = J (1 + (−1)iδ) the alter-
nating tunneling rate. We switch to the equivalent fermionic
picture for an interpretation. The effective nearest-neighbor
interaction leaves the Mott-insulating phase stable and does
not induce a phase transition as long as the interaction strength
is smaller than the band gap.

III. CHARGE PUMPING AND MANY-BODY
POLARIZATION

A. Pump cycles

Topological charge pumping allows for a robust quantized
transport of charge through adiabatic cyclic modulation of
the system’s parameters. In the studied Rice-Mele model,
pumping can be induced by an adiabatic modulation of the
dimerization δ and the onsite energy �/J . However, it is
essential that the origin of this (δ − �/J ) parameter space
is enclosed by the pump path, as the degeneracy point at the
origin is the source of the topological properties. In this paper,
we focus on paths of the form

�(θ )/J = R� sin θ

δ(θ ) = Rδ cos θ
, θ ∈ [0, 2π ), (10)

where we assume J and U to be constant throughout the
pump cycle. A schematic of the path is shown in Fig. 3(a)
while the actual paths used here are indicated in Fig. 2.
We further define θ = 2πt/T , assume adiabaticity and work
in the instantaneous eigenbasis of H (θ ). Hence, the charge
transport becomes independent of the timescale T .
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-100
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θ
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FIG. 3. Pump cycles studied in this work: (a) Parameter space
of the interacting bosonic Rice-Mele model. At the center of the
parameter space, there is a superfluid region (red), which shrinks as
the interaction strength increases and becomes a point as U/J → ∞.
We consider a charge pump that traces a path through this parameter
space and encircles the superfluid phase. The cycle is parameterized
by the angle θ , Rδ , and R�. (b) Pump path used in the bosonic
experiment [55] using the superlattice parameters Vs = 10Er,s , Vl =
20Er,l [Eq. (6)] where Er,(l,s ) is the recoil energy of the respective
lattice. The change in polarization associated with this path is shown
in Fig. 4(b).

To make a connection to experiments, we compare our
results to the pump path used in the bosonic experiment [55],
where the charge pump was implemented with a bichromatic
lattice as defined in Eq. (6). The pump cycle in the experiment,
enclosing the degeneracy point δ = � = 0, was realized by a
variation of the relative phase φ at constant lattice depth and is
depicted in Fig. 3(b). The quantized pump was executed in the
strongly interacting regime U 	 Uc and an average density
n̄ 
 1/2.

B. Charge pump in the limit of hardcore bosons

In the limit of hardcore bosons, one can compute the
polarization analytically from Eq. (3), using a mapping to free
fermions via the Jordan-Wigner transformation. The lowest
band cell-periodic wave function can be written as

|ul (k)〉 = 1√
2

(√
1 + �

2ε(k)
,

√
1 − �

2ε(k)
e−iϕ(k)

)
, (11)

where ϕ(k) = Im log [−(1 + δ) − (1 − δ)eika]. Substituting
into Eq. (3) results in an expression for the polarization after
some straightforward algebra:

P (δ, β ) = aqδβ �(1 − δ2|m), (12)

where β = �/
√

16J 2 + �2, m = (1 − δ2)(1 − β2), and
�(w|z) = ∫ π/2

0 dk(1 − w sin2 k))
−1

(1 − z sin2 k))
−1/2

is the
complete elliptical integral of the third kind. This expression
is valid for δ, β > 0, but can be related via symmetry to the
rest of the parameter space.

The quantization of the pumped charge depends only on
the topology of the pump path and the pumped charge is
nonzero as long as the pump path encloses the degeneracy
point. In the case where the path does not enclose the singu-
larity, the polarization will have a winding number of zero,
and hence no net transported charge (�Q = 0). For example,

0.0

0.5

1.0

P
/

[q
a
]

(a) Rδ = 0.25, RΔ = 5.0
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P
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a
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(P
−

P
∞

)/
[q

a
] (c)

Δ

δ

FIG. 4. Winding of the polarization: Polarization as determined
by iDMRG computations [Eq. (16)] around the pump cycle with
Rδ = 0.5, R� = 2.3 and different values of the interaction strengths.
The charge pumped over a cycle is the integrated slope of the
polarization [Eq. (2)], which simply counts the winding of the
polarization. (a) Polarization of hardcore bosons for paths which do
not encircle the central degeneracy [see the inset in (a)], defined
in Eq. (13). Notice that the polarization is cyclic, but has winding
number zero, implying no pumped charge. (b) Polarizartion P (θ )
for path II (Rδ = 0.5, R� = 2.3) for various interaction strengths
U/J = 5, 10, 100, ∞, and for the path used in the experiment (using
U/J = ∞) [55]. (c) Polarization relative to the one in the hardcore
limit, derived from the data in (b). P∞ is computed from the free-
fermion solution [Eq. (12)].

consider a path defined by

�(θ )/J = R� sin θ, δ(θ ) = δ0 + Rδ cos θ , (13)

where δ0 is a constant shift to δ. If Rδ < |δ0|, then the path will
not enclose the origin and the pump will transport no charge
since, by Eq. (12), the polarization only oscillates around P =
0 and does not wind at all, which is illustrated in Fig. 4(a).
This becomes clear from Eq. (2) as the integral of the slope of
the polarization is exactly zero for the path given in Eq. (13).

C. Polarization from Schmidt values

The MPS approximation to the ground state |�(θ )〉 can be
factorized via a Schmidt decomposition (used in most MPS
algorithms [79]) into the form

|�(θ )〉 =
χ−1∑
μ=0

�μ

∣∣�L
μ (θ )

〉∣∣�R
μ (θ )

〉
. (14)

The |�L(R)
μ (θ )〉 are states where L and R are the left and right

semi-infinite partitions of the Rice-Mele chain, and the �μ are
the Schmidt values, which give the weight of each state.

For an infinite system, one can compute the polarization
from the Schmidt values (�μ). The Schmidt values are also
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the positive root of the eigenvalues of the reduced density
matrix found by tracing out one half of the system:

ρL = TrR[ρ] =
χ−1∑
μ=0

�2
μ

∣∣�L
μ (θ )

〉〈
�L

μ (θ )
∣∣. (15)

These numbers are directly accessible in any MPS code [79].
The U (1) symmetry associated with charge conservation

allows us to assign an integer quantum number �Nμ to label
each state |�L

μ 〉, which we refer to as the particle imbal-
ance. These quantum numbers are associated with particle
fluctuations across the cut in the system: The eigenstate of
the reduced density matrix associated with �μ corresponds
to the state of the system with �Nμ extra particles in the
left-hand side of the system, and -�Nμ in the right-hand side.
Following the approach of Ref. [68], the polarization is then
the expectation value of the particle imbalance:

P = qa
∑

μ

�Nμ�2
μ . (16)

When working in the thermodynamic limit, the total num-
ber of particles in the system is not well defined. We therefore
cannot ascribe an absolute value to the particle imbalances
�Nμ. However, the �Nμ are defined relative to each other
such that �Nμ − �Nν is always the same for a pair μ, ν. This
also implies that P defined in Eq. (16) cannot be determined
absolutely, but rather is only defined modulo qa, as for
previous definitions of the polarization.

D. Charge pumping for finite U/J

The bosonic Rice-Mele charge pump requires a finite gap
for adiabatic transport to take place. It is therefore necessary
to avoid the superfluid regime along the path the pump cycle
takes through parameter space.

In Fig. 4(b), we compare the pumped charge for a number
of paths through parameter space at finite values of U/J < ∞
and compare to the hardcore-boson limit. As expected, the po-
larization rises monotonically with θ . Surprisingly, the devia-
tion P − P∞ [shown in Fig. 4(c)] of the polarization for finite
U/J from the U/J → ∞ limit remains small, even as the
correlation length in the system becomes large. These results
show, from a full many-body calculation of the polarization
from Eq. (1), that the pumped charge remains quantized away
from the limit of hardcore bosons. This manifests itself in
Fig. 4(c) as a vanishing difference between the polarizations
of the finite and the infinite U/J cases at θ = 2π .

We would like to briefly comment on the consequence
of bringing the pump through the superfluid region. Here,
the particle-fluctuations across the system have a logarithmic
divergence, with respect to the length of the system (or, in
the case of iMPS with finite bond dimensions, with respect
to the bond dimension). The relationship between particle
fluctuations and entanglement entropy has been discussed
extensively in Ref. [96], including the specific case of 1D
systems. This divergence leads to an undefined polarization
for an infinite system, as the particle imbalances �Nμ in
Eq. (16) inherit this divergence.

Similarly, the existence of gapless charge excitations
means that there is, in general, no well-defined adiabatic limit,

and any measured pumped charge will depend strongly on the
details of the system and the speed with which the pump is
executed. That is to say, there is no “universal” description of
the pump in this regime.

IV. BREAKDOWN OF THE SINGLE-PARTICLE
INTERPRETATION FOR U/J < ∞ IN THE

MOTT-INSULATING PHASE

In this section, we compute the quasimomentum distri-
bution function of the bosons in the hardcore-boson limit
as well as for finite U/J in the Mott-insulating phase. We
show that, unless very special pump cycles are chosen, the
momentum distribution of the physical particles is never
flat. Consequently, a single-particle picture, where the total
transported charge results from the contribution of curvatures
from each single-particle state, does not lead to a quantized
value for the total transported charge.

Therefore, in general, the quantization of the pumped
charge in a topological charge pumping experiment with
bosons can only be established from many-body expressions
using, e.g., the polarization [Eq. (1)]. We argue that the
breakdown of a single-particle topological invariant could
be demonstrated by measuring the quasimomentum distri-
bution of each band and showing that the integral over this
nα (k, θ ) and the known single-particle Berry curvature is not
quantized.

A. Quasimomentum distribution function

To compute the quasimomentum distribution function, we
need to compute the one-particle density matrix (OPDM). It
is straightforward to extract the OPDM from iMPS solutions
using transfer-matrix methods [97].

The OPDM is given by ρ
(1)
ij = 〈�|â†

i âj |�〉, where |�〉 is,
in our case, the many-body ground state. For a translationally
invariant state, the corresponding OPDM ρ (1) will share the
symmetry and can be block-diagonalized into blocks of di-
mensions n × n, where n is the size of the unit cell, and each
block can be labeled by a quasimomentum.

The quasimomentum distribution usually measured in an
experiment results from the projection of the OPDM onto
the bands of a noninteracting model [88]. This corresponds
to taking the diagonal elements of ρ (1)(k) when written in
the eigenbasis of the noninteracting model. One can then
associate a momentum distribution nα (k, θ ) with each original
band (α = 1, . . . , n is the band index), as shown in Fig. 5.

In the present case, we have a two-site unit cell, and we
refer to the lower(upper) bands as α = l(u). In experiments, a
flat nα (k, θ ) is usually achieved by either using free fermions
and choosing the filling appropriately or by localizing par-
ticles into individual sites. In the case of hardcore bosons,
they, in general, already lack a perfectly flat momentum
distribution for any filling of less than one particle per site
and in equilibrium. Only after the relevant Jordan-Wigner
transformation (see, e.g., Ref. [98]) the result is a flat quasimo-
mentum distribution, but for spinless fermions. However, in a
sufficiently deep lattice, the bosons will be largely localized,
with an essentially flat distribution, which was exploited in
Ref. [55] (also see our discussion in Sec. III B).
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α = l
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−π/2 0 π/2
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(b) θ = π/2 U/J
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10.0
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∞

FIG. 5. Quasimomentum distribution of the interacting system:
nα (k, θ ) for the pump cycle with Rδ = 0.5, R� = 2.3. Solid lines
are the projection onto the lowest band (α = l) of the noninteract-
ing Hamiltonian, the dashed lines are for the projection onto the
upper band (α = u). (a) Distribution at θ = 0. (b) θ = π/2. For
the path shown, the occupation density of the upper band is quite
low: nu(k, θ ) � 0.03 in the U/J = ∞ limit for all θ . However,
this occupation can be larger when the pump cycle is closer to the
degeneracy. Note that for the experimental path of Ref. [55] as shown
in Fig. 3, the momentum distribution is essentially flat and confined
completely to the lower band.

In Fig. 5, the quasimomentum distribution is plotted for
two points θ = 0, π/2 along the pump path with Rδ = 0.5
and R� = 2.3 for a number of interaction strengths, including
the hardcore-boson limit (U/J = ∞). The projection onto
both the upper (α = u) and the lower band (α = l) of the
noninteracting model is shown. The momentum distribution
of the physical particles for this path is far from the flat,
fermionic distribution, even in the hardcore-boson limit. As
the interaction strength approaches Uc, the momentum dis-
tribution becomes increasingly peaked at k = 0 and develops
power-law tails.

We find that the projection onto the upper band is relatively
small [nu(k, θ ) � 0.03], even far away from the hardcore
limit, although it increases as one approaches the central
degeneracy.

B. Integrated single-particle Berry curvature

The expression Eq. (4) for the pumped charge �Q for
noninteracting fermions can be interpreted as the accumulated
curvature picked up in each filled band over the course of a
pump cycle. In the interacting case, one might, by analogy,
consider the momentum-weighted single-particle Berry cur-
vature [99], which we define as

�W
α (k, θ ) = �α (k, θ )nα (k, θ ), (17)

with the single-particle Berry curvature and the momentum
distribution for each band α. The maxima of the single-
particle Berry curvature in k-space occur at the band-gap
minima where ka = ±π ; along the pump path they occur at
θ = mπ for m ∈ Z, but it still has a significant magnitude
throughout the pump cycle. Therefore, charge is pumped at
any point during the cycle. Figure 6(a) shows the single-

−π

0

π

k
a

(a)

0 π/4 π/2

θ

0.0

0.1

0.2

∫
d
k
Ω

W l
(k

,θ
)

U/J

(b) Rδ = 0.5, RΔ = 2.3
5.0
10.0
100.0
∞
flat nl(k, θ)

0

1

2

Ωla

FIG. 6. Single-particle Berry curvature: (a) Berry curvature
�l (k, θ ) [Eq. (5)] used for computing the integrated curvature.
(b) Partially integrated weighted curvature [defined in Eq. (17)],
along the pump cycle for path II. The total integrated charge �Q′

l/q

after one pump cycle is simply the area under these curves between
θ = 0 and 2π . �Q′

l/q for all paths can be seen in Fig. 7 and are
smaller than one.

particle Berry curvature �l for the lower band of path II
(Rδ = 0.5, R� = 2.3).

The single-particle picture which motivates Eq. (17) as-
sumes that we simply sum up the contributions from each mo-
mentum state to compute the transported charge, which leads
to a quantized �Qα when there is a filled band. However, for
our model with a finite U/J , this will no longer necessarily
give a quantized amount for the charge transport due to the
inhomogenous occupation in k space.

In analogy to Eq. (4), we can define the integral of
the weighted single-particle Berry curvature �W

α defined in
Eq. (17):

�Q′
α = q

∫ π/a

−π/a

dk

∫ 2π

0
dθ �W

α (k, θ ). (18)

�Q′
α will, in general, deviate from the exactly quantized �Qα

since, in general, nα (k, θ ) is not flat.
The partially integrated weighted curvature is shown in

Fig. 6(b) for different points during the pump cycle. The
contributions are generally smaller than the corresponding
values obtained for a filled band of noninteracting fermions
[dashed line in Fig. 6(b)]. Results for �Q′

α are plotted in
Fig. 7 as a function of U/J for the paths shown in Fig. 2
and for the experimental path. For the experimental path,
�Q′

l ≈ q even for small interaction strength. The reason is
that the bosons remain essentially localized to individual sites
during the entire pump cycle. For the elliptical paths that
take the system closer to the superfluid region and even for
hardcore bosons, �Q′

l/q can deviate significantly from one.
For instance, for path II at U/J = ∞, we have �Q′

l/q =
0.81. This is consistent with the fact discussed above (see Sec.
IV A) that the momentum distribution of hardcore bosons is,
in general, not flat for any filling of less than one boson per
site.
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FIG. 7. Breakdown of quantized single-particle invariant: Inte-
gral �Q′

α/q over the weighted single-particle Berry curvature [de-
fined in Eq. (18)] after one pump cycle. We also include the path
used in the bosonic charge-pump experiment [55] for comparison, for
which the numbers are very close to 1. In general, though, �Q′

α is not
quantized. Full(empty) symbols indicate �Q′

α for the lower(upper)
band. Triangles indicate the U/J → ∞ limit.

V. ASPECTS OF AN EXPERIMENTAL REALIZATION

Finally, we discuss deviations from ideal conditions rel-
evant to an experimental realization of interacting charge
pumps. These aspects are of similar nature as those al-
ready found in previous experiments [55,56]. In particu-
lar, the transport may be affected by imperfect initial state
preparation, trap, and finite-size effects. Furthermore, a high
measurement accuracy is necessary to resolve the devia-
tions in the transport. However, the main challenge is to
perform the interacting charge pump adiabatically with re-
spect to the many-body gap, while keeping technical heat-
ing processes sufficiently low. In the hardcore-boson limit,
the relevant gap is given by the minimum single-particle
band gap [see Eq. (8)], which corresponds to �E/J =
1 for pump path II. When moving away from the hard-
core interacting case, the many-body gap reduces rapidly.
For example, the minimal many-body gaps for pump path
II at two exemplary interaction strengths are �E/J =
0.075 for U/J = 5 and �E/J = 0.21 for U/J = 10.
From Fig. 7, we know that for this pump path, significant
deviations from the single-particle description exist even in
the hardcore-boson limit, which we expect to be observ-
able in future experiments by combining the center-of-mass
measurements [55,56] with observations of the momentum
distribution nα (k, θ ) using band-mapping techniques [88].
To evaluate the weighted Berry curvature, knowledge about
the single-particle Berry curvature �α (k, θ ) is required. This
can be derived from the well-known Rice-Mele model. Al-
ternatively, it could be measured independently using state-
tomography techniques [42,100].

VI. ENTANGLEMENT SPECTRUM

The entanglement spectrum, defined with respect to a
spatial partition of the system into two (semi-infinite) halves,
is given by the eigenvalues of the entanglement Hamiltonian
HE [80]:

ρL = e−HE . (19)
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0
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−
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Λ

2 μ

(a) U/J = 5, Rδ = 0.5, RΔ = 2.3

ΔNμ

-3
-2
-1
0
1
2
3

−2π −π 0 π 2π

θ

0

10

20

30

−
lo

g
Λ

2 μ

(b) U/J = ∞, Rδ = 0.5, RΔ = 2.3

FIG. 8. Entanglement spectrum of the Rice-Mele model: Results
for the pump cycle with Rδ = 0.5, R� = 2.3 for (a) U/J = 5 (from
iDMRG) and (b) the U/J = ∞ limit, the latter calculated from the
free-fermion solution. Note the different scales for the two spectra.
The labels �Nμ correspond to the particle imbalance for each
Schmidt value. Notice that entanglement eigenvalues in the spectrum
wind either up or down or have no winding if �Nμ = �N0. After one
cycle, the spectrum has the same values, but with all labels increased
by 1, indicating the pumping of a single charge.

HE is unitless and is constrained to be strictly positive by the
normalization requirement of the reduced density matrix. The
eigenvalues of HE are referred to as entanglement eigenvalues
(EEVs).

The flow of the entanglement spectrum is smooth and
continuous for a gapped state which evolves under adiabatic
perturbations, as is the situation in the charge pump under
consideration here. The topological nature of the charge pump
is revealed directly in the spectral flow of the entanglement
spectrum. Figure 8 shows the entanglement spectrum over
the course of one pump cycle (Rδ = 0.5, R� = 2.3). Particle-
number conservation allows each EEV to be labeled with a
particle imbalance �Nμ across the chosen cut. We plot the
EEVs for −2π < θ < 2π and first focus the discussion on the
interval θ ∈ [−π, π ), which results in a unique lowest EEV
(μ = 0) for θ ∈ (−π, π ), to which we assign the imbalance
�N0 = 0.

Figure 8(a) shows the spectrum for U/J = 5, computed
using iDMRG. Using MPS to represent the ground state
throughout the pump cycle makes studying entanglement
spectra particularly easy as the eigenvalues �μ of the reduced
density matrix are computed as part of the iDMRG calculation
along with the �Nμ. Figure 8(b) shows the corresponding
data for U/J = ∞, computed from the free-fermion solution
(see, e.g., Ref. [101]).

First, note the two symmetric points at θ = 0 and at θ =
−π (π ), corresponding to the trivial and nontrivial phases
of the SSH model, respectively. This arises from the lattice
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inversion symmetry and imposes a structure on the spectrum.
In general, this protected symmetry also requires a fermion
parity symmetry [102], but in our model this is automatically
satisfied by the U (1) symmetry. The inversion symmetry
implies that the spectrum should be invariant under �Nμ ↔
−�Nμ. This requires that EEVs must come in pairs with
�Nμ, �Nν (μ �= ν) such that �Nμ + �Nν = N0(θ ) or as
singlets with �Nμ = N0(θ ), where N0(θ ) is an (integer)
constant that can differ for θ ∈ {−π, 0}. The existence or
absence of the singlet (or, equivalently, if N0 is even or odd)
distinguishes between the two phases of the SSH model. This
relationship between symmetry and entanglement spectrum is
well established [103,104].

Furthermore, the spectrum is periodic but the different
EEVs can have nontrivial winding over a pump cycle. EEVs
from a pair at θ = −π with �Nμ < 0 (�Nμ > 0) wind
up (down) and EEVs with �Nμ = 0 have trivial winding.
After one cycle, the spectrum has the same set of EEVs,
but with �Nμ → �Nμ + 1, increased by one [compare the
imbalances for |θ | > π to those for θ ∈ (−π, π )].

The increase of labels can be understood by considering the
spectral flow between the topologically nontrivial SSH state
(at θ = −π ) and the trivial one (θ = 0). At θ = −π , there is
no singlet but only pairs. To reach the trivial phase at θ = 0,
pairs containing a state with �Nμ = 0 must split up, with one
state becoming a singlet at θ = 0, and the other forming a
pair with another EEV from a different pair. This is marked in
Fig. 8(a) as squares and circles, respectively. For example, in
our choice of �Nμ, at θ = 0 we have N0 = 0, and the singlets
(red square) have �Nμ = 0. The singlet is connected to pairs
at θ = −π of �Nμ = 0,−1 (red triangle) and N0 = −1. The
EEV with �Nμ = 0 becomes the singlet and the EEV with
�Nμ = −1 forms a pair with an EEV with �Nμ = +1 (red
circle).

At θ = π , the EEVs must all form pairs again. The nontriv-
ial winding of the EEVs implies that N0(π ) �= N0(−π ). In our
case, N0(π ) = 1, and the lowest pair now has �Nμ = 0, 1 as
discussed above.

The connection to charge pumping can be made explicit
by considering the expression for the many-body polarization
in Eq. (16). The shift in �Nμ by some integer over one
cycle implies that the polarization changes smoothly and also
increases by exactly the shift

P (θ + 2π ) = qa
∑

μ

�2
μ(θ + 2π )�Nμ

= qa
∑

μ

�2
μ(θ )(�Nμ + 1)

= P (θ ) + qa . (20)

Finally, we compare the entanglement spectra at U/J = 5
to the one at U/J = ∞ [see Figs. 8(a) and 8(b)]. As U/J

decreases, the EEVs shift to lower values, thus compressing
the spectrum and giving more weight to higher particle fluc-
tuations. Moreover, the entanglement spectrum of hardcore

bosons exhibits higher degeneracies, inherited from the free-
fermion case. These degeneracies are broken by the interac-
tion term in Eq. (7) when deviating from U/J = ∞. Low-
ering the interaction strength preferences states with larger
fluctuations in the local density (while the average density
remains at 1/2), leading to a higher occupation of the states
with larger relative �Nμ. The topological structure described
above, however, is preserved.

VII. SUMMARY

We showed that topology protects the quantized charge
pumping in the interacting bosonic Rice-Mele model in the
Mott-insulating regime of one boson per unit cell away from
the regime of hardcore bosons. The computation of the quan-
tized pumped charge requires a full many-body calculation via
the polarization. We further demonstrated that for interacting
bosons with Uc/J < U/J � ∞, the single-particle properties
of the physical particles never capture the quantized pumping.
In the hardcore-boson limit, due to the mapping to free
fermions via the Jordan-Wigner transform, a single-particle
interpretation is still possible in terms of these fermions. We
propose to carry out an experiment in the Mott-insulating
regime but with U/J < ∞. A measurement of the center–
of-mass of the cloud would establish the quantized charge
per pump cycle. Measuring the quasimomentum distribution
throughout the pump cycle would allow one to demonstrate
the breakdown of a single-particle interpretation when com-
bining this information with the known single-particle Berry
curvature of the bands.

We also show how the quantized transport is reflected in the
structure of the entanglement spectrum and the symmetries
of the lattice. The existence of different symmetry-protected
topological phases inherited from the SSH model along the
pump cycle constrains the degeneracy structure of the entan-
glement spectrum, enforcing the quantization of the charge
transport in the Mott-insulating regime.
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